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ABSTRACT

This report documents research results on distributed tracking by a distri-
buted sensor network (DSN). A DSN is made up of a set of nodes which can com-
municate to each other via a communication network. Each DSN node contains a
processor collecting data from some sensors. The processor performs tracking
functions using the local sensor data and communicates the processing results to
other nodes according to some communication strategy. The receiving node then
integrates or fuses the information from other nodes with its local information to
arrive at a better estimate. Compared with a centralized tracking system, a DSN
has advantages such as increased reliability, less communication, local use of pro-
cessing results, etc.

Under previous DSN contracts, a general theory for distributed tracking
based on the multiple-hypothesis approach had been developed for difficult
environments involving many targets, high false alarm rates, poor detection condi-
tions, etc. The objective of current project was to apply this theory to the track-
ing of air targets by a network of acoustic sensors.

Because of acoustic sensor characteristics such as large propagation delay
relative to target speed, azimuth only measurements and poor sensor resolution,
the general algorithm had to be modified. In the modified system, tracks are
classified into local or global according to the target state distribution. Local
tracks have azimuths and sound pressures (and rates) as states and are formed
from a single node before any communication. Global tracks have positions and
velocities as states and are initiated when two nodes communicate. The algorithm
also accounts for merged measurements from targets which are close to each other.
The information distribution strategy is adaptive and communicates only when
the information will be useful to another node.

The algorithms have been implemented on a Symbolics LISP Machine.
Simulations have been performed using synthetic data for scenarios involving
different target and sensor configurations, as well as pre-recorded real data. The
algorithms have been found to perform satisfactorily except for targets that are
too close together to be resolved by the sensors. The feasibility of performing dis-
tributed situation assessment by a network of autonomous but cooperating agents
was thus demonstrated.

An appendix contains the results of investigating tracking from a communi-
cation or information-theoretic view point. This work was performed by Qual-
comm, Inc. under a subcontract.




NOTE TO READER

This document is the Advanced Decision System (ADS) Final Technical
report on the Distributed Tracking in Distributed Sensor Networks. This volume
contains the results of efforts undertaken by Qualcomm, Inc. working as subcon-
tractor to ADS on the effort. Qualcomm’s Final Report entitled, ‘‘Distributed
Sensor Program,” is attached in its entirety as Appendix C entitled, ‘“Tracking
from Communication and Information Theoretic View Point.”
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1. INTRODUCTION AND SUMMARY

This technical report describes the results of research performed under the
contract entitled *‘Distributed Tracking in Distributed Sensor Networks”. The
major part of the research was performed at Advanced Decision Systems (ADS)
and dealt with the distributed processing of acoustic sensor data for tracking air
targets in a distributed sensor network (DSN). Another part of the research, con-
cerned with the formulation of the tracking problem from a communication
theorist’s point of view, was performed by Qualcomm, Inc. under a subcontract.

1.1 GENERAL DSN APPROACH

A general DSN has the structure shown in Figure 1-1. There is a system of
distributed sensor/processor nodes. Each node may have one or more sensor
types, and the sensors from different nodes may-have overlapping coverage. The
sensors collect data from the environment and pass them on to the processors
(processing nodes). The processing nodes process the sensor data and communi-
cate with the other nodes through the communication network to obtain an
assessment of the state of the world. It is generally assumed that no single node
possesses complete information, and each node may have a different world model.
In general, the processing nodes can also control the sensors to improve the perfor-
mance of the overall system. '

A DSN can be used for many applications. In our past and current work,
we have been particularly interested in DSNs used for the tracking and
classification of multiple targets. The target environment is assumed to be dense,
so that determining the origins of the measurements in a particular sensor report
is not obvious. The problem is further complicated by the presence of both false
alarms and missing target reports. In such a network, tracking and classification
is highly dependent on identifying the correct data association. Since the nodes in
general have access to different information, communication among the nodes can
improve the performance of the system. In our work [1, 2, 3] thus far, we have
developed distributed processing systems for tracking and classifying multiple tar-
gets under general assumptions on target and sensor models and communication
patterns.
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A multiple hypothesis approach has been used to solve the general problem
of distributed target tracking and classification. FEach node in the DSN is
assumed to have the structure shown in Figure 1-2. It contains the following four
modules.

1.1.1 Generalized Tracker/Classifier

This module is responsible for processing the local data before any commun-
ication with the other nodes takes place. Since the objective of the system under
consideration is the tracking and classification of multiple targets, this module is a
multitarget tracker. In the previous projects, we have developed a general theory
for multitarget tracking which is implemented in the form of the Generalized
Tracker/ Classifier (GTC). The GTC has the structure shown in Figure 1-3 and
itself consists of four modules. The hypothesis formation module forms multiple
hypotheses from the sensor data, each consisting of a collection of tracks to
explain the origins of the measurements in each data set. These hypotheses are
then evaluated by the hypothesis evaluation module with respect to their probabil-
ities of being true. The filtering and parameter estimation module generates state
estimates and classifications for each track. It is essential for hypothesis evalua-
tion and can thus be viewed as a submodule. To stay within the computational
constraints of each node, the hypotheses are pruned, combined, clustered, etc.
This takes place in the hypothests management module. The result of this process-
ing is a set of hypotheses, and their probabilities, a collection of tracks
corresponding to possible targets and the state distributions of these tracks.
These quantities together constitute the information state for multitarget track-
ing.

1.1.2 Information Fusion

This module combines the local information with information obtained from
the other nodes to obtain a new situation assessment. The information from the
local nodes consists ofs the information described above. The information from
other nodes is also similar. Information fusion then consists of the following steps
(see Figure 1-4):

1-3
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1. Hypothesis Formation - Given a set of hypotheses from other nodes, this
submodule generates new global hypotheses. Tracks from the hypotheses
of different nodes are associated in all possible ways, according to
whether they correspond to the same or different targets.

2. Hypothesis Evaluation - Fach of the hypotheses formed above is then
evaluated with respect to its probability of being true. The statistics of
the tracks from different hypotheses are used in this evaluation. For
example, if two tracks are widely apart in their position or velocity dis-
tributions, they are more likely to have come from different targets than
the same target.

3. Hypothests Management - This is again needed to make computation
feasible given the available resources.

1.1.3 Information Distribution

This module decides what information is to be transmitted, who gets the
information, and when it should be communicated. It thus specifies the informa-
tion available to each node at any time, i.e., the information structure of the sys-
tem. Information distribution can be fixed a priori for simple systems, or it can
be highly adaptive to the information needs in the system.

1.1.4 Resource allocation

This module allocates the resources under the control of the processing node
to maintain or improve the performance of the system. Some typical resources
include sensor resources and processing resources. Both resource allocation and
information distribution can affect the information available in the network.
Thus their activities should be coordinated.
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1.2 PROJECT GOALS

As part of the DARPA DSN program, M.LT. Lincoln Lab. performed
research on the tracking of low flying aircraft using acoustic sensors. A DSN
testbed was developed and used to test and demonstrate DSN techpiques and
technology. Their efforts concentrated on the practical aspects of creating and
demonstrating the testbed. ADS’ focus was on the theoretical development of
algorithms for difficult environments involving many targets, high false alarm
rates, poor detection conditions, etc. The goal of this project was to adapt the
multiple-hypothesis approach of distributed tracking to the acoustic sensor
scenario used by Lincoln Lab. An additional goal was to examine tracking from a
communication theorist’s perspective. Specifically, we have the following objec-
tives:

® Designing the functional architecture for each node in the DSN

® Designing and implementing a simulation environment for the Lincoln
Laboratory testbed

e Developing algorithms for tracking multiple targets using acoustic sensors
in a DSN

e Implementing the algorithms in a simulated DSN

e Testing, evaluating, and demonstrating the algorithms using synthetic or
pre-recorded real data

Although the general methodology of Section 1.1 was in theory applicable to
the acoustic tracking problem, the specific acoustic tracking scenario raised techni-
cal issues which had to be addressed before algorithms could be developed to per-
form satisfactorily. Some of these issues are:

1-8




e Azimuth-only measurements. From a single node, the target location is
not observable from the azimuth measurements. From a pair of nodes,
however, a target becomes observable. An important question is thus the
types of processing to be performed locally by one node and jointly by a
pair of nodes. One possibility is to use different representations such as
azimuth tracks for local processing and position tracks after fusion.
Another possibility is to adopt a single representation.

e Propagation delay. Acoustic signals generated by a target do not reach a
node instantaneously. Since the target speed is substantial compared to
the speed of sound in the air, the delay has to be considered explicitly in
any information processing. For example, the true bearing of a target at
a node can be quite different from its apparent bearing at the node.

e Poor sensor resolution. Due to the poor sensor resolution (20 degrees
separation needed before two targets can be resolved), two targets which
are close together may be detected as a single target. The general algo-
rithm developed on previous contracts largely ignored this possibility.
New techniques had to be developed to handle this situation.

® Range dependent detection. Since target detection depends on the range,
and range affects the sound pressure received at a node, some useful infor-
mation may be present in the sound pressure. On the other hand, the
acoustic propagation characteristics in air may be too complicated and
unreliable. Whether the intensity information can be exploited or not had
to be investigated.

1.3 PROJECT ACCOMPLISHMENTS

In this research, the distributed multitarget tracking approach developed in
the last two DSN projects [1, 2, 3] was applied to acoustic tracking. The func-
tional architecture for each node in the DSN remains the same. Each node con-
tains the same modules of local processing; information fusion, information distri-
bution, and possibly resource allocation.
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An algorith:n for tracking multiple air targets in a DSN of acoustic sensors
was developed. The algorithm was based on a general multiple hypothesis
approach to distributed multitarget tracking. Several modifications had to be
made to accommodate the special characteristics of acoustic tracking discussed
before. Since each sensor generates azimuths only, each node has two types of
tracks, local tracks that are initiated locally and global tracks that are initiated
from two cooperating nodes. Unresolved measurements from two or more targets
due to poor sensor resolution was handled using a model for merging measure-
ments. The model uses the sound pressure to assist in resolving targets.

Propagation delay implies that ordinary triangulation can not be used to
initiate a global track (with location) from local tracks (with only azimuths) from
two nodes. An algorithm that used both acoustic azimuths and azimuth rates
was developed to estimate the target position and velocity. The communication
among nodes is based on an adaptive strategy that only provides the recipient
with useful information.

A simulation environment was developed on a Symbolics LISP machine for
testing, evaluation, and demonstration of the algorithm. The environment
includes a data generator that uses the same sensor models provided by Linccln
Laboratory. System architectures with different sensor numbers and geometries
can be simulated. The communication pattern between the nodes can also be
specified. In addition, pre-recorded real data can be read from a file and used to
drive the processing algorithms. Graphical displays are provided to display the
tracks for the different nodes as well as the intermediate results in the processing.
Statistics can be collected during a run for performance cvaluation.

The algorithm was implemented in the ADS simulation environment.
About 20 different scenarios ranging from one to three targets and three to seven
sensors were simulated. Both maneuvering and non-maneuvering targets were
considered. The simulation results indicated that cooperation between nodes is
essential but reasonable performance can be accomplished without continuous
communication. Monte Carlo simulations were also performed for some scenarios.
It was found that sensor resolution has significant impact on tracking perfor-
mance, both in tracking accuracy and in data association performance. Limited
real data werc also obtained from Lincoln Laboratory to test the algorithms.
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These results demonstrated that the distributed tracking approach
developed by ADS in the DSN projects can be applied to a complicated sensor sys-
temn consisting of acoustic sensors. Performance enhancements can probably be
obtained if other types of sensors (e.g., radars, electro-optical) are available. The
general nature of the basic algorithm allows the incorporation of these new sensors
without much difficulty. On the other hand, the communication strategies can be
improved to include requests for help, etc.

1.4 REPORT ORGANIZATION

The rest of this report is organized as follows. Section 2 describes the gen-
eral approach to distributed tracking in a DSN. This is mostly a review of the
work done in earlier DSN projects. The basic structure will be used for acoustic
sensors but the algorithms will have to be modified to accommodate the special
features of acoustic tracking such as angle-only measurements, propagation
delays, poor resolution, etc.

Section 3 describes the acoustic tracking scenario to be considered and the
mathematical models used. The models reflect the special characteristics of acous-
tic tracking such as propagation delay and poor sensor resolution.

In Section 4, the local data processing algorithm adapted for acoustic track-
ing is presented in detail. An upgrade of the algorithm using multiple models,
which significantly improves the local tracking performance, is also described.

Section 5 presents the information fusion and distribution modules of the
system. Detailed algorithms for track-to-track fusion and likelihoods calculation
are described. The strategies used for communication are also discussed.

Experimental results using simulated and real data are presented in Section
6. Evaluations of the performance by means of simulations and Monte-Carlo runs
are also discussed.

Section 7 contains the conclusions and suggestions for future research.
Appendices A and B present detailed derivations of some equations, while Appen-
dix C is the report by Qualcomm, Inc. on tracking from a communication point of
view.
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2. DISTRIBUTED MULTITARGET TRACKING

This section contains a review of our approach to distributed multitarget
tracking. Section 2.1 presents the architecture for each node in the DSN. Section
2.2 describes the local hypothesis processing functions. Section 2.3 describes
hypothesis processing in information fusion. An approach to construct the infor-
mation graph used in information fusion is presented in Section 2.4.

2.1 NODAL STRUCTURE

The ADS approach treats the DSN as a distributed hypothesis processing
system. The overall goal of the system is to form hypotheses on the measurement
data so that the targets can be tracked. Each node uses the local sensor data to
form local hypotheses. When these are communicated to other nodes, new
hypotheses are formed at the receiving nodes. Figure 2-1 shows the the functional
structure of each node and results from integrating Figures 1-2 to 1-4. Each node
contains a local data base of hypotheses which is updated whenever new informa-
tion arrives. This can happen in either one of two ways: data arriving from the
local sensors or messages arriving from the other nodes. The two corresponding
updating functions are then local information processing and information fusion.

2.1.1 Local tracking data

Each node stores information about the targets in the form of hypotheses.
These are formed from sensor reports received directly from local sensors or
indirectly through other nodes. Each hypothesis is a possible explanation of the
origins of the measurements in terms of how they are associated to the targets.
Since multinle associations of the measurements to targets are possible, at any
particular time a node maintains a set of hypotheses corresponding to the multi-
ple explanations.

The relationship of a hypothesis to the measurements in the sensor reports
is shown in Figure 2-2. Each hypothesis consists of tracks corresponding to the
targets detected by the node. Each track consists of measurement indices from
the same target. If the sensor resolution is such that a target cannot give rise to
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two or measurements in the same sensor report, then this constraint would be
used in defining a track. For acoustic sensors, this assumption that a target does

not generate two or more measurements is generally true.

Many tracks can be formed from the measurement indices in the same sen-
sor reports. However, not all of them may belong to the same hypothesis. A
hypothesis is a collection of mutually consistent tracks. Consistency may depend
on the sensor characteristics. If the sensor resolution is such that there are no
merged measurements, then a possible hypothesis cannot have overlapping tracks.
However, in the case of acoustic sensors, merged measurements are quite possible

- DATA
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e SENSOR
DATA

SENSOR SENSOR
REPORT 1 REPORT 2

Figure 2-2: Definition of Hypothesis
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when the target azimuths are close together. 1 any hypothesis, the measurements
not belonging to any tracks are considered to be false alarms. A hypothesis also
has associated with it a probability. Since each hypothesis set consists of mutu-
ally exclusive and collectively exhaustive explanations, the sum of the probabilities
over the set would be one.

Once a track is specified, the measurements for the hypothesized target
represented by the track are known. From these measurements, the state of the
hypothesized targets can be estimated. For the targets of interest in the current
research, the state consists of the position and velocity in an appropriate coordi-
nate system. Since the measurements may contain error, the state uncertainty in
terms of means and covariances should also be specified. In some cases, the
classification of the target may also be included as a discrete state.

In a distributed framework, it is necessary to maintain the hypothesis sets
formed or received at some earlier times in addition to the most current
hypothesis set. The precedence relationship among the hypotheses and the tracks
in the different sets is also needed. The hypothesis structure thus consists of mul-
tiple hypotheses at different times organized in the form of a directed graph. Fig-
ure 2-3 contains an example for periodic broadcast communication where the
hypothesis set formed after the last broadcast time is also retained. The pre-
cedence relationship between the hypotheses is shown by means of links between
the hypotheses. Although not shown, there should be similar links between the
tracks. In general, the dimension of the hypothesis structure depends on the com-
munication between the nodes.

2.1.2 Processing structure

The hypothesis structure presented above represents the information state
for each node. This information state is updated whenever new information is
received in the form of sensor data or messages from other nodes. Functionally,
the node contains subsystems or modules responsible for local information process-
ing, information fusionl and information distribution. The local information pro-
cessing module updates the hypothesis structure with the local sensor data. The
information fusion module updates the hypothesis structure with incoming mes-
sages from other nodes. The information distribution module is responsible for
communication with other nodes.
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Figure 2-3: Example of Hypothesis Structure

The local information processing and information fusion modules contain
two levels as in Figure 2-1. The first level is concerned with hypothesis processing
functions such as their formation, evaluation and management. Of these,
hypothesis evaluation requires information at the track level. There are thus
additional track-level calculations to be performed in each module. For local
information processing, they involve calculating the track-to-measurement associa-
tion likelilhoods and track state distributions. For information fusion, the
corresponding calculations would involve the track-to-track association likelihoods
and track state distributions. In general the hypothesis processing functions are
almost the same for many applications. They will be considered in the following




subsections for both local informatior. processing and information fusion. The
track-level calculations, on the other hand, are dependent on the particular target
and sensor scenarios. They will be discussed in details, specifically for acoustic
tracking, in Sections 4 and 5.

2.2 LOCAL HYPOTHESIS PROCESSING

The local information processing module uses data (acoustic azimuth meas-
urements) from the local sensors to generate new hypotheses from the old
hypotheses. It performs the following functions:

o Hypothesis formation
e Hypothesis evaluation

e Hypothesis management

Of these functions, hypothesis formation and management are at the hypothesis
level while hypothesis evaluation also requires inputs from track-level calculations.
The hypothesis processing functions will be described in this section while the
track-level calculations will be described in Section 4.

2.2.1 Hypothesis formation

This is the first step in local hypothesis processing. New hypotheses are
formed by associating the measurements in each sensor report with the tracks in
the current hypothesis set. Multiple associations are in general possible for each
hypothesis. The following are the different ways in which measurements and
tracks can be associated:
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e A mecasurement y; may be associated with an existing track r, in the

H
current hypothesis

® A measurement y;, may be associated with a new track (i.e., a target
which has not been detected up to now)

® A measurement y; may be associated with no track at all (i.e., it may
come from a false alarm)

e A track 7; may not be associated with any measurement at all (i.e., it may
be missed in the current sensor report)

Not all of these associations may be meaningful and some initial screening is
used to reduce the possible associations. For example, if a measurement and a
track are too far apart in location, then there-should not be any association.
From these possible associations, new tracks are formed by appending the meas-
urements to the old tracks. From the new tracks, new hypotheses are formed by
imposing suitable constraints among the tracks in the same hypothesis. If the
sensor resolution is such that there are no merged measurements, then there
should be no overlap in the tracks. New hypotheses are generated from tracks
satisfying these constraints.

There are several ways to perform the actual hypothesis formation. The
simplest is by a recursive list method. Consider the example in Table 2-1. It
displays the possible associations between measurements (on the x-axis ) from one
sensor report and tracks (on the y-axis) in a hypothesis. The sensor report con-
sists of two measurements: 1 and 2. O represents the absence of a measurement,
or non-detection. There are two existing tracks: 1 and 2. N represents a new
track and F represents false alarms. Thus either one of the measurements can be
new tracks or false alarms. Track 2, however, cannot be associated with measure-
ment 1 since the value of measurement 1 is incompatible with the state of
track 2. The following steps can be used for hypothesis formation:




Table 2-1: Track-Measurement Cross Reference Table

X[ X|X]e
XIOX[X|~
XIXXX]

MmN - Z

1. For each measurement in the table, the column below it gives the list of
possible tracks which can be associated with it. The lists for the two
measurements are:

- measurement 1: (N,1,F)
- measurement 2: (N,1,2,F)

2. By forming all possible combinations between list 1 and 2, with one
track from each list, we obtain twelve possibilities of the form (a,b)
where a is the track associated with measurement 1 and b is the track
associated with measurement 2. Of these, (1,1) is eliminated since 7
track 1 cannot be both associated with measurement 1 and 2 in the
same sensor report. There are thus eleven possible hypotheses.

The eleven hypotheses are displayed in Table 2-2. Figure 2-4 shows the
hypothesis set in the form of a tree. Each branch of a tree represents a possible
hypothesis. The symbol under each measurement denotes the track associated
with the measurement in that particular hypothesis. In this approach, each meas-
urement is associated To at most one track. It thus guarantees that there are no
merged measurements. However, some combinations will involve split measure-
ments and have to be eliminated.




Table 2-2: Hypothesis Set (no merged measurements)

MISSED TRACK 0 2221{1,2{1,22 1{1,2{1,2

TRACK FOR MEASUREMENT 1 111FF F F NN N N

TRACK FOR MEASUREMENT 2 2FN12 F N 12 F N
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Figure 2-4: Hypothesis Tree (no merged measurements)

For the scenario in the current research, however, the acoustic sensor resolu-
tion is such that two or more detected targets may generate only one measure-
ment. In this case the hypothesis expansion scheme would have to be modified.
Specifically, each measurement can be associated with two tracks. However, the
no track splitting assumption should still be valid, i.e., the same track should not
contain more than one measurement in the same sensor report. The recursive list
technique used above needs to be modified to allow merged measurements. But
first of all, the track-to-measurement correlation (TMCR) table needs to be
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modified according to the merged measurement model.

For the same example as in Table 2-1, suppose measurement 2 could be a
merged measurement from the two targets. Then the modified (Extended) TMCR
table can be obtained as in Table 2-3. In this table, an extra row hypothesizing
the merging of measurements from tracks 1 and 2 is added. This row contains a
non-zero entry at column 2 which represents the possibility of measurement 2
being the merged measurement according to the model. In this case, the following
steps can be used for hypothesis formation :

1. For the two measurements in the table, the new lists for the possible
tracks are:

- measurement 1: (N,1,F)

- measurement 2: (V,1,2,{1,2},F) -

Table 2-3: Extended Track-Measurement Cross Reference Table

XX[X|e
XIO|IOX|X] -
XIXIXIXX |
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2. By forming all possible combinations between list 1 and 2, with one
track from each list, we obtain fifteen combinations. Of these, (1,1) is
eliminated as before, similarly (1, {1,2}) is also eliminated based on the
same reason. There are thus thirteen possible hypotheses left.

Table 2-4 contains the hypothesis set. Figure 2-5 displays the same hypothesis set
as a tree. Note that in this case more than one track can be associated to the
same measurement.

Note that this approach of hypothesis formation automatically guarantees
that there are no split measurements for existing tracks. Hypotheses with merged
measurements are formed if no additional constraints are imposed. On the other
hand, one can remove the hypotheses with overlapping tracks to obtain the
hypothesis set in Table 2-2.

2.2.2 Hypothesis Evaluation

This module evaluates the probability of each hypothesis being true. A
recursive algorithm has been developed in previous projects [1, 2, 3] for hypothesis
evaluation. Given a hypothesis A which descends from another hypothesis X in
the sense that all the tracks in the current hypothesis are either extensions of the
old tracks or new tracks, the hypothesis evaluation algorithm is given by:

Table 2-4: Hypothesis Set (with merged measurements)

MISSED TRACK 02221 o{1,2{1,212 1 ¢ {1,2{1,2)

TRACK FOR MEASUREMENT 1 111FF F F F NN N N N

TRACK FOR MEASUREMENT 2 2FN12{12) F N 1 2{12 F N
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Figure 2-5: Hypothesis Tree (with merged measurements)
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P(N|Z)=C Y P(N|Z) Lpy JCE L(TY.u(r) ) (2.1)
where 7 is the cumulative data up to the current time, 7 is the cumulative data
up to the previous update time, and C is a normalizing constant. Lp, is the
likelihood of false alarms in the hypothesis. L(?,y,l(,.)) is the likelihood that a
track 7 is associated with the measurement Ya(r) The exact expressions of these
likelihood functions can be found in previous DSN reports.

Note that in addition to the probability of the previous hypothesis, certain
track-to-measurement likelihoods are needed to compute the probability of the
current hypothesis. Specifically, the following likelihoods of associations are
needed:

o Likelthood of a track associated with a measurement
e Likelihood of a track associated with no measurement
® Likelihood of a measurement associated with a new track

o Likelihood of a measurement being a false alarm

In addition to the measurement values and track state values, each of these likeli-
hoods depends on the measurement errors and state estimate errors. They also
depend on the detection probability of the sensor. Note that when all the
hypotheses have to be evaluated, the likelihoods needed can be summarized con-
veniently in a track-to-measurement cross reference table (Table 2-5). On one
dimension of the table are all the tracks 1 to IV,, the new track denoted by 0 and
the false alarm. On the other dimension are the measurements 1 to N, in the
current sensor report. The measurement indexed by 0 corresponds to nondetection.
Each element in the table is a likelihood associating a track (old, new, or false
alarm) to a measurement (or nondetection). These likelihoods have to be provided
by track-level calculations to be discussed in later sections.
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Table 2-5: Track-Measurcment Cross Reference Table

MEASUREMENTS

0 | 2 . . . N,
New Track 0 L Loy, Lg» L LN,
! Ly Ly Ly, © v L\N,
IZxisting * ‘ * ) :
Tracks ) ’ : ) L *
Ny | Lo Ly, Ly, , o Ly N,
Yalse Alarm Ly Lgy _ MO "ﬁ‘.“.’,,

The hvpothesis evaluation algorithm presented above assumes that there are
no merged measurements. When this is not the case, it will be necessary to con-
sider *he likelihood of two or more targets generating the same measurement. The
detailed hypothesis evaluation for merged measurements will be discussed in Sec-
tion 4.

2.2.3 Hypothesis management

The function of the hypothesis management module is to control the
number of hypotheses maintained in the system. The following hypothesis
management techniques have been implemented in the current ADS DSN algo-
rithms:

e Hypothesis pruning: Hypotheses whose probabilities are below a certain
threshold are removed from further consideration. Another alternative is
to retain enough hypotheses so that their cumulative probability is above
a threshold. This is called the adaptive thresholding approach.
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e Hypothesis combining: Similar hypotheses are combined into a single
hypothesis. Similar hypotheses are those which have the same number of

tracks and whose tracks are similar according to some criterion.

e Hypothesis clustering: Groups of measurements and tracks which cannot
be associated can be decomposed into independent clusters. Hypothesis
formation and evaluation can then be performed within each cluster.
This reduces the amount of storage and computation without making any
approximation.

These techniques are used for managing the number of hypotheses in the current
system.

2.3 HYPOTHESIS PROCESSING IN FUSION

The information fusion module takes hypoiheses received from other nodes
and integrates these with the local hypotheses to generate new hypotheses. A
hypothesis from each node consists of target tracks which the node is supposed to
have detected. Fusion produces new hypotheses consisting of detected target
tracks given the local and received information. It is basically a track correlation
process, i.e., determining which tracks from the different nodes correspond to the
same targets. As in local hypothesis processing, there are three separate steps in
information fusion: hypothesis formation, hypothesis evaluation and hypothesis
management. Before considering these topics, the issue of track and hypothesis
fusability will be discussed.

2.3.1 Fusability and information graph

The first step in the fusion process is to form possible track and hypothesis
sets using the local tracks and hypotheses and those received from other nodes.
Certain combination of tracks and hypotheses should not be fused since they are
inherently contradictory. In the example of Figure 2-6, the two tracks 7; and 7,
are two local tracks maintained at two different nodes. They cannot be fused
since the resulting global track would have two different measurements in the
same sensor report 1, thus violating the no split measurement assumption. On
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the other hand, 7, and r; can be fused to yield a global track rU7y. The
interpretation of this global track is that the measurements in both tracks 7, and
r3 come from the same target. Tracks 7, and 7, can also be fused. However, they
do not have to be and in that case the two tracks correspond to two different tar-
gets. The fusability question also needs to be addressed at the hypothesis level.
Each local hypothesis is a possible explanation about the origins of the local meas-
urements. Thus if the local hypotheses are incompatible, they cannot be fused to
obtain a global hypothesis. This is illustrated in Figure 2-7 where each node 1
has two local hypotheses >\‘j, 7=1,2 derived from the two common hypotheses
N, 7=1,2. Since A\' and )? are mutually exclusive, the local hypotheses \? and
Ay are not fusable.

In the examples above, it is easy to determine the fusability of hypotheses
and tracks. When communication becomes more complicated, determination of
fusability becomes more difficult since it is necessary to identify the information
available to the nodes in the network at various times and how the information of
one node at one time is related to that of another node at a different time. For
example, whenever two nodes communicate some common information is shared
between the nodes. The existence of this shared information would affect
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Figure 2-6: Fusability of Tracks
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Figure 2-7: Fusability of Hypotheses

fusability since hypotheses which have different predecessors in this common in or-
mation are not fusable.

The information graph can be used to trace the histories of the communica-
tion conveniently. Each vertex in the graph represents an event when the infor-
mation in the DSN changes. These events are: sensor observation, sensor data
received at a node, transmission of messages by a node and reception of messages
at a node. The arc in the graph represents information flow. Figure 2-8 shows
the information graph for broadcast communication. At a given time all the
nodes communicate to each another so that they all have the same information.
Figure 2-9 shows the information graph for a cyclic communication system. The
system consists of three nodes N={1,2,3} collecting data from the three sensors
S={1,2,3}, respectively at the times ...,tsp,tgp+t4,-.... The nodes transmit to the
other nodes periodically according to the pattern shown in Figure 2-9 at times
.wteritor+it4,.- and the messages are received at the times ...,lcp,tcp +t4,... It
is assumed that tgp <top <tcp.
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2.3.2 Hypothesis formation

Once the information graph is available, The following steps are used in
hypothesis formation:

1. Determining hypothesis fusability. Hypotheses which are inconsistent,
e.g., descending from conflicting hypotheses, cannot be fused. Fusion
amounts to checking the ancestors of the current hypotheses. If they are
processed by a node at any given time, then they should have
nonconflicting ancestors at that particular vertex in the information
graph. In fact it is only necessary to check the most recent common
predecessor set. In the example of Figure 2-9, consider the hypothesis
sets at vertices (t¢7,1) and (t¢r,2) which are fused at the vertex (top,1).
A pair of hypotheses in these sets would be inconsistent if their ancestors
on (ter—2t4,1) or (ter—t4,2) (or predecessors of these vertices) are
different. A necessary condition is -to check their ancestors on
(tcr—2t4,1) or (ter—1t4,2). If they are different, then the hypotheses are
not fusable. Otherwise, we can proceed to the next step.

2. Determining track fusability. For each fusable hypothesis pair, all fus-
able track pairs are identified. A fusable track pair is one which when
traced back does not cause any conflict. Non-fusable tracks are those
which have been hypothesized to come from distinct targets in the past.
In particular, all new tracks created after the nodes last communicated
are fusable. The fusability condition again can be checked as in
hypothesis fusability. However, the condition is now both necessary and
sufficient [7]. A track-to-track fusability table such as Table 2-6 can be
used to represent the fusable tracks. Each nonzero entry corresponds to
a pair of fusable tracks. In Table 2-6, 75, and 7, are a fusable pair and
neither track can be fused with any other track. This implies that they
have been identified to have come from the same target in the past. The
tracks 7y, and 7y, however, are fusable with each other or with the
undetected tracks represented by 7,,. This means that they can be the
same targets or they can be different targets which are not detected by
the other node. In forming the track-to-track fusability table, informa-
tiou about the track states can also be used. For example, if the tracks

2-21




Table 2-6: Track-to-Track Fusability Table

A
T ™ T
Tlo x O X
xl T“ O x O
Tl-_) X O X

To9 and 7, are very far apart, then the two tracks should not be fused
even though they are logically fusable.

3. Hypothesis formation for each fusable hypothesis pair. From the two
hypotheses A\; and X\,, we can thus form the following two hypotheses:

{(r1aUa1), (110UT22), (112UT20)}
{(r11Ugy), (110U722)}

This step can be repeated for other fusable hypothesis pairs.

As a result of these three steps, we have multiple hypotheses, each one correspond-
ing to a different association of the tracks between the nodes. Hypothesis forma-
tion is basically a two-level procedure: the top level considers all possible associa-
tions among the hypotheses, and given each of these the second level considers all
fusable associations among the tracks. Note that the second level is actually very
similar to hypothesis formation at the local level.
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2.3.3 Hypothesis evaluation

The next step in information fusion is to evaluate the probabilities of the
hypotheses formed using the probabilities of the local hypotheses and the local
track state distributions. If the nodes communicated in the past, the local statis-
tics would not be independent. A key problem in hypothesis evaluation is to
identify the common information shared by the nodes and make sure it is not
double counted in generating the global statistics.

The information graph is useful in tracing the shared information in the
hypothesis probabilities and track state distributions. Suppose it is necessary to
compute the conditional probability of the state z at a vertex 7, iu the informa-
tion graph whose immediate predecessors in the graph form the set I. Suppose
the cumulative measurement set for an immediate predecessor ¢ is Z; and Iis the
set of predecessors of I. Since each p(z |Z;) contains some information shared by
other p(z le)’s, this redundant information needs to be identified and removed
in the fusion. It was shown in (7] that the probability of z at the fusion vertex is
given by

p(z1UZ)=c"' ILp(z |Z)0) (2.2)
1e] iel

where I<I is a subset of I, (a(i_)),.—ef is some index tuple such that afi) is a
nonzero integer for each z'_, and C is the normalizing constant. The set I contains
all the information vertices which are relevant to fusion at the vertex iy ofr)
determines whether the information at vertex i should be added (a(;_)=1) or
removed (afi)=—1). In equation (2.2), addition of information appears as multi-
plication by the conditional probability while removal appears as division.

Let Z=U Z; be the cumulative measurement data after fusion has taken

el
place. We need to compute the probability P () |Z) for each hypothesis X formed
from fusion. For the tracking scenario under consideration, the following
hypothesis evaluation algorithm is applicable. Suppose for each 1E&l, the proba-
bility P(» |Z;) for each hypothesis A defined on Z: is known. Then for each

hypothesis X\ defined on Z, the probability of the hypothesis being true is given by

— 1 _‘ (i) r N\
POZ) = et LR 1270 T Lin(Z)zer) (23)
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where C is a normalization constant, (A |er) is the predecessor hypothesis of A
defined on Z: and Z’(T’(Zf)i_ef) is the likelihood of the global track formed by

associating the local tracks. The exact formula of this track-to-track association
likelihood was derived in |{7] and will be discussed again in Section 3.

We note that hypothesis evaluation depends only on the statistics at the
information vertices in the set I. The function « determines whether the informa-
tion at a vertex should be added or subtracted. The hypothesis evaluation for-
mula of (2.3) has a two-level structure. At the higher level, the product of the
local hypothesis probabilities evaluates the probability of associating the given set
of local hypotheses. The next level consists of the likelihoods of associating the
individual tracks. As in local hypothesis evaluation, these track-to-track associa-
tion likelihoods can again be supplied in the form of a table. Section 5 will dis-
cuss the calculation of these likelihoods.

2.3.4 Hypothesis management

Hypothesis management techniques such as those used in the local informa-
tion processing would be needed in information fusion. Examples are pruning,
combining and clustering. Pruning and combining are usually performed within
each cluster.

2.4 CONSTRUCTION OF INFORMATION GRAPH

In Section 2.3, we discussed the information fusion problem. Both
hypothesis formation and hypothesis evaluation requires knowing the information
graph so that fusable hypotheses and tracks can be identified and redundant use
of information in either hypothesis evaluation or track fusion can be avoided.
When the communication schedule is specified a priori, the information graph can
be generated off-line, stored at each node and used in information fusion. When
communication is driven by data or unreliable, the information graph cannot be
generated in advance. Techniques used to construct the information graph on-line
will be discussed in this section.
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2.4.1 Limited range broadcast communication

The nominal communication in the acoustic tracking scenario is limited
range broadcast where each node broadcasts to only a finite number of neighbors
within the broadcast range. Consider the example in Figure 2-10. The system
has six nodes arranged as in the figure and a node can only hear from one which
is connected to it. The information graph depends on the order of their broadcast
and cannot be specified a priori. Suppose they broadcast sequentially in the order
of 1,2,3,4,5,6. The information flow graph is shown in Figure 2-11. When they
broadcast in a different order, such as 1,3,5,2,4,6, the information graph will be
different.

A possible way of generating the information graph dynamically is to attach
a history to each hypothesis set communicated in the system. When fusion
occurs, each DSN node appends the histories of the fused hypotheses to the result-
ing hypothesis set. This results in the transmission of the history of the
hypothesis set together with the hypothesis set. . As an example, after fusion by
node 2 at time t¢,, the resulting hypothesis set has a tag indicating its ancestor
from node 1. After fusion by node 2 at time t,, the hypothesis set would know
that it only has data from nodes 1 and 2. The hypothesis sets maintained by
nodes 1, 5 and 6 just before ¢;, would have the history represented in Figure 2-12.
When node 1 receives the broadcast from node 6, the histories of the local and
incoming hypothesis sets contain the partial information graphs at the two nodes.
This can be used to construct the relevant part of the information graph needed
for information fusion. The common information shared by the two nodes is that
of the vertex (¢3,2). This is the last time the nodes communicated with one

1 2 3

Figure 2-10: Six Node Configuration
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another. Hypothesis and track fusability require checking the ancestors of
hypotheses and tracks at this vertex. Both hypothesis evaluation and track state
fusion would use the probabilities at this vertex. Similarly, node 5 can construct
the relevant part of the information graph by using the partial information
graphs from node 5 and node 6. In this case, the shared information is at the ver-
tex (¢g,5).

Some approximations are needed to make the scheme practical. The history
for each hypothesis set cannot be too long or the communication and memory
resources will be too high. In addition, the reconstruction of the information
graph may be too difficult. Some kind of window needs to be applied to the his-
tory of each hypothesis set to reduce it to a manageable length. In some cases the
finite window will not introduce any error. For example, if all the information
before tg in Figure 2-12 is discarded, node 5 would still be able to identify the
common information vertex (fg,5). On the other hand, node 1 would not be able
to trace the shared information in hypothesis sets from node 1 and node 6. How-
ever, one may argue that any dependence which occurs in the distant past should
not have too much effect on the current processing. These communication issues
will be discussed further in Section 5.

The complexity of the problem is sometimes reduced if each node does not
process all the messages received. For example, if the messages contain informa-
tion about tracks which are not yet in the sensor’s field of view, then they need
not be included in the processing. This simplifies the information graph since a
node which does not use the message is equivalent to onc which does not receive
the message.

2.4.2 Lost messages and communication failures

Since communication is not always reliable, broadcast messages may be lost.
The broadcasting node may not be aware of this if no acknowledgement is pro-
vided in the system. In addition, some nodes in the broadcast range may receive
the message while others may not. Since the effective information graph is
modified, information fusion will be affected. For example, consider figure 2-11.
Suppose node 6 does not receive the broadcast message from node 5 at time tq.
The path from (t4,5) to (¢,0,6) in the information graph is then absent. When
fusion at node 5 occurs at time (¢,,,5), the common information is now (t,,1). If
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this is not recognized, error may be introduced into the processing. This problem,
however, would not arise if the information graph is constructed on-line from the

histories of the communication.
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3. DISTRIBUTED ACOUSTIC SYSTEM AND MODELS

In this section, we describe the distributed acoustic tracking system and the
models used. Section 3.1 presents the overview of the system, and Section 3.2
describes the models.

3.1 SYSTEM DESCRIPTION

Our systemn configuration is based upon the one implemented by Lincoln
Laboratory in their DSN testbed.

The acoustic sensors in the DSN test bed are small microphone arrays. The
front-end signal processing algorithms produce ‘‘measurements’ every two seconds
and they correspond to the average target azimuths over the two second interval.
The algorithms also supply signal-to-noise estimates, which can be used to gen-
erate accuracy values for the azimuth measurements. The sensors produce no tar-
get elevation information.

The detection range for a single target is from a few to a few tens of kilome-
ters, with five kilometers being a good nominal value. The target detection pro-
bability depends upon the signal-to-noise ratio, which for a given signal source
strength depends upon range, topography, background noise, and propagation
conditions. In general, detection probability increases with decreasing range
although this may be violated by quiet zones introduced by topographic features
such as hills.

The number of targets within the detection range which can be simultane-
ously detected and isolated depends on factors such as array aperture, number of
sensors in the array, noise level, signal level, and the azimuth separation of the
targets. Lincoln’s experience is that three to five would be an appropriate
number. Equal power targets with a azimuth separation of less than 20 degrees
may not be resolved.

The false alarm rates may depend on the targets present and the signal pro-
cessing algorithm. In the absence of targets the number of false detections gen-
erated by the sensor and its associated signal processing algorithms is on the order




of three to five for each measurement interval.

The azimuth accuracy of the acoustic arrays is on the order of two degrees.
This can be improved by changing the measurement intervals. A lower limit is
imposed by propagation physics with a reasonable value of about one degree.

The sensors/processors can be deployed in various patterns. Two possible
options are: barrier and area (Figure 3-1). The barrier pattern has the nodes
arranged in a long linear extent and is useful for early warning situations. The
area pattern has nodes in the interior of the DSN and is useful for continuous sur-
veillance over large areas. A general DSN may contain many nodes but the sys-
tem considered in the research has a maximum of six nodes so as to match the
testbed hardware. The six nodes can be arranged in various ways to simulate the
two options.

Important system deployment parameters are the distance between nodes,
sensor detection range and the broadcast communication range. The system may
exhibit different characteristics as a function of these parameters. It is not clear
what kinds of parameters will be optimal. However, the sensor detection range
should be at least equal to the distance between nodes to provide some overlap-
ping coverage. The broadcast range should be at least the distance between nodes
and possibly larger so that information can propagate faster in the system.

The nominal communication between nodes is a limited range unack-
nowledged broadcast. The nominal reception area is a disk with the range as the
radius and the center at the broadcasting node. However, there may be "dead
areas’ within the disk where no reception is possible. These disks may be known
or unknown to the system.

In addition, communication may be unreliable in the sense that messages
could be lost. A message broadcast by one node may be received by some nodes
within the broadcast disk and lost by others. This is equivalent to having failing
communication channels. The broadcasting node may not be aware of the failure.

We are interested in target scenarios ranging from easy to quite difficult. A
local target density of three per node would be considered quite difficult due to the
limited resolution of the sensors. Thus, one, two, and three targets will be con-
sidered in our simulations. The targets may maneuver by changing courses or
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Figure 3-1: DSN Deployment Patterns
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speeds or both. They may pass through the DSN in various ways. The targets
may fly in different configurations. For example, they may fly in different forma-
tions and the formations may cross each other.

3.2 MODELS

The altitudes of targets are assumed to be very low and the targets are
modeled as ohjects moving in the 2-dimensional space. 'i e motion is modeled by
constant velocity or constant acceleration (or if necessa.y constant jerk). A
maneuvering target is modeled by additional white noise excitation to the target
dynamics.

Let a target position viewed from a sensor at time ¢ be z(¢). The sound
wave received at time ¢ by the sensor has originated from the target at time ¢ -9,
where the time delay 0 is determined by

lz(t—&l = c5 . (3.1)

with ¢ being the speed of the sound in the air (See Figure 3-2). Equ. (3.1) has a
unique solution & provided z() is differentiable and [z (¢ J<¢ (subsonic). Eqn. (1)
determines the acoustic azimuth (measured clockwise from the north) ¢ of the tar-
get with respect to the sensor. The measured acoustic azimuth ¢,, contains meas-
urement error as

by =+ w (3.2)

where w is modeled by an independent zero-mean gaussian random variable (r.v.)
whose variance is yet to be specified.

Let the sound pressure at the 1-meter distance from the target be s,. Then
the sound pressure measurement sy, at the sensor is

So

where r is the acoustic range, i.e., r=c§, and G is the sensor gain. To account
for propagation irregularity and other random factors, either additive or
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multiplicative noise should be added to (3.3). The sensor also measures ambient
noise sy. Thus when the measured sound pressure exceeds a given threshold spy,
the sensor generates a measurement y=(ds,s),5y) consisting of the acoustic

azimuth and the signal/noise sound pressure levels.

The azimuth measurement error standard deviation (SD) o, (of w in (3.2))
is determined by

o
oy = T(SNR) (3.4)

where 06 is the sensor resolution (about 20 degrees), SNR=s)/sy, and
[(SNR )=min{max{1,V'SNR },10}. The number of false alarms is modeled as a
Poisson r.v. independent from scan to scan. The delayed azimuth value of a false
alarm is distributed uniformly on [0,27] and the sound pressure value has an
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exponential distribution biased by the threshold value.

. . 1 o

When two acoustic azimuth measurements, (,')]f{ and oj, are close enough,
ie., I(b}{,,-—@fl |<5€5, they are merged into a single measurement, and the merged
acoustic azimuth measurement becomes

Gif = qop + (1-9) iy (3.5)
where
1 if SA} > 5352
7= iy otherwise (3.6)
sA,l[-i—sA}

and sy is the unmerged sound pressure measurement corresponding to @j,. The
merged sound pressure measurement becomes

Sy if sy > 5spg

S = (3.7)

1 otherwise
SA} + ES& d

In Eqns. (3.5) to (3.7), we assume sy >s5. Otherwise we should exchange indices
1 and 2.
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4. LOCAL DATA PROCESSING

At each scan, a DSN processor receives azimuth and sound pressure meas-
urements from its own acoustic sensor. This section discusses the processing of
the local measurements based on the Generalized Tracker/Classifier (GTC)
developed in [1]. The general approach is the same as that in Section 2. How-
ever, because of the nature of acoustic sensors, modifications to the general algo-
rithm have to be made. Section 4.1 describes a modified representation of the
tracks. Sections 4.2, 4.3, and 4.4 present the modifications made to hypothesis
formation, evaluation, and track updating. Section 4.5 describes an approach
used to handle wide variations in target dynamics. A summary of these results
can be found in {13].

4.1 TRACK REPRESENTATION

As in [1],[2] or [3] the tracking data at each ncde is represented in terms of
tracks and hypotheses. A track is a collection of measurement indices. For exam-
ple, a track 7 = {(1,2,3),(2,3,4),....} hypothesizes that a target generates measure-
ment 1 at scan 2 at sensor 3, measurement 2 at scan 3 at sensor 4, and so forth.
The lack of measurement may be represented by a triple (0,k,s) for scan & of sen-
sor s or simply excluded from the track. In general, two tracks may be incon-
sistent with each other, e.g., if one track is true the other one must be false. A
consistent collection of tracks is called a data-to-data association hypothesis or
simply a hypothesis. Each track 7 is accompanied by a target state distribution
(TSD) which represents the distribution p(z, |7,Z) of target state z, conditioned
by the track 7 and the accumulated sensor data Z. Since it is difficult for a node
to generate estimates on position and velocity from the measurements of a single
sensor, we distinguish between different kinds of tracks based on the target state
distributions associated with them.

Each target state distribution (TSD) consists of a geolocational TSD
(GTSD) factor(s) and a sound pressure TSD (SPTSD) factor. A TSD factor is
called local if the corresponding distribution is derived from the measurements of

a single sensor, and otherwise global. Thus a GTSD factor is either global or local
while a SPTSD factor is always local. A GTSD or SPTSD factor consists
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generally of multiple gaussian terms with a probabilistic weight being attached to
each term. A track may have only a local GTSD factor. In such a case, a track is
said to be local. Or a track may have a global GTSD factor or both global and
local GTSD factors. Then the track is said to be global.

A local GTSD factor term is a gaussian distribution on the (local) acoustic
azimuth of a target and its derivative, (¢,¢), and possibly higher-order
derivative(s). The purpose of having local GTSD factors is to overcome the
difficulty of initiating tracks locally from acoustic azimuth measurements. As a
local track accumulates acoustic azimuth data, the acoustic azimuth rate (p is
estimated with increasing accuracy as indicated by the decreasing variance matrix
in the local GTSD factor terms. A global GTSD factor term is a gaussian distri-
bution on the global coordinates, i.e., the target position and the velocity in the
north-east coordinate, and possibly their higher-order derivatives. A global GTSD
factor term is generated by fusing two local tracks when different sensors com-
municate

A SPTSD factor tracks the change in the measured sound pressure. Its pur-
pose is: 1) to obtain additional discriminant (particularly from false alarms), 2) to
predict a target leaving the sensor coverage, and 3) to predict the merged acoustic
azimuth measurements when measurement merging is likely. The factor is also
used to estimate the targets’ noisiness. A SPTSD factor term is a gaussian distri-
bution on the (fictitiously noiseless) received sound pressure s, its derivative, and
possibly higher-order derivative(s). The actually measured sound pressure s, is
modeled by

sy =58 + w, (4.1)

where the artificial noise term w, (modeled by independent zero-mean gaussian
r.v.) accounts for scan-to-scan fluctuation of the sound pressure measurements.
Figure 4-1 shows the hierarchy in track representation performed.

The updating of each TSD factor is in parallel to the hypothesis evaluation
(described in Section 4.4). On the other hand, extrapolation of each TSD factor
term is performed by an appropriate dynamic model, i.e., constant-velocity or
constant-acceleration linear models with an appropriate white noise input. For
example, in order to update a local GTSD factor term, a simple set of differential
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equations, Et—(,f)zw and jt—«_v———whzte notse, may be used. Since the acoustic

azimuth dynamics are in fact nonlinear, the intensity of white noise must be
chosen to compensate for such nonlinearity in addition to the target mane :vering
or multiple models (described in Section 4.5) have to be used.

4.2 HYPOTHESIS FORMATION

As described in [1, 2, 3], hypotheses are recursively created, i.e., expanded
and evaluated for each data set from each sensor. To simplify our discussion, we
consider only two-way measurement merging as modeled in Section 3, i.e., only
the possibility of two existing tracks merging together will be considered. For the
sake of efficiency, hypotheses are usually clustered [4, 5] in the processing. In the
following, we discuss hypothesis formation and evaluation within a single cluster.

Consider one sensor scan and a hypothesis X to be expanded. Then, before
expanding this hypothesis by the set of measurements in the data set, it s
expanded into the set of track merging hypotheses, each of which is a partition Km
of X\ such that #(T)<2 for any TcA,,. Here #(A) is the number of members in
a set A. Apparently, this expansion means that we are only considering two-way
merging among existing tracks. Then each track merging hypothesis is expanded
by the set of measurements as in the cases where there is no measurement merg-
ing. Figure 4-2 illustrates this two-step hypothesis expansion; first by track merg-
ing and next by the measurements. In the figure, a hypothesis N having three
tracks is expanded into four track merging hypotheses, K;‘ to K,‘;, each of which
is then expanded by the measurements (shown by shaded triangles in Figure 4-2).
Figure 4-3 shows the expansion of the hypothesis K,ﬁ, by the two measurements in
the current sensor scan.

4.3 HYPOTHESIS EVALUATION

After expanding all the hypotheses X in the old cluster, the resultant collec-
tion of new hypotheses forms an updated cluster. Each new hypothesis A\ has a
unique parent X\ and a unique track merging hypothesis Km, from which X is gen-
erated. Then evaluation of hypotheses, considering the measurement merging pos-
sibility, can be done by replacing X by Xm in the general hypothesis evaluation
formula given in [2] and (6], and then by probabilistically assessing the joint event
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of “two tracks merged and generating a single measurement.”

The results of hypothesis evaluation may be summarized as

Prob. I\ |Z) = C~! Prob. {\ |2}
(“{L (y IT) I’fe TmU{@} and T is assigned measurement y })
(H{L(é’ {71,72}) ITIEE)\ and 7,€\ but they did not merge})

(H{L @n |T€>\ but not assigned any measurement, i.e., 7=T}) (4.2)

where Z is the cumulative data set including the current sensor scan, Zis 2
minus the current sensor scan, and C is the normalizing constant. & in the above
equation is the symbol used to represent ‘‘no measurement” and the L (- |-)’s are
likelihood functions defined below.

In the first parenthesized product on the right hand side of (4.2), L{y |() is
the likelihood of measurement y originating from a target undetected before and
is given by

L(y |&) = Bnr(du)/Bpa (4.3)

where Oy7(-) is the expected density of undetected targets, translated into the
acoustic azimuth space, i.e, [0,27], and By =vp, /27 is the density of the false
alarms over the [0,27] interval, where vy, is the expected number of false alarms
(about from 1 to 3) per scan. Eqn. (4.3) also assumes that the sound pressure
measurement distribution of a target “heard” (detected) for the first time is equal
to that of a false alarm.

When T#@, Ly IT) is the likelihood of measurement y originating from
an existing track T={7} or jointly from two existing tracks T={7,,7,} and is
defined by

Ly(éy |T) Ly(sy |T)
Bra P A(sa)

L(y |T) = (4.4)
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where pSFA is the probability density of the false alarm sound pressure. For sim-
plicity, we assume that the GTSD and SPTSD factors of each track are both
single-termed. The extension to multiple term TSD factor is rather straightfor-
ward and will be explained later. In case #(T)=l, i.e., when there is no merging,
we have

Lo(oy 7)) = 9(éy — 65 5,) (4.5)

where ¢{(& ; 0)%exp(—€2/2)/(\/§77cr) is the probability density of a zero-mean gaus-

sian variable, ¢ is the acoustic azimuth prediction by a local or global GTSD fac-
tor of 7, 5,;‘ is the corresponding innovations variance, and

L(sy 1) = a(sp — 55 5,) (4.6)

with s being the sound pressure prediction by the (local) SPTSD factor of 7 and
&2 being the corresponding innovations variance. Equations (4.5) and (4.6) are
likelihood functions commonly used in many multitracking algorithms.

In order to calculate the likelihood function when #(T)=2, i.e., when meas-
urement merging occurs, we must make some approximations. First we approxi-
mate ¢ in (3.5) by

1= 51 otherwise (4.7) -

‘-9—1 +'§-2

where 5, and s, are the sound pressure predictions of the two tracks. Likewise,
we approximate (3.7) by

SAII if ;1 > 55—2

m __
SM—- 1

(4.8)
sy + 5 sﬁ

otherwise

We denote the right hand side of (4.8) as A™(sy},s)% ; 5,,5). With these approxi-
mations, we have
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Lolo 1Fumal) = a(du = B2 (0005 3) 5 777)
h— A b — AN
[erf(—b-of—éib—) - erf(—u)} (4.9)
UA:,‘) OFA!.J)
where h ',"(51,;2 7274, + + (1= q)dy, erf(z f g(&)d¢ is the error function, and
5l =V{goy + 10 - Doil* + 5, + 3] (4.10)

with ! being the SD of the measurement noise in (3.2), and (_T_: being the SD of
the acoustic azimuth prediction error determined by 7, for each i:. The other
parameters are

‘1—131—( —‘I) 2{
—2"

B =bi- byt P, +(1- q)P,

¢M - h;sn(gl,gz 5 q)) (4'11)

P.P
5A¢=\/_2~ . (4.12)
qu"’(l—Q)Pz

where é—-—,- is the acoustic azimuth prediction by the local or global GTSD factor of
track 7; and P; = [74]® + [0}]?, for each i.

and

For the sound pressure part, we have

L,(sy I{TpTz} = g(sM — hM(51,52 5 51,89) 5 T ( 1:3—2)) (4.13)

where

5(5159) = Vo(51,59))° + (0,12 + (0] (4.14)

7! is the SD of the sound pressure prediction error determined by the SPTSD fac-
tor of track 7; for each ¢, and 0%(s,,s,) is either V5/20; or o, deperding on
the condition in (4.8), with o being the SD of the noise term in (3.8). The
derivations of (4.9) and (4.13) are described in the Appendix A.
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L(8|{7,,75}) is the likelihood (probability) of tracks, 7, and 7, not being
merged, i.e.,

L(6{7,7)) = 1-Prob. { (7,7, }} (4.15)

with

Prob. {{Fl,'fz}} = erf(—w—) - erf(%) (4.16)
VP, +P, VP, + P,
being the probability of the two tracks being merged, where Sc—ﬁ = 81 - ;2

The targe. detection model yields the likelihood (probability) of a target
hypothesized by the track 7 being undetected in the current scan, i.e.,

LOIF) =1- erf( ST;'S—) (4.17)

Thus the evaluation of the newly expanded hypotheses is equivalent to the
calculation of all the likelihood functions defined above. Therefore, it is con-
venient to store all the above likelihoods in a table. We call such a table an

extended (because it includes merged measurements) track-to-measurement cross-
reference table.

4.4 TRACK UPDATE

Parallel to the calculation of each likelihood, we update each track according
to the assumed measurement assignment. When a measurement is assigned to a
single track, both the GTSD and SPTSD factors of the track one updated by the
Kalman filter or the extended Kalman filter.

A track containing a global GTSD factor is called a global track. A global
track is obtained either by fusing two local tracks together or from alert/handover
information sent by other nodes. In updating the global GTSD factors using the
local azimuth measurements, an extended Kalman filter is needed because of the
non-linear measurement model. For each global GTSD factor, the likelihood func-
tion (4.5) can be obtained as,
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Ly(oy (7)) = g(QM ~ g ; 7’.>S) (4.18)

where ‘—’s is the acoustic azimuth prediction by a global GTSD factor of 7, Ff,;“)s is

the corresponding innovations variance and is obtained as

5y, =HYHT + o} (4.19)

In Equation (4.19), X is the covariance matrix of the global GTSD factor, H is the
partial derivatives of the azimuth respective to the global states given by

i [ 06 96 06 0¢
LauN 7(I)'UE ’(9UN ’OUE

M M 1 1
= |- , , — 4.20
DR? ‘e DR? “NoDeR “F T Der N (4.20)
¢ is the speed of sound, D is given by
D =M1 (1 + £cosf) (4.21)
where _
M =V1+ £ + 2Ecos? (4.22)

is the ratio of actual target range R to the acoustic range r with ¢ a V' /¢ being
the Mach number, 32 ¢—1) being the acoustic aspect angle, and 1 being the tar-
get heading. A summary of the geometry and relevant notations for two-
dimensional subsonic acoustic tracking can be found in Appendix B.

With the partial derivatives obtained as above, the updated global GTSD
factor mean and covariance can be calculated using the standard Kalman filter
equations. Namely,

2 =7+ K(¢y — bg) (4.23)
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K =YH"S"! (1.24)
S = HYHT 4 o2 (1.25)

and
Y =(I - KH)Y (4.26)

When a measurement is assigned to two merged tracks, using the approxi-
mate joint measurement equations, eqn. (3.5) with ¢ replaced by ¢ (for the GTSD
factor) and eqn. (4.7) (for the SPTSD factor), the GTSD and SPTSD factors can
be jointly updated. The resulting cross-correlation between the two tracks is then
ignored for simplicity. When no measurement is assigned to a track, the TSD fac-
tors are not updated. When a measurement is assigned to the null track, i.e., a
single measurement is used to initiate a new track, a single-term local GTSD fac-
tor and a SPTSD factor are generated using the appropriate variance matrices.

Updated clusters are then subject to hypothests management operations
including 1) hypothesis pruning in which low-probability hypotheses are cut off, 2)
hypothesis combining in which similar hypotheses are combined, and 3) cluster
splitting in which confirmed or nearly confirmed tracks are split from a cluster.

4.5 MULTIPLE MODEL APPROACH

In general, a single term TSD factor may not be sufficient for a local track.
This is because widely different target dynamics may have to be considered in
tracking. For instance, when tracking a target with varying speeds, one must
allow for large changes in the azimuth rate relative to a sensor. Different process
noises are then needed to model the target at different times. Similar situations
happen in tracking multiple targets with different speeds where it becomes inap-
propriate to model all targets with a process noise of a single intensity.

One way to handle this is by means of so called Multiple Model (MM)
approach. In the MM approach, several models with different dynamics or param-
eters are used. Starting with equal or pre-determined probabilities (weights) for
each model when the track was first initiated the measurements at each sampling
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interval are used to update each model and calculate the association likelihoods.
The new model probabilities can then be obtained by considering both the prior
model probabilities and measurement likelihoods.

1 =
imi (7)) = ZPAmi (DL ooy [7ma (7)) (4.27)

/

where C is the normalization constant, P{m;(7)} and P{m,(7)} are the new and
prior model probabilities, and L is the association likelihood.

With different models for slow and fast target, when tracking the slow con-
stant speed target the slow model will dominate and vice versa. Wlhile tracking a
maneuvering target, the model probability will shift between slow and fast models
depending on the target speed. With this approach, if a sufficient number of tar-
get models are given, one needs not know the actual target speed a priori. The
algorithm will converge to the right model automatically. Some numerical exam-
ples will be given in Section 6 to demonstrate the feasibility of this concept.
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5. INFORMATION FUSION AND DISTRIBUTION

Communication among processing nodes allows each node to use informa-
tion that is otherwise not available locally. This section discusses the algorithms
for information fusion and distribution. Although the general framework of Sec-
tion 2 is applicable, again we have to modify the algorithms for acoustic sensors.
Section 5.1 describes the information fusion algorithms and Section 5.2 discusses
communication strategies. A summary of the results can be found in [14] and
[15].

5.1 FUSION PROCESSING

When hypotheses are received from another node, they are fused with the
hypotheses at the node to form new hypotheses. As in local data processing, the
basic steps include hypothesis formation, evaluation and management. The distri-
buted nature of the processing necessitates operations for checking that only con-
sistent hypotheses are formed and removing redundant information in hypothesis
evaluation. These operations are facilitated by means of the information graph
(2],(7] which is an abstract model of the communication and processing in the
DSN. In the following discussion, we use the terms home and foreign to represent
the information present in the local node and that coming in from an external
node, respectively.

Although we discuss hypothesis formation and evaluation separately, in
actual implementation they are usually performed simultaneously so that no
unnecessary hypothesis expansion is used. For example, it is possible that a
hypothesis pair (Xl,iz) satisfies the necessary condition for fusability but yields
zero probability upon evaluation. In such a case, the hypotheses need not be
fused at all.
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5.1.1 Hypothesis Formation

The goal of hypothesis formation is to generate hypotheses on home and
foreign tracks which come from the same targets. In a distributed system the key
problem is identifying the fusable hypotheses and tracks from the home and
foreign hypotheses and tracks. Two hypotheses are not fusable if they came from
mutually exclusive hypotheses at an earlier time. Similarly, two tracks are not
fusable if they came from disjoint tracks. According to [2],[7], the entire fusion
problem can be defined in terms of the information graph. Both the home and
foreign information states (tracks and hypotheses, etc.) are defined at information
nodes 7, and 7, in the information graph. Then consistency checking for
hypothesis formation starts by finding the minimum set of common predecessors
of 7, and 7, in the information graph. By tracing back the graph to this
minimum set, fusability can be determined.

A home track 7; and a foreign track 7, are fused whenever they are fusable.
The two tracks are fusable if and only if they share the same predecessor track on
each information node in the common predecessor set.

5.1.2 Hypothesis Evaluation

Each fused hypothesis is evaluated using the following equation. Let A be a
fused hypothesis and Z be the cumulative data at the fusion information node,
then

P [2)=ct IT PO\ 20 T 1(7) (5.1)

1€lp TEX

where C is the normalizing constant, (I ,a) is the information redundancy indica-
tor, \|; is the predecessor of X\ on the information node ¢, and I(7)=L(7,7,) with
(71,7) being the pair of tracks uniquely determined by a fused track 7. (If,q)
represents the redundant information at the two information nodes ¢, and #,. Iy
is the set of information nodes which affect the common information and « is an
integer-valued function which indicates how the information should be handled.
For example, if Ip={1,,i,,13}, then ofi,)=1, ofiy)=1 and ofi3)=—1 means that




when the information at 7, and ¢, is fused, the redundant information at i, has

to be removed.

A key step in hypothesis evaluation is the computation of the track-to-track
likelihood L(7,79) for every fusable pair (7,,7,) of home and foreign tracks. For
each of the tracks in the given pair, the last time when the track was updated is
examined. If the updating times are different, the TSD of the track which has not
been recently updated is extrapolated so that the two TSD’s correspond to the
target state at the same time. Then the track-to-track likelihood is calculated
from the GTSD factors of the two tracks.

Whenever the likelihood is positive, the fused track 7=r,U7, is created.
Each fused track 7 is then associated with a fused TSD (target state distribution)
which is created by fusing the TSD’s of the tracks from which it is formed. The
GTSD factor for the fused track is created from the GTSD factors of the tracks
from which it is fused. The SPTSD factor of the fused track is the same as that
of the home track in the track pair to be fused. .

Since the home and foreign tracks may be local or global or even empty, the
computation of the track-to-track likelihoods has to consider all these possibilities.
The different types of track-to-track likelihoods are shown in Figure 5-1. The cal-
culation of the track-to-track likelihood and the fused GTSD factor for each fused
track is described in the following for all possible combinations of home and
foreign GTSD factor. Because of symmetry, some of the combinations can be .
omitted. To simplify the notation, we assume that each GTSD factor only has a
single term. The results can be generalized to cases involving sum-of-gaussians.

CASE 1: Local Home/Local Foreign

This is the case when two local tracks from two sensor nodes are fused to
initiate a global track. When the home track 7, and foreign track 7, are both
local (7\U7p)|;=(J except for i{ =1, and 7 =14, The fused GTSD factor is
created first. This is done by using the ‘“position’ track initiation equation
described in [8, 9]. As before, we assume that both home and foreign tracks have
single-termed GTSD factors. Then, using the estimates of the two local azimuth
values and their first-order derivatives, $2 [¢1,¢2,<i51,g;’>2]7‘, a quadratic equation for
the global state 2 [uy,ug,vy,vg|T, can be derived :




FOREIGN TRACKS

HOME TRACKS
LOCAL | GLOBAL | EMPTY
LOCAL 1 2 5
GLOBAL 2 3 6
EMPTY 4 4 7

Figure 5-1: Possible Track-to-Track Combinations
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where (Vk,fk) is the target speed and hcading estimated by z,, pv(,) is the den-
sity of the a priori distribution of the target velocity vector, and J; is the Jaco-
bian associated with the global-to-local coordinate transformation for each sensor

?.

Then the GTSD factor of the fused track becomes a two-term sum-of-
gaussian distribution with probability weights w, and w, given by

w ¢
ot (5.7)
Wy Co
and
w,+w,=1 (5.8)
The track-to-track likelihood is calculated as
_ 21 _1
L(ry,73) = (8,) '(det(3y) * (det(X,)) %(c;+¢,) (5.9)

where ,‘:m and 2¢, are the variance matrices of the local (azimuth and its deriva-

tive) estimates, and Bu is the density of undetected targets per unit area.

In many cases, we have either w;<<w, or w,<<w,, indicating that only
one soiution to the algebraic equation is valid and the other corresponds to an

unlikely estimate. Thus, except for rare occasions, only a single-term global
GTSD f{actor is needed.

CASE 2: Global Home/Local Foreign

Vhen the foreign track 7, is local, every predecessor track (r;U7p)|; is
empty for every i€lp except for t; and i,. If the foreign track has a global
GTSD, the calculation of the likelihood and the fused GTSD can be done as in
CASE 3.
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Suppose the foreign track has a local GTSD factor. Then the GTSD factor
of the fused track 7lU7, has the mean 7 and variance matrix X, which are calcu-
lated by the extended Kalman filter equations:

P=i,+ K(b, ~ b)) (5.10)

~

where Z, is the mean of the GTSD of the home track 7|, ¢, is the vector of the
means of the acoustic azimuth and its derivative in the GTSD factor of the

foreign track 7,, P, is the azimuth and its derivative of the target as predicted by

ilc
K in (5.10) is the filter gain defined by
K=x,HTS (5.11)
where i
S=HT,HT +R (5.12)

2., is the variance matrix of the GTSD factor of the home track 7;, R is the vari-
ance submatrix of the local GTSD factor of the foreign track 75, and H is the
derivative of the transformation function A which transforms the global target
state into the local coordinates used for the GTSD component of the foreign track
T, and is given by

08 96 9 90 |

au!v ’ 8UE ’ 8UN ’ f')vE
O d¢ ol d¢

8uN ’ auE ’ 8vN ’ aUE

(5.13)

where the first row of H has been obtained in (4.20) and the second row are
obtained as,




();' 1 1

' © o _ VC (D Esinacosw + Nsint) (5.14)

(uy  D3R?

4)./

90 _ MC (D Esinosingd — N cost) (5.15)

«’uE D3R2

% L (_D sinacoso — Msind) (5.16)
= — D §sinacosw — 0.

HUN DsR :

(j(b 1 ( . [

‘ = (— D &sinosing — M cost) (5.17)

Jvg D3R

In the above, N = M — D, 0 is the current target azimuth, o 2 f_1pis the target
aspect angle, and the remaining notations have been defined in Section 4 and
Appendix B.

The variance X of the fused track is then given by

S =(I - KH)%, (5.18)

The track-to-track likelihood is calculated as

_ 1

L(ryra) = 5, (2m) det(5) exp(- ko) [13() | (5.29)

where Jo(-) is the Jacobian associated with the global-to-local coordinate transfor-
mation for the foreign track and is obtained as,

8,6,V 1)
ou,v)

M2

= —————sinx (5.20)

CASE 3: Global Home/Global Foreign

Suppose both the home and foreign tracks 7; and 7, are global. The infor-
mation nodes in the set I belong to two classes: those where the common prede-
cessor of 7; and 7, have a global GTSD factor and those where the common




predecessor of 7} and 7, have a local GTSD factor. Let
I§ = liely |[(rUr) |; has a global GTSD factor (5.21)

Let %, and Y, be the mean and the variance of the global GTSD factor of the
|; of the fused track (7} U 7,) at the node i€If. Then
the part of the track-to-track likelihood related to IS is given by

predecessor track (7, U 7,)

1
det(X) 2 1 . s
Lg () = (——————) exp(—— Do, li—2]2.) (5.22)
[ det(Z;)™ 2 iel§ b
1’€IR

where 2 is the global GTSD factor of the fused track 7,\U7, and given by

S Y a(i)E s (5.23)

ielg

z

and X is the corresponding variance given by

r=(

iel§

o)z (5.24)

Note that equations (5.23) and (5.24) have the usual sum and difference terms to
ensure that information is not used redundantly.

Let IE=Ip\If, i.e., the set of common predecessor nodes where the tracks
have local GTSD factors. For each 1 in I, define

pi(rme) = pM3,9) 5V (V1) 1I(2)] (5.25)

where (@,(}5) is the pair of the estimates of the acoustic azimuth and its derivative
calculated from %, (V,1) is the target speed/heading estimated by Z, pX(-,-) is the
density of the GTSD factor of the predecessor track at i (marginal to (4,9)),
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ﬁv(~,-) is the density of the a priori distribution of the target speed and the head-
ing, and J(-) is the appropriate Jacobian (see Appendix B).

Define

Ly(7,79) = _IEIILP,-(TI,TZ)“'(i) (5.26)
iR

Then the track-to-track likelihood is calculated as

L(Tl’7—2) = B.u-l LL (71:72) LG (71’72) (5'27)

where 3, is the density of undetected targets. When the GTSD factor of the

u
fused track is multiple-termed, (5.27) is calculated for each term and the weighted

sum becomes L (7,,7,) with the new weights for the fused track. The SPTSD
component of the fused track is identical to that of the home track.

CASE 4: Global (or Local) Home/Empty Foreign

When the foreign track 7, is empty, any predecessor track (7,U7s,) |i is
empty except for 7;. The track-to-track association likelihood is one and the TSD
of the home track becomes the TSD of the fused track.

CASE 5: Empty Home/Local Foreign

This association with an empty home track is always possible. However,
since the foreign track has only azimuth information it cannot benefit the local
node.

CASE 6: Empty Home/Global Foreign

The foreign track is retained by the node. This is the case when the node is
being alerted by another node for an incoming target.

CASE 7: Empty Home/Empty Foreign
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Theoretically this fusion involves updating the distribution of undetected
targets and the expected number of undetected targets by

Inp () (Bip (=)'t (5.28)

= |l
l‘&[g

where Jpp(-) is the density of the undetected target density based on the fused
information and 3}p is the same density based on the information node i in the
set Ip. Due to the complexity in representing 3yp and ﬁ]\'m and the calculation
in the above equation, however, it may not be worthwhile to retain and update
these densities at each information node. We thus have used a constant 3, which
is the density of undetected targets per unit area. This approximation
corresponds to assuming a constant target flow into any area under consideration.

5.1.3 Hypothesis Management

The hypothesis management procedures used in the information fusion pro-
cess are almost identical to those used in the local data processing, and include
hypothesis pruning, hypothesis combining and clustering.

5.2 INFORMATION DISTRIBUTION

One advantage of having a DSN is that communication requirements are
less stringent since the nodes only communicate processed results and not the raw
sensor data. The communication requirements can be reduced even further if the
nodes communicate as needed and not according to a fixed schedule. Some broad-
cast communication policies were described in [10]. Although the basic principles
remain the same, the nature of our algorithms also requires the development of
new strategies. In the following we discuss some communication strategies imple-
mented in the communication module.

The information contained in each node is in the form of hypotheses. Each
hypothesis is assigned a probability and contains a set of tracks. A track can
either be local or global. A local track is based only on the measurements of one
node and is characterized by the estimates and covariances of the azimuth and
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azimuth rate. A global track is formed after nodes communicate and is character-
ized by the estimates and covariances of the position and velocity.

The information distributed by each node consists of the hypotheses and the
history of communication. The history of communication, as represented by the
predecessor nodes of the information graph, is distributed so that each node can
reconstruct the partial information graph. This will then be used to determine
the fusable hypotheses as well as the redundant information which needs to be
removed when hypothesis evaluation and track updating take place.

When a node finishes its local processing, it examines its set of hypotheses to
determine whether any communication should take place. Simulation results have
shown that frequent communication, if not carefully controlled, may deteriorate
the performance since poor information may be transmitted and used. Thus the
quality of information is more important than the amount of information.

5.2.1 Communication Criteria

In the current simulation of the DSN, the following criteria are used:

1. Hypothesis Informativeness; A node should only send hypotheses which
are informative. If all the hypotheses are judged to be equally probable,
they will not bring much information to the receiver. One measure of
informativeness is the entropy of the hypothesis set. Suppose
{Pi,z'=1,...,N} is the set of probabilities for the N hypotheses, the
hypothesis set will be communicated if the entropy is below a certain
threshold, i.e.,

N
- X Pilog Py <- KlogLN (5.29)
=1

where K is a positive constant. Note that if only one hypothesis has a
very high probability, the entropy will be small and communication
takes place.

2. Track Informativeness: For each hypothesis which passes the above test,
the tracks are tested for their informativeness. The estimated error
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covariance (azimuth and azimuth rate) is examined for each local track
whose age exceeds a given threshold. The determinant has to be below a
given value before communication takes place. The reason for this cri-
terion is that the local track quality has a significant impact on the qual-
ity of the global tracks. I'rom past simulations, we discovered that the
accuracy of the initial global track obtained by fusing two local tracks is
very sensitive to the accuracy of the azimuth and azimuth rate of the
local tracks. A poor global track will make future tracking for each node
very difficult.

. Geographical Location: Communication takes place only if the receiver

can use the information. The position estimates of the global tracks are
generated. If the tracks are predicted to lie within the range of another
sensor, then communication takes place.

. Time since last communication: If a hypothesis set has been broadcast

recently, it does not have to be commiunicated again since it will not
bring much new information to the receiver. This rule is modified as tar-
gets move out of the sensor’s coverage or into the range of another sen-
sor. If a target is about to move out of a sensor’s coverage, the node
may broadcast to hand over the track to other nodes. Similarly, a node
may choose to alert another node if the target is about to move into its
coverage.

These strategies have been implemented in the current simulation system.
The adaptive nature of the communication means that the information graph can-
not be specified a priori but has to be generated by each node from the informa-
tion received.

5.2.2 Communication Pattern and Information Graph

For the overall system, the information graph represents the communication
that takes place among the nodes and is thus a useful tool in analyzing the com-
munication pattern. Furthermore, when two nodes communicate, the fusion node
has to reconstruct the relevant part of the information graph in order to form and
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evaluate the fused hypotheses. The fusion process may be simple or complex
depending on the information graph. If the nodes have limited memory, then the
process may only be sub-optimal for a complex information graph. In this sec-
tion, we discuss how communication patterns (and thus strategies) can be
cvaluated by examining the information graphs.

Certain chommunication patterns can be analyzed by simply examining the
flow of information in the information graph. For instance, consider two alterna-
tive communication patterns for a two-node systein. In the first pattern node 1
transmits to node 2 periodically at the end of every N sampling intervals. In the
second pattern, node 1 and node 2 transmit alternately to one another wiih ihe
same duration as the first case (see Figure 5-2 for the information graphs). In
both patterns, the communication resources utilized are approximately the same
and at the end, node 2 eventually has the same information. However, in pattern
one, node 1 never receives information from node 2, which will obviously lead to a
poorer performance than that in pattern 2. Therefore, pattern 2 is a better com-
munication pattern unless node 1 does not need node 2’s help, e.g., the targets are
flying from node 1 to node 2.

A good communication pattern can also simplify the fusion process and
improve its efficiency and optimality. For instance, consider a three-node system
with cyclic communication. The normal three-node cyclic communication pattern
leads to the first information graph in Figure 5-3. Suppose that due to limited
communication resources, the three nodes do not transmit at the same time.
Instead at any given time, only one node can transmit and there is at least one
detection/observation time between two communications. Under these cir-
cumstances, one will find that there are essentially only two distinct communica-
tion patterns, namely, the semi-cyclic-1 and semi-cyclic-2 shown in Figure 5-3.
Although both cases require the same communication resources, the fusion equa-
tions for the two cases derived from tracing back the information graph are quite
different. In case 1, we need only trace a few steps to find the information graph
and the fusion equations are optimal if each node has a memory of more than
four sampling intervals. However, in case two, identifying the common informa-
tion requires tracing back the information graph to its root. This implies that
much more computation and memory are needed to obtain optimal fusion results.
One may, of course, impose a limit on the memory to cut down on the amount of
tracing, and use the suboptimal fusion equations.
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From the above examples, we recognize some general principles on the design
of cornmunication patterns. In general, the communication pattern should follow
the natural information flow in the system as much as possible. To maximize the
information flow, information dissemination should be a high priority task of an
information sink. !"or instance, as shown in the semi-cyclic-1 case, whenever a
node receives information in the previous scan, it becomes the temporary informa-
tion sink and should distribute the information to the other nodes as soon as pos-
sible. Thus it is important to choose communication strategies that translate into
“‘efficient’’ information graphs.
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6. SIMULATION RESULTS

This section presents the simulation results. Section 6.1 describes the simu-
lation environment and Section 6.2 discusses some special features of the algo-
rithms simulated. Sections 6.3 and 6.4 present the simulation results and perfor-

mance evaluations.

6.1 SIMULATION ENVIRONMENT

The simulation was implemented on the Symbolic LISP machine. The
software was written in Zetalisp, a dialect of LISP. Figure 6-1 shows the architec-
ture of the simulation environment. The main modules are the data generator,
node simulators, simulation controller, communication simulator, and user inter-
face.

6.1.1 Data Generator

We installed the synthetic data generator provided to us by Lincoln Lab. on
our Pyramid computer. Data files were transferred to the Symbolics Lisp Machine
for display and processing. In order to provide more flexibility in experimenta-
tion, a LISP version of the synthetic data generator was implemented on the Lisp
Machine. This data generator uses the same models used by Lincoln Lab. The
target trajectories can be specified arbitrarily to handle maneuvers if necessary.
Each sensor supplies the target azimuths and sound pressures generated using
relatively realistic sound propagation models. False alarms and merging measure-
ments are also considered. The measurement vector for each detection thus con-
sists of azimuth, sound pressure and a signal-to-noise ratio. The exact models
used were described in Section 3.

6.1.2 User Interface

The user interface module includes different ways of displaying the scenario,
the data, and processing results graphically. Scenario displays include sensor loca-
tions, coverages and true target trajectories (Figure 6-2). The sensors and targets
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are mouse-sensitive items. By moving the mouse to the item, it can be described
in more detail. 'or the measurements of each node, the azimuth and sound pres-
sures can be displayed in separate windows. The processing results can also be
displayed in the same windows. Figure 6-3 shows the measured azimuths and
sound pressures, the estimated azimuths, azimuth rates and sound pressures of the
track for three diflferent sensors as compared with the true values. With a color
monitor, the values for different nodes are displayed in different colors. A global
track dispay facility is also provided. As shown in Figure 6-4, with this facility
we can display the estimated trajectory of the track along with the three-sigma
uncertainty covariance ellipses. The true trajectory can also be displayed for com-
parison. The user can manipulate the windows in various ways, including crea-
tion, deletion, freezing, moving, zoom-in/zoom-out, re-scaling, refreshing, and re-
shaping. A mouse-sensitive menu has been implemented for selecting the various
options.

The key feature of our algorithm is the multiple-hypothesis approach where
each hypothesis corresponds to a different explanation of the data. We have
implemented mouse-sensitive hypothesis trees and track trees to facilitate the
display of the hypotheses. By mousing on a hypothesis (a node on the hypothesis
tree), its content and history can be displayed graphically or described in text.
Figure 6-5 shows an example where both track trees and hypothesis trees are
displayed. The contents of a hypothesis (with one target) are displayed in detail
in the three right-hand windows. A textual description of track 166-2 is given in
the left-bottom window.

The information flow graph display which illustrates the communication
pattern between multiple nodes was also implemented. The information flow
graph window was introduced to display the flow of information among the mul-
tiple nodes. Since the communication pattern is unknown a priori, this graph
allows the pattern to be examined much easier and therefore speeds up the
analysis and debugging process. As shown in Figure 6-6, in a three node system,
node 1 and node 2 communicate at scan 300 and 314 while node 2 and node 3
communicate at scan 304 and 310. A zoom-out window that gives a better view
of the overall commmunication history is shown in the bottom of the figure.
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6.1.3 Simulation Controller

An agenda queue based simulation controller was implemented. A simple
simulation control mechanism was designed to be used in the simulation. This
mechanism was designed to minimize the overhead while providing enough flexi-
bility to satisfy the needs of the simulation.

At any point of the simulation. we maintain an agenda list. Each agenda
contains the following:

1. time of execution
2. priority (coded by a positive integer)

3. action to be faken (coded by a simple function)

At the completion of each action, an agenda control function looks up the agenda
list and determines which agenda should be executed next according to the time
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and the priority attached to each agenda. Then the top agenda item is executed
by transferring the control and executing the action attached to the agenda. Fig-
ure 6-7 displays the control flow.

With each execution, an appropriate module performs the necessary simula-
tion action. For example, when a sensor is activated, a set of acoustic measure-
ments is generated and tfed into the local information processor. The results are
then examined by a communication control function which decides if the particu-
lar node should initiate information distribution to other nodes or not. Any fune-
tion invoked by the agenda execution can access the agenda queue. In the above
example, if the communication controller decidés to initiate information distribu-
tion, it creates an agenda in which the nodes receiving the information fuse the
incoming information with their own information states.

Some operations in the simulation have fairly high frequencies. For exam-
ple, an acoustic sensor sends measurements each two seconds. To handle such
repeated operations efliciently, a special kind of agenda, called scheduled agenda,
was constructed. This kind of agenda item stays in the agenda queue indefinitely
until the termination conditions are satisfied.

6.1.4 Communication Controller

A data-driven communication controller was implemented. The basic idea is
to select the communication strategy according to the information content.
Several rules have been used to make the communication decision. For example,
in order to have a better initial global track, local tracks will be communicated
between nodes only when they pass some quality checking thresholds (e.g., deter-
minant of the estimated state error covariancej. Another example is to check the
actual location of the global tracks; only when the global tracks are inside the
fields-of-view of both nodes will they be exchanged (see Section 5.2 for more
detailed discussion).

There are four objectives of communication: initiation, alerting, information
refinement, and hand-over.
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e Initiation: Since each node only has azimuth measurements, two nodes are
needed to locate a target. Two nodes communicate the local tracks and
initiate the global tracks by solving a quadratic equation based on the
azimuth and azimuth rate estimates of the local tracks. Once the global
tracks are set up, actual target dynamics can be used to extrapolate the
target trajectories and future measurements can be used to further refine
the estimates.

e Alerting: One node sends to the neighboring nodes the global tracks
which are moving into their fields-of-view. With the alerting information,
the receiving nodes are able to pick up the incoming target estimates fas-

ter and more accurately.

e Information Refinement: Two nodes exchange and refine their estimates of
the global tracks which are inside their common fields-of-view. By look-
ing for confirming information, the false hypotheses and tracks can also
be identified and deleted easier. .

e Hand Over: When a track moves out completely from one node’s fieid-of-
view, that track is said to be handed over to the next node and will no
longer be kept by the first node. In this manner, each local node only
needs to concentrate on its territory and coordinate with other nodes to
cover the whole scenario.

Since the communication strategy is data-driven, it depends on the scenario and is
unknown a priori. This may perform better than a fixed strategy which may not
be adaptive.

6.2 ALGORITHM FEATURES

The distributed tracking algorithms used are those described in Sections 2,
4, and 5. The following, however, are special features that deserve some discus-

sion.
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6.2.1 Use of Sound Pressure Track

The sound pressure estimate was included in the local track description for

the following reasons:

1. To predict detection probability - Since the detection probability
depends mainly on the sound pressure, a sound pressure estimate will
help in predicting detection probability and providing better data associ-
ation likelihoods.

2. To identify false measurements - Based on the continuity argument, if a
target was detected (heard) at a particular time, it should be detected
during a period of time around that moment. A suddenly detected
measurement with high sound pressure is likely to be a false alarm.

3. To better understand the track status - A track with gradually increas-
ing sound pressure estimates indicates that the target is approaching.
On the other hand, a track with decreasing sound pressure estimates
means the target is leaving. Eventually, when a target moves out of the
sensor detection range, we can predict the situation and hand the track
over to the neighboring nodes with the help of the sound pressure esti-
mates.

4. To help in evaluating merged measurement hypotheses - When two
measurements are merged, the corresponding sound pressures are also
superposed. A sudden jump of the sound pressure from two lower ones
merging into one or a sharp decrease of the sound pressure from a higher
one splitting into two lower ones indicate the merging or splitting of
measurements. Together with the azimuth information, a good sound
pressure estimate may significantly improve the prediction and evalua-
tion of the merged measurement hypotheses.
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6.2.2 Global Track Initiation

Due to the problem characteristic, it is found that some parameters in the
tracking algorithm, especially the process noise, have significant impact on the
tracking performance. For example, in the scenario given in Figure 6-8, a two-
sensor DSN is tracking a single target with constant speed of 0.2 Mach. The local
azimuth rate estimates using a single sensor with a process noise variance (Q) of
1.0e-8 are shown in Figure 6-9. The results with the same data but with a
different Q of 1.0e-6 are given in Figure 6-10. Clearly, the process noise of the
first case is a closer match to the real model and will result in better performance.

Based on the simulation experience, the accuracies of local azimuth and
azimuth rate estimates have a significant impact on global track initiation. For
example, one may initiate a global track using either the local tracks obtained in
Figures 6-9 or 6-10. In the first case when the two local tracks from Figure 6-9
are fused, the resulting global state estimate is fairly accurate and the true state is
well within the 3-sigma covariance ellipse (see Figure 6-11). However, in the
second case, when the two local tracks from Figure 6-10 are fused, the results are
much poorer. As one can see, the covariance ellipse is much bigger and the
estimated position is far away from the true position (Figure 6-12).

6.2.3 Multiple Model Approach

As mentioned in Section 4, a multiple model approach is useful in tracking
maneuvering targets or multiple targets with different speeds. For example, the
tracking results and the corresponding model probability history for a target with
speed gradually increasing from 0.2 Mach to 0.8 Mach is shown in Figures 6-13
and 6-14. In this example, the process noise intensities corresponding to models 1
to 3 are 1.0e-8, 1.0e-7, and 1.0e-6 respectively. As one can see, while the target is
increasing its speed, the dominant model shifts from model 1 to model 2, and
finally to model 3.

Similar concepts have been applied to sound pressure tracks. While the tar-
get is far away from the scnsor, the sound pressure variations are small and small
process noise is sufficient for the filtering. When the target moves closer to a sen-
sor, a larger process noise is then needed to model the large variations of the
sound pressure.
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6.2.4 Merged Measurement Models

The merged measurement problem causes difficultics in both estimating the
target state and the number of targets. Since targets gradually resolve while they
move closer to the sensor, it is critical to communicate the right information at
the right time especially for the first few detecting sensors. For simplicity, only
two-way merging was assumed initially in the algorithm. A heuristic rule was
added later to handie the possibility of multiple targets merging.

6.2.5 Selection of Communication Strategies

Simulation results showed that frequent communication, if not suitably con-
trolled, will only deteriorate the performance since poor information may be used.
Thus, the quality of information is more important than the amount of informa-
tion. A smart communication controller is, therefore, very important. Important
communication strategies such as track and hypothesis informativeness, informa-
tion innovation were used in the communication controller (described in Section
5.2).

6.3 SIMULATION RESULTS

Simulations with synthetic data were performed for different scenarios rang-
ing from one to three targets using a DSN with three to seven sensors. Simula-
tions with pre-recorded real data (tracking a single target using two sensors) from
Lincoln Lab. was also conducted.

6.3.1 Simulations with Synthetic Data

There are a large number of possible target scenarios. We identified 20 rela-

tively specific scenarios to focus on. They were selected based upon inputs pro-
vided by M.I.T. Lincoln Laboratory.

In the synthetic data generator, the target detection probability depends on
the sound pressure measurement, which in turn depends on the target-to-sensor
distance and the receiver gain. The false alarm density is assumed to be uniform
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in azimuth space and exponentially distributed in sound pressure space. The
number of false alarms is assumed to be Poisson distributed. The parameters

used in the synthetic data generator are summarized in Table 6-1.

6.3.1.1 Single Target Scenarios

Figure 6-15 lists the single target scenarios. Both maneuvering and non-
maneuvering situations were considered. Maneuvers include changes of speed and
direction. For non-maneuvering targets, we consider both direct and angled
approach to the boundary of the distributed sensor network. There is a total of
ten scenarios considered in this case.

Table 6-1: Parameters Used in Synthetic Data Generator

Mea | At 5 G So Sn

0.5 0.6 0.18Rad | 1.0 | 106 dB | 20 dB

Ap4: mean number of false alarms

Ayr: mean number of new targets

0¢: sensor resolution

G: sensor gain

So: sound pressure at 1 meter fiom target

Sy: sound pressure of ambient noise
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The first set of scenarios consists of non-mancuvering targets with direct
approach to the DSN and three different target speeds. The tracking results are
shown in Figures 6-16 to 6-18, where in each figure the trajectories of local
azimuth, azimuth rate, and sound pressure tracks are given. The overall scenario
and the resulting global track for node 3 (nodes are numbered 1, 2, 3 from left to
right) are also shown in each figure. As one can see the algorithm performs well
in all three cases. Table 6-2 summarizes the average performance of the last ten
scans for each node of each case. In the table five different performance measures
are given, namely, the number of tracks, the number of missing targets, the
number of false alarms, the positional error, and the velocity error. They were
calculated by averaging the results from the la_sf ten scans of each node. The best
(highest probability) hypothesis was chosen at each scan. The table indicates that
node 3 always has the best performance since it has the benefit of the information
from other nodes.

The second set of scenarios deals with similar target configurations but with
an angled (45 degree) approach to the DSN. The results are shown in Figures 6-
19 to 6-21. In this scenario, the target gets very near to sensor 3 and generates a
bigh sound pressure at the node. Again, in this set of scenarios, the algorithm
performs very well. A summary of the performance evaluations is given in Table
6-3.

The third set of scenarios deals with a single maneuvering target. Two
types of maneuvers were simulated, namely, speed and direction. In the first case,
a target was simulated with a speed changing from 0.2 Mach to 0.6 Mach. Then
in the next three cases, a target with a dog-leg maneuver was simulated with a
direction change of 15, 30, and 45 degrees. The target speed was maintained at
0.4 Mach. The results are presented in Figures 6-22 to 6-25.

Using the Multiple Model approach described in the previous section, the
algorithm tracks the maneuvering target with speed change reasonably well. In
the scenarios with dog-leg maneuvers, the cooperation between the sensors is espe-
cially important. Because each sensor has a different aspect angle on a target tra-
jectory segment, exchanging information between sensors allows early detection of
maneuvers. The performance evaluation summary for the above four cases is
given in Table 6-4.
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Figure 6-16: Tracking Results with Speed = 0.2 Mach (Scenario 1-1)
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Table 6-2: Performance Results - One-Target (I)

Scenario 1-1 Node 1 | Node 2 | Node 3
# of Tracks 1.0 1.0 1.0
# of Missing Targets 0.0 0.0 0.0
# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 331.84 | 155.97 | 135.65
Vel. Error(m/s) 8.73 3.36 1.72
Scenario 1-2 Node 1 i\Iode 2 | Node 3
# of Tracks 1.0 1.0 1.0
# of Missing Targets 0.0 0.0 0.0
# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 583.56 259.58 162.25
Vel. Error(m/s) 8.96 7.40 4.41
Scenario 1-3 Node 1 | Node 2 | Node 3
# of Tracks 1.0 1.0 1.0
# of Missing Targets 0.0 0.0 0.0
# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 344.71 | 12143 | 44.05
Vel. Error(m/s) 23.52 4.07 1.84
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Table 6-3: Performance Results - One Target (II)

Scenario 1-4 Node 1 | Node2 | Node 3
# of Tracks 1.0 1.0 1.0
# of Missing Targets 0.0 0.0 0.0
# of False Tracks 0.0 . 0.0 0.0
Pos. Error(m) 343.21 | 203.01 74.40
Vel. Error(m/s) 6.23 3.62 2.47
Scenario 1-5 Node 1 | .Node 2 | Node 3
#t of Tracks 1.0 1.1 1.0
# of Missing Targets 0.0 0.0 0.0
# of False Tracks 0.0 0.1 0.0
Pos. Error(m) 505.57 99.50 57.95
Vel. Error(m/s) 6.07 2.560 2.49
Scenario 1-6 Node 1 | Node2 | Node 3
# of Tracks 1.0 1.0 1.0
#t of Missing Targets 0.0 0.0 0.0
#t of False Tracks 0.0 0.0 0.0
Pos. Error(m) 386.93 | 374.60 37.41
Vel. Error(m/s) 18.91 11.94 1.54
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Table 6-4: Performance Results - One Target (III)

Scenario 1-7 Node 1 Node 2 Node 3

# of Tracks 1.0 1.0 1.0

# of Missing Targets 0.0 0.0 0.0

# of False Tracks 0.0 0.0 0.0
Pos. Error{m) 265.79 522.18 452.13
Vel. Error(m/s) 30.76 37.63 31.33

Scenario 1-8 Node 1 Node 2 Node 3

# of Tracks 1.0 1.0 1.0

# of Missing Targets 0.0 0.0 0.0

#t of False Tracks 0.0 0.0 0.0
Pos. Error(m) 850.71 141.91 23.77
Vel. Error(m/s) 23.80 3.59 1.46

Scenario 1-9 Node 1 Node 2 Node 3

# of Tracks 1.0 1.0 1.0

# of Missing Targets 0.0 0.0 0.0

# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 718.21 677.70 206.40
Vel. Error(m/s) 18.39 20.29 6.72

Scenario 1-10 Node 1 Node 2 Node 3

# of Tracks 1.0 1.0 1.0

# of Missing Targets 0.0 0.9 0.0

# of False Tracks 0.0 0.9 0.0
Pos. Error(m) 185.86 1637.97 273.69
Vel. Error(m/s) 6.48 65.59 10.63
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6.3.1.2 Two Target Scenarios

Figure 6-26 shows a set of two-target scenarios. Three different target
configurations were considered: in-line formation, parallel formation, and crossing
formation. In each case, both targets have the same speed.

The first two cases deal with the in-line formation, where one target follows
the other. The distances between two targets are 1.0 km and 1.5 km and each
target has a speed of 0.4 Mach. As seen in Figures 6-27 and 6-28, the two targets
were tracked quite well in both cases. Table 6-5 summaries the performance
results for the in-line formation.

In the next few scenarios the parallel formation in which targets follow
parallel tracks is considered. In the first two cases, the targets move at a speed of
0.4 Mach and are separated by a distance of 0.5 km and 1.0 km respectively. Due
to the poor sensor resolution, when the two targets are separated by less than 0.5
km, only one merged measurement can be detected by the sensors. Therefore, as
seen in Figure 6-29, only one track is created and its position estimate falls
between the two true target positions. When the two targets are separated by 1.0
km, although resolved measurements can be observed during certain periods for
each sensor, they are not strong enough to maintain the two-target hypothesis.
As shown in Figure 6-30, the one-target hypothesis still dominates throughout the
simulation.

In the last parallel formation scenario, the target speed decreases to 0.2
Mach while the target separation is maintained at 1.0 km. As shown in Figure 6-
31, due to more frequent detections of resolved measurements, the two target-
hypothesis finally dominates the other hypotheses. The performance results of the
above three cases are summarized in Table 6-6.

For crossing targets, two scenarios were considered. In the first case, the
targets travel at a speed of 0.4 Mach and in the second case 0.2 Mach. These two
cases are interesting not only because of the measurement merging phenomena,
but also the configuration which makes association and continual tracking quite
difficult. As seen in Figure 6-32, when targets move at a speed of 0.4 Mach, the
performance is poor. Although both targets were tracked by node 3 at the end,
only one of them was identified by node 3 during at the first half of the simula-
tion. This is due to the severe merging of target measurements that are very
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Table 6-5: Performance Results - Two-Target (I)
|
i
|
Scenario 2-1 Node 1 | Node 2 | Node 3
l # of Tracks 2.0 2.0 2.0
# of Missing Targets 0.2 0.0 0.0
' # of False Tracks 0.2 0.0 0.0
Pos. Error(m) 1102.47 | 738.17 | 236.53
' ' Vel. Error(m/s) 53.35 23.47 6.53
l .
Scenario 2-2 Node 1 | Node 2 | Node 3
I - # of Tracks 20 | 20 2.0
# of Missing Targets 00 | 00 0.0
. # of False Tracks 0.0 0.0 0.0
Pos. Error(m) 504.11 | 229.62 64.68
' Vel. Error(m/s) 10.62 3.88 2.32
|
|
i
|
|
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Table 6-6: Performance Results - Two-Targets (II)

Scenario 2-3 Node1l | Node 2 | Node 3

# of Tracks 1.0 1.0 1.0

# of Missing Targets 1.0 1.0 1.0
# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 568.71 527.30 | 306.31
Vel. Error(m/s) 21.54 10.06 3.98
Scenario 2-4 Node 1 | Node 2 | Node 3

# of Tracks 1.6 1.3 1.0

# of Missing Targets 1.0 1.6 1.0

# of False Tracks 0.6 0.9 0.0
Pos. Error(m) 1318.66 | 1700.45 | 1235.93
Vel. Error(m/s) 43.38 56.05 28.55
Scenario 2-5 Node1l | Node 2 | Node 2

# of Tracks 2.2 2.0 2.0

# of Missing Targets 0.5 0.1 0.2

# of False Tracks 0.7 0.1 0.2
Pos. Error(m) 313.35 | 467.51 146.06
Vel. Error(m/s) 7.02 13.07 6.25
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close. In Figure 6-33, where targets move at only half of the speed of the previous
case, node 3 tracks both targets accurately throughout most of the simulation.
Again, in this case, by slowing down the targets, the observability of the resolved
measurements was increased and the tracking performance was better. Table 6-7
gives the performance results for the two cases.

6.3.1.3 Three Target Scenario

Two three target scenarios with parallel and in-line formations are given in
Figure 6-34. Figure 6-35 shows the scenario for parallel formation and the track-
ing results from the left-top three sensors. This case is particularly difficult
because during certain periods, the three targets are almost on the same azimuth
relative to a sensor and generate only one merged measurement.

Finally, Figure 6-36 shows the three-target in-line formation scenario and
the tracking results. This case is similar to the two-target in-line formation case,
and the algorithm also performs very well here. The performance results of the
two cases are summarized in Table 6-8.

6.3.2 Simulation with Real Data

The real data provided by Lincoln Lab. were generated from two sensors
and one constant-speed target. The target speed is about 0.2 Mach and it passes
by very near to one of the sensors (see Figure 6-37). The original raw data were
extremely noisy and the false measurements were not quite independent from scan
to scan. Figures 6-38 and 6-39 show the raw measurements (after signal process-
ing) from sensors 1 and 2 respectively. There are several persistent measurement
strings; of these, only one from each sensor comes from the target and all the oth-
ers are false measurements.

To avoid extensive processing in the dense non-independent false measure-
ment environment, two pre-processing strategies were employed. One was based
on using a threshold and the other an adaptive threshold. In the first case, all the
measurements were passed through a sound pressure threshold filter, and only
those above the threshold (300 in this case) were retained. The filtered measure-
ments were then sent to the tracking algorithm. In the second case, at each scan
the energy (sound pressure) of all measurements were sorted and only the top 95%
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Table 6-7: Performance Results - Two-Target (IIT)

Scenario 2-6 Node 1 | Node 2 | Node 3

# of Tracks 1.1 2.0 2.0

# of Missing Targets 1.0 1.0 0.0

# of False Tracks 0.1 1.0 0.0
Pos. Error(m) 411.62 | 336.70 | 162.88
Vel. Error(m/s) 20.56 12.62 7.74
Scenario 2-7 Node 1 | Node 2 | Node 3

4t of Tracks 2.0 2.0 2.0

# of Missing Targets 0.0 0.0 0.0

# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 149.91 | 282.67 | 211.02
Vel. Error(m/s) 3.57 6.68 3.83
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Table 6-8: Performance Results - Three-Target Case

Scenario 3-1 Node 1 | Node 2 | Node 3

# of Tracks 2.5 3.0 3.0

# of Missing Targets 0.5 0.0 0.3

# of False Tracks 0.0 0.0 0.3

Pos. Error(m) 643.92 | 477.97 | 307.25 |

Vel. Error(m/s) 16.41 17.89 14.47
Scenario 3-2 Node 1 | Node 2 | Node 3

# of Tracks 3.0 3.0 3.0

# of Missing Targets 0.0 0.0 0.0

# of False Tracks 0.0 0.0 0.0
Pos. Error(m) 37.39 38.30 61.86
Vel. Error(m/s) 1.48 1.72 2.18
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of the measurements were kept. The filtered measurements for both cases are
given in Figures 6-40 to 6-43.

The tracking results using both types of pre-processing are given in Figures
6-44 and 6-45. In the second case, since most of the false mecasurements were
eliminated, it was relatively easy to track the target and almost no false tracks
were generated. On the other hand, there were still a few false measurement
strings left in the first case. Each sensor established several local azimuth tracks
based on those measurements. Many global tracks were initiated when the local
tracks of two sensors were first communicated. However, except for the true glo-
bal track, most of the false global tracks vanished after a few scans. The false
global tracks were eliminated either due to the lack of support from local meas-
urements or conflict with the other sensor during later communications. Finally,
at the end of the simulation, only the correct global track survived for each node.
Table 6-9 gives the performance results of the two cases.

6.4 MONTE CARLO RESULTS

In the previous section, we presented simulation results of single runs for 20
scenarios. Monte Carlo simulations were conducted for several scenarios to obtain
a more reliable evaluation of the tracking performance. For each scenario,
selected parameters were varied to study the sensitivity of the performance to the
parameters. The performance curves were ther nbtained.

Three different scenarios were chosen for the Monte-Carlo simulations. They
correspond to a single constant speed target, a single maneuvering target, and two
targets in a line formation. Two parameters were varied in each case. For each
set of parameter values, ten Monte-Carlo runs were simulated. The performance
results of each run were calculated by averaging the results of the last five scans.
The overall performance of each case was then obtained by averaging the results
of the ten runs.
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Figure 6-45: Tracking Results of Real Data II
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Table 6-9: Performance Results of Real Data Cases

Fixed-Threshold Node 1 | Node 2

# of Tracks 3.9 4.5

# of Missing Targets 0.0 0.0

# of False Tracks 2.9 3.5
Pos. Error(m) 247.75 | 228.16
Vel. Error(m/s) 21.45 21.95
Adaptive-Threshold | Node 1 | Node 2

# of Tracks 1.0 1.9

# of Missing Targets 0.0 0.0

# of False Tracks 0.0 0.9
Pos. Error(m) 118.89 98.55
Vel. Error(m/s) 7.10 7.86

8.4.1 Scenario I (Single Constant Speed Target)

This scenario is similar to the one in Figure 6-16. Two parameters, the false
alarm rate and frequency of communication, were chosen to study sensitivity of
the performance. Four performance indices, including number of false tracks,
number of missing targets, position error, and velocity error, were used to measure
the performance. The results of a typical sample run are given in Figure 6-46,
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where the false alarm rate was 0.5 and the minimum communication period was
5. Figures 6-47 and 6-48 show the curves of the average position error and
number of false tracks versus the parameter values. As one can see, within given
ranges, both the false alarm rate and the frequency of communication do not
affect the performance significantly. However, when the false alarm rate is too
high (above 1.5) or the communication period is too long (above 10), the perfor-
mance starts to degrade.

6.4.2 Scenario II (Single Maneuvering Target)

This scenario is similar to the one given in Figure 6-25. However, the target
speed is set to be 0.3 Mach. In this scenario, only the sensor resolution wi" be
varied. Performance measures similar to the previous scenario were used to evalu-
ate the results. Figure 6-49 shows the results of a typical run with a communica-
tion period of 5 and a sensor resolution of 10 degrees. The performance curves in
Figure 6-50 show a clear relationship between the sensor resolution and the track-
ing accuracy. When the sensor resolution increases to 15 degrees, the average
number of missing targets also starts to increase.

6.4.3 Scenario Il (Two Targets in Line Formation)

The two targets flying in a formation are considered in this case. In this
scenario the two parameters to be varied are target separation and sensor resolu-
tion. Figure 6-51 shows the results of a typical run with a communication period
of 5 and a sensor resolution of 10 degrees. The performance curves for the aver-
age positional error and number of missing targets are given in Figures 6-52 and
6-53.

In the first set of results (Figure 6-52), the sensor resolution was fixed to be
10 degrees, and the target separation was varied from 0.5 km to 1.5 km. While
on the average one target was missed when the target separation was 0.5 km,
both targets were tracked when the target separation increased to about 1.0 km.
In the second set of curves, we fixed the target separation to be 1.0 km and varied
the sensor resolution from 5 degrees to 20 degrees. Figure 6-53 shows that both
targets were tracked when the sensor resolution was below 10 degrees. When the
sensor resolution is greater than 15 degrees, the algorithm failed to distinguish
between the two separate targets.
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Figure 6-46: Typical Performance Results for Case I
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7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

This section contains some conclusions and suggestions for future research.

7.1 CONCLUSIONS

The main conclusions of this research are that the general distributed track-
ing algorithms developed in previous DSN projects can be used for tracking air
targets with acoustic sensors. Furthermore, simulation results indicated that
acceptable performance can be achieved by a DSN of cooperating nodes.

In earlier DSN projects, we developed a general approach for the distributed
tracking and classification of multiple targets. The approach is based on general
target and sensor models and retains multiple hypotheses when the situation is
unclear.

This project dealt with the tracking of multiple air targets in a DSN of
acoustic sensors. Although several modifications had to be made due to the spe-
cial characteristics of acoustic sensors, the basic philosophy and structure of the
general algorithm was still applicable. The information fusion algorithm was
modified to reflect the fact that each node may have two types of tracks, local
tracks initiated locally and global tracks initiated by two cooperating nodes.

In addition to introducing local and global tracks, the other major
modification was needed because of possibly unresolved measurements in the local
azimuth tracking due to the poor resolution of the acoustic sensors. By consider-
ing the mechanism of merging measurements, tracks can be made to maintain
relatively accurate target state estimates. The algorithm of processing merged
measurements for the global tracks is similar to those for local tracks and similar
results were obtained.

To establish global tracks, the target position and velocity must be
estimated from two local tracks based on the acoustic azimuths and derivatives.
It was found that the accuracy of such global track initiation process is very sensi-
tive to the accuracy of the azimuth rate estimmation. Thus it is very important to
maintain the local tracks as accurately as possible during the periods when close
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azimuth measurements from two targets merge.

Twenty different scenarios ranging from one to three targets and three to
seven sensors were chosen for simulation. In the single target case, both constant
speed and maneuvering targets were considered. Other scenarios included a high
speed target and a target that flies very close to a sensor. In the multiple targets
case, various target formations were simulated. They included in-line, parallel,
and crossing-target formations. The simulation results indicated that the
cooperation between nodes is essential and reasonable tracking performance can be
achieved even though the nodes do not communicate at every scan.

Extensive Monte-Carlo simulations were also performed with three selected
scenarios. The resulting performance evaluation curves show the sensitivity of
performance measures to certain parameter values. It was shown that the false
alarm rate, if within reasonable range, does not impact the tracking performance
significantly. On the other hand, sensor resolution plays an important role in the
overall performance. Better sensor resolution not only improves tracking accu-
racy, but also helps dramatically in data-to-track and track-to-track association.

7.2 SUGGESTIONS FOR FUTURE RESEARCH

Although we have developed a general approach to distributed multitarget
tracking, and demonstrated that it could be adapted for acoustic sensors, we have
not answered all the technical questions relevant to a DSN. The following are
some suggested directions for future research:

® Incorporation of other sensor types. Acoustic sensors can only achieve a
certain tracking performance due to their inherent limitations such as
resolution. Even with multiple sensors cooperating, tracks may still be
missed, as illustrated in some of the scenarios simulated in this research.
Addition of other passive (such as optical) or active (such as radar) sen-
sors will improve tracking performance. The algorithms developed in this
research can be extended to handle DSN nodes with different sensor types
and it will be valuable to determine what kind of performance gains can
be obtained. .

7-2




e Introduction of sensor control. Especially with other sensor types, sensor
control can improve performance by directing the sensors to the most
valuable targets or more advantageous viewing angles. In a DSN, one can
envision one node cuing another sensor node to look at a region, thereby
optimizing the use of the sensor resources. This will be a crucial step in
endowing the DSN with more intelligence and coupling distributed situa-
tion assessment with some planning.

® Further communication related studies. Although the research modeled
communication connectivity, other features of a real communication net-
work such as communication errors, delays, etc., were not considered. It
will be useful to study the effects of these on overall system performance,
as well as what actions the nodes can perform to mitigate their effects.

® Applications to other distributed problems. Other potential candidates that
may use distributed situation assessment systems include strategic
defense, undersea and ocean surveillance, etc. The DSN work performed
in this and earlier projects can provide the foundation for developing new
algorithms or predicting overall system performance. In particular, in
strategic defense, communication problems may preclude sensor nodes (or
battle managers) from having the same data. This will require the nodes
to resolve their inconsistent views through explicit coordination.

We believe these are worthwhile topics for future research that will greatly
enhance our understanding about distributed sensor networks.

7-3




8. REFERENCES

1] C.Y. Chong, S. Mori, E. Tse, and R.P. Wishner, “Distributed Hypothesis
Formation in Distributed Sensor Networks,” AI&DS Final Report TR-1015-2,
Advanced Information & Decision Systems, Mountain View, CA, May 1983.

[2] S. Mori, C.Y. Chong, E. Tse, and R.P. Wishner, ‘“Multi-Target Multi-
Sensor Tracking Problems: Part I: A General Solution and a Unified View on Bay-
sian Approaches,”’ AI&DS Technical Report TR-1048-01, Advanced Information &
Decision Systems, Mountain View, Ca., June 1983.

(3] C.Y. Chong, S. Mori, M.R. Fehling, K.C. Chang, D.S. Spain, and R.P.
Wishner, ‘“Distributed Hypothesis Testing in Distributed Sensor Networks," ADS
Final Report TR-1048-03, Advanced Decision Systems, Mountain View, CA, Janu-
ary 1986.

(4] D.B. Reid, “An Algorithm for Tracking Multiple Targets,” , IEEE
Trans. on Automat. Contr., Vol. AC-24, No. 6, pp.843-854, Dec. 1979

[5] C.Y. Chong, S. Mori, E. Tse, and R.P. Wishner, “Distributed Hypothesis
Formation in Distributed Sensor Networks,” AI&DS Interim Report TR-1015-1,
Advanced Information & Decision Systems, Mountain View, CA, December 1982.

[6] S. Mori, C.Y. Chong, E. Tse, and R.P. Wishner, “Tracking and Classify-
ing Multiple Targets without A Priort Identification,” IEEE Trans. on Automat.
Contr., Vol. AC-31, No. 5, pp 401-409, May 1986.

[7] C.Y. Chong, S. Mori, and K.C. Chang, “Information Fusion in Distri-
buted Sensor Networks,” Proc. of 1985 American Control Conference, pp. 830-
835, Boston, MA, June 1985.

[8] R.R. Tenney and J.R. Delaney, ‘A Distributed Aeroacoustic Tracking
Algorithm,’ Proc. of the 1984 American Control Conference, pp. 1440 - 1450, San
Diego, CA., June 1984. '

8-1




9] R.T. Lacoss, Distributed Sensor Network - Semiannual Technical Sum-
mary, ESD-TR-84-002, M.I.T. Lincoln Laboratory, Lexington, MA., June 1984.

(10} J.R. Delane; and R.R. Tenney, ‘Broadcast Communication Policies for
Distributed Aeroacoustic Tracking,” Proc. of the 8th MIT/ONR Workshop on c?
Systems, pp. 195 - 199, Cambridge, MA, Dec. 1985.

[11] L.C. Ng and Y. Bar-Shalom, ‘‘Modeling of Unresolved Measurments for
Multitarget Tracking," Proc. OCEANS ’81 Conf., Boston, MA, Sept. 1981.

[12] K.C. Chang and Y. Bar-Shalom, ‘Joint Probabilistic Data Association
for Multitarget Tracking with Possibly Unresolved Measurements and
Maneuvers,” IEEE Trans. on Automat. Contr., Vol. AC-23, pp. 585-594, July
1984.

(13] S. Mori, K.C. Chang, and C.Y. Chong, “Tracking Aircraft by Acoustic
Sensors - Multiple Hypothesis Approach Applied to Possibly Unresolved Measure-
ments,” Proc. American Control Conference, pp. 1099-1105, June 1987.

[14] C.Y. Chong, K.C. Chang, and S. Mori, “Tracking Multiple Air Targets
with Distributed Acoustic Sensors, ' Proc. American Control Conference, pp.
1831-1836, Minneapolis, MN, June 1987.

[15] C.Y. Chong, K.C. Chang, S. Mori, and D.S. Spain, ‘‘Tracking Air Tar-
gets by a Distributed Network of Acoustic Sensors,” 1987 Tri-Service Data Fusion
Sympesium, June 9-11, 1987.

8-2




APPENDIX A. MERGED MEASUREMENT LIKELIHOOD
CALCULATION

The likelihood of a measurement y originating from two existing tracks, 7,
and T,, is the joint probability density of y, the event M of track merging and

event D of target detection, and is expanded as
P(y)MaD |F17F2) = fP(y |1W,D,I1’$2y?17F2) P(M |D)be2”:1’?2)
P(D |z1,20,71,75) P(zy |11) P(zs |79)dz,dz, (A.1)

When we identify D with the event in which s,{;{ésl+w;25TH for 1=1 and 2, we
have

P(D III’I2’F1?F2) = P(D Isvsz)

= [1 — erf(zlg—l)] [1 - erf(l};——‘s—:z)] (A-2)

The track merging event is written as M = {|¢ — ¢ | <4}, and hence we
have

5 — (by — o) ) B erf( —6¢ — (¢1— ¢2)

A3
(03P Ho})? \/W ) (A.3)

P(M |D’II1I27:F17F2) = erf(

where (7(3" is the standard deviation determined by eqn (3.4) for each . The first
factor in the integrand in (A.1) is then written as

P(y |M,D,x1,12,?1,F2) = P(‘M{n |M’¢1,¢2) P(s,(’; ID,51,52) (A-4)

where @47 and sjf are defined by eqns. (3.5) - (3.7). In the first factor of the right
hand side of (A.4), the conditioning on D was dropped because ¢jf can be defined
as being independent from the detection event D. Similarly, in the second factor,
the conditioning on M was dropped because sj} can be considered to be defined by




(3.7) regardless of whether or not the actual merging occurs. When we approxi-
mate (3.7) by (4.7), we have

g(sl{? = B 1,598 1,80) (Tsm(s_lys_g))
‘ Sty — hsm(31732;§11§—3)
1 — erf

o"(51,89)

P(Sﬁ ID*SI"S‘?:&) =

The denominator of the right hand side of (A.5) is necessary because the range for

it 18 [sppr,00).

Furthermore, we may approximately equate the right hand side of (A.2)
with the denominator of the right hand side of (A.5). Then, since the GTSD fac-
tor and the SPTSD factor of a track are independent from each other, we have

P(y,M,D |7,,7,)

5~ (41~ &) 56 - (41 - 4)
- f P(&5F 1M by,) [erf - e J
! ( VI HoP ) (o} +(a3) )

9(31{? — h{™(51,52;51,52) ; (Tsm(s_bs_z)) P(zy 1)) P(zg |7p)dz,dz,

S LUATEYS

5 - (6, - o) —5b— (4, - ) J o
f — erf P(d, |7)) P(by |Ty)d by d @
[er( <n;)2+(a§)2) “ V) )] Pl pis Faeac,

fg(siln — hM(51,59;51,59) ; nsm(§1,§2)) P(sy|7y) P(sg [Ty)ds ds,  (A.6)

The last integra!l in (A.6) can be easily calculated and yields (4.13). On the other

the first inlegral in the last expressior of (A.6) is not so straightforward. But,
according to |11, 12|, we have




) e )}

(@) Hod) (75)*+(d)?

P (& |7y) Py [To)d dyd &y

= g(¢M - hl_’{‘(al,az 1 4); <~7tr,'") [erf(u) erf(M)] (A.7)

Tad V)

which yields (4.9).




APPENDIX B. GEOMETRY IN 2-D SUBSONIC ACOUSTIC TRACKING

1. Cartesian Coordinate

The two-dimensional position and velocity are:
u = [uN,uE]T (B.1)
v = [UN’UE]T

where

uy : northing,

ugp : easting,
vy : northern component of velocity, and
vg : eastern component of velocity.

2. Polar Coordinate

The system orientation is determined as

uy = Rcos@  up = Rsinf (B.2)
vy = Veosy)  vgp = Vsiny (B.3)
where
R : Range,
§:  Azimuth (from the north clockwise),
V :  Speed (scalar velocity), and

©¥:  Heading (from the north clockwise).
3. Acoustic Time Delay

The delayed position is defined as

wd(t) 2 u(t=§t)) = u(t) - {t)o(t) (B.4)

where ¢ is the (constant) speed of sound and the sound propagation
delay and §(¢) is a solution At to the nonlinear
equation




lu(t—At)l=c At

which has a unique solution if |1l(t)|=‘v(t)l< ¢ (subsonic) for all ¢.

The symbol [l is the norm on Euclidean spaces.

4. Variables and Relations

The (delayed) acoustic range is

r(t) = R(t—5(¢))

and the (delayed) acoustic azimuth is

M) = 6(t-4(t))

The important derived quantities are:

13 a V/e : Mach number,
af 6-—1p:  Aspect angle, and

B2 4-1: Acoustic (delayed) aspect angle.

Assuming a constant velocity, eqn. (B.5) implies
R = Mr
sin(¢—0) = & sina

where

M=V1+ &2 + 2€cosf

The other useful variables are
N = Ecosa

and

D =cos(¢-0) ="V1 - (é'si.rloz)2 =M1(1

+ £cosf)

(B.5)

(B.6)

(B.7)

(B.8)
(B.9)

(B.10)

(B.11)

(B.12)




Useful relations are:

M = N+D (B.13)
sing = Msinw (B.14)
D?®-N?* = 1-¢* (B.15)
s=T =2 (B.16)

¢ Me

We should note that |¢—60|<w/2, and therefore, cos(¢—6)>0, and that
1-E<M<1+¢, and N<D 1.

5. Global Track Initiation Equations

Let us index two sensors by 7€{1,2} and let the sensor i’s position be

uf=[udy,u’]T. All the local variables are subscripted by i. It then follows from

e ] .17

— §
u=u +r;

and
y vV sinf; v sin(é;—;)
$=- r; 1+ Ecosf, - R; cos(¢;—-0;) (B.18)
that
1
F(®) = g(#) - ¢ |5 z) (B.19)
0

where zg{u,v}T, ¢é[¢l,¢2,é1,<})2]7‘,

. -1, -1,
sing; —cosp;. ¢ Uip —C Uy
sing, —cosgp, ¢ lusp —clufy

, . B.20
$icosp; ysing;  sind, —cos¢d, (B.20)

¢2COS ¢2 ¢23in(l)2 Sin¢2 - COSQSZ
L 4




sinojujy — cosduip
\ sincausy — COSPeusp
g(®)= |- e R (B.21)
py(cosdyuiy + singuip)
Do(cosqusy + singyusp)
and
f(.’E) l_=\ UyVp — UpUn (B.22)

The equ. (B.19) is reduced to a one-dimensional quadratic equation.
6. Partial Derivatives (1)

The transformation from the cartesian to the polar coordinates implies

o(RO) _ cosf sinf
du  |-R7lsinf R"ICOSQ] (B-23)
and
oAVy) costy siny
v |-V lsinyy Vlcost) (B-24)
with the Jacobians being
det( ‘9(§ Oy = R-1 and det( (V”’)) y-1 (B.25)
u
7. Partial Derivatives (2)
The first derivatives of (r,9) are
Or - 1 1€ - ("N vg—Up Uy)
= — M1 B.26
a(R ’8) [ ’ D Slna] [ MDC ] ( )
B-4




1 ufuntufvg

_ r . o . no_ d d !
GV T Mpe <o VSl = m s v MEVNTUNTE]
(B.27)
do M
AR ,0) 0, 5 (B28)
/ - +
: 8@/ _ 1 Isinar, — Veosa] = 1 [UEUN Un Vg , UNUNTUE VR | (B.29)
NV, D¢ De RV R
ar _ 1 , IS 1 d d
5% = MD [cos® , —sing| = W[UN,— up (B.30)
_Q:_ _ 0 o 1 d _.d
3 =~ D [cos¢ , —sing] = D [up , —ug (B.31)
d¢ M . M
— =——"_Isinf, — =— — .
e DR [sinf , —cosf| DR [ug , —up] (B.32)
9 1 .. 1
B0 = Do [sinf , —cosf] = Dol [ug , —up] (B.33)
with the Jacobians being
a 3 1V) 8 ')‘ -
det(%{—(g—v%-) — det( a((;z ";))) —p (B.34)
or,d,v a(r, 1
det(?(ﬁ%) = det( ((;ud’)) =25 (B.35)
and
Nr,d,V 1) 1
det A = 3 B.36
M Su) )~ DRV (B.36)
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8. Partial Derivatives (3)

The first derivatives of @ with respect to the (r,), V") coordinate system are

o6 1 feind N &sind N,
Hr,p, V) — MDO' r ' D’ MDV' D
= Dz‘;ﬂ [M2?Dsinw , —R cosar , ~%sina , B cosql
-1 M*(ug vy—uyvg) _ Ne _(UEUN—“NUE) Nc] (B.37)
DR R? D’ DRV "D :
.gﬁs_ = DA;I;/z [(D sinacosg+cosasint) , —(D sinasing+cosarcost)]
u
M d D
= D3R4[DM(uEvN—“NvE)“N+(“N”N+“E”E)“E , —(Dug vy—uy v )uy] |
(B.38) :
and
09 1 . o b Meosd
e = iR [D Esinacosp+Msind , —(D Esinosing+M cosb)]
d d
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The Jacobians are

aer(AESY 0 _ A8 _ 96 _ MV (B.40)
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Section 1
Introduction

The problem of accurate determination of the tracking parameters of multiple
targets using multiple distributed sensors is relatively recent in origin but already
has an extensive bibliography [References 1 - 7). Most of this appears in publications
on control and estimation theories and reflects the methodology of these disciplines.
In this study -ve have attempted to apply instead the techniques of the
communication and information theorist to arrive at new approaches to apply to
the solution of this very complex and demanding problem area.

The report reflects our various attempts at formulating the problem from a
communication theorist's point of view. Three approaches are described and
explored in Sections 2, 3, and 4. The order is chronological and each section is
essentially self contained. Section 2 deals with the problem from the viewpoint of

the communicator who is provided with a channel or channels to disseminate

tracking data among various sensors, for which the channel capacity is much
smaller than that required to fully characterize each track. In the simplified and
idealized model considered, each sensor is allowed to transmit one bit about each
sensor measurement to all other sensors. The degradation in the variance of the
ultimate estimate based on all single bit quantized measurements is compared to
that of a network which can distribute all measurements without quantization (but
with measurement and channel noise). Results are moderately promising,
particularly when the a priori measurement variance is large compared to the noise
variance.

To proceed beyond this simplistic model it was necessary to review the literature
and develop metrics for performance optimization and evaluation. For this
purpose, the work described in Section 3 was undertaken. A number of simulations
were performed of conventional estimation for the multi-target/multi-sensor
problem based on a somewhat simplified model. While we were able to
demonstrate that reasonable results could be achieved for two sensors tracking a
single target with quantized data transfer between the two, no major conclusions
were reached although the model and experience was useful for establishing the
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Section 2
A Recursive Estimator for Quantized Inputs

2.1 Introduction

The classical multi-sensor linear estimation problem assumes that a sequence of
noisy measurements is made on a parameter or set of parameters, such that the
measurements are linear transformations of the parameter set plus noise. The least
squares estimator can be expressed as a recursive (Kalman filter) estimator based on
each successive measurement, given the estimator for all previous measurements.

In an application where the sensors are widely separated and interconnected by a
communication network with low capacity links, it may not be possible to provide
the fusion point with all measurement samples, particularly if high accuracy
(multiple bits/sample) is required. We consider a case where the network can.
exchange one bit of information among all users for every sample or estimate made
by any user. We show that the conditional mean estimator for this limited network.-
capacity model satisfies a recursive relation very similar to the linear Kalman filter
and we evaluate the effect of quantization on the ultimate accuracy and speed of
convergence of the resulting estimate.

2.2 Formulation of Linear Estimation Problem

We consider initially the scalar case of a single parameter S which is a priori
Gaussian with zero mean and variance N,. Suppose n measurements ry, ry, ... I, are

made with variances Ny, Ny, ... N,. It is readily shown that the conditional mean
(least squares) estimator based on all n measurements is

A 1/N
S= Z“k Mo wher < =T k
kel z (1)
i.o(“Ni)

and that its variance (mean square error) is




31 =E(S/r1)=M1 =

N.+N, (7)

and the resulting variance

) J (S-M)” p(r,/S) p(S) dS

E [(S-$1 )2/r1] =Var (S| ) =V,
[EESTYSES

(8)
_ N0N1 _ 1
- N0+N1 1/N°+ 1/N,

Continuing in this way, suppose we add a second measurement r; and consider the

new problem of estimating S - S, given r,. Letting s=s- S,. we have

[57p, /510 (") a5

32 =E (Sm|r2 ) =
[P, 0/s 0y (871 08”

(9)

Now since S , is a linear function of the Gaussian variable r, and S is 2 priofi
Gaussian, s is also Gaussian with zero mean, since E (Sm )=E(S|r,) -é, =0

and variance V, = 1/ [ 1N + /N, ] since var s™)=E [(5 - &, )21, ] = var 511 =V,

Now let r2’=r2-$, =(S -Q,) +n,=5"+n,

Then

2-3




\ 1
k-1 -V

sV (1 —
V=7 +V, /N, (T3 NV, ) (17)

The estimator can be implemented recursively accordingly to the block diagram of
Figure 2.1.

This result is the simplest special case of the recursive Kalman filter approach to
least squares estimation and could also be derived by the innovation sequence

approach.

2.3 Formulation of Quantized Estimation Problem

Suppose now that instead of transmitting an analog quantity, each sensor can only
transmit one bit (or at most a few bits) about each measurement. As assumed, the a

priori mean of the variable S is zero. Hence let the first observer simply transmit
the sign of the first measurement sgn (ry) to all other observers. Each observer then

computes the conditional mean of S given sgn (ry)

E (SIsgn (1, )=[ S p(SIsgn () as

Js P (sgn (r,) IS ) p(S) dS

[Pean)is)pe)os (18)

| j:S p(r, IS) p(S) dS

[pir,15)05)08




j' j s? pir,IS) p(S) S

2
NN T2 (Ng+Ny)
0 2\
E(S"Isgn (r,) <9 =2J(—-+M dr
¢ )- [[reisperas 3N I for g any
f:o
B(NO*N‘) 2

NONI (" N0N1 NO

= +
N0+N1 N +N I IZK(N N)' N04-N1 N0+N1

Hence from (20) and (21) it follows that

2
V, =Var(S|sgn(r,)) = NN, | o 1--—) (22)
1 ST TN + N, N +N Y

>

Comparing this with the linear case (8) we find that the relative reduction in
variance is only 2/x times that in the linear case.

Now consider the second observer. He observes r, and receives the one bit sgn (ry).
Suppose he performs the estimate based on sgn (ry), just computed,

S, =M sgn(r,)
2 Ny
whereM, = [ =————
! x 1+NJ/N,

and upon observing r, forms the new variable

(1)
T

» =68 =8+n,-8 =8-E(S|sgn(r)+n,

Finally, suppose the second observer quantizes ry(1) to one bit. Then sgn(r,(1)) =
sgn(r, - S1) and sends this on to all other obervers.

2-17




— | sgn(e, +N)
kT K M,
S k
. A(k-1)
: D S
+

Var (ng) = N + -

M. = 2 Vit

k x 1NNV,

Figure 2.2: Quantized Recursive Estimator
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overlapping fields of view. This configuration was useful in simulating a fusion
problem where the Kalman algorithm used data from the two sensors.

For each run of the simulation, three different versions of the track were displayed
on the screen. These were:

(a) Track associated with system model (equation (1)). This will be called the
true track.

(b) Track associated with measurements (equations (2) and (3)). This is the
true track plus measurement noise.

(¢) Track produced by Kalman filtering the measurements.

A sketch of these three tracks for two typical runs of the simulation are shown in
Figure 3.1. Figure 3.1(a) gives a sketch of an output for the hand off configuration
and Figure 3.1(b) depicts an output for the case of fusion. The simulation allowed
for the introduction of clutter points and also allowed for missing measurements
(i.e., a probability of detection strictly less than 1).

The effects of limiting the amount of information transmission between sensor A
and sensor B for the hand off configuration were investigated. Here a track was
produced (as ir Figure 3.1(a)) which traveled through the field of view of sensor A
and then at some later time entered the field of view of sensor B. If there were no
limit to the amount of information that could be transmitted from sensor A to
sensor B, sensor A would transmit all information required in the Kalman filtering
algorithm to sensor B. With a limit to this information transmission, the questions
investigated were what information should be sent and how to allocate the amount
of information to the parameters which were chosen for transmission. Two
schemes were investigated. In the first, the noisy measurements themselves were
quantized and transmitted from sensor A to sensor B. The second scheme involved
sensor A running a Kalman algorithm on its measurements and then transmitting
to sensor B a quantized final state vector and error covariance matrix.

Only a very limited number of runs were attempted. It should be noted that the
simulation of this Section was concerned only with the case of a a single target. A




&———0——@ True Track
x—x~——x Noisy Measurements

A g——o—qa Kalman Filtered Track

(a) Hand-Off Configuration

X m—X

SENSOR B-
SENSOR A -

(b) Fusion Configuration

Figure 3.1: Typical Options From Simulation
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Section 4

A New Approach to Multi-Target/Multi-Sensor Tracking

4.1 Problem Formulation

Multi-target/ multi-sensor tracking is concerned with detecting and estimating the
tracks of an (unknown) number of targets using signals received by a fixed number
of sensors. The problem as to now to process the signals received by the various
sensors so as to obtain a best estimate of these tracks is very complex and not well
understood. A number of papers have appeared [References 1- 7] giving partial
solutions to this problem.

Here we consider a new approach to multi-target/multi-sensor tracking. To describe
this approach we first consider multi-targets sensed by a single sensor. Later we will
extend our approach to the case of two or more sensors.

We assume that the sensor measures the position and velocity of the various targets
at a discrete set of time instants ty, ty, ... tyy. We will allow for false measurements

(that is, measurements that do not correspond to targets) and missed measurements.
We assume that the only measurements to be considered are paired measurements:

that is, those for which we have information on both position and velocity. We
assume that M; paired measurements are made at time instant t; and we denote

these paired measurements as
(?1.l 0V1'i)i (Vz.i v-v'z‘i)' oo oy (-X’M'i '.V‘M'i)

The number of these paired measurements which correspond to actual targets can
be less than, equal to, or greater than M;.

~




¥, and has velocity v, at time t, and if a target progresses to position x*, and has

velocity v, at time t,, then the energy (or cost) expended by the target during the
time interval t, <t <t,, denoted E(t,,®,, v ;®,, V), can be expressed as a function
of the two paired measurements at times ty and t,. Furthermore, the energies (or

costs) add along a track so that the total energy (or cost) of a track corresponding to
the measurements (r’o,vo), (rvv,), s (‘:N,v‘N) is

N
Z Bt Xigs Vi 1 R V)

=

Our proposed solution to Task 2 is to connect the paired measurements

~ — ~ - - —
(x l‘o'vl.o) * (xz‘o’vz‘o) * LR ] (xKO’VKO) ]
- — —~ - — -
(X, Vi) ("2.1"’2.1) veees (g Vg Do
— — — — — -
N ViN) s KN Van) ve s (KN Vien)

to form K tracks in such a way that the total cost or sum of the energies over the K
tracks for the time interval tyg < t< ty is a minimum. Note that when we have
created our K tracks, each paired measurement can be assigned to one and only one
track and furthermore, each track must contain a paired measurement for each of
the time instants tg, t1, ... ty. The number of possible choices for such a set of K
tracks is (K!)N which grows as KKN so that an exhaustive search for the K tracks with
the minimum summed energy is not feasible even for moderate value of K and N.
Here we demonstrate a computationally efficient algorithm for finding these best K
tracks. ‘




Figure 4.1: TrellisforK=2and N=8
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finding the two tracks which result in the minimum amount of expended energy is
described in the Appendix. As a matter of fact, the choice of tracks given in Figure

4.2(b) is the best choice of two tracks (in the sense of the smallest total energy for the
two targets).

Appendix A describes a simple method for finding the "best" K trajectories through
a trellis for the more general situation where we have extraneous paired
measurements (say due to clutter or other false targets). When there are no
extraneous measurements i.e.,, when M; = K, the algorithm is particularly simple.
For each increment in time we choose the best (in the sense of minimum sum of
the energies) of the K! different ways of connecting the states at depth (i - 1) to the
states at depth i. Then the chosen branches at each depth are connected to form the

best K trajectories. This procedure leads to the solution given in Figure 4.2(b) for the
case of the trellis shown in Figure 1.

For the case of clutter, i.e., when M; > K for some i, the situation is more_
complicated. Now we form an expanded trellis with

M.
[}
()
states at depth i, i = 0, 1, 2, ... , N. Each state at depth i in the expanded trellis
corresponds to K of the M; paired measurements at time t;. For each of K paired

measurements taken at time t; .; and for each set of K paired measurements at time
t; i = 1, 2, ..., N) the best of the K! different ways of connecting these paired
measurements is determined and the sum of energies corresponding to this best
connection is determined. The branch which connects the states of the expanded
trellis corresponding to these two sets of K paired measurements is labeled by this
sum. The Viterbi algorithm is then used to find the best path through the expanded
trellis. The final result is that we find the K paths through the original trellis which

has the smallest sum of energies. Appendix A contains the details of this procedure
and some illustrative examples. -

) .

|




Although several approaches to the solution to this problem were considered, only
one approach will be followed here. The approach requires that we know the
number of missing states at each depth in the trellis. The general idea behind this
approach is that the missing states are filled in with fictitious states chosen so as to
provide the smallest minimum summed energy for the resulting K paths.

We illustrate this approach for the example shown in Figure 4.4. Since by

assumption we know that there is a missing state of depth 4, we know there is a
paired measurement missing at time ty. Our approach is to create a best fictitious

measurement where "best" here means that we choose the best paired
measurement and the best pair of paths which minimize the total energy for both
paths. This involves calculating the energy for all branches which enter and exit
from the fictitious state. These energies are calculated as a function of the position
and velocity of this fictitious measurement. For each possible manner by which the
two paths can pass through this fictitious state, one has a best choice for the fictitious
measurements. The four possibilities are shown in Figure 4.4, for the missing state
shown in Figure 4.3. In each case the energy on the branch entering the fictitious ~
state is labeled by the variable x and the energy on the branch leaving the fictitious
state is labeled by the variable y. The sum of the energies for the four situations are:
(@) 13+ x, +y, ) 14 +xp + Yy ()8 +x.+ Yy (d)9+ x4 +yq. For each of these four
situations we can find the choice of the fictitious paired measurement that made the

sum of the energies a minimum and then use that one that gives the minimum
sum over all four choices.

For the case of one missing measurement and K paths, one would have (K!)2
different possible paths to consider in choosing the best value for this fictitious
measurement. The generalization of this technique for more than one missing
measurement is straight forward in principle but very complex in practice.

4-9
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measurements. Since the integral can be written as a sum of integrals, one in each
dimension, we can solve the problem in one dimension and sum the results. Thus
from here on, we can treat the acceleration as a scalar. Since the acceleration a(t) is
the derivation of the velocity v(t) and since v(t) must satisfy the equation

)

[ v at=xt) - xt) (2)

Y

(where x(t) is the position of the target at time t), by the use of Lagrange multipliers
we can minimize the quantity

2
%=jbmfnmm]m (3)
t

1

Using calculus of variations we find that v'(t) satisfies the equation.

d (.,
x-%ﬁ(vm)-o (4)
This yields the solution,

a(t) = v'(t) =%t +a (5)

vm=%€+a+b (6)

Here a and b are unknowns which are obtained using the boundary conditions v(t;)
= v1 and v(tp) = vo. This yields

O 3 N S . ™
= t-t N by

The Lagrange multipier A can be found by substituting v(t) into the constraint
equation (2). Simplifying, A is given by,




to each set. This pre-screening seems feasible since if one were to observe many
targets on a radar screen, ambiguity with regard to tracks would occur only for small
sets of these targets. (That is, two targets on opposite sides of the radar screen would
not need to be separated.) No study was made as to how to accomplish this pre-
screening in an automatic manner.

Still another issue relates to the fact that our measurements of position and velocity
are based upon noisy observations and thus contain error terms. This suggests that
we may be able to use some type of filtering and/or prediction to improve these
measurements. However, we are faced with the problem that the filtering operation
can only be applied to individual tracks and we are using the measurements to
determine the tracks. In certain cases it is possible to alternate between the filtering
problem and the track discrimination problem. One case where this can be done is
where there is no clutter. Then the best K paths to depth i in the trellis can be
determined based only upon the paired measurements taken to time t;. The paired
measurements at time t; can then be modified based upon filtering the
measurements corresponding to the K tracks to that time. Firally, the modified,
measurements at time t; can be used in computing the energies corresponding to
the branches which connect these states to the states at depth (i + 1) and the process
can be iterated. The value of such a procedure needs to be determined by computer
simulations. Again, time did not permit such an investigation.

We next consider various situations which arise when we have measurements
from two or more sensors. Our discussion assumes exactly two sensors but our
ideas easily generalize to the case of an arbitrary number of sensors. Two very
different configurations are depicted in Figure 4.5. In Figure 4.5a, termed the "hand-
off" configuration, we show two sensors with non-overlapping volume coverage.
The left sensor produces paired measurements, denoted by x's, at times t;, t;, t3, tq
and t5 and the right sensor produces paired measurements, denoted by 0's, at times
te t7, tg, and tg. (4>t for i > j). Figure 4.5b depicts the "fusion” configuration
whereby the volume coverages of the two sensors partially overlap. Here the left
sensor produces measurements at times ti, t,, t3, t, and ts while the right sensor
produces measurements at times tg, t5 and t. (Again, § > ¢ fori > j).
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" a) The "Hand-Off" Configuration

b) The "Fusion" Conﬁguration

Figure 4.5: Two Configurations For Two Sensors
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(a) Single Trellis Formed from Measurements from Two Sensors
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(b) Expanded Trellis for Measurements from Two Sensors (K = 2)

Figure 4.6 Two Sensor Problem - Fusion




Type of Trajectory: Straight line or Parabola

Noise Variance: 0.5 or 2.0

Clutter Radius: 5.0 or 20.0 (both position and velocity)

As stated above, 100 runs were taken for each of these eights cases. A description of
the results follow:

We first consider how this algorithm can be used to determine the number of
targets when this number is not known. It should be remembered in every case, the
correct number of targets was equal to two but that there were two extra clutter

measurements at each time instant. Thus the algorithm must investigate the
possibilities: number of targets = 1, 2, 3 or 4.

The results are given in Table 4.1 for the 8 cases considered. We describe the results
in the first column of this table. Two parabolic tracks were considered. The position”
and velodty clutter radius was equal to 20 and the noise variance (per component)
was equal to 0.5. When the best single path was found, its total cost (averaged over
100 runs) was equal to 598.7. When the two best paths were found, their average
total costs (then averaged over 100 runs) was equal to 677.1 while the larger of the
two costs (averaged over 100 runs) was equal to 756.1. When the three best paths
were found, their average total cost (then averaged over 100 runs) was equal to
16,621.3 while the largest of the three costs (averaged over 100 runs) was equal to

26,750.4. This sharp jump in costs indicates that the number of tracks is equal to
two. Thus, we see that in this case:

(a) The largest of the costs is the more sensitive indicator of the correct
number of tracks, and

(b) Thereis a élear.indimtion of the correct number of tracks.
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By observing the seven other cases, we see that similar but less dramatic results are

obtained. Thus it appears that we have obtained a viable solution finding the
number of targets (i.e., Task 1).

The performance of the algorithm for a given run will now be discussed. We
consider the situation where the clutter radius (position and velocity) is equal to 20,
the noise variance (on each coordinate of the position and velocity) is equal to 2.0,
and the two targets have intersecting parabolic tracks. Measurements were taken at
twenty time instants. The (x, y) coordinates of the two targets at the twenty time
instants are shown in Figure 4.7. At each time instant there were two noisy target
measurements and two clutter measurements for a total of eighty measurements.
The (x, y) coordinate of these eighty measurements are shown in Figure 4.8. The
time of each measurement and the velocity associated with each measurement are
not shown in this Figure. Figure 4.9 shows the best single track as found by the
algorithm. The track consisted of all the noisy measurement for one of the targets-
(Target 2). The total cost of this track was 2,556.2. Figure 4.10 shows the best two

tracks as found by the algorithm. Each of these tracks consisted of the noisy«

measurements for each of the targets. One track was the best single track as shown
in Figure 4.9 and had a cost of 2,556.2. The other track had a cost of 3,070.6. Figure
4.11 depicts the best three tracks as found by the algorithm. Each of these tracks was
made up of a mixture of target measurements and clutter points. The total cost of
each of these three tracks was: 10,074.6; 25,010.5; and 26,823.9. The high cost of the
worst track indicates that the true number of tracks is equal to 2 and that Figure 4.10
represents the best separation of these two tracks.

The data for this example.is given in Table 4.2 and 4.3. Table 4.2 gives the position
(x, y) and velocity (vx, vy) for target 1, target 2, clutter point 1 and dutter point 2 at
each of the twenty time instants. Table 4.3 gives the best tracks as found by the

algorithm when. the number of tracks is 1, 2, 3 and 4. This table also gives the cost of
these tracks. ) - '

A more dramatic example of the efficiency of this algorithm is shown in Figures 4.12
through 4.15. Here a clutter radius of 50 and a noise variance of 5 was used. Again,
there were two true targets having intersecting parabolic tracks as depicted in Figure
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Mcasurcments without Noisc

Target | 5.00

Target 2 5.00
Mcasurcments with Noisc

Target | 5.00

Target 2 5.00
Cluttcr Mcasurcments

Clutter | 5.00

Clutter 2 5.00
Mcasurcments without Noisc

Target | 6.00

Target 2 6.00
Mcasurcments with Noisc

Target | 6.00

Target 2 6.00
Cluttcr Mcasuremcnts

Clutter | 6.00

Clutter 2 6.00
Mcasurements without Noisc

Target | 7.00

Target 2 7.00
Mecasurcments with Noise

Target 1 7.00

Target 2 7.00
Clutter Measurements

Clutter 1 7.00

Clutter 2 7.00
Measurements without Noise

Target | 8.00

Target 2 8.00
Mecasuremcnts with Noise

Target 1 8.00

Target 2 8.00
Clutter Measurements

Clutter 1 8.00

Clutter 2 8.00
Mcasurements without Noise

Target 1| 9.00

Target 2 9.00
Mcasurements with Noise

Target 1| 9.00

Target 2 9.00
Clutter Measurements

Clutter 1| 9.00

Clutter 2 9.00
Measurements without Noise

Target | 10.00

Target 2 10.00
Measurements with Noise

Target 1 10.00-

Target 2 10.00
Clutter Mcasurements

Clutter 1 10.00

Clutter 2 10.00

50.00
50.00

4892
4931

46.43
50.95
60.00
60.00

62.58
61.25

76.30
68.64
70.00
70.00

71.34
68.79

86.90
49.69
80.00
80.00

80.86
79.22

83.37
88.36
90.00
90.00

88.31
89.71

87.66
86.30
100.00
100.00

100.76
100.24

106.42
96.42

80.00
80.00

77.50
82.22

92.32
06.77
90.00
70.00

89.58
71.06

81.24
64.82
98.00
62.00

97.77
62.13

99.48
68.01
104.00
56.00

103.49
52.60

102.06
51.01
108.00
52.00

105.31
53.78

103.61
38.84
110.00
50.00

108.89
51.54

118.92
41.26

10.00
i0.00

8.38
10.90

25.72
15.90
10.00
10.00

10.33
9.69

0.44
14.41%
10.00
10.00

9.15
8.89

16.45
12.33
10.00
10.00

9.08
9.90

5.64
-2.40
10.00
10.00

10.12
991

10.25
-5.24
10.00
10.00

10.86
8.91

17.58
5.27

Table 4.2: Data for Example (continued)
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11.00
11.00

10.20
11.49

27.53
-6.48

9.00
-9.00

11.45
-9.31

1.55
-4.59
7.00
-7.00

8.33
-6.55

15.63
-3.10

5.00
-5.00

3.67
-4.62

0.23
16.92
3.00
-3.00

1.71
-2.10

1.84
17.26
1.00
-1.00

2.46
-0.42

9.18
-4.06




Mcasurcments without Noisc

Target | 17.00 170.00 68.00 1000 -13.00

Targct 2 1700 170.00 92.00 10.00 13.00
Mcasurcments with Noisc

Target | 1700 169.60 68.80 1046 -12.75

Target 2 1700 171.21 91.18 10.46 12.11
Clutter Mcasurcments

Clutter 1 1700 171.43 80.67 -7.81 -31.02

Clutter 2 17.00 186.46 91.56 22.06 23.71
Mecasurcments without Noisc

Target | 18.00 180.00 54.00 10.00 -15.00

Target 2 18.00 180.00 106.00 10.00 15.00
Mcasurcments with Noisc

Target | 18.00 179.65 54.04 11.62 -1583

Target 2 18.00 17792 106.78 11.29 15.62
Clutter Mcasurcments

Clutter 1800 189.11 64.33 15.53 -11.91

Clutter 2 18.00 169.59 109.84 3.87 8.21
Mecasuremcents without Noisc

Target 1 19.00 190.00 38.00 1000 -17.00

Target 2 1900 190.00 122.00 10.00 17.00
Mecasurements with Noise

Target | 19.00 19045 38.15 9.65 -16.20

Target 2 19.00 190.34 121.77 11.12 15.48
Clutter Mcasurcments

Clutter | 19.00 20294 3347 277 -23.08

Clutter 2 19.00 192.72 12194 17.12 21.48
Mecasurements without Noisc

Target | 20.00 200.00 20.00 10.00 -19.00

Target 2 20.00 200.00 140.00 10.00 19.00
Mecasurcments with Noisc

Target 1 20.00 198.68 17.53 11.89 -16.72

Target 2 20.00 196.85 14127 9.16 17.77
Clutter Mcasurcments

Clutter | 20.00 217.71 16.06 21.97 -6.64

Clutter 2 20.00 19996 159.62 -5.49 3.12

Table 4.2: Data for Example (continued)
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Figure 4.12: Noisy Target and Clutter Measurements
(Clutter Radius = 50, Noise Variance = 5)
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Appendix A
The K Best Paths Through A Trellis

We define a trellis as a type of directed graph with nodes (hereafter called states) and
directed edges (hereafter called branches) that satisfy the following conditions:

1. The states are subdivided into sets, the ith set, being denoted T;, i=0, 1,

2..., N. When we reach a state in the trellis belonging to the ith set, we say we
are "at depth i in the trellis". The number of states at depth i, M;, can be a

function of i.

2. Branches connect states at depth i-1 only to states at depth i, i=1, 2, ...N.

Each branch is assigned a real non-negative number called the branch metric. State
metrics will also be defined in a manner to be explained shortly. A path is an

ordered set of N branches which takes us from a state at depth 0 to a state at depth N.

(We assume that there exists at least one path through the trellis.) The path metric
is defined as the sum of the branch metrics for the N branches that make up the
path.

A pair of paths will be said to be unmerged if these paths never pass through a
common state. A set of paths is said to be unmerged if every pair in the set are
unmerged.

It is well known that the Viterbi algorithm gives us a recursive procedure for
finding the single path with the smallest path metric. Here we are concerned with
finding the set of K unmerged paths (K21) (assuming that there are at least K such
paths) for which the summation of their path metrics is a minimum. We call such
a set of K paths the K best paths.

So far we have made no assumptions regarding the connectivity of the trellis (i.e.
the topology of the branches). Without loss of generality, we assume that every state
at depth (i-1) is connected to every state at depth i for i=0, 1,...N. We then take into
account any missing branches by assigning the branch metric infinity to those
missing branches. With this convention, the assumption that we have at least K

]



|

Slaxcs\ Depth 0 Depth 1 Depth 2 Depth 3 Depth 4
A 0""'”0 2 u'2 [N 0 6 3
Y1, 2 Yo,
' Y 1"‘. ..' J'n
B 0 "o 2 "2, 4
C 0 1 3 Rl

Table A.1: State Metrics for Trellis of Figure A.1

As an example, consider the trellis shown in Figure A.1 for N=4. The state metrics

assigned by the Viterbi Algorithm are given in Table A.1. The path with the

smallest path metric is found by first noting that state C has the smallest final state
metric and then tracing back the branches that gave that metric. These branches are

marked with cross-hatched lines in Figure A.1 and the history of that path with the

corresponding branch metrics is shown in Table A.1.

We now consider the problem of finding the K best paths through a trellis for K>1.
Before treating the problem in its most general form, let us first consider the case
where the number of states at every depth in the trellis is equal to K. This situation
is illustrated in Figure A.2 for the case of K=3 and N=4. There are 3!=6 possible
configurations that the best set of 3 paths can take as these paths pass from depth (i-
1) to depth i, i=1, 2,...N. For example for i=1, the 6 configurations are shown in
Figure A.3. In this figure we also give the sum of the branch metrics for the 3
branches that correspond to these configurations. Note that the configuration
indicated in Figure A.3(a) yields the smallest sum. The sum of K path metrics, S,
can be written as




(@) S, =5 (b) S, =e (€)Sy=7

1 3
3
oo 2 1
o— -
/\

1
(d) Sy == (e) S, =6 S,=7

Figure A.3: Six Configurations for 3 Paths from Depth 0 to Depth 1

Ny 1, 2,3, 4
(a) @ 9 14 | 21
(b) o | o 7 | 10
(c) 7 | (4)] 13 | 16
(d) - | 8] 9 |@)
ORI ERIONO),
(f) 7 |- | 9 ]9

Table A.2: Branch Metric Sum for each Configuration




yields the best set of K paths to depth L. Said in another way, this algorithm makes a
final decision on the best paths at each step of incrementing the depth.

We are now ready to consider the case of finding the best set of K paths through a
trellis where the number of states at at least one depth is strictly greater than K. As

an example, assume we wanted to find the two best paths through the trellis shown
in Figure A.1. If these two best paths connected states A and B at depth 0 (called Ay

Bg) to states A and B at depth (called Ay, B;) we would know that the paths would

use the best configuration that connects these states. The two possible
configurations are shown in Figure A.5. Clearly the configuration shown in Figure
A.5(a) is better since it leads to a smaller sum of branch metrics. Figure A.6 shows
the best pair of paths that go from each pair of states at depth 0 to each pair of states
at depth 1 for the trellis shown in Figure A.1.

0 1 0 1
A 2 A
e . 1 AO Q A1
5 2 10
o® ® B, B, By
(a) (b)

Figure A.5: Two Configurations for Connecting (Aq, By) to (A4, By) in Figure A.1.




AB

AC

BC

Figure A.8: Expanded Trellis for Figure A.1.

The best pair of paths through Figure A.1 is then found by using the Viterbi
algorithm for the expanded trellis shown in Figure A.8. The result is summarized
in Table A.3. There are two sets of 2 paths with the smallest sum metric and they
are indicated by the solid lines in Table A.3 and Figure A.9. The best single path is
shown by the dotted line in Figure 9. Note that the best single path is not one of the
best pair of paths.

A sub-optimum algorithm can be defined which uses the Viterbi algorithm for
finding the best path, deletes the states associated with that path, and then uses the
Viterbi algorithm again to find the best path through the remaining states. This
algorithm results in a pair of paths whose path metrics sum to 13 for the example of
Figure A.1 instead of the sum of 8 corresponding to the best pair of paths.




Algorithm 3

1. FOfi=1,2,...,N

M.
Forj=1.2..(,")

Fork=1,2, ( l\él,)

Of the K! possible configurations which connect the jth set of K
states at depth i-1 to the kth set of K states at depth i, choose
the one which yields the smallest sum of branch metrics.

M‘
2. Draw an expanded trellis with (') states at depth i, where each of these states
represents a unique set of K states from the M states in the original trellis (i = 0, 1,

2,...N). Connect the jth state at depth (i-1) to the kth state at depth i by a branch-
identifying the best of the K! configurations (as found in step 1). In particular this
label includes the sum of the branch metrics for this best corfiguration.

3. Use the Viterbi algorithm to find the best single path through the expanded
trellis. The single best path then specifies the K best paths through the original
trellis.

It should be noted that Algorithm 3 reduces to Algorithm 1 for the special case of

K=1 (in which case the first two steps of the algorithms can be omitted) and reduces
to Algorithm 2 for the special case of M;=K for i=0, 1,..N, (in which case the third

step of the algorithm can be omitted).
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Task 1

Task 2

Task 3

Task 4

Appendix B
Task Statements for Distributed Sensor Program

Examine the results of prior efforts and their relation
to upcoming DOD program.

Examine the results of prior efforts from the point of
view of communication and information theory.
Look for performance bounds

Examine pruning and m rging from the point of view
of coding theory, applying the techniques of sequential
decoding, source coding and rate distrotion theory to
yield performance bounds.

Examine the susceptibility to spoofing and other counter-
measures.
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