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COMPUTATIONAL METHODS FOR BIFURCATION PROBLEMS

WITH SYMMETRIES ON THE MANIFOLD*

BIN HONGf

Abstract : This paper is about numerical methods for the determina-
tion of bifurcation points of certain steady state multi-parameter prob-
lems in the presence of symmetries. A principal tool is the fact that
under general conditions the solution set forms a manifold in the space
of all state and parameter variables. The reduced manifold with respect
to some subsymmetry is introduced. Methods are presented for the lo-
cal computation of the submanifold of bifurcation points of the same
symmetry.

Key words : solution manifold, symmetry groups, reduced form, fold-
point calculation
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1. Introduction. Equilibrium problems for many physical systems are modeled by
multi-parameter dependent nonlinear equations

F(z, A) = 0. (1.1)

Here z varies in some space Z and characterizes the state of the system while A denotes the
parameter variable allowed to vary in a space A of dimension p > 1. Under fairly general
conditions, the regular solution set of (1.1) forms a p-dimensional differentiable manifold
and interest centers on determining the foldpoints of the manifold M with respect to the
parameter space A (see [19]).

Often in physical applications the system (1.1) is covariant with respect to a trans-
formation group G; that is,

F(T.(g)z, TA(g)A)) = S(g)F(z, A), for all g E G, (1.2)

where T':, T\ and S are group representations of G. When such a symmetry is present,
it can aid considerably in the computation of determination of the bifurcation structure,
especially at multiple bifurcation points. The computation of a multiple bifurcation point,
in general, is difficult and costly. A major advantage of applying group theoretic methods
is the possibility of considering the problem in a reduced form reflecting some subsymmetry
under which certain multiple bifurcation points reduce to the simple case and hence can
be computed by algorithms available for such simple bifurcation points.

* This work was in part supported by the National Science Foundation under grant

CCR-8907654 and the Office of Naval Research under grant ONR-N-00014-90-J-1025.
t Institute for Computational Mathematics and Applications, University of Pittsburgh,

Pittsburgh, Pennsylvania 15260
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In recent years, a number of papers considered symmetry and symmetry breaking in
connection with the computation of bifurcations (see e.g. [5], [12]). But most of them
are restricted to one-parameter problems, and even those concerned with multi-parameter
problems single out a specific parameter for the computation and hold all other parameters
at a fixed value (see e.g. [3]). The aim of this presentation is to use group-theoretic tech-
niques together with a differential-geometric viewpoint to analyse bifurcation phenomena
of multi-parameter problems without giving any preference to any one parameter.

Section 2 summarizes the needed background material. We adopt from [19] and [7]
the differential-geometric setting for the solution manifolds and then introduce some basic
concepts of group theory. This includes some material on the discretization of infinite-
dimensional problems under symmetry.

Our approach is based on previous work in the setting of solution manifolds such as
methods for following a path on M (see [19]) and for computing simplicial approximations
of subsets of M (see [20]), the geometric framework for the numerical study of singular
points introduced in [7] and a resulting method for the computation of some type of singular
points (see [4]). The key objective of this research is to incorporate group actions into these
numerical methods.

Section 3 concerns group actions on solution manifolds. In Section 3, the reduced
manifold MH with respect to some subsymmetry H is introduced and the relation between
the original solution manifold Al and the reduced solution manifold MH is discussed. It is
shown that the usual trivial group action on the parameter space is not always applicable
here and that a more general one has to be introduced. For this, group actions on the
parameter space A are considered in the case of standard unfoldings in bifurcation theory.
For the study of symmetry breaking bifurcations the group action is extended to the so-
called cut function and its (k + 1)-form which in [7] form the basis of the framework for
the study of bifurcation phenomena on manifolds. An important question in the study of
symmetry breaking is the determination of the choice of the symmetry breaking subgroup.
For this, we present a manifold version of the equivariant branching lemma which provides
some choices for the symmetry breaking subgroup. In other work on the application of
group representation theory to the computation of bifurcations (see e.g. [5], [12]), the
symmetry breaking subgroup has to be pre-selected for which the bifurcation point is
to be found. We discuss here how to implement numerically the equivariant branching
lemma to provide better information for detecting the symmetry breaking subgroup at
a bifurcation point. A recent theory about the selection of the choice of the symmetry
breaking subgroups developed by Rabier ([17], [18]) is shown to be of considerable help
as well. By means of the equivariant branching lemma; that is, by consideration of the
original problem in a reduced form reflecting some subsymmetry H, it becomes possible
to reduce certain multiple singular points to simple ones and to apply the method for the
computation of such simple singular points given in [4]. The set of these singular points
with the same symmetry H turns out to form a submanifold of the reduced manifold MHf.

Finally in Section 4, we illustrate the behavior of the methods of Section 3 with an
example. In this example comparison of the reduced manifold and of the submanifolds of
bifurcation points at a multiple symmetry breaking bifurcation point reflects a rich bifur-
cation behavior and indicates also some interesting facts about nonconjugate symmetry
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breaking bifurcation points.

2. Background. Throughout the paper the following assumption shall hold.

Assumption 2.1 : (i) X, Y are real Hilbert spaces; (ii) D is an open subset of X; (iii)
F: D + Y is a Fredholm mapping of class C' , r > 1 and index p > 1.

We consider the equation
r(x) =0, (2.1)

and its regular solution set

M = {x: x E S,F()= O,rge DF(x) = Y}, (2.2)

which will always be assumed to be nonempty. It is well known that M is a p-dimensional
Cr-manifold in X without boundary. For simplicity, the tangent space T1 0M at the point
xo E M of this manifold will be identified with the kernel of the derivative DF(xo) of F;
that is, we set

ToM = ker DF(xo) = {u: u E X, DF(xo)u = 0}, (2.3)
whence

NeeM = (T 0M) = (kerDF(xo))± = rge DF(xo)* (2.4)

may be called the normal space at the point.
A given p-dimensional subspace W of X induces a local coordinate system of M at

x0 E M if
W NoM = {0}. (2.5)

When (2.5) holds, it is always possible to define an isomorphism A : Y - W' of Y onto

TV-L. Then there exists an open ball J = B(0, 0/) C V with radius 0 > 0, an open
neighborhood U C X of xo, and a unique Cr-function r7: J i-4 Y such that v/(0) = 0 and

MnU=f{x E X;X = x(t)= xo + t + A77(t),Vt E J}, (2.6)

(see e.g. [19]).
As indicated already by the form of (1.1), many applications involve a natural orthog-

onal splitting
I X=ZBA, Z=A', dimA=p (2.7)

of the domain space X into a state subspace Z and a parameter subspace A. Then interest
often centers on determining the singular points with respect to A. Let

Zo=ZnTM , No=AnNoM, (2.8)

then, a point xo E M is a foldpoint with respect to X = Z D A if the index q = dim Zo =
dim No is nonzero. This integer q is the first singularity index of x0 (see [71).
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Let GL(X) be the group of all nonsingular linear transformations of X onto itself. A
representation of a group G on a vector space X is a homomorphism T : g -4 T(g) of G
into GL(X), such that

T(gg 2 ) = T(gi)T(g2 ),Vg,g 2 E G. (2.9)

In this paper, we consider only finite or compact groups G. Note that for the group
representation T of finite or compact groups G on a Hilbert space X, it is always possible
to assume T to be unitary, since T is equivalent to a unitary representation (see [21]).

The natural orthogonal splitting (2.7) provides us with an isomorphism A : Y '-4 Z
of Y onto Z. This isomorphism of Y onto Z again denoted by A in turn induces a
representation S of G on Y namely

S(g) = A- 1 T(g)A,Vg E G. (2.10)

This requires that
T(g)Z C Z,Vg E G, (2.11)

which is very natural in applications. We shall assume that S is unitary as well.
In line with this we say that the mapping F of Assumption 2.1 is equivariant under the

group G or that a covariant group action is defined for the equation (2.1) if the following
four conditions hold:

Assumption 2.2 : (i) G is a finite or compact group; (ii) T is a unitary group represen-
tation of G on X such that (2.11) holds; (iii) the representation S of (2.10) induced by T
on Y is unitary; (iv) the relation

F(T(g)x) = S(g)F(x),Vg E G. (2.12)

holds.

As usual, the orbit of a point xo E X under a group G is the set of points

O = {x E X : x = T(g)xo,Vg E G}. (2.13)

For any point x E X it is wel, known that the set

G. = {g E G: T(g)x = x} (2.14)

is a subgroup of G. Any subgroup H of G such that H = G. for some x E X is called an
isotropy subgroup of G. The isotropy subgroups of the points of any orbit are conjugate
to each other, that is

GT(g)z = gGrg- ,g E G,x E X. (2.15)

For any subgroup H C G, the set

XH = {z E X: T(h)x = x,Vh E H}. (2.16)

is a subspace of X called the fixed point subspace of H in X. We can analogously define
the fixed-point subspace of H in Y. Note that Hi D H 2 implies that XHI C XH2. From
(2.12) it follows that F(XH) C yH. This leads to the following important conclusion
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Theorem 2.3 : Let FH denote the restriction ofF to XH. Then xo E XH is a solution
of (2.1) if and only if it is a solution of the H-reduced problem

FH(x)= 0. (2.17)

If X is a finite-dimensional space then (2.17) is a lower-dimensional system of equa-
tions than (2.1). For the computation this is a most compelling consequence of Theorem
2.3. Some information about the dimension of XH and the orthogonal projection from X
onto X H is given by the following result.

Theorem 2.4 : Let G be a finite or compact group acting on X and let H C G be a
finite subgroup. Then we have

dim(XH)= 2 j tr (T(h)). (2.18)
IHI hEH

Furthermore, the linear operator PH on X defined by

PH=1 T(h), (2.19)
IHI hEll

is the orthogonal projection from X onto XH.

Theorem 2.4 can be generalized to compact subgroups H. Then the sums in (2.18),
(2.19) over the elements of H have to be replaced by Haar integrals over H. For this
generalization and the proof of Theorem 2.4 we refer to [11].

In practice, the parameter space is always finite dimensional, but the state-space may
be infinite-dimensional. In that case, for the computation, the mapping F in (2.1) needs
to be approximated by a finite-dimensional analogue. For this, we follow the presentation
in [6] and choose a finite-dimensional subspace Zh of Z, a discretization projection Ph E
L(Z) such that rgePh = Zh. Here h belongs to some index set of small positive scalars.
With Xh = Zh E A, Yh = A- 1 Zh C Y, and the projection Qh : Y i.-* Yh specified by
Qh = A- 1 PhA, the discretized function Fh from the open subset D into Yh is then defined
by

Fh : D - YA,Fh(x) = QhF(x),x E D. (2.20)

For Fh to preserve the equivariance of F under the group G, we need to know under what
condition the group representation S does commute with the projection Qh.

Theorem 2.5 : ([14, Theorem 3.11]) If the space X can be decomposed in the form
X = W1 + TV2 , where W and W2 are invariant under the representation T of the group
G, then the projection operator P on X defined by

Pv = wi, for v = w + w 2 ,wi E Wi, (2.21)

satisfies
T(g)P = PT(g),Vg E G. (2.22)
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Conversely, if P is a projection operator on X satisfying (2.21) then X = W, D WV2 , where
I, = rge P and W 2 = ker P are invariant under T.

By Theorem 2.5, if Zh is invariant under the group representation T of G on X, then T
is interchangeable with Ph. Moreover, Yh inherits from Zh the property of being invariant
under the induced representation S of G on Y. Thus S(g) commutes with Qh as well.
WAith the finite dimensional representations Th(g) = T(g)Ix , S(g) = S(g)jy' of G on Xh
and Yh, respectively, we have the "discretized" group action

Fh(Th(g)x) = Sh(g)Fh(x),Vx E Xh,Vg E G, (2.23)

3. Reduced manifolds and symmetry bifurcation. We assume in this section that
our problem has been brought into finite dimensional form

F(x) = O, F: R -+ R m ,n = m + p,p 1, (3.1)

and consider the derivation of the reduced manifold with respect to a given isotropy sub-
group. By the orthogonality of the group representation T we have

T t (g) = T(g) - ' = T(g-1 ),Vg E G. (3.2)

Moreover, for all g E G and any x E M it follows from (2.12) that

DF(T(g)x)T(g) = S(g)DF(x),
T(g)'DF(T(g)x) - DF(x)'S(g) '  (.3

Iand by (3.2) that
T(g)DF(T(g-')x)t = DF(x)t S(g). (3.4)

From (3.3) we obtain that M is invariant under T; that is, T(g)(M) C M, Vg E G.
As pointed out in Section 2 when F admits a symmetry behavior then it is compu-

tationally advantageous to work with the reduced problem with respect to some isotropy
subgroup H of G. Let dim(XH) = nH < dimX, dim(YH) = mH, and FH XH .: yH

the restriction (2.17) of F to XG. Then we define the corresponding reduced manifold as
the regular solution set of FH; that is,

MH = {x: x E XH, FH(x) = 0,rge DFH(x) = yH}. (3-5)

Clearly its dimension is PH = nH - mH and the following theorem provides a connection
between MH and the original manifold Al.

Theorem 3.1 : If x E Al n XH then x E MH.

Proof. We need to show that for any Y E yH there exists a v E XH such that DFH(x)v

y. Because of x E Al we know that for any y E yH there exists a vi E X for which
DFH(x)vl = y. Since, in addition, x E XH, it also follows that

DF(x)T(h)vl = S(h)y,Vh E H. (3.6)

By applying (3.6) to every group element h E H, and summing the terms we obtain
DF(x)PHv = QHY = y and v = PHVi E X g which proves the theorem. |

The following result is now evident :
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I Lemma 3.2 : For each x E XH, the null spaces ker DF(x) and ker DF(x)t are invariant
under T(h) and S(h), respectively, for each h E H.

I For the study of the solution manifold M it became necessary to introduce a group
action on the parameter space A. The usual trivial action on the parameter space, used,

I e.g., in [10], [11], is not always applicable here as the example of the cusp function

F(z, A, y) = z3 - Az + y, (z, A, P)T E R , (3.7)

I shows which is covariant under the Z2-symmetry,

I F(-z, A, -ii) = -F(z, A, ft). (3.8)

It is useful to consider the group action on the parameter space A in the case of unfoldings
of the type standard in bifurcation theory.

Suppose that F : R' x R 1  - R' is a CT-mapping on some open subset D containing
a point (zo, po) E R m x R1 where F(zo, po) = 0 and dim ker DF(zoqio) = r + 1 > 2. These

i conditions imply that dim rge DF(zo,0po) = m-r < m-1. Let a,,..., ar E Rm be linearly
independent vectors which span ker DF(zo, p0 )t and hence which span a complement of
rge DF(zo,0po) in R m . Then an unfolding of F is given by

F: =R m x R1x Rr"R',f(z,p,5) =.F(z,p)+61a + ... 5,ra, (3.9)

Iwhere 6 = (6 1,. . -, r) and A = RI x R'. By construction we have rankDF(xo, Ao) = m
and evidently with n = m + 1 + r,p = r + 1, A = (ps, b), x = (z, A), the Assumption 2.1 is
satisfied.

Suppose further that the original mapping F is equivariant with respect to a group
G; that is, that

I P(T.(g)z, p) = S(g)P(',p ),Vg E G,z E Rm ,p E R1 , (3.10)

where Tz, S are group representations on the spaces Z and Y respectively. Moreover,
assume that (zo, po) belongs to the fixed-point space of G on R' x R 1 . We wish to ensure
that the unfolded mapping F of (3.9) has the same property; that is, that

F(T.(g)z,TA(g)A) = S(g)F(z,A),Vg E G,z E Rm ,A E R P, (3.11)

where T\ is a group representation on the space A. In order to determine TA(g) for any
g E G, we multiply both sides of (3.9) by S(g),

S(g)F(z, A) = S(g)F.(z, y) + 61S(g)al +... + bS(g)a,. (3.12)

By Lemma 3.2 we have S(g)ai E span(al,...,a,), so that

S(g)ai = bji(g)ai + bi2(g)a 2 +... + bir(g)ar,i = 1,...,r. (3.13)
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Then the matrix B(g) = (bij(g)) satisfies det B(g) 0 0. Hence we can rewrite (3.12) as

w S(g)F(z, A) S(g)P(z, p) + b al + ... + 6;a, (3.14)

where

I "D = B(g) ( (3.15)

I By combining (3.11) through (3.15) we see that1 0 (316
TA (g)0= B(g) (

With this TX we can define a group representation on X as the direct product of T and
TA; that is

T(g)x = (TZ(g)z,TA(g)A),Vx E X,Vg E G, (3.17)

which then implies that

F(T(g)x) = S(g)F(x),Vx E X,Vg E G. (3.18)

The next theorem concerns the relation between the original representation Tz in
(3.10) and the induced representation TA in (3.16).

Theorem 3.3 : If F(x) = 0 and z = T,(g)z for some g E G, then A = T\(g)A.

The computation of foldpoints generally involves some augmented equation which
is then solved by a Newton-like method. The cutset-idea introduced in [7] provides a
natural geometric interpretation of augmentations. In particular, in [7] it was shown that
with certain cuts of the solution manifold it is possible to recover many of the results of
bifurcation theory required in computational considerations.

In general, we consider cuts of the solution manifold M by the orthogonal complement
W' of any given subspace W of X. Thus the cut orthogonal to W through the given point
x0 E A is the intersection M n (xo + W') and therefore consists of the regular points
x E D which satisfy the augmented equations

F(x) = 0, Hw(x - xo) = 0, (3.19)

where Hw is the orthogonal projection of X onto W. If we use the tangential local-
coordinate system (2.6) of Ml at x0 and choose V as No = An NxoM of (2.8), then (3.19)
is equivalent with

flNoDF(xo)'r?(t) = O,t E J, (3.20)

and this suggests the definition of the cut function

f : J C T,, A i-- No

f(t) = HN,,DF(xo)t7(t), t E . (3.21)

The following results address the group equivariance of the cut function.
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Lemma 3.4 :For an.y point x0 E XG , and with No = A nl N.,,M, we have T(g)(No) C
No, Vg E G.

The proof is self-evident and need not be detailed here.

Theorem 3.5 :If No = A nl NxM # {0} and IIN, denotes the orthogonal projection
onto No, then T(g)11No = HN0,T(g),Vg E G.
Proof : Since X = Z (D A, and X = Nx0 M E Tx0M, it follows that

X = Z E (An Txm) + (AnN NX 0m). (3.22)

Let W2 = Z ED (A flTX0, m), w, AnNl N, 0 M = No. Then Lemma 3.4 implies that W, is
invariant under T and because of Z = A'-, Nx0 M = (T. 0M)-' we have W2 = W1-'-. Hence,
TV2 is also invariant under T and (2.22) of Theorem 2.5 applies to P = 11 No. I

Theorem 3.6 : Let xo E M nl XG. The cut function f defined by (3.21) at x0 satisfies

f(T(g)t) = T(g)f (t), V9 E G, Vt E J. (3.23)

Proof : (a) We show first that the function 77 in the characterization (2.6) of a local
coordinate system satisfies

77(T(g)t) = S(g>77(t),Vg E G,Vt E J. (3.24)

In the proof of Theorem 2.2 ([19, Theorem 4.4]) the inverse function theorem ensures the
existence of an open ball J = B(O, 0) with radius ,3 > 0, of a neighborhood V C Y of the
origin, and of a unique Cr-function q7: J i-+ V such that

H(t, 77(t)) = F(xo + t + DF(xo)'%(t)) = 0, Vt E J. (3.25)

Since T is unitary, we have T(g)J C J, and

S(g)H(t, 77(t)) = S(g)F(xo + t + DF(xo)%,(t))

= F(xo + T(g)t + DF(xo)'S(g) 7 (t)) (3.26)
= H(T(g)t, S(g)7 7(t)) = 0.

On the other hand, by replacing t E J by T(g)t E J in (3.25) it follows that

H(T(g)t,77(T(g)t)) = 0. (3.27)

Since T(g)t E J, tile solution of (3.25) for T(g)t is unique and hence

77(T(g)t) = S(g)77(t).

(b) From (a) and Theorem 3.5, we obtain that

T(g)f (t) = T(g)IIN. DF(xo)'%j(t)

= IIN.DF(xo)S(g)i1 (t) (3.28)
= IIN. DF(xo)'7 7 (T(g)t) = f (T(g)t),
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which proves the theorem. I

It was shown in [7] that the cut function f always satisfies

f(O) = 0,Df(0) = 0. (3.29)

Accordingly, the second singularity index of the foldpoint xo E Al' is defined (see [7]) as
the number k > 1 such that

D'f(0) = 0,j = 0,1,...,k,Dk+lf(0) # 0, (3.30)

if there exists such a k, else k = oo. With this, the triple (p, q, k) consisting of the Fredholm
index p and the two singularity indices q and k forms a classification for the foldpoints of
M.

For the determination of the form of the cuts the generalized Morse Theorem due to
Buchner, Marsden and Schecter [1] is applied in [7]. There it was shown that the form
of the cut orthogonal to No of (2.8) at the foldpoint x0 of type (p, q, k) is essentially
determined by the zeros of the (k + 1)-form

Q : J C T.oM -- No,

Q(t) = 1 Dk+lf(0)(t, t,. .. ,t),t E J. (3.31)
(k + 1)!

More specifically, if Q is regular on its zero set; in other words, if DQ(t) is surjective for
each nonzero t E Q- 1 (0), then locally near x0 the cutset is Cl-diffeomorphic to the zero
set of Q. In line with this, a foldpoint of M of type (p, q, k) will be called nondegenerate
if its associated (k + 1)-form (3.31) is regular on its zero set.

Theorem 3.7 : The (k + 1)-form Q associated with the cut function f in Theorem 3.6
is equivariant under G,

Q(T(g)t) = T(g)Q(t),Vg E G,Vt E J. (3.32)

Proof : By Taylor's theorem we can write

f(t) = Q(t) + o(IIxIIk+I). (3.33)

and for t : 0, we have

f(T(g)t) = Q(T(g)t) + o([ T(g)tI k+l)

= Q(T(g)t) + o(IItIIk+l),

T(g)f(t) = T(g)Q(t) + o(ItIk+l). (3.35)

Now divide both sides of (3.34) and (3.35) by I tII k+ I and set v = Then for t - 0 it
follows, in view of (3.23), that

Q(T(g)v) = T(g)Q(v),Vg E G,v E TxoM,IvI = 1, (3.36)
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and by homogeneity the condition Iivji = 1 can be dropped in (3.36).1

Remark : The linearly independent vectors v E Q-1(0),v 0 0 are called bifurcation
directions. By Theorem 3.7, if v is the zero of Q, so is the T(g)v,g E G, that means, the
representation T acts on Q-1(0) by permuting the bifurcation directions under symmetry.
Therefore, linearly independent bifurcation directions v E Q-1(0), I[vIi = 1 correspond to
different orbits through x0 on Al.

If x0 is a foldpoint in XG M it may occur that the bifurcation directions at x0 belong
to XH for some isotropy subgroup H of G. In that case the symmetry group of equation
(2.1) remains unchanged but the bifurcation directions spontaneously break symmetry (in
the absence of an external symmetry breaking perturbation).

An important question in the study of symmetry breaking is the determination of the
subgroup H of G which breaks the G-symmetry. For this, we present a manifold version of
the equivariant branching lemma which provides some choices for the symmetry breaking
subgroup.

Theorem 3.8 : Suppose that xo E Al n XG is a foldpoint of type (p, q, 1), and H is an
isotropy subgroup of G. Let Zo = ZNTxo Al. If dim(ZoNXH) = 1, say, ZonXH = span(vo),
then vo is a bifurcation direction in Al.

Proof: It was shown in [4] that if xo is a foldpoint of type (p, 1, 1); that is, if dimZ0 = 1,
I and Z0 = span(uo), then u0 is the bifurcation direction. The key point here is to reduce

the original multiple foldpoint problem of type (p, q, 1) to the H-reduced simple foldpoint
problem of type (PH, 1, 1). If we can show that QH(Vo) = 0 then by the equivariance of Q
(Theorem 3.7), we also have Q(vo) = 0. More specifically, we need to show that

qH= dim (TXoH n Z") = 1, (3.37)

where
lZH= {z E Z;T(h)z = z,Vh E H} (3.38)

is the fixed-point subspace of H on Z. Since, by definition, FH(X) = F(PHX), it follows
that

DFH(x) = DF(PHx)PH = DF(x)PH,VX E XH, (3.39)

which proves the identity

ZH n kerDFH(x) = XH n (Z n kerDF(x)) = XH n Zo. (3.40)

This, together with the assumptions x0 E M n XG C M n XH and dim(XH n Z0 ) = 1,
implies that (3.37) holds. 1

Remark : It can be shown that if Q is regular at v0 , then the bifurcated branch tangent
to v0 preserves the symmetry of the isotropy subgroup of v0 (see [16]).

For the numerical implementation of Theorem 3.8 note that

Z0 = Z n T,0, A = ker D.F(xo), (3.41)
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and
XH f Zo = Z H = {z E Zo;T(h)lzoz = z,Vh E H}. (3.42)

If (Po)H denotes the orthogonal projection from Z0 onto Z0
H then by (2.18) and (2.19) we

have
dim(Z) = I tr (T(h)lzo)

h~n (3.43)

tr ( -H- Z T(h)lzo) = tr((P)H).
hEH

Lemma 3.9 : (see Chapter I,§2 of [15]) Let A be a linear operator on a finite-dimensional
space U and V a subspace of U that is invariant under A. Moreover, let P be a projection
of U onto V and Av the restriction of A to V. Then we have

tr(Av) = tr(AP). (3.44)

Let (Pz)H be the orthogonal projection from Z onto ZH and liker DF(xo) the orthog-
onal projection from Z onto kerD F(xo). Then, by Lemma 3.9, (3.43) becomes

dim(XH n Zo) = tr((Pz)HIker D,F(.o)), (3.45)

where

(PZ)H = T- 1: T.(h) (3.46)
hEH

and IlkerDF(,o) is available from the singular value decomposition (SVD) of DF(xo) in
the foldpoint computation (see later).

To determine which isotropy subgroup H satisfies the condition dim(Zo n X H ) - 1,
we usually search through the lattice of the isotropy subgroups of G starting from the
root G. Note that when dimXH = 1 and XH Zo {q0} then qH = 1. An isotropy
subgroup H is called maximal if it is not a proper subgroup of any other isotropy subgroup
except G. If dim X H = 1 then H is a maximal isotropy subgroup. A major advantage
of considering such maximal isotropy subgroups is that we can use (2.18) to determine all
maximal isotropy subgroups H with dimX H = 1 and then use them as our first choice to
test whether Theorem 3.8 is satisfied for H (see Sattinger [22] and Golubitsky et at [11]).

In view of Theorem 3.8, Golubitsky [9] conjectured that generically the solutions of
symmetry breaking bifurcation problems all satisfy dim(XH l ZO) = 1. It is now known
that the conjecture is false. Counter-examples for higher dimensional representations of
SO(3) have been found by Chossat [2] and for higher dimensional representations of 0(3)
by Lauterbach [13]. On the other hand, Field and Richardson [8] show that for finite
groups generated by reflections the conjecture is true.

The above discussion about finding the symmetry breaking subgroup H of G is
strongly representation dependent. If we change the representation we will need to rebuild
the list of choices for H. Thus the question arises whether there exists any common list for
different representations. A positive answer has been given by Rabier in [17] and [18]. More
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specifically, it was shown that Lie groups possess subgroups of a special type, called intrin-

sic isotropy subgroups, which are characterized by a representation-independent property
provided the representations are assumed to admit covariant linear isomorphisms with neg-
ative determinant. Such intrinsic isotropy subgroups play an important role in symmetry

breaking bifurcations.
Let F be any Lie group and F' a subgroup of F. Then F' is an intrinsic isotropy

subroup if for any representation T of F in GL(R n ) with given n > 1, any T-covariant
linear isomorphism L E GL(R") satisfies

sgn det Lr, = sgn det L. (3.47)

Suppose that the Lie group F is given along with one of its representations T in
GL(R'). Ve consider a C' mapping g(= g(p,x)) : R x R -* R' such that g(p,0) = 0
and assume that, for every p E R,g(ji,*) is F-covariant. Moreover, we assume that
det Dxg(j, 0) changes sign as p crosses 0. With these hypotheses, the following results
hold.

Theorem 3.10 : ([17, Theorem 2.1]) Let r' C F be a (maximal) intrinsic isotropy sub-
group. Then, there is a branch of nontrivial solutions of g(p, x) = 0 with Fr-symmetry
that bifurcates from (0, 0).

For the existence of nontrivial intrinsic isotropy subgroups (the trivial case is F' -
{I}), it was shown in [17] that a compact Lie group F has a nontrivial intrinsic isotropy
subgroup if and only if it is not isomorphic to a direct product of copies of Z2 . If the
elements of odd order in F form a subgroup Fodd (e.g. if F is supersolvable), then the
subgroup (F 2 ) is an intrinsic isotropy subgroup of F, where (F 2 ) is the group generated by
elements of the form -y2 , -y E F. Surprisingly the converse is also true (see [18]).

Now we are ready to adapt the computational method for (p, 1, 1) foldpoints to the
reduced case of (PH, 1, 1) foldpoints. For this, we need the additional assumption

Assumption 3.11 : There exist a point xo E Al n XG which is not a foldpoint with
respect to A.

Lemma 3.12 : Under the Assumption 3.11 we have

dimZ g = dimYH, and dimkerDzFH(x) = dimkerDzFH(x)t . (3.48)

Let x* E XHn.1I be a non-degenerate foldpoint of M with respect to A of type (p, q, 1)

where q > 1. Then we have rank DzF(x*) = m - q and hence rank D F(x) ? m - q
for all points x in some open subset Uo of X containing x*. Suppose further that qH =

dimker Dz FH(x*) = 1 and set UoH = Uo n XH. Then we have rank DFH(x*) = rn1 -1
and hence rank DFH(x) _ mH- 1 for all points x in some open subset V of UjH containing
x*. In other words, for any foldpoint x E V n M the first singularity index of F is at most
q but the first singularity index of FH equals 1.

Let LH be an orthonormal matrix whose columns span ZH, then from (3.48) the
matrices DFH(x*)LH and (DFH(x*)LH)t have one-dimensional nullspaces. Let u,, c/ E
R' be any given vectors such that

Hc * rge DFH(x*)L l, u* V rge (DFH(x*)LH)i, (3.49)
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and for any x E V0 consider the matrix

AH(x) = (DFH(x)LH c (3.50)

Then there exists an open subset V of V containing x* such that AH(X) is non-singular
for all x E V1I. Now the solutions of the two linear systems

A ,H(X) + = 1'(x)

A = ox yV (3.51)

are uniquely determined for each x E V. Applying Theorem 1 and Theorem 3 of [4] to
the reduced (PH, 1, 1) foldpoint we have

Theorem 3.13 : There exists an open neighborhood V2 C V of x* such that the solutionsof =(nx
ar exal tH(X) 

(3.52)GH(X) )

are exactly the foldpoints of M in MH n V2 with type (PH, 1, 1) and these solutions form
a (PH - 1)-dimensional submanifold of MH.

Remark : Note that usually PH _ p, if PH = 2, then the foldpoint submanifold with
symmetry H is one-dimensional and we can apply PITCON (see [19]) to trace this sub-
manifold. On the other hand, if PH 3, we can apply MATRIG (see [20]) to compute a
simplicial approximation of an open subset of this sunmanfold.

We summarize the results in the form of the following algorithm.

Algorithm 3.14 : Let x be an approximate foldpoint of type (p, q, 1) of M with respect
to A:

(1) Compute the singular value decomposition (SVD) of DzF(x)

B(x)tDF(x)A(x) = diag(aI(x),...,am(x)).

(2) Let a'(x), i = 1,...mm be the columns of the matrix A(x) and compute
the projection

1 1kerDF(x) =AqAt, Aq=(am--+l,...,aM).

(3) For all possible symmetry breaking isotropy subgroups H
3a) compute the projection

(PZ)H = 14 j 1: T. (h);
111hEll

3b) and determine which isotropy subgroup H satisfies

dim(XH n ker DzF(x)) = tr((Pz)HIIke, DzF(zo)) = 1.

14



(4) Compute aH = (PZ)Ha'(x) for i = m,..., m - q + 1 untila H #0 for

some io, then take u* = ai.

(5) Compute the projection

QH= I-EH S(h).

(6) Let bi(x),j = 1,..., m be the columns of the matrix B(x) and compute

= QHb'(x) forj = m,...,m- q+ 1 until b" : 0 for some jo, then take
c; =
(7) Set xo = x and for k = 0,1,..., until convergence

7a) solve the systems

IAH(Xk) H(X k) ) + (0) = 0, AH(Xk)t C(cHk) + (0 0,(PH°(xk) 1 Y(k1

7b) compute GH(xk) and DGH(xk)

*GH(Xk) - HXk

7c) and compute the next iterate

Xk+1 = Xk - DGH(Xk)-GH(Xk)

4. Numerical example. A programming package BISYM has been written which im-
plements the methods of Section 3. In order to indicate the performance of the package

BISYM, we consider the four-box-Brusselator reaction problem (see [5]) in unfolded form

AAu - G(u, v) + 61 a + 2b = 0

1OAAv - H(u, v) + 0.81533(31 a + b 2 b) = 0

where
/2 -1 0 -

A -1 2 -1 0 (4.2)
0 -1 2 -1

1 0 -1 2

and
G(u,v)=(g(uI,vI),...,g(u4 ,v 4 ))t , g(s,t)=2-6.9s+s2 t

I H(u,v)=(h(ul,v1),...,h(u4 ,v 4 )) t , h(s,t)=5.9- s2t (4.3)
a =(0,1,0,-1)t , b= (1,0,-1,0)t.
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W\ith x = (u,v,A,6i,6 2 ) E Rn and n = 1,m = 8,p = 3 this is a problem of the form
considered in sections 2 and 3. It is evident that the equivariance relation (2.12) is satisfied
with a group G that is isomorphic to the dihedral group D 4 :

G = {I, R 1 ,R 2 ,R3 ,S1,S 2 ,S 3 ,S 4}

I, R 1, R 2 , R 3 , S1, S2, S 3 , S4 are permutation matrices representing rotations and refections
(see Figure 1). The induced group representation T\ with respect to this unfolding is given
by

T(0 0 )1 0 0 1 0 )

( 0 1 T(R 2 ) (1 - . Tx(R 3 )= (1 (4.4)
(0 -1 0 0 -1 00 1

and
1 0 0 1 T0 .0

TS1)=(0 0 D TA(S2) 0 0 - 1
(0 0)(0 )(4.5)

T,( Sa ) = 0 1 0 (S 0-1 0

II (* 0 - 0 0

S4  S 3  R

Figure 1

The subgroups of G are :

G = {I, R1, R 2 ,R 3 ,S1,S 2 ,S 3 ,S 4},FR ={I, R1,R2,R 3 },

IAf = {I, R 2 ,S1,S 2 },ED = {I,R2 ,S 3 ,S 4 }, Ep = {I, R 2}, (4.5)

El = {I,S1},E 2 = {I,S2},a {I,S3 },E 4 = {I,S4 },EO = {I}.

It can be shown that only G, ED, El, E2, E3, E4 and EO are isotropy subgroups and xO =

(u*,v*,A*,0,0) with

e = (1, 1,1, 1)t, u* = 2e, v" = 2.95e, A* = 0.04536 (4.7)

is a foldpoint of (4.1) with first and second singularity indices 2 and 1, respectively. By
Theorem 3.8 and the formula (3.45), we can check that symmetries breaks from G to
E = 1,... ,4 respectively at xo.
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I Using (4.4), (4.5) and (2.18) we obtain dimMIE, = 2,i = 1,...,4 (note dim AI, --
dimAs'). Applying the subroutine PITCON of BISYM we can trace the foldlines in
symmetry Ei,i = 1,... ,4.

Z3

4

I 4

12
822

Figure 2

Figure 2 gives the projections of the foldlines; that is, the caustics of the symmetries
1, E2, -3, and E4 in the parameter space (62, 6l, A). Each caustic has the shape of a cusp.

It may be interesting to note that the opening of the cusp of El, E2 is opposite to that of3-4-
~L' &

(a) (b) (c)

Figure 3

Figure 3 provides pictures of the projections of the foldlines of the symmetries E2 and
14 onto various 2-dimensional spaces, they indicate that the projections of foldlines of

E-2 and r24 onto the space of (vl, A, b2) behave as the cusp functions v + A • v, + 62 and
t3- A * v, + 62, respectively.
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Applying the subroutine MATRIG of BISYM we can also compute the simplicial trian-
gulation of the reduced manifold .Mr,...,M, 4, respectively, in the coordinates (vi, A, bi)

(see Figure 4).

vI

Figure 4

Figure 4 certainly indicates how complicated the solution behavior is in this example.
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