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The Design of a Real-Time Adaptive Filter Development System

Terence R. Albert and Michae! D. Juniper
U.S. Naval Ocean Systems Center
San Diego. CA 92152-5000

Abstract

This paper describes a hardware test platforn designed to
implement adaptive lattice filters in reai-time. To achieve real~time
processing speeds, algorithm complexity was accommodated by
custorn designing the computation engines with respect to the
lattice data flow. Execution speeds of the computation engines
were dramatically increased by a rmemory architecture that supports
efficient addressing and by providing a floating-point ALU with
numerous data paths and efficient implementation of division.
Performance is further enhanced by pipelining multiple computation
engines. In addition, the architecture is flexible enough to support
other filter structures and to allow observation of filter variables as
they adapt. With this systemn, various Adaptive Filter algorithms are
being tested in real-time implementations of Adaptive Line
Enhancers (ALEs) and Adaptive Noise Cancelers (ANCS) in order to
characterize their performance and behavior, especially long term
stability and the ability to track non-stationary signals.

l. iIntroduction

Adaptive iattice algorithms have been expected to offer a
number of advantages over conventional LMS transversal algorithms
including: faster rate of convergence, modular structure,
insensitivity to variations in the sigenvalue spread of the mnput
correlation matrix, and automatic system order detection [1,2].
However, the use of adaptive lattice filters for real-time signal
processing has been limited. In part this is due to their
computational cost and complexity. This paper describes the design
of a hardware test platform, called the Lattice Development System
(LDS). designed and buiit by the U.S. Naval Ocean Systems Center
(NOSC) to implement adaptive lattice filters for real-time
applications. The design, while tailored to implement adaptive lattice
filters sthiciently, is flexible enough to support other struciures such

as adaptve transversal filters for comparative performance
evaluations.
The recursive nature of adaptive filters makes their

implementation in real-time hardware an extremsly interesting and
chailenging research field. Time-domain adaptive algorithms
generally require that their filtered output be used in updating the
filter’s coefficients before the next input sample is processed. Thus.
the total processing latency must be less than one sample period.
Uniortunately, the coetficient updating can often dominate the total
processing time thereby limiting the adaptive filter’'s potential
apphcations.  Multiprocessing techniques used for performance
enhancement of non-adaptive fitters can not be directly applied to
adapuive filters due to adaptive filter's lack of a single computational
torm. For instance, non-adaptive convolution is composed of only
a sum-of-products. Adaptive fiiters usually posses a number of
computational forms as well as requiring several different modes of
aperation such as initialization, adaptation, and order expansion &
contraction.

Figure ! shows the tradeofts incurred by different methods of
implementing adaptive filters. Usually, performance and design
complexity are traded against flexibility. The measure ot
performance in real-time systems is the maximum continuous
samphng rate supported by the hardware. the measure of Hexibility
'S how easilly modifications can be accomplished. Examples of
features one may wish to moadify are: update algornthm, hiter
structure. filter configuration, and hiter parameters such as order
and time constants
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lowest s @ high-level program running on general
Sampling  flgxible purpose computer
Rate ® single programmabie computation engine
® multiple programmable computaton
engines working in paraliet
® direct implementation using custom
highest least digital VLS| design
Sampling  flexible @ direct implementation using custom
Rate analog/digital hybrid design
Figure 1: Adaptive Filter implementation Methods and their

Tradeoffs.

The LDS was designed as an adaptive filter test plattorm ta
characterize the performance and behavior of both adaptive lattice
algorithms and adaptive transversal algorithms in real-time
applications. Of particular interest are the long term stability and
the ability to track non-stationary signals as a function of hiter
parameters. To meet the combined needs of high throughput anad
flexibility, the LDS was built as a linear pipelined array of custom
designed, programmable computation engines. Each engine s
optimized for implementing adaptive lattice filters using a single
32-pit floating-point ALU with provisions for floating-point division.
The LDS systemn can be configured with up to 10 engines, each
having sufficient memory to store the variables for a 1024 stage
lattice filter. A system with a full complement of ten computaticn
engines is capable of sustaining the computation of a 1024 stage
recursive least square lattice (RLSL) fiter [10.11] at a 1.2KHz
reai-time sample rate.

Other adaptive lattice filter implementations., particularly those in
custom VLSI, have been based on linear pipelined processing arrays
consistent with the lattice structure (3-5]. One implementation
made use of a switched capacitor tilter in an analog/digital hybnd
approach [6]. Recently, a vectorized adaptive latuice was proposed
which allows tor even higher degrees of paralielism [7-9]. Al ot
these take advantage of the modularity provided by the focal (single
lattice stage) error feedback of the lattice.

Section Il of this paper s a high leve! description ot the LDS. #t
includes a brief description of the system’s three main hardware
functional units, plus the Man-Machine Intertace software and other
software support tools. In addition, Section |li describes the
impiementation of adaptive fiters in a muitiple engine LDS
configuration. Secuon Wl provides more detailed intormation and
insight into the design of the functional unit that is the processing
heart of the LDS: the Computation Engine. A sample of the
capabilities of the LDS is presented in Section V.

Il. Hardware System Overview

The LDS has three separate functional units: the System Control.
the Anaiog-Digital Interface, and an array of Computation Engines.
System performance is increased by using muitiple computaton
engines in a linear pipelined array. The functional umits are
accessed and configured by a single board mini-computer running
a menu driven man-machine interface (MMI). Figure 2 shows the
interconnection and the user interface via the mini-computer and a
terminal. Once configured by the user, the LDS will run in real-time
until stopped by the user. It can easiy be reconfigured to compulte
different adapuive filter algornthms, modity filter parameters. charge
sample trequency. or change between ALE and ANC  Tre gag-am
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in Figure 3 shows the ALE and ANC adaptive filter configurations and
e associated nomenclature for the reference, x(n), primary, d(n),
filter output, y(n), and error output, e(n), signals.
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y(n)

Error
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e(n)
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—
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Out
e(n)

Pri
d(n)

+
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Figure 3: Adaptive Line Enhancer (ALE) and Adaptive Noise
Canceler (ANC) Filters.

Real-Time Operation

The System Control unit runs a concurrent operating system
which initializes all actions in the LDS. Control data is passed by the
MMI to the System Control unit to configure or reconfigure the
system. The control unit first down loads the microcode for each
engine and then initializes each engine’s state. Once the system is
completeiy configured, it will perform the following tasks repeatedly
when commanded to run;

1. prompts the A-D interface unit 10 acquire

quantized data,

2. accepts data from the A-D Interface unit and places it

in local RAM,

3. passes input data to the engines for filtering,

4. initiates data transfers between Computation Engines,

5. accepts filter output data and other outputs from the

engines,

6. sends engine outputs to the A-D Intertace unit for

conversion to analog output.

7. loops to 1.

16-bit

All functional units are synchronous and run from a single 8MHz
ciock gistributed throughout the LDS. Engine operations are started

Computation

n

Computation ‘
D Engine D :
#0 :

Block Diagram of the NOSC Adaptive Lattice Development System (LDS).

synchronously but proceed independently, so they can run different
microcode and may terminate operations independently. Once all
engines terminate operations in a given filter update cycle. the
System Control unit assumes control. The computation cycle
repeats with synchronous starts on command from the System
Control unit and asynchronous terminations dependent upun
computation requirements.

Local RAM on the System Control unit is designed to handle
multiple circular bufférs so that input data (reference and/or
primary) can be delayed up to a combined maximum of 16K data
samples before being sent to the engines. This supports many
filter configurations including the ALE, where the reference data is a
delayed version of the primary data. Another feature of the LDS is a
user definable sampling frequency.

Filter Implementations with a Multiple Engine LDS

Both adaptive lattice and adaptive transversal filters can benefit
from a multiple engine LDS configuration. The lattice filter’'s order
recursive variables are passed from stage to stage in sequental
order. This can result in extremely long processing times when long
filter lengths are used. The total processing time can be reduced by
a factor of O(P) by using P pipelined computation engines. Since
gach engine must be pipelined. successive engines will be
processing data that is one sample period earlier in time than the
engine which supplies its passed variables. An applicaton’s
required sampie rate determines both the number of engines used
and the maximum number of stages computed on each engine.
Figure 4 shows an example of a three engine LDS computing a
6-stage adaptive lattice filter. At the completion of a latuce update
cycle, all order recursive variables are passed between engines via
an uni-directional local bus in a synchronous tashion.

Adaptive transversal filters can be implemented on a multiple
engine LDS in several ways, even though multiprocessing with them
is less straight forward than for adaptive lattice filters due to the
global error feedback for coefficient updating [12]. One of the
more efficient approaches makes use of the multiple engines
configured in a uni-directional data liow ring, as was proposed by
Miller et. al. {13]. As an example of this approach. Figure 5 shows
the computation of an 8-weight adaptive transversal filter on a four
engine LDS. Each engine is responsible for only those calculations
involving a section of the complete filter’'s weights. The process
proceeds by each engine computing the convolution sum ot its
section of the filter. A series of synchronous data passing and
summation steps are then performed until each engine has its own
identical copy of the tiltered output. Next each engine generates its
own identica! error term from a broadcasted deswed signal and
updates its own set of weights via an adaptive algonthm such as
least mean square {LMS) [14]. The meathod eftectively solves tre
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Figure 4: Caiculation of a 6-stage Adaptive Lattice Filter in a Three Engine LDS.

global feedback problem by generating the same error in every
processor. Each engine has sufficient memory to store the
variables for a 4096-weight LMS fiiter.

Pri d(n) broadcasted to all engines

Ret
x(n)

A A

Filter Out
Engine #4 Engine #3
Figure 5: Calculation of an 8-stage Adaptive Transversal Filter in
a Four Engine LDS.

Analysis Tools

The LDS software provides the user with many useful features
for analyzing adaptive filters. Specific filter coefficients can be
selected for observation as they adapt in time, or a snapshot of all
coefficients can be taken at a specific time period. The coefficients
are transferred to data files on the mini-computer's hard disc from
which further analysis can be done off-line. The system also has
the capability of inputting data directly from a data fite or outputting
filtered data directly to a file.

ll. Computation Engine Design

The Computation Engine is the processing heart of the LDS. It
was custom designed to efficiently implement adaptive lattice filters
and 1s composed of two main parts: the microsequencer and the
microengine. The engine’s operation is controlled by up to 2K
microwords down loaded from the System Control unit during the
LDS's inmahzation. The equations that describe adaptive lattice
algonthms are structured into groups called stages (see Figure 6).
Each stage can have variables which are updated entirely by
tme-recursions, entirely by order-recursions or by a combination
of both time and order-recursions. Adaptive lattice algorithms such
as the RLSL [10.11] and the stochastic gradient lattice {15]) use
both time and order recursions to save computations. In addition,
these adaptive lattice algorithms require multiple divisions per
staga. The tollowing features were incorporated in order 10 achieve
real-time computation speeds for adaptive lattice filters:

® use of a 32-bit fioating~point processing chip with a
latency of only one clock cycle,

® efficient implementation of floating-point division,

@ separate memories tor time-recursion and
order -recursion variables,

Engine #3 S(Ur:)
® impiementation of a floating-point & integer
comparator,
@ provision of many data paths to support ait of the
above,
exte_nsion of data paths across multiple computational
engines.,

increased data bandwidth by using uni-directionai local
busses to link neighboring engines,

use of a simple microsequencer and a hornzomtai
microword.

The utility of these features 15 described in the next two sections

time-recursions

Adaptive
Lattice
Stage

(current)

(nexi)
order-recursions

Figure 6: Data Flow for Single Adaptive Lattice Stage
Computations.

Microengine Arithmetic Structure and Data Paths

Figure 7 shows the data paths in the microengine. Tre
Advanced Micro Device's AM29325 [16] was the floating-pcint
processor chosen for two main reasons: 1t can compute arithme:.c
qperations in a single clock cycie and 1t supports fast invers on
instructions. A short pipeline depth is desirable when implementng
tightly recursive algorithms, such as RLSL, which often require tne
result of one computation for the very next computation. ‘Inversions
are computed with a Newton-Raphson iteration techmgue using 2
first approximation seed sufficiently large to require only one
iteration (a total of three floating-point operations) to achieve fu.
32-bit finating-point precision.  This techmique has Qquadratc
convergence properties and the only additionai hardware neec2d .s
an inverse seed PROM. in parallel with the AMZ2932% s &
floating-point & integer comparator which supports such nings as
variabie bounding and latuce hiter crder control.

Numerous data paths allow for the efficient mcving of cata
between the AM28325, registers. and memory. A" data paths and
operations are controlled by individual terms in the microcode A
96-bit horizontal microword is used which allov.s complete flexibity
and eliminates decoding time. One additiona, iata path not shown
in Figure 7, but frequently used. i1s an interr .. wrap around data path
inside the AM29325. The mucroengine 1© piogrammed with a user
defined assembler, aided by using a re~arvauon chart 1o keep tracx
of the muitiple data paths and concui gnt operations.

Automatic system order detection 1S a umqQue capabiily ¢
adaptive lattice filters. Control oi the length of the lattice hiter s
necessary to minimize fiiter generated noise and insure stabiity of
the final error, e(n). and filte. output. y(n). Rapid variaton of fiter
order 1S possibie with non stationary signals so order control mus:
function in real-time. The forward and bpackward pred.cton
residuals of each successive stage must be compared 1o &
threshold as they are computed to determine f another stage s
needed (or allowud) for the current update. The vaiue of "e
threshold is def.ned by the user. based on the engng’'s arthme:
precision ancd the exponential windowing of the cata Zontrg ™o
span across engine boundaries and accommogale 'he T
adisplacement at those boundaries. This 1s done with a speca ' ay
set by each engine which 1s checked ang ciearaed or e -
itera’ un by 1ts downstream target engine
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Figure 7: The Computation Engine’s Microengine Data Path.
Microengine Memory Structure

Two separate data memories are available to the AM29325, one
s tailored to support time-recursions, the other order-recursions.
The Permanent Memory (PM) is addressable in blocks
corresponding to lattice stages for ease of storage and retrieval
during time-recursions. Eight variables can be stored in each PM
biock as seen in Figure 8. The structure is 1K-stages x 8-words x
32-bits allowing a maximum of a 1024 stage lattice filter per
enging. The PM uses a block addressing scheme where each block
s selected by a stage number counter. The block addressing
greatly simplifies the engine’'s microcode during the computation of
a lattice stage without sacrificing the use of simple addressing
schemas for transversal filters.

The Scratch Pad Memory (SPM) in addition to being a temporary
storage area for data transfers and intermediate results, can be
structured to operate in a “ping-pong” fashion between the upper
and lower halves o allow the overwriting of order-recursion
variables that are no longer needed. During the computation of a
lattice filter, variables are passed between the two SPM halves with
the current stage overwriting variables passed from a previous
stage. Each SPM half contains 32-words x 32-bits of dual-ported
memory. With current/next addressing, there is no need to keep
track of the absolute physical addresses being used which saves
maching cycles and engine instructions. In addition, it is easier o
conceptualize order recursion variables as current and next (Figure
6). Special address control logic switches the physical location of
the order recursion varnables in 8 manner that 1s transparent to the
software {and the programmer). The result is a very efficient use of
memory space and a simple, efficient addressing schame. For the
computation of transversal filters, the SPM is configured by software
as a single 64-word x 32-bit dual-port memory (see Figure 9).
Mearnory locations in both the SPM and the PM can be accessed in a
single clock cycle at the same time.

from stage counter ' 10

{3 from microaord

stage_parameter

PM Address [ stage_address

13
= )
1
2
A 32 bit wards » STAGE 0
[
Stage 3 4
address
1
2
stage i
parameter i $ STAGE 1
[
[
i J
)
1-Port Memory :
il R
1
2
1 » STAGE 1024
[
i Y,

%32 bit data

Figure 8: Engine Board Permanent Memory Configuration
(1K x 32-bits x 8).
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Figure 9: Engine Board Scrach Pad Memory Contiguratior
(64 x 32-bits or two 32 x 32-bit halves:

IV. LDS Test Data

As of this writing the following adaptive fiter aigontnms "a.e
been programmed: LMS transversal [14]. Block LMS transversa
[17]. Stochastic Gradient Lattce [15]. Recursive Least Squares
Lattice {10.1i] ang Direct Coethicient Updatng RLSL [18] Tesing
with the LMS algorithm began in March of 1989 while testing w.in the
RLSL began i June ol 1983. The other aigorthms have Teen
inciuded in 1980. A photograph ot the LDS s providea in = -;J e )
Figure 11 s a photograph of the 'wo Doards o™y
Computation Engine.

As an example of LDS operation. the Lime seres suipu!s o 2
and RLSL ANCs are shown tor companson n Figures 0 ans
rgspectively  in both cases a single sinusod 1s be Ny canceiel
the primary input. Note the characternishic exponentia adapiat .
LMS. and the nearly instantaneous adaptaton of e &S0




V. Conclusion

This paper has presented the design of a real-time adaptive filter
development system. The system was custom built for the purpose
of studying the performance of lattice aigorithms in real world
environments and comparing them to other adaptive algorithms. To
this end, special hardware and software features were incorporated
Nto the design 10 maximize both performance and flexibility. In
aadinon, provisions to allow the observation of filter variables during
adaptation were incorporated to aid analysis. The system is
typically configured as a linear array of programmable engines to
enhance execulion speeds. A description of the architecture and
gdesign detals were presented along with sample test data.
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