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The Design of a Real-Time Adaptive Filter Development System
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U.S. Naval Ocean Systems Center Center for Ultra-High Speed Integrated
San Diego, CA 92152-5000 Circuits and Systems
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Abstract lowest most * high-level program running on general

This paper describes a hardware test platform designed to Sampling flexible purpose computer
implement adaptive lattice filters in real-time. To achieve real-time Rate A single programmable computation engine
processing speeds, algorithm complexity was accommodated by o r multiple programmable computation
custom designing the computation engines with respect to the engines working in parallel
lattice data flow. Execution speeds of the computation engines 0 direct implementation using custom
were dramatically increased by a memory architecture that supports highest least digital VLSI design
efficient addressing and by providing a floating-point ALU with Sampling flexible * direct implementation using custom
numerous data paths and efficient Implementation of division. Rate analog/digital hybrid design
Performance is further enhanced by plpellning multiple computation
engines. In addition, the architecture is flexible enough to support Figure 1: Adaptive Filter Implementation Methods and their
other filter structures and to allow observation of filter variables as Tradeoffs.
they adapt. With this system, various Adaptive Filter algorithms are
being tested in real-time implementations of Adaptive Line The LDS was designed as an adaptive filter test platform to
Enhancers (ALEs) and Adaptive Noise Cancelers (ANCs) in order to characterize the performance and behavior of both adaptive lattice
characterize their performance and behavior, especially long term algorithms and adaptive transversal algorithms in real-time
stability and the ability to track non-stationary signals. applications. Of particular interest are the long term stability and

the ability to track non-stationary signals as a function of filter
1. Introduction parameters. To meet the combined needs of high throughput andflexibility, the LOS was built as a linear pipelined array of custom

designed, programmable computation engines. Each engine is
Adaptive lattice algorithms have been expected to offer a optimized for implementing adaptive lattice filters using a single

number of advantages over conventional LMS transversal algorithms 32-bit floating-point ALU with provisions for floating-point division.
including: faster rate of convergence, modular structure, The LOS system can be configured with up to 10 engines, each
insensitivity to variations in the eigenvalue spread of the input having sufficient memory to store the variables for a 1024 stage
correlation matrix, and automatic system order detection (1,21. lattice filter. A system with a full complement of ten computation
However, the use of adaptive lattice filters for real-time signal engines is capable of sustaining the computation of a 1024 stage
processing has been limited. In part this is due to their recursive least square lattice (RLSL) filter [10.111 at a 1.2KHz
computational cost and complexity. This paper describes the design real-time sample rate.
of a hardware test platform, called the Lattice Development System
(LOS), designed and built by the U.S. Naval Ocean Systems Center Other adaptive lattice filter implementations, particularly those in
(NOSC) to implement adaptive lattice filters for real-time custom VLSI. have been based on linear pipelined processing arrays
applications. The design, while tailored to implement adaptive lattice consistent with the lattice structure [3-5]. One implementation
filters efficiently, is flexible enough to support other structures such made use of a switched capacitor filter in an analogidigital hybrid

as adaptive transversal filters for comparative performance approach [6]. Recently. a vectorized adaptive lattice was proposed
evaluations, which allows for even higher degrees of parallelism [7-9]. All of

these take advantage of the modularity provided by the local (single
The recursive nature of adaptive filters makes their lattice stage) error feedback of the lattice.

implementation in real-time hardware an extremely interesting and
challenging research field. Time-domain adaptive algorithms Secton de of this paper s a high leve description o the LS. Q

generally require that their filtered output be used in updating the includes a brief description of the system's three m n hardware

filter's coefficients before the next input sample is processed. Thus, functional units plus the Man-Machine Interface software and other

the total processing latency must be less than one sample period. software support tools. In addition, Section 11 describes the

Uniortunately. the coefficient updating can often dominate the total implementation of adaptive filters in a multiple engine LOS
processing time thereby limiting the adaptive filter's potential configuration. Section III provides more detailed information and

applications. Multiprocessing techniques used for performance insight into the design of the functional unit that is the processing

enhancement of non-adaptive filters can not be directly applied to heart of the LOS: the Computation Engine. A sample of the

adaptive filters due to adaptike fNter's lack of a single computational capabilities of the LOS is presented in Section IV.

form. For instance, non-adaptive convolution is composed of only
a sum-of-products. Adaptive filters usually posses a number of 11. Hardware System Overview
computational forms as well as requiring several different modes of
operation such as initialization, adaptation, and order expansion & The LOS has three separate functional units: the System Control.
contraction, the Analog-Digital Interface, and an array of Computation Engines.

Figure I shows the tradeoffs incurred by different methods of System performance is increased by using multiple computation
implementing adaptive filters. Usually, performance and design engines in a linear pipelined array. The functional units are
complexity are traded against flexibility. The measure of accessed and configured by a single board mini-computer runn,ng
performance in real-time systems is the maximum continuous a menu driven man-machine interface (MMI). Figure 2 shows the
sampling rate supported by the hardware; the measure of flexibility interconnection and the user interface via the m,n-computer and a
,s how easily modifications can be accomplished. Examples of terminal Once configured by the user. the LOS will run 1r, eal time
features one may wish to modify are: update algorithm, filter until stopped by the user. It can easily be reconfigured to cornute
structure, filter configuration, and filler parameters such as order different adaptive filter algorithms, modify filter parameters :harge
and time constants sample frequency. or change between ALE and ANC Tlr' ' ri
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Figure 2: Block Diagram of the NOSC Adaptive Lattice Development System (LS).

in Figure 3 shows the ALE and ANC adaptive filter confously but proceed independently, so they can run different
,he associated nomenclature for the reference. x(n), primaryd d(n)v microcode and may terminate operations independently. Once all
filter output. y(n), and error output, e(n), signals. engines terminate operations in a given filter update cycle, the

System Control unit assumes control. The computation cycle

Ref A i i Filter repeats with synchronous starts on command from the SystemX(n - Adaptive Filter+_ Out Control unit and asynchronous terminations dependent upuo

y(n) computation requirements.

Local RAM on the System Control unit is designed to handle

Errromultiple circular buffirs so that input data (reference and/or

Pri Error primary) can be delayed up to a combined maximum of 16K data

d(n) Out samples before being sent to the engines. This supports many

ALE + e(n) filter configurations including the ALE, where the reference data is adelayed version of the primary data. Another feature of the LOS is a

ffauser definable sampling frequency.

x(n) Adaptive FiltneEnh er () Ate Nose er Implementations with a Multiple Engine LDS

Figur Both adaptive lattice and adaptive transversal filters can benefity~n) from a multiple engine LOS configuration. The lattice filter's order

Pri ( iError recursive variables are passed from stage to stage in sequentiald~)Out order. This can result in extremely long processing times when long
d~) N +  

e(n) filter lengths are used, The total processing time can be reduced by

ANC factor of O(P) by using P pipelined computation engines. Since

Figure 3: Adaptive Line Enhancer (ALE) and Adaptive Noise each engine must be pipelined, successive engines will be

Canceler (ANC) Filters. processing data that is one sample period earlier in time than the

engine which supplies its passed variables. An application's

Real-Time Operation required sample rate determines both the number of engines used

The System Control unit runs a concurrent operating system and the maximum number of stages computed on each engine

which initializes all actions in the LOS. Control data is passed by the Figure 4 shows an example of a three engine LOS computing a

MMI to the System Control unit to configure or reconfigure the 6-stage adaptive lattice filter. At the completion of a lattice update

system. The control unit first down loads the microcode for each cycle, all order recursive variables are passed between engines via

engine and then initializes each engine's state. Once the system is an uni-directional local bus in a synchronous fashion.

completely configured, it will perform the following tasks repeatedly Adaptive transversal filters can be implemented on a multiple
when commanded to run; engine LOS in several ways, even though multiprocessing with them

1 prompts the A-D Interface unit to acquire 16-bit is less straight forward than for adaptive lattice filters due to the
quantized data, global error feedback for coefficient updating [12]. One of the

2. accepts data from the A-D Interface unit and places it more efficient approaches makes use of the multiple engines
in local RAM, configured in a uni-directioial data flow ring, as was proposed by

3. passes nput data to the engines for filtering. Miller et. al. [13]. As an example of this approach. Figure 5 shows
the computation of an 8-weight adaptive transversal filter on a four

4. initiates data transfers between Computation Engines. engine LOS. Each engine is responsible for only those calculations
5. accepts filter output data and other outputs from the involving a section of the complete filter's weights. The process

engines, proceeds by each engine computing the convolution sum of its
6. sends engine outputs to the A-D Interface unit for section of the filter. A series of synchronous data passing ana

conversion to analog output. summation steps are then performed until each engine has its own
7. loops to 1. identical copy of the filtered output. Next each engine generates i!s

own identical error term from a broadcasted desired signal an
All functional units are synchronous and run from a single 8MHz updates its own set of weights via an adaptive algorithm such as

clock distributed throughout the LOS. Engine operations are started least mean square (LMS) [14]. The method effectively solves !t,e
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Figure 4: Calculation of a 6-stage Adaptive Lattice Filter in a Three Engine LDS.

global feedback problem by generating the same error in every 0 implementation of a floating-point & integer
processor. Each engine has sufficient memory to store the comparator,
variables for a 4096-weight LMS filter. * provision of many data paths to support all of the

Pri d(n) broadcasted to all engines above,
P extension of data paths across multiple computational

Ref engines.
Ref [ W increased data bandwidth by using uni-directronal local

busses to link neighboring engines.
0 use of a simple microsequencer and a horizontal

t microword.
The utility of these features is described in the nrxi lii L ,.ko :

Filter Out y(n) Filter Out y(n) time-recursions

Engine #1 Engine #2 . Adaptive
Lattice
Stage e,

~' (curren ode-eur~n

E -Figure 6: Data Flow for Single Adaptive Lattice Stage
Computations.

y(n) Filter Out y(n) Filter Out Microengine Arithmetic Structure and Data Paths
Figure 7 shows the data paths in the microengine. Tr-e

Engine #4 Engine #3 Advanced Micro Device's AM29325 [161 was the floating-pcnt
Figure 5: Calculation of an 8-stage Adaptive Transversal Filter in processor chosen for two main reasons: it can compute arithme: c

a Four Engine LOS. operations in a single clock cycle and it supports fast invers --q
instructions. A short pipeline depth is desirable when implement ng

Analysis Tools tightly recursive algorithms, such as RLSL. which often require the
result of one computation for the very next computation. "Inversions

The LDS software provides the user with many useful features are computed with a Newton-Raphson iteration technique using 3
for analyzing adaptive filters. Specific filter coefficients can be first approximation seed sufficiently large to require only one
selected for observation as they adapt in time, or a snapshot of all iteration (a total of three floating-point operations) to achieve f..
coefficients can be taken at a specific time period. The coefficients 327 bit floating-point precision. This technique has quadratc
are transferred to data files on the mini-computer's hard disc from convergence properties and the only additiona; hardware neec2tz s
which further analysis can be done off-line. The system also has an inverse seed PROM. In parallel with the AM2932S is a
the capability of inputting data directly from a data file or outputting floating-point & integer comparator which supports such :n,ngs as
filtered data directly to a file. variable bounding and lattice filter order control.

Numerous data paths allow for the efficient mo,,rg of cata

Il1. Computation Engine Design between the AM29325, registers. and memory. A" data paths arid
operations are controlled by individual terms in tne mrcrocoae A
96-bit horizontal microword is used which allo, s .;omplete flex, .ty

The Computation Engine is the processing heart of the LDS. It and eliminates decoding time. One additiona, ata path not shoen
was custom designed to efficiently implement adaptive lattice filters in Figure 7, but frequently used. is an rnterr i .srap arouno data Path
and is composed of two main parts: the microsequencer and the inside the AM29325. The microengine ir programmed witn a user
microengine. The engine's operation is controlled by up to 2K defined assembler, aided by using a re'ervation chart to keep trac
microwords down loaded from the System Control unit during the of the multiple data paths and concutent operations.
LDS's initialization. The equations that describe adaptive lattice Automatic system order detection is a unique capabi!ity ol
algorithms are structured into groups called stages (see Figure 6). adaptive lattice filters. Control ui the length of the lattice filter s
Each stage can have variables which are updated entirely by necessary to minimize filter generated noise and insure staboi'ty '
time-recursions, entirely by order-recursions or by a combination the final error, e(n). and filti, output. y(n). Rapid variation of
of both time and order-recursions. Adaptive lattice algorithms such order is possible with non stationary signals so order control m.s:
as the RLSL [10 11] and the stochastic gradient lattice [15) uso function in real-time. The forward and backward pre ,ct 7
both time and order recursions to save computations. In addition, residuals of each sccessive stage must be comoarec to
these adaptive lattice algorithms require multiple divisions per threshold as they are computed to determine ,f arotrer stage s
stage. The following features were incorporated in order to achieve needed (or allowjd) for the current update. The .aue ut T! •

real-time computation speeds for adaptive lattice filters: threshold is defnod by the user. based or the engire s arithr-e,
* use of a 32-bit floating-point processing chip with a precision and the exponential windowing of the data .ient .. u.

latency of only one clock cycle, span across engine boundaries and accommodate
e efficient implementation of floating-point division, displacement at those boundaries This is cone Ttr' a secu ' .. -

* separate memories for time-recursion and set by each engine which s checked ano c:eared ur !.-e
order-recursion variables. itera' ?n by its downstream target engine
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Microengine Memory Structure

Two separate data memories are available to the AM29325. one SPb address SPa acress
;s tailored to support time-recursions, the other order-recursions. 64-word x 32-bit
The Permanent Memory (PM) is addressable in blocks 6 or
corresponding to lattice stages for ease of storage and retrieval two 32-word x 32-bit
during time-recursions. Eight variables can be stored in each PM
block as seen in Figure 8. The structure is 1K-stages x 8-words x 2-Port Memory
32-bits allowing a maximum of a 1024 stage lattice filter per
engine. The PM uses a block addressing scheme where each block
is selected by a stage number counter. The block addressing
greatly simplifies the engine's microcode during the computation of 32 3?

a lattice stage without sacrificing the use of simple addressing
schemes for transversal filters. Bout Aout

The Scratch Pad Memory (SPM) in addition to being a temporary Figure 9: Engine Board Scrach Pad Memory Contigurator

storage area for data transfers and intermediate results, can be (64 x 32-bits or two 32 x 32-bit halves,

structured to operate in a "ping-pong" fashion between the upper
and lower halves to allow the overwriting of order-recursion IV. LDS Test Data
dariables that are no longer needed. During the computation of a
lattice filter, variables are passed between the two SPM halves with
the current stage overwriting variables passed from a previous As of this writing the following adaptive filter aioritlrs a'.e

stage. Each SPM half contains 32-words x 32-bits of dual-ported been programmed: LMS transversal [141. Block LMS trans.e'sa

memory. With currentlnext addressing, there is no need to keep (17). Stochastic Gradient Lattice [151. Recursive Least Sioa'es

track of the absolute physical addresses being used which saves Lattice [10. 1i and Direct Coefficient Updating RLSL 118] Tes:

machine cycles and engine instructions. In addition, it is easier to with the LMS algorithm began in March of 1989 while testng v.t' '~

conceptualize order recursion variables as current and next (Figure RLSL began in June of 1989 The other aigorthms na~e ce- "

6) Special address control logic switches the physical location of included in 1990. A photograph of the LOS is pro dec in , '-. e ,

the order recursion variables in a manner that is transparent to the Figure 11 is a photograph of the two boaS C.._..5

software (and the programmer). The result is a very efficient use of Computation Engine.

memory space and a simple. efficient addressing scheme. For the As an example of LDS operation, the time ser es.A..tS .y' .'.".

cormputation of transversal filters, the SPM is configured by software and RLSL ANCs are shown for corrparson in F,g. es

as a single 64-word x 32-bit dual-port memory (see Figure 9). respectively In both cases a single sinusoid is be rig .>i'c-.e
Memory locations in both the SPM and the PM can be accessed in a the primary input Note the characteristic exponetia i cCii ' -

single clorkr cycle at the same time. LMS. and Ine nearly instantaneous adaptation of 'i ,
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