
AD- A237 144

The language for DENOTE
(Denotational Semantics Translation Environment)

Prepared by

J. V COOK
Computer Science and Technology Subdivision

31 August 1990

Prepared for

SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COM4MAND

Los Angeles Air Force Base
R 0. Box 92960

Los Angeles, CA 90009-2960

Engineering Group

THE AEROSPACE CORPORATION
El Segundo, California

APPROVED FOR PUBLIC RELEASI

DITRBUflN NUfTD91-0236

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, un-
der Contract No. F04701-88-C-00890 with the Space Systems Division, P. 0. Box 92960, Los
Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by
C. A. Sunshine, Principal Director, Computer Science and bchnology Subdivision. Mike
Pentony, Lt, USAF, was the project officer for the Mission-Oriented Investigation and Ex-
perimentation (MOIE) Program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to
the National Technical Information Service (NTIS). At NTIS, it will be available to the gen-
eral public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication
of this report does not constitute Air Force approval of the report's findings or conclusions.
It is published only for the exchange and stimulation of ideas.

Mike Pentony, , USAF Jonathan M. Emmes, Maj, USAF
MOIE Project Officer MOIE Program Manager
SSD/SDEFS PL/WCO OL-AH

1. INTRODUCTION

This report describes the language accepted by DENOTE (Denotational Semantics Translation
Environment). DENOTE is a tool for writing and implementing formal denotational semantics " (Ref. 1) of
computer languages. DENOTE provides a language, the DENOTE language (DL), for writing
denotational semantic specifications. DENOTE can transform DL specifications into denotational
semantic equations and functions represented as plain ASCII text or as formatted text acceptable to the
Scribe (Ref. 2) and LaTEX (Ref. 3) text formatters. In addition, DENOTE can generate semantic
implementations, by automatically transforming DL specifications into Common Lisp (Ref. 4) code that
faithfully implements the specified semantics.

This introduction is followed by four sections, an appendix, and an index. Section 2 gives some
background on DENOTE. Section 3 describes the notations used in defining the abstract syntax of
programming languages, and presents some restrictions on the types of abstract syntax trees accepted
by DENOTE. Section 4 describes the DENOTE !anguage (DL), in which denotational semantic equations
and functions are written. Section 5 summarizes the report. The appendix gives a small example that
demonstrates the use of DENOTE. The index provides a cross reference to the reserved words of DL.
The implementation of DENOTE, and its user interface, are not described in this report.

tA familiarity by readers of this report with the concepts of denotational semantics is assumed.

ABSTRACT

The State Delta Verification System (SDVS) is a proof checker for correctness proofs of properties

expressed in the state delta logic. When one proves correctness properties of a computerc program

within SDVS, one must first translate the program into the language of the state delta logic. The

translation semantics of a computer language can be specified formally by means of denotational

semantics. In this report we describe an automated environment for specifying and implementing

denotational semantics, called DENOTE (Denotational Semantics Translation Environment). The

language accepted by DENOTE is called the DENOTE language (DL). DL is a language In which formal

denotational semantic specifications can be written. DL specifications can be transformed by DENOTE

into text suitable for input to the Scribe and LaTEX text formatters, as well as into Common Lisp code that

implements the specified semantics.

?ar

D r 1 .-$

4--A ~ - - '!,

1ll . 1%

!Avfil and/o

CONTENTS

1. INTRO DUCTION .. 1
2. BACKG RO UND ... 3
3. ABSTRACT SYNTAX .. 5

3.1. A Language for Abstract Syntax .. 6
3.2. Implementation Requirements for Abstract Syntax Trees 7

4. DENOTE LANG UAG E (DL) ... 9
4.1. Atom ic Term s ... 9

4.1.1. Constants .. 9
4.1.2. Variables ... 9

4.2. Built-in Infix Operators and Built-In Functions .. 11
4.3. Sem antic Equations .. 12

4.3.1. Names and Labels .. 13
4.3.2. Syntactic Arguments .. 13
4.3.3. Semantic Arguments .. 14

4.4. Auxiliary Functions .. 14
4.5. Equation and Function Bodies ... 14

5. SUM M ARY ... 17
REFERENCES ... 19
APPENDIX. THE LANG UAG E L .. 21

1. Concrete Syntax for L .. 21
2. Abstract Syntax for L ... 21
3. Informal Sem antics for L ... 22
4. Formal Semantics for L In DL .. 22
5. Scribe Formatted Denotatlonal Semantics for L .. 23
6. Com mon Lisp Im plementation of Semantics for L ... 24
7. Exam ple Semantics for Sentences of L ... 26

INDEX .. 29

FIGURES

3-1: Parse Tree for 101 +11 using Concrete Syntax... 5
3-2: Parse Tree tor 101 +11 using Abstract Syntax.. 6

TABLES

4-1: Constants of DL ... 10
4-2: Variables of DL... 10
4-3: Built-in Infix Operators of DL .. 11
4-4: Built-in Functions of DL.. 12
4-5: Control Structures In DL.. 15
4-6: Binding Constructs of DL .. 16
4-7: The Syntax of Bindings Within let and where .. 16

vi

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1l REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release:2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TR-0095927) 2 SSD-TR-90-49

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7L NAME OF MONITORING ORGANIZATION
The Aerospace Corporation #applicale)
Computer Systems Division Space Systems Division

6c. ADDRESS (City State, and ZIP Code) Tb. ADDRESS ' iate. and 7/P Code)
Los Angeles Air Force Base

El Segundo, CA 90245 Los Angeles, CA 90009-2960
Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. P4INSTIJMUENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
IF04701-88C-008

8c. ADDRESS (Cit% State, and ZIP Code) 10. SOURCE OF FUNDING NUBERS

PROGRAM I PROJECT I TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

The Language for DENOTE (Denotational Semantics Translation Environment)

12. PERSONAL AUTHOR(S) Cook, . V

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yea, Month, Day) 15. PAGE COUNTFROM _____TO ____ 1990 August 31 29
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Corninue on reverse if necessary and idwnify by block number)
Computer verification

FR O U P Denotational semantics
Language translation
SDVS

19. ABSTRACT (Continue on reverse i necessary a-W identifhy by block number)

The State Delta Verification System (SDVS) is a proof checker for correctness proofs of properties expressed
in the state delta logic. When one proves correctness properties of a computer program within SDVS, one
must first translate the program into the language of the state delta logic. The translation semantics of a
computer language can be specified formally by means of denotational semantics. In this report we describe
an automated environment for specifying and implementing denotational semantics, called DENOTE (Deno-
tational Semantics Translation Environment). The language accepted by DENOTE is called the DENOTE
language (DL). DL is a language in which formal denotational semantic specifications can be written. DL
specifications can be transformed by DENOTE into text suitable for input to the Scribe and LaTEX format-
ters, as well as into Common Lisp code that implements the specified semantics.

20. DISTRIBUTIONIAVAILABIUY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNUMITED [] SAME AS RPT [] DTIC URS Unclassified
22a. NAME OF RESPONSIBLE INDMIUAL 22b. TELEPHONE (Include Area Cods) 22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR a~Ion may be used unrl oxhawd. SECURITY CLASSIFICATION OF THIS PAGE
AM oater odw e oboo UNCLASSIFIED

2. BACKGROUND

The impetus for the design and construction of the DENOTE tool came from certain requirements
necessary for the improvement of the State Delta Verification System (SDVS) (Ref. 5). SDVS is a proof
checker for proofs of correctness of the properties of programs written in various computer languages.
SDVS, when checking such proofs, first translates the computer program into SDVS's internal language,
the language of the state delta logic. The correctness of this translation is crucial to the proof process, in
that the translator is directly responsible for specifying the semantics of the computer program to be
translated.

The first computer language dealt with by SDVS was the hardware description language ISPS (Instruction
Set Processor Specification) (Ref. 6). ISPS was used to describe the instruction set architecture of the
C/30 computer (Ref. 7) and to describe the Microprogrammable Building Block (Ref. 8), whose microcode
was used to emulate the C/30 instruction set. These ISPS descriptions were used in the proof of
correctness of the C/30 microcode (Ref. 9), completed in 1986. The ISPS translator used in this proof
was implemented in an ad hoc manner, in that no formal definition of the translation semantics was given.
Only through studying the Lisp code that implements the translator could one gain assurance as to the
correctness of the translator.

Initiated in 1988, an ongoing computer verification effort of the SDVS group is proving correctness
properties of programs written in increasingly complex subsets of Ada t (Ref. 10). The first of these
subsets was given the name Core Ada. Its denotational semantics was defined formally (Ref. 11) and was
then implemented by handcoding the denotational semantic equations and functions in Common Lisp
(Ref. 4). This task was time consuming, tedious, and almost automatic for the programmer, leading to the
realization that the entire process could be automated. This realization led to the invention of DENOTE.

DENOTE is currently being used to define state delta semantics for the hardware description languages
ISPS and VHDL (Ref. 12), and the programming language Ada.

t Ada is a registered trademark of the U. S. Government --- Ada Joint Program Office.

3

3. ABSTRACT SYNTAX

The denotational semantics of a computer language is typically based on an abstract syntax for the
language. The concrete syntax of a computer language Is the syntax used to parse sentences In the
language. A parse tree based on the concrete syntax contains a complete derivation of the parsed
program, with an internal node for each concrete syntax production that is reduced during parsing. In
abstracting the concrete syntax, the resulting parse trees (abstract syntax trees) become smaller and
more manageable. The differences between the two syntaxes are best explained via an example.

expr

sum
/ I \

factor addop sum
I I I

term + factor
I I

bnum term

bdigit bnum bnum
I /A /\

1 bdigit bnum bdigit bnumI i i I
0 bdigit 1 bdigit

I I
1 1

(expr (sum (factor (term (bnum (bdigit 1)
(bnum (bdigit 0)

(bnum (bdigit 1))))))
(addop +)
(sum (factor (term (bnum (bdigit 1)

(bnum (bdigit 1))))))))

Figure 3-1: Parse Tree for 101+11 using Concrete Syntax

Consider the context-free language L generated by the concrete syntax productions listed bvlow.
expr ::=sum
sum ::= factor addop sum I factor
factor ::= term mulop factor I term
term ::- bnum J (expr)
addop ::=+1-
mulop ::=*I
bnum ::= bdigit bnum I bdigit
bdigit :=0 1 1

Each sentence in this language represents an arbitrary arithmetic term involving the operations of
addition, subtraction, multiplication, and division applied to sequences of binary digits. The concrete

5

parse tree for the sentence 101+11 is shown in Figure 3-1. The nonterminal symbols of these concrete

syntax productions are expr, sum, factor, term, addop, mulop, bnum, and bdigit; the terminal symbols are

(,), +, -, *, /, 0, and 1. The notations ::= and I represent derivation and alternation, respectively. Note that

no pseudoterminalst are used to define L (either bnum or bdigit could be pseudoterminals).

plus

bdigits bdigits
I I

(1 0 1) (1 1)

(plus (bdigits (1 0 1)) (bdigits (1 1)))

Figure 3-2: Parse Tree for 101+11 using Abstract Syntax

Productions defining an abstract syntax for L are shown below.

expr::= binary-op expr1 expr2 j ODIGITS bdigit +

binary-op ::= PLUS I MINUS I MULT I DIVIDE

bdigit ::= 0 11

In the abstract syntax, expressions are generalized (operator precedence explicit in the concrete syntax

no longer requires representation) and production sequences are compressed. The abstract parse tree

for the sentence 101+11 is shown in Figure 3-2. The nonterminal symbols of the abstract syntax

productions are expr, binary-op, and bdigit; the terminal symbols are BDIGITS, PLUS, MINUS, MULT,

DIVIDE, 0, and 1.

3.1. A Language for Abstract Syntax

Before formally defining the language for representing abstract syntax productions, some notation must

be introduced. Itemized below are language notations for terminal symbols, sequences of (arbitrary)

symbols, the empty sequence, and a syntactic method for disambiguating multiple occurrences of

symbols in a production.

S' X denotes a terminal symbol x.

* (x +) denotes a sequence of one or more x.

* (x *) denotes a sequence of zero or more x.

* epsilon denotes the empty derivation.

* (x n), where n is a symbol (typically a natural number), may be used to disambiguate

tA p$Oudoterminal denotes a class of terminal symbols, such as "identifiers* or "numerals.*

6

multiple occurrences of the (nonterminal or pseudoterminal) symbol z In an individual
production. The symbol n qualifies x, by distinguishing it from other occurrences of z in the
production. In a like manner, (x * n) may be used to qualify an occurrence of (z *) and
(z + n) to qualify an occurrence of (z +). DENOTE requires qualification in a production

when more than one occurrence of a nonterminal or pseudoterminal symbol appears.in the
production.

For example, consider a syntactic phrase t of L, derived from the nonterminal expr, shown below:

PLUS expr, expr2

The DENOTE language (DL) notation for this phrase is

('PLUS (ezpr 1) (expr 2))

Without the qualification of expr, DENOTE would have no natural way of distinguishing between the two

when referencing them from within a semantic equation.

The formal definition of the DENOTE language for representing abstract syntax is given below.

* An abstract syntax is a list of productions.

" A production is a list whose first element is a nonterminal and whose remaining elements are
the alternatives generated by (derived from) the nonterminal. The symbol epsilon denotes
the empty derivation. Each list representing a production must have at least two elements,
the simplest production being (nt epsilon), denoting a nonterminal nt that has only the
empty derivation. If the nonterminal defining the production also appears within one of the
alternatives, duplicate occurrences of the nonterminal must be qualified for disambiguation.

* An alternative is either a terminal symbol, a nonterminal symbol (or sequence thereof), a
pseudoterminal symbol (or sequence thereof), or a list of the aforementioned symbols.

A DL representation of the abstract syntax for the example language L is shown below.

((expr (binary-op (expr 1) (expr 2))
('bdigits (bdigit +)))

(binary-op 'plus 'minus 'mult 'divide)
(bdigit '0 '1))

If bdigit was defined to be a pseudoterminal of , the final production would be absent.

3.2. Implementation Requirements for Abstract Syntax Trees

DENOTE requires a particular physical representation of abstract syntax trees. These trees must

conform to the following rules:

* An abstract syntax tree contains no nonterminal symbols, only terminal and pseudoterminal
symbols and lists thereof. DENOTE is case-insensitive.

* Terminal symbols appear verbatim.

• A pseudoterminal is represented by the appearance of the particular symbol parsed.

* A sequence of symbols (defined by either the + or * notation) is epresented by a list
containing each symbors representation, or by the empty list if the sequence is empty.

tBy "syntactic phrase we mean some derivation of a nonterminal trom the abstract syntax.

7

* An alternative that is defined in the abstract syntax by a list of symbols must be represented
by a list that contains the ordered representation of each symbol, the first symbol of which
must be a unique terminal symbol. This requirement permits DENOTE to disambiguate
different syntactic phrases derived from a single nonterminal.

A few examples of abstract syntax trees for L should clarify these implementation requirements. The
terminal symbol PLUS is represented by the atom PLUS. The binary digit 0 is represented by the atom 0.
The binary number 101 is represented by the list (bdigits (1 0 1)). The syntactic phrase 1001 +11
is represented by the list (plus (bdigits (1 0 0 1)) (bdigits (1 1))).

8

4. DENOTE LANGUAGE (DL)

This section describes in detail the syntax of the DENOTE language (DL) for defining denotational

semantic equations and auxiliary functions. This preliminary version of DL is syntactically sirr.a;ar to Lisp

(Ref. 13), consisting of atomic terms and s-expressions (parenthesized lists). The following groups of

language constructs are defined:

* the atomic terms (constants and variables)

" the built-in operators and functions

" a construct for defining denotational semantic equations (defsemeq), and additional
constructs for specifying the syntactic arguments of semantic functions (synclause) and for
preventing the currying of arguments (args)

" a construct for defining auxiliary functions (defsemfn)

" the control structure constructs if, elseif, and notations for applying semantic functions,
auxiliary functions, and continuations (applycont) to arguments

" the binding constructs let, where, whererec, and lambda

" the grouping constructs lst, tuple, and synclause for binding new variables

A full list of the reserved words of DL is shown in the index at the back of this report.

In the sections to follow, tables are used to show groups of syntactic objects. Each table has three
columns, labeled Denotations, DL, and Common Lisp, respectively. The middle column shows the DL
syntax of a reserved word or construct. The first column shows its denotational representation as
displayed by the Scribe text formatter. The third column shows the fragment of Common Lisp code that
implements the object. The reserved words of DL are displayed in a bold, fixed-width font, as are all

Common Lisp constructs. DL is case-insensitive.

4.1. Atomic Terms

Constants and variables comprise the atomic terms of DL.

4.1.1. Constants

Table 4-1 shows the syntax for the constants of DL. These constants include the empty derivation
epsilon, the empty set emptyset, the Booleans tt and ff, the numerals, atomic identifier constants,

and strings.

4.1.2. Variables

Table 4-2 shows the syntax for variables of DL. All identifiers that are not reserved words of DL can be
used as variables, except for t, which for historical reasons is reserved to denote a variable named TSE.t

tTSE is an acronym for Tree Structured Environment.

9

III

Denotation DL Common Lisp

epsilon nil

0 emptyset nil

tt tt t
ff ff nil

l... ... -1,0,1 -i

bold-Id (told-id 'bold-id

bold-ld (quote bold-id) 'bold-id
bold-ld (bold bold-id) ' bold-id

BOLD-ID (ubold bold-id) 'bold-id

"xxxxx" (string "xxxxx") "xxxxx"

Table 4-1: Constants of DL

Denotation DL Common Lisp

t tse

identifier identifier identifier

xI (scriptarg (x 1)) xl
X+ (scriptarg (x +))x+
X* (scriptarg (x *)) x*
X+2 (scriptarg (x + 2)) x+2
X*3 (scriptarg (x * 3)) x*3

[[S 4)] (synarg (a 4)) 84
[s'Ij (synarg (a *)) 8*
[[s+j (synarg (a +) 3+
[[S*51J (synarg (a * 5)) 8"5

([S+6]] (synarg (3 + 6)) 8+6

[Is)) (synarg s) a
[[ID (synarg 'id) lid
[[ID]] (8ynarg (quote id)) 'id

Table 4-2: Variables of DL

In addition, DL has two notations for introducing subscripted variable names into denotational semantic

descriptions. These notations are headed by the identifiers scriptarg and synarg. The scriptarg

notation can be applied to any variable, whereas only syntactic variables can be contained within

10

synarg. When a semantic function is applied to arguments (the first of which must be syntactic), the first

argument must be enclosed in the synarg form, to distinguish it from the remainder of the (nonsyntactic)

arguments. " This first argument may be the empty sequence epsilon, a (quoted) terminal symbol, a

pseudo-terminal symbol (or sequence thereof), or a nonterminal symbol (or sequence thereof).

Denotation DL Common Lisp

-- x (not x) (not x)
xvy (or x y) (or x y)
X A y (and x y) (and x y)
x =y (eq x y) (=x y) (equal z y)
x y (neq x y) (-= • y) (not (equal x y))
x<y (it x y) (< • y) (< • y)
x! _y (le x y) (<= x y) (<= x y)
x>y (gt x y) (> x y) (> z y)
x > y (ge x y) (>= x y) (> y)
-x (minus x) (- x) (- X)
x + y (plus a y) (+ X y) (+ x y)
x-y (minus x y) (-x y) (- y)
x*y (mult x y) (*xy) (*X y)
x/y (divide x y) (/ x y) (quotient x y)
x Ay (expt x y) (X y) (expt x y)
XE y (member x y) (member x y :test 'equal)
x u y (union x y) (union x y :test 'equal)
x r) y (intersection x y) (intersection • y :test 'equal)

Table 4-3: Built-in Infix Operators of DL

4.2. Built-in Infix Operators and Built-in Functions

Table 4-3 shows the syntax for the built-in operators of DL that have infix denotations. The built-in
operators consist of the Boolean relations negation (not), conjunction (or), and disjunction (and); the
logical relations equality (eq,=) and disequality (neq,-=); the integer inequalities less than (lt,<), less
than or equal (le,<=), greater than (gt,>), and greater than or equal (ge,>=); the integer operators unary
negation (minus,-), addition (plus,[+]), subtraction (minus,-), multiplication (mult,*), division

(divide,/), and exponentiation (expt,^); and the set operators membership (member), union (union),
and intersection (intersection).

Table 4-4 shows the syntax for the built-in functions of DL, i.e., those built-in operators that have no infix

denotations. These built-in functions are list head (hd), list tail (ti), list length (length), dotted-list
construction (cons), list type identification (consp), list append (append), conventional list construction
(list), identifier concatenation (catenate), integer maximum (max), integer minimum (min), integer

tA syntactic argument s is distinguished by the denotation [Isil.

11

remainder (rem), integer modulus (mod), and integer absolute value (abe). Adding new built-in operators
and functions to DL, as the need arises, is not difficult.

Denotation DL Common Lisp

hd(x) (hd x) (car X)
tl(x) (ti 1X) (cdz x)
length(x) (length x) (length x)
cons(x,y) (cons z y) (cons z y)
consp(x) (conap x) (consp x)
append(x,y) (append x y) (list z y)
list(x1,X2,..) (list x1 X2 ...) (list x2. x2 ...)

catenate(x,y) (catenate x y) (pack* z y)

max(x,y) (max x y) (max x y)
min(x,y) (rain x y) (main z y)
rem(x,y) (rem x y) (rem z y)
mod(x,y) (mod x y) (mod z y)
abs(x) (abs x) (abs x)

Table 4-4: Built-in Functions of DL

4.3. Semantic Equations
The DL expression that defines a single denotational semantic equation is a six-element list headed by
the identifier def semeq, whose remaining five fields contain the following:

2. the atomic name of the semantic function,

3. a unique atomic label for the semantic equation,

4. the syntactic argument of the equation,

5. a list of the arguments to the function, and

6. the body of the equation.

For example, consider the following def semeq form:

(detaemeq
33Z4 (synclause expr ('divide (expr 1) (expr 2))) (c)
(where (((scriptarg (c 1))

(lambda Wx
(where (((scriptarg (c 2))

(lambda (y)
(if (= x 0)

(division-error)
(applycont c (/ y x))))))

(3 (synarg (expr 1)) (scriptarg (c 2)))))))
(3 (synarg (expr 2)) (scriptarg (c 1)))))

This form defines a semantic function named E and labeled E4, with the syntactic argument

12

[[DIVIDE expr1 expr2fl, the semantic arguments (c), and a body that is best explained by the remainder of
this report. The interior constituents of the defsemeq form are the topic of the remainder of this section.

Semantic equation E4 Is also presented in the Appendix.

4.3.1. Names and Labels

Each semantic equation defined via defsemeq first identifies the name of the semantic function for which
an instance is being defined. Since each semantic function operates on one or more syntactic domains,
several semantic equations may be required to define the actions of a particular semantic function on
different syntactic phrases. Thus, DENOTE requires that a unique (atomic) label be associated with each
equation. These labels may be used to refer to semantic equations in documents and are used to
construct names for Common Lisp functions that implement the semantic equations. A typical
methodology for constructing label names would be to append consecutive numerals to semantic function
names. For example, the labels El, E2, E3, and E4 are used to identify uniquely the four semantic
equations for the semantic function E of the example language L (described in the Appendix).

4.3.2. Syntactic Arguments

Each semantic equation defined via defsemeq specifies the actions of a semantic function on a particular
syntactic phrase. DENOTE requires that the syntactic argument to each semantic equation be
represented by a syntactic clause, which contains both a syntactic phrase and the Nonterminal or
pseudoterminal from which the phrase was derived. The DL expression defining a semantic clause is a
three-element list headed by the identifier synclause, whose remaining two fields contain, respectively,
a nonterminal or pseudoterminal symbol (or sequence thereof) for one of the syntactic phrases it derives.
The syntax of both arguments to synclause must conform to that imposed on symbols and alternatives
in abstract syntax productions.

For example, consider the following syntactic clause taken from the original defsemeq example:

(synclause expr ('DIVIDE (expr 1) (expr 2)))

This !_ !he syntactic clause that represents a binary expression involving division, derived from the
following two productions in the abstract syntax for L,:

expr ::= binary-op expr1 expr2

binary-op ::= PLUS I MINUS I MULT I DIVIDE

Below are some examples of syntactic clauses involving sequences of the nonterminal bdigit. To the
right of each clause Is the embedded phrase as it would appear as the syntactic argument in a semantic

equation.

(synclause (bdigit * 1) (bdigit (bdigit * 2))) [[bdigit bdigit*2]]

(synclause (bdigit *) epsilon)) [[e]]

(synclause (bdigit *) (bdigit *)) fbdigit*lj

13

(synclause (bdigit +) (bdigit +.)) [[bdigit+]]

(synclause (bdigit + 0) ((bdigit *) bdigit)) [[bdiglt* bdigiti

All of the above examples conform to the DL syntax, and are appropriately qualified. Note that
qualification is unnecessary if the alternative (the second argument to synclauso) is Identical to the first
argur.!ent, as shown in the third and fourth examples above.

4.3.3. Semantic Arguments
The semantic arguments of each semantic equation are represented by a list of identifiers; each identifier
in the list represents a single argument to the function. Note that since currying is the default in
denotational semantics, we need additional notation for grouping arguments. The notation

(args a b c ...)

groups a set of arguments together, that is, it uncurries them. For example, the DL notation
(a (arga b c) d e) denotes the following argument list: (a)(b,c)(d)(e). If the arge notation is used
to define the arguments to a function, the ,totation must be used correspondingly when the function is
applied to arguments.

4.4. Auxiliary Functions
Before describing the DL constituents of the bodies of equations and functions, we must describe a form
used to define auxiliary functions that may be used by semantic equations. The DL expression defining
an auxiliary function is a four-element list headed by the atom defamfn, whose remaining three fields

contain the following:

2. the atomic name of the function,

3. a list of the names of the function's parameters (which may be grouped using arge), and

4. the body of the function.

For example, the factorial function for non-negative integers is defined in DL as follows:

(defsemfn factorial (n)
(if (n 0)

(* n (factorial (- n 1)))))

4.5. Equation and Function Bodies

rhe bodies of semantic equations and auxiliary semantic functions, of course, comprise the majority of
DL. These bodies consist of terms, some of which are special denotations.

14

Denotation DL Common Lisp

(p-* a, b) (if p a b) (if p a b)

(p -4 a, (elseif p a (cond (p a)
q b, q b (q b)

c) C) (t C))

LF[[sJ(x)(y)... (SP (synarg a) x y ...) (ST a z y ...)

f(xl)(X2)... (f xl x2 ...) (f xl x2 ...)

f(XX2,...) (f (args xl x2 ...) (f xl x2 ...
f(x1)(X2)(x3 ,x4,...) (f xl x2 (args x3 x4 ...)) (f xl x2 x3 x4 ...)

k(a)(b)(c) (applycont k a b c) (apply-cont k (list a b c))

k(a,b,c) (applycont k (args a b c)) (apply-cost k (list a b c))

Table 4-5: Control Structures in DL

Control Structures
Table 4-5 shows the DL syntax for the control structures used In the bodies of denotational equations and

functions. The forms described are the two conditionals if and elseif, the form for semantic function

application (note that the first argument to a semantic function must be a syntactic argument, enclosed by

the synarg construct, as discussed previously), the form for general function application, and the form for

applying continuation variables to arguments (applycont).

Grouping Constructs
Table 4-6 show the syntax of DL's constructs for binding variables and functions, including the where and

let constructs for binding variables in various manners, the whererec form for locally binding a name to

a recursive function, and the lambda forms for function definition. The let and where forms permit four

distinct types of bindings: (1) binding of a variable to the empty sequence (the empty list), (2) binding of a

variable to the value of an expression, (3) binding of sequences (lists and tuples) of variables to elements

of lists, and (4) binding of syntactic variables in the syntactic phrase of a syntactic clause to a list of

syntactic values.

Grouping Operators
Table 4-7 shows the three grouping operators for the let and where control structures, which display as

parenthesized lists, and angle-bracketed lists (tuples). Note that the identifier 1st Is used instead of

list for denotations of the form (x1 ,x2 ,...). This is because list is reserved for denotations of the form

list(xl,x2,...), which represents the list constructor operator as applied to arguments.

15

i

Denotation DL Common Lisp

let x= E... (let (Z) ...) (let (z) ...)

letx=y... (let ((x y)) ...) (let ((z y)) ...)

let(xl,...,xk)-=y... (let (((13t xl ... xk) y)) ...) (let<k> ((xl ... zk) y) ...)

let<xl,...,xk> =y... (let (((tuple xl ... xk) y))...) (let<k> ((xl ... zk) y) ...)

let[[xl,...xk]]=y... (let (((syMclause 3 (31 ... sk)) (let<k> ((al ... sk) y)
e)) ...) ...)

... wherex=E (where (x) ...) (let (Z) ...)

... wherex=y (where ((z y)) ...) (let ((z y)) ...)

and so on. The remaining where denotations follow the pattern of the let denotations:

... whererec (whererec (labels
f(a)(b) ... =exp ((f (lambda (a b ...) exp))) ((f (a b ...) exp))

Zx.xy).z...body (lambda (x y z ...) (function
body) (lambda (z y z ...) body))

X(x,y,z,...).body (lambda ((args x y z ...)) (function
body) (lambda (x y z ...) body))

Table 4-6: Binding Constructs of DL

Denotation DL Common Lisp

x M E (xy ...) bind x to NIL, y to NIL,...
x = y ((u v) (w x)) bind u to the value of v, w to x, etc.
(xl,x2,...)=y (((let xl x2 ...) y)) binds each xn to the nth element of y
<xl,x2,...> = y (((tuple xl x2 ...) y)) binds each xn to the nth element of y
[[sl,s2,...= y (((synclause a (9l a2 ...)) y)) binds each sn to the nth element of y

Table 4-7: The Syntax of Bindings Within let and where

18

5. SUMMARY

The design and Implementation of the DENOTE tool was necessitated by the Computer Verification
Group's problems with ad hoc implementations of translators for computer languages dealt with by SDVS.
DENOTE now permits users to specify the formal denotational semantics of a computer language in Its
internal language DL, and is capable of automatically transforming a DL specification into text that may be
examined for semantic correctness, as well as into a Common Lisp implementation of the specified

semantics. DENOTE is currently used to define the translation semantics of Ada, VHDL, and ISPS, which

permits SDVS to translate computer language constructs into the internal language of SDVS. DENOTE is
not, however, restricted to defining SDVS translation semantics. It is a general-purpose tool for displaying

and implementing the denotational semantics of computer languages.

The current Implementation of DENOTE has been found to be adequate to the tasks presented to it, but
has room for improvement. Some improvements that would extend its applicability and usability include
the following:

" Improving the checking capabilities of DENOTE with respect to static semantics, e.g. type-
check variables and function parameters, check that function calls have the required number
of arguments.

" Implementing a friendlier user interface to DENOTE, and providing good documentation for
the interface (no such documentation is provided by this report). This interface should include
a facility for processing an individual semantic equation or auxiliary function, whereas the
current version of DENOTE requires the processing of the entire denotational semantic
definition.

*Incorporating additional denotational constructs into DL, and modifing the syntax of DL to
clear up confusions or ambiguities.

" Providing an optimizer for the automatically generated Common Lisp code.

" Improving the formatting capabilities of DENOTE with respect to the Scribe and LaTEX text
formatters.

A report describing DENOTE In full, including its user Interface, will be forthcoming.

17

REFERENCES

[1] Michael J. C. Gordon.
The Denotational Description of Programming Languages: An Introduction.
Springer-Verlag, New York, 1979.

121 SCRIBE Introductory User's Manual
2 edition, Unilogic Ltd., Pittsburgh, Pa, 1979.

13] Leslie Lamport.
LaTEX: A Document Preparation System.
Addison-Wesley, Reading, Massachusetts, 1986.

[4] Guy L. Steele, Jr.
Common LISP: The Language.
Digital Press, 1984.

[5] L. Marcus.
SDVS 7 Users'Manual.
Technical Report ATR-88(3778)-5, The Aerospace Corporation, 1988.

[6] M. R. Barbacci, G. E. Barnes, R. G. Cattell, and D. P. Siewiorek.
The ISPS Computer Description Language.
CMU-CS-79-137, Carnegie-Mellon University, Computer Science Department, August 1979.

[7] Bolt Beranek and Newman Inc.
C/30 Native Mode Firmware System, Programmer's Reference Manual.
Technical Report 5000, Bolt Beranek and Newman Inc., November 1983.

[8] Anthony Lake et al.
Flexible Processor Extends Design Options.
Computer Design :181-186, November 1981.

[9] J. V. Cook.
Final Report for the C/30 Microcode Verification Project.
Technical Report ATR-86(6771)-3, The Aerospace Corporation, September 1986.

[10] D. F. Martin and J. V. Cook.
Adding Ada Program Verification Capability to the State Delta Verification System (SDVS).
In Proceedings of the 1 th National Computer Security Conference. National Bureau of

Standards / National Computer Security Center, Baltimore, Md, 1988.

(111 D. F. Martin.
A Formal Description of the Incremental Translation of Core Ada into State Deltas in the SDVS

Proof System.
Technical Report ATR-88(3778)-l, The Aerospace Corporation, 1988.

1121 IEEE Standard VHDL Language Reference Manual
IEEE, 1988.
IEEE Std. 1076-1987.

[13] John McCarthy.
LISP 1.5 Programmer's Manual.
Technical Report, M. I. T., 1962.

19

APPENDIX
THE LANGUAGE L

A denotational semantics for the example language L (introduced in Section 3) is presented in this
appendix. First the concrete and abstract syntaxes are given for L. Next the semantics for L is
described informally, followed by its formal semantics written in DL. Two outputs produced by DENOTE,
the text-formatted version of the semantics of L and its Common Lisp implementation, are then
presented. Finally, some examples of using the Common Lisp implementation to determine the
semantics of sentences in L are shown.

1. Concrete Syntax for L
The concrete syntax of L is shown below. As mentioned previously, each sentence in L represents an
arbitrary arithmetic term involving the operations of addition, subtraction, multiplication, and division
applied to sequences of binary digits.
expr ::= sum
sum ::= factor addop sum I factor
factor term mulop factor I term
term ::= bnum I (expr)
addop ::=+ -
mulop ::=* I/
bnum bdigit bnum I bdigit
bdigit ::=0 11

2. Abstract Syntax for L
The abstract syntax of L is shown below. The abstract syntax productions generate the same language
that concrete syntax does, while eliminating extraneous productions related to parsing, and thus is
considerably more compact.

expr ::_ binary-op expr, expr2 I BDIGITS bdigit+

binary-op ::= PLUS I MINUS I MULT I DIVIDE
bdigit ::= 0 1

Shown below is the Common Lisp syntax for binding the variable *binezpr-abstract -syntax* to the
DL abstract syntax of . The abstract syntax representation is case-insensitive. We a follow a
convention when displaying abstract syntax productions of presenting terminal symbols in upper case,
and all other symbols in lower case.

(defvar *binexpr-abstract-syntax*
'((expr (binary-op (expr 1) (expr 2))

('bdigits (bdigit +)))
(binary-op 'plus 'minus 'mult 'divide)
(bdigit '0 '1)))

21

3. Informal Semantics for L

Informally, we choose a semantics for L that assigns integers to sentences in L except for those that
involve division by zero, to which we assign an error string. In this semantics, sequences of binary digits
represent non-negative binary numbers.

4. Formal Semantics for L In DL

Tle DL representation of the formal semantics for L is shown below. This is a continuation-style
denotational semantics that maps illegal expressions (those involving division by 0) into an error string
and legal expressions to their integer results. The values of three variables are defined. The variable
binexpr-semfna is bound to an association list of semantic function names, where the tail of each
sublist contains the syntactic domains (specified by the nonterminals of the abstract syntax) to which the
semantic function may be applied. The variable *binexpr-fns* is bound to an association list of the
auxiliary functions. Finally, the variable *binexpr-semantics* Is bound to the DL semantics for .L.

(defvar *binexpr-semfns*
'((A expr)

(B expX)
(E (bdigit *))))

(defvar *binexpr-fns*
'((division-error)))

(defvar *binexpr-semantics*
((defsemeq

A Al (synclause expr expr) ()
(K (synarg (expr)) (lambda (x) x)))

(defsemeq
Z El (synclause expr ('plus (expr 1) (expr 2))) (c)
(Z (synarg (expr 1))
(lambda (x) (Z (synarg (expr 2)) (lambda (y) (applycont c (+ x y)))))))

(defsemeq
Z E2 (synclause expr ('minus (expr 1) (expr 2))) (c)
(let (((scriptarg (c 1))

(lambda (x)
(K (synarg (expr 2)) (lambda (y) (applycont c (- x y)))))))

(Z (synarg (expr 1)) (scriptarg (c)))))

(defsemeq
Z Z3 (synclause expr ('mult (expr 1) (expr 2))) (c)
(where (((scriptarg (c 1))

(lambda (W) (Z (synarg (expr 2))
(lambda (y) (applycont c (* x y)))))))

(Z (synarg (expr 1)) (scriptarg (c 1)))))

22

(defsemeq
E Z4 (synclause expr ('divide (expr 1) (expr 2))) (C)
(where (((scriptarg (c 1))

(lambda (z)
(where (((scriptarg (C 2))

(lambda (Y)
(if (= X 0)

(division-error)
(applycont c UI y x))))))

(Z (synarg (expr 1)) (scriptarg (c 2)))))))
(E (synarg (expr 2)) (scriptarg (c 1)))))

(defsemfn division-error () (string "division by zero'))

(defeemeq
Z E5 (synclause expr ('bdigit3 (bdigit +))) (c)
(applycont c (B (synarg (bdigit +)) 0)))

(defsemeq
B a2. (synclause (bdigit * 0) (bdigit (bdigit *))) (n)
(B (synarg (bdigit *)) (+ (* n 2) bdigit)))

(defseueq
B B2 (synclause (bdigit * 0) epsilon) (n)
n))

The DL semantics for L is explained In the next section, where the text-formatted version of the equations
are displayed.

5. Scribe Formatted Denotatlonal Semantics for L
The Scribe-formatted text displaying the abstract syntax, semantic equations, and auxiliary functions
defining the denotational semantics for £ are show below. This text was automatically generated by
DENOTE from the semantic definition of Lwritten in DL.

expr ::- binary-op expr, expr2 j BDIGITS bdigit+
binary-op:: PLUS I MINUS I MULT I DIVIDE
bdigit ::=0 l1

(Al) gI exprj = E g expr i (Xx.x)

(El) E iPLUS expr, expr2]I (c) = E, ffexpr, 3i (Xx.E Elexpr21 ()Xy-c(x-iy)))
(E2) a MINUS expr, expr2](c)

-lot C, = Xx.E aexpr2l (Xyc(x-y)) In
E Eexpr I (C 1)

(E3) I IMULT expr, expr2 j (c)
-E aexpr,](c1)
where c, = Xx.E g expr2] (Xy.c(xxy))

23

(E4) E .DIVIDE expr1 expr2ll (C)
EI expr2 l (C1)
where cl = Xx.E a expr1 I (C2)

where c2 = .y.(x = 0 -+ division-erroro, c(y/x))'

division-error0 = "division by zero"

(E5) Eff BDIGITS bdigit+n (c) = c(B abdigit+i1 (0))

(B1) B abdigit bdigit* i (n) =B abdigit* 11 (nx2+bdigit)

(B2) B T] (n) = n

The semantic function A computes the semantics of expressions, using the semantic function E to

compute the semantics of subexpressions. The semantic function B computes the semantics of

sequences of binary digits. A requires only one argument, the syntactic phrase (representing an arbitrary

expression) whose semantics is being computed. E requires two arguments, a syntactic phrase that

represents an expression and a continuation c. The continuation c is a function that generally maps

integers to integers, but sometimes returns an error. If an error (division by zero) occurs, the continuation

mechanism Is bypassed and an error string is produced by the auxiliary function division-error. B

takes two arguments, a (possibly empty) list of binary digits and a non-negative integer, and is used to

compute the semantics of a sequence of binary digits Ir..erpreted as a non-negative binary number. Note

that in this semantics we make no distinction between the denotation of a binary digit and its numeric

value. Typically, one postulates the existence of a semantic function N that maps denotations of

numerals to their numeric values.

6. Common Lisp Implementation of Semantics for L

A primary output of DENOTE is a Common Lisp implementation of the specified semantics. The contents

of the file generated by DENOTE for the DL semantics of L is shown below. The function named

binexpr-al is the entry point for the implementation of the semantics of abstract syntax trees of L.

;;; -*- Mode: LISP; package: USER; syntax: Common-Lisp; base: 10 -*-

(defmacro defrecord (name &body body)
'(defstruct (,name (:type list))

.,body))

(defrecord binexpras-expr-bdigits bdigits bdigit+)

(defrecord binexpras-expr-divide divide exprl expr2)

(defrecord binexpras-expr-mult mult exprl expr2)

(defrecord binexpras-expr-minus minus exprl expr2)

(def record binexpras-expr-plus plus exprl expr2)

(defun binexpr-e-expr (expr c)
(case (first expr)

24

(plus (binexpr-el expr c)).
(minus (binexpr-e2 expr 0)
(mult (bin.Ipr-e3 expr 0)
(divide (binexpr-e4 expr 0)
(bdigits (binexpr-eS expr c)
(otherwise (error ,illegal phrase of type -a: -a" 'expr expr)

(defuri binexpr-al (expr)
(binexpr-e-expr expr #, (lambda (x) x))

(defun binexpr-el (expr c)
(let ((expri (binexpras-ezpr-plus-ezcprl expr))

(expr2 (biriexpras-expr-plus-expr2 expr)))
(binexpr-e-expr expri
#' (lambda (z)

(binexpr-e-expr
expr2 #' (lambda (y)

(birexprtr-apply-cont c (list (+ x y))))))

(defun binexpr-e2 (expr c)
(let ((exprl (binexpras-expr-mirxus-exprl expr))

(expr2 (binexpras-expr-minus-expr2 expr)))
(let ((cl

#' (lambda (x)
(binexpr-e-expr

expr2 #' (lambda (y)
(binexprtr-apply-coit c (list - y)))

(binexpr-e-expr exprl cl))))

(defun biriexpr-e3 (expr c)
(let ((expri (biriexpras-expr-mult-exprl expr))

(expr2 (binexpras-expr-mult-expr2 expr)))
(let ((ci

#' (lambda (x)
(binexpr-e-expr

expr2 #' (lambda (y)
(binexprtr-apply-cont c (list * y)))

(binexpr-e-expr expri ci))))

(defun binexpr-e4 (expr c)
(let ((expri (binexpras-expr-divide-expri expr))

(expr2 (binexpras-expr-divide-expr2 expr)))
(let ((c 1

P'(lambda. (x
(let ((c2

#' (lambda (y)
(if (equal x 0)

(binexpr-division-error)
(binexprtr-apply-cont
c (list (truncate (/ y x))))))))

(binexpr-e-expr exprI c2)))))
(binexpr-e-expr expr2 cl))))

(dofun binexpr-division-error (
"division by zero",)

25

(defun binexpr-e5 (expr c)
(let ((bdigit+ (binexpras-expr-bdigits-bdigit+ *zpr)))

(binexprtr-apply-cont c (list (binexpr-bl bdigit+ 0)))))

(defun binexpr-bl (bdigit*O n)
(let ((bdigit (car bdigit*0))

(bdigit* (cdr bdigit*O)))
(if bdigit*

(binexpr-b3. bdigit* (+ (* n 2) bdigit))
(binexpr-b2 nil (+ (* n 2) bdigit)))))

(defun binexpr-b2 (epsilon n)
(declare (ignore epsilon))
n)

(defun binexprtr-apply-cont (cant args)
(apply cant args))

7. Example Semantics for Sentences of L
Compiling and loading the Common Lisp file whose contents were shown In the previous section gives
one access to the function binexpr-al, which determines the semantics of sentences of L.Examples
of the semantics of abstract syntax trees generated from sentences of L are shown below.
command: (binexpr-al ' (bdigits (1)

1

command: (binexpr-al ' (bdigits (1 0 1)))

5

command: (binexpr-al '(bdigits (0 0 0))

0

command: (binexpr-al ' (plus (bdigits (1. 0 1)) (bdigits (1))))

6

command: (binexpr-al ' (minus (bdigits (1)) (bdigits (1 0 1))))

-4

command: (binexpr-al ' (mult (bdigits (0)) (bdigits (1 0 1))))

0

command: (binexpr-al ' (divide (bdigits (1 0 1)) (bdigits (0))))

"division by zero,

command: (binexpr-al ' (divide (bdigits (1)) (bdigits (1 0 1))))

0

26

command: (binexpr-al ' (divide (bdigits (1 2 1)) (bdigits (1 0 I))))

1

command: (binexpr-al '(plus (minus (bdigits (. 1 1)) (bdigits (. 0 1)))
(mult (divide (bdigits (1 1 1)) (bdigits (1 0)))

(bdigits (1 1)))))

11

command: (binexpr-al '(plus (minus (bdigits (2 2 1)) (bdigits (1 0 1)))
(mult (divide (bdigits (1 1 1)) (bdigits (0 0)))

(bdigits (1 1)))))

"division by zero"

27

INDEX

Atomic terms scriptarg 9
emptyset 9 synarg 9
epsilon 9 synclause 9, 13, 15
ff 9 tuple 9, 15
t 9 where 9, 15
tt 9 whererec 9

Built-in functions
abs 12
append 12
bold 9
catenate 12
cons 12
consp 12
lid 12
length 12
list 12
max 12
min 12
mod 12
quote 9
rem 12
string 9
11I 12
ubold 9

Built-in infix operators
and I11
divide, / 11
eq,= 11
eXpt, A I11
ge, >= 11
gt,> 11
intersection 11
le, <= 1
lt,< 11
member 11
minus, - 11
mult,*1
neq,-~1
not 11
or 11
plus, + 11
union I11

Special denotations
applycont 9
args 9, 14
dofsemeq 9,12,13
defsemfn 9,14
elself 9, 14
if 9, 14
lambda 9, 15
let 9, 15
let 9, 15

29

