
AD-A237 118

DTIC NW Lab for Integrated Systemsq EL EC TE XFi FINAL REPORT
JUN 19 j891 W 24 May 1991

NAME OF CONTRACTOR: University of Washington
Department of Computer Science, FR-35
Seattle, Washington 98195

EFFECTIVE DATE OF CONTRACT: 23 February 1988

DATE OF PRE-CONTRACT AWA R I): .5 Fehruary 1988

CONTRACT EXPIRATION DATE: 30 September 1990

CONTRACT NUMBER: N00014-88-K-0453

PRINCIPAL INVESTIGATOR: Larry Snyder
(206) 543-9265

TITLE OF PROJECT: VLSi Architectures & CAD

CONTRACT PERIOD COVERED 13Y REPOILr: 5 February 1988 - 30 September 1990

Sponsored Iy
Defense Advanced lesearcI] i'ojects Agency (DoD)

I- Issd I" O)[ofi, aval Research[STXTA-_MnT A Under Coni rail #.N000'ZI-R-K-0,153
A oved for puLr~ic n-Ieccce,

The views and conclusions contained in /his docnmc ill fhos(of the aulhors and should not be interpreted
as representing the official policies, cithri eprsrd ni iimplie d, of the Defense Advanced Research Projects

Agency of the U.S. Government.

91-02512

9 1 8 102

S

Introduction

This report gives an overview of the research and development projects supported by the
'\ISI Architectures and CAD contract between DARPA and the University of Washing-
ton's Northwest Laboratory for Integrated Systems. Because most of these scientific and
engineering accomplishments have been reported on in the technical literature, this report
serves primarily as a introduction to the topics. Emphasis here is on overall directions, mo-
tivation, and describing what has been achieved. References are provided to the appropriate
papers, where the full details can be found.

As the name "%VLSI Architectures and CAD" suggests, the contract addressed many topics
that generally fall into the architecture related topics and computer aided design topics. A
table of contents is shown on the next page. At the end of this report is a list of the principal
technical papers produced under the contract.

a°

Table of Contents

Introduction

Architecture

The APEX Prototype
Hypercube Routing

Chaos Router
Zenith Router
Asynchronous Channel Design

VLSI-Oriented Data Compression
MacTester: A Low-Cost Functional Chip Tester
Models of Computer Architecture
Hardware Assist for Performance Evalution of Multi-Processors
Reconfigurable Logic Arrays
Fully Testable CMOS Asynchronous Counter
Addressable Memory for "Fuzzy" Matches

VLSI CAD

WireC: Graphics and Procedures to Describe Circuits Accesio.n FO
Timing Optimization of Multi-Phase Logic N-IS
Hybrid Compiled/Interpret Approach to Switch-Level Synthesis DTiC .
High Level Timing Specification, Simulation, and Synthesis U4a'.; ou..j
Parallel Simulation Justcalio;j L.

Empirical Results
Understanding Parallel Circuit Simulation B . .

WIN Descriptions of Circuit Families Distrib:jtion I
Modeling Electronic Circuits and Systems with Network C Avaiiib;,ity Cr..-es
Automatic Layout Compaction is ' - :;!or
Release 3.2 of the LIS Design Tools spcc;ai

References

2

The APEX Prototype

Robert Bedichek, Tony DeRose, Carl Ebeling, George Winkenbach

In the near future commercially- auailable graphics workstations will be capable of real-time
display of high quality shaded images of relatively complex environments. These systems
typically devote a good deal of special purpose hardware to the transformation, clipping
and shading of polygonal models. Such systems are proving valuable for applications such
as engineering design and scientific visualization. However, these systems are still very
expensive, -and they are not well suited for non-polygonal models such as those arising in
spline-based design.

We have recently constructed a much less costly implementation for supporting spline-based
engineering design applications. Rather than opting for a large amount of custom hardware
to accelerate the entire image generation pipeline, we have instead chosen-to- focus on the
construction of a small amount of carefully chosen hardware to support lower quality display.
The use of low quality imagery is not, in many cases, a serious hindrance. In many geometric
design applications it is generally satisfactory to use low quality real-time images to convey
the basic shape of an object while the designer is performing a deformation such as the
movement of a control point. Molecular modeling systems, for instance, have used "dot rep-
resentations" of complex surfaces for some time. A dot representation is simply a relatively
sparse collection of points lying on the surface of the object. When used in conjunction with
depth cuing and stereoscopic viewing, dot representations are an effective means of commu-
nicating shape without the additional complications of hidden surface removal and complex
shading calculations. During more static phases of the design process when subtle shape
variations must be assessed, slower, higher quality images can be computed using little or
no hardware acceleration.

The Apex geometric design workstation is built around a single VLSI chip which generates
a wide range of parameter curves including Bezier and uniform and non-uniform B-splines
based on an elegant method due to de Casteljau. This algorithm for a cubic B~zier curve
results in a three-levellabeled digraph with a regular triangular interconnection. This compu-
tation graph, called a triangular computation forms a data-flow graph which can be mapped
directly into hardware. In general, computation of a point on a B~zier curve of degree d can
be viewed as a triangular data flow graph with d levels. This algorithm can also be gen-
eralized to encompass other curve schemes, including B-splines, cubic Catmull-Rom curves,
P61ya curves, and Lagrange curves.

We investigated two architectural methods for implementing the triangular computation.
[DeBaBa*89] The first used a single high-performance processor optimized for the triangular
computation. The second was a special-purpose architecture which implemented the trian-
gular computation directly in silicon. We showed that by taking advantage of the structure

3

of the computation, we could achieve much higher performance in a special-purpose archi-
tecture than in the more general-purpose processor implementation. This special-purpose
architecture is the basis for the Apex I chip which implements a degree three triangular
computation and supports surface generation by computing three co-ordinate values simul-
taneously.

The completed chip- contains 60,000 transistors and was fabricated by MOSIS in 2 micron
CMOS using a 7mm x 9mm 84-pin standard frame. We experienced a yield of 60% in
functional testing. The-chip uses a 10MHz clock and performs 30 million multiplications
and 180 million add/subtracts per second (16-bit numbers). At this clock rate, the chip can
draw 3-D points at a sustained rate of 3.33 million points per second.

We have now completed a prototype geometric design workstation comprising a Macintosh
II host processor, an Apex processor board, and-a Tektronics stereoscopic frame buffer and
monitor. [BeEbWiDe9l] These work together to convert a control net description of a curve
or surface into a 3;D view on the stereo monitor. The host software is responsible -for
initializing the Apex registers for each curve or surface by downloading control points and
label registers. Once initialized, the Apex board computes the x, y, and z co-ordinates of
points lying on the curve or surface using the Apex chip. A stereo pipeline on the Apex
board then performs the stereoscopic perspective calculation to generate the x,y co-ordinates
for the left and right eye views, and writes this data into the stereo frame buffer over the
NuBus.

We have measured the performance of this workstation using a realistic imaging task and
obtained a rate of 200,000 points per second. While this is acceptable for interactive design
of reasonably complex objects, it is well below that achievable by the Apex chip. The
performance of this prototype workstation is limited primarily by the speed of the NuBus
and the frame buffer. Integrating the Apex chip directly into the framebuffer would remove
this communicatin bottleneck and allow points to be drawn at the maximum frame buffer
rate.

The decision to map the triangular computation directly into hardware allows a simple, high
performance implementation, but it is neither flexible nor scalable. That is, it restricts the
degree of the curve generated to the size of the implemented triangular computation, and if
larger triangles are desired, either for performance or flexibility, it does not extend readily to
a multi-chip implementation because of the problem of partitioning two-dimensional arrays
like the Apex across several chips. We have described an alternative mapping [BeEbWiDe9l]
that uses a set of uncommitted physical processors and dynamically schedules the triangular
computation onto these processors according to the degree of the curve being generated.
Since the triangular computation is fixed, the best schedule for each degree curve can be
pre-computed and the processors and communication paths specialized to that required by
the set of schedules. Thus with a slight increase in the flexibility of each processor and
the communication paths the processors on a single chip can be made to generate curves of

4

varying degree with little or no loss in performance.

We have defined a second-generatioin Apex chip that uses-this flexible computation structure
along with several other modifications that have resulted from Our experience with the proto-
type Apex workstation. These include extended support for surface generation, perspective
transformation on-chip, and increased data precision. We project that such a chip, compris-
ing about 150,000 transistors would operate at 50 MHz and generate 3-D surfaces directly at
the rate of 16 million points per second, corresponding to over 1 billion operations/second.
This single Apex chip would saturate all but the most expensive frame buffers.

5

Hypercube Routing

Smaragda KonStantinidou and Larry Snyder

Two-substantial router studies were conducted with support of the contract: Invention -of
the Chaos Router and Invention of the Zenith Router. Before describing these two projects,
some basic concepts about hypercube routing-must be covered.

A hypercube of dimension d has 2d nodes each of degree d. Nodes are assigned an integer
address in the range [0,2"-1] and node n is connected to node mif the binary representations
of n and -m differ by one bit position. This means that a message can start at source node S
and be routed to destination node D by simply following a path that "changes" the-bits of
S into the bits of D, i.e. changes the positions that are "1" in S XOR D. The total number
of edges that must be traversed is given by the Hamming distance of S and D.

Continuous routing, the case considered here, refers to networks that accept and deliver
messages continuously; the alternative is a batched routing policy. Oblivious routers send
messages along a single path between source S and destination D. The alternative-is adap-
tive routers that (incrementally)- select a congestion-free path for messages from among the
available alternatives. An adaptive router is said to be minimal if it only sends messages
along shortest paths between the source and destination. Intuitively, minimal routers only
go forward. Alternatively, nonminimal routers send messages along arbitrary paths.

A deadlock is said to exist in a routing network if one or more messages are stopped and
cannot move again for any future (normal) behavior of the network. A livelock is said to
exist in a (nonminimal) routing network if one or more messages continually circulate without
being delivered. Starvation is said to exist in a network if one or more nodes are continuously
prevented from injecting a message. When these conditions do not occur, the router is said
to be deadlock-free, livelock-free and starvation-free, respectively.

Chaos Router

The Chaos Router is a randomizing, nonminima! adaptive router developed by Konstan-
tinidou and Snyder [KoSn90]. It has been shown to be deadlock-free, probabilistically
livelock-free and probabilistically 5tarvation-free. Further, it has initiated considerable re-
search that is not covered by the present contract.

Adaptive routers like the Zenith Router and the Chaos Router have often been advocated as
replacements for the state-of-the-art oblivious routers used in commercial machines because
adaptive routers can by-pass congetion, speeding delivery, and they are fault tolerant. There
have been many adaptive designs, but none have prevailed. Though they are in principle
the fastest, nonminimal routers require livelock protection to assure that the messages are

6

always delivered. This slows their circuitry. Since touters are always compared- in a fully
operational network with no traffic where the advantages of an adaptive router are not visible,
the adaptive routers always lose to the oblivious routers. The Chaos Router, howeVer, is the
first nonminimal adaptive router to solve this complexity problem.

The Chaos Router applies the followin4 set of rules:

* Messages are sent along a minimum, congestion-free path to their destinations as long
as such apath can be (incrementally), found.

& If a message arrives at a node for which all forward links are blocked, the message
waits-in a local buffer until-a forward link becomes free, provided there is buffer space.

* If there is no buffer space, a waiting message is randomly selected and sent out of the
next available channel.

This latter activity is called deroutingbecause the message is likely to be sent away from its-
destination.

The Chaos Router solves the "complexity problem" for nonminimal adaptive routers by
eliminating livelock protection. It can avoid the need for livelock protection because of the
random choice of which message to deroute. Thus, unlike other adaptive routers where the
deterministic choice allows messages to get "locked" into persistent cycles preventing them
from being delivered, the Chaos Router's random choice makes- it unlikely for the cycles to
persist for long. The Chaos Router has been shown to be probabilistically livelock-free, i.e.
the probability that a message remains in the network t seconds goes to zero as t increases.
In practice, since probabilistic livelock freedom is operationally equivalent to deterministic
livelock freedom, the Chaos Router does not need any protection.

In addition to showing probabilistic livelock freedom, the Chaos Router has been shown to
be deadlock-free and probabilistically starvation-free. Preliminary simulation results were
also compiled indicating that it is not only faster than a lifelock protected router, but also
does less derouting.

Zenith Router

The Zenith Router is a deterministic, minimal, adaptive router developed by Smaragda Kon-
stantinidou [Ko9l, Ko90]. She showed that it is deterministically deadlock and starvation-
free. Since it is minimal, it is automatically livelock-free. Additionally, she performed
simulations to determine the optimal queue size (8 messages), and average and worstcase
latencies for various sizes of hypercubes.

7

Towards describing the zenith router, consider the following hypothetical router. A message
sent from- source S to destination D is said to have as its zenith the node (S OR D). If the
bits of S that must be changed-to reach D are classified as 0-to 1 changes and 1-to-O changes,
then any message can be routed through its zenith by first making the 0-to-l changes in any
order followed by making the 1-to-O changes. If all forward links are; blocked by traffic a
message waits in a queue until a forward link is free. Deadlock is avoided in such a router
by having two queues, one for "upward" moving messages and one for "downward" moving
messages. (Messages are in the ascend phase or the descend phase When they are making
0-to-1 or 1-to-O changes.) The problem with such a scheme is that the node labeled 2'-1
and the nodes around it are bottlenecks since many messages must pass through these few
nodes.

This router can -be improved. Define the nadir between nodes S and D as (S AND D). The
messages could be classed into two groups, class 1 messages begin with the ascend phase and
end. with the descend phase, passing through the zenith, and class 2 messages begin with
the descend phase and end with the ascend phase, passing through the nadir. This reduces
the traffic at the "top" of the network at the expense of introducing a new bottleneck at the
"bottom" of the network. Interestingly, deadlock can be prevented using only three queues
per node. Class 1 messages use queue 0 for the ascend phase and queue 1 for the descend
phase. Class 2 messages use queue 1 for the descend phase and queue 2 for the ascend phase.

The Zenith Router employs these ideas adaptively. All messages are injected as class 1
messages, and thus enter queue 0. They are routed as class 1 messages as long as they can
continue to make forward progress. When all forward paths are blocked, say at node P, and
queue 1 is not full, then the message switches to being a class 2 message by being moved to
queue 1. It will pass through the nadir of nodes P and D, and continue on to its destination
with an ascend phase.

Konstantinidou [Ko9l] proved that the Zenith router is deadlock-free and starvation-free,
she gave a detailed design including channel protocols and she simulated its performance for
various network sizes. The zenith router is believed to be the fastest known minimal router.

Asynchronous Channel Design

Bill Barnard and Kevin Bolding

A communications channel suitable for use in a Chaos Router has been designed by Bill
Barnard and Kevin Bolding. The circuits at each end of the channel have an input frame
and an output frame each capable of holding a 128-bit message. The circuits exchange
"ownership" of the connecting "wire" long enough to transmit a single message in 8-bit flits.
The asynchronous design was fabricated during spring of 1990.

8

VLSI-Oriented Data Compression

Suzanne Bunton and Gaetano Borriello

We empirically evaluated the combined effects of dictionary sizeand& a variety of replacement
strategies on the effectiveness of Ziv-Lempel encoders. Our results demonstrated that LRU
(least recently used word) replacement strategies most significantly reduce dictionary size
requirements in practical Ziv-Lempel encoders, without compromising; compression. How-
ever, the additional overhead of traditional LRU implementations makes them impractical
for use in fast hardware compressors. As a solution, we introduced a new dictionary manage-
ment -heuristic, "TAG", which :provides the compression advantage of LRU schemes, while
requiring only a fraction of the additional memory and computational resources of LRU im-
plementations. A practical CAM-based 2m CMOS implementation exploits the simplicity
and regularity of our design to achieve a fixed 20MB/sec data rate. Thus, our Ziv-Lempel
implementation realizes a speed improvement of 10 to 20 times that of the fastest recent
hardware data compressors. [BuBo89, BuBo90, BuBo9l]

The data compression scheme of Ziv and Lempel repeatedly matches the input stream to
words contained in a dictionary and returns pointers to the locations in the dictionary
of the longest matches. Initially, the dictionary contains only the single character strings
over the input alphabet. These initial dictionary elements are permanent to ensure lossless
compression. After every match, the matched word concatenated with the next symbol of
the remaining input stream and is added to the dictionary. This process continues until
the input stream is exhausted. The dictionary growth heuristic implied by the addition of
the last parsed word concatenated with the first unmatched symbol causes the dictionary
to contain every prefix of every word it holds. Thus, a trie is the natural data structure
for real-time parsing. Typical implementations represent the trie as a table where each
entry consists of a pointer to a word's longest proper prefix (parent) and the word's last
character. Realistic implementations have finite memory, so dictionary growth is bounded.
Since dictionaries that adapt continuously generally provide better compression, we needed
an efficient dictionary management scheme. "TAG" was developed to address this need.

The primary consideration in its design was that the replacement policy implementation
must be parallel to the basic compression process. This is achieved by tagging trie nodes
with a value that can be used to determine which leaf node has been visited least recently
and can be reused tor a more current word.

Our Ziv-Lempel variant is demonstrably superior in compression performance (achieving
at k_.st as good compression as any other Ziv-Lempel and requiring less memory due its
superior adaptivity. The algorithm translates naturally to a hardware implementation, which
has been designed in 2pm CMOS at the transistor level, simulated using SPLICE, and is
ready for fabrication. Our throughput estimates are 10 to 20 times those of HP's Ziv-

9

LempeLhardware and IBM's Q-Coder chip, yet our proposed implementationsare-no more
ambitious than these designsi which have been successfully prototyped. Furthermore, as our
design uses a fixed-width output code and can input a new character every clock cycleit
minimizes system integration problems.

10

MacTester - A Low-Cost Functional Chip Tester

Carl Ebeling and Neil McKenzie

Testing VLSI chips in the University research environment is typically done in an ad hoc
way. Some sort of hardware environment is designed around the chip to create a self-
contained system which can be- operated, observed and debugged using a logic analyzer
or oscilloscope. Testing and debugging a partially completed system or a subsystem that
operates in a complex environment can be very difficult. As the complexity of chips-grows,
the problem of testing is becoming-even more difficult. Although commercial testers provide
the necessary functionality, their cost is prohibitive and the usual testing environment is
primitive. Moreover, in most cases their functionality far exceeds that required for system
prototyping.

The goal of the MacTester [EbMc90] is to remedy this situation by providing a powerful,
interactive environment for functionally testing VLSI chips. Functional testing means that
the values and sequencing of the f/O signals can be verified but that precise timing cannot.
While speed testing is clearly important, functional testing and debugging concerns tend
to dominate in custom chip design and the issues of functional testing and debugging can
be separated from those of timing validation. Moreover, the MacTester supports a limited
version of speed testing and full speed testing can be done by adding a small amount of
prototyping hardware to the MacTester setup.

The overall goal of the MacTester was high functionality at low cost. The MacTester has
the following characteristics:

e A total of 128 test signals are provided so that large chips (up to 132 pin PGAs) can
be accomodated.

* Test signals are bi-directional and can be individually tri-stated on a vector by vector
basis. Test signal direction is specified completely by the test program or set of test
vectors.

* The test head is a 20x20 ZIF socket that accomodates DIP packages up to 40 pins (64
pin DIPs require a special header) and PGA packages up to 132 pins. This test head
makes test setup very simple and allows the tester to be shared by several projects.

* On-board headers make every test signal accessible for observation using an oscilloscope
or logic analyzer, or for connecting the chip to external circuitry. These headers can
also be used to supply power and ground to the chip, although the on-board signal
buffers can provide sufficient current to power typical CMOS chips for functional test.

11

9 Provision has been made for dynamic circuits by inc!uding an on-board memory capaow
of storing several thousand test vectors. The tester can independently present these
vectors at a rate of 1 MHz.

The tester software provides a simple, intuitive interface that makes it easy for programs
to use the tester. These programs range from simple test programs devised by the user to
sophisticated interactive programs that supply a visual interface via schematics and timing
diagrams.

The MacTester implementation makes extensive use of Xilinx FPGAs for the data path and
control circuitry of the tester. These FPGAs proved to be both cost-effective and a flexible
implementation medium. The MacTester fits on a single 8" x 14" PC board with a total
parts cost of under $1000.

Five MacTesters have been contructed thus far and we are currently trying to transfer this
technology to a company that will make it available to University research and instructional
laboratories at low cost.

12

Models of Computer Architecture

Sam Ho

Though there have been theoretical models of computers predating the creation of the elec-
tronic computer, these have not been helpful to computer architects because they are too
abstract. At the other end of the spectrum are analytical models of computers used by
machine designers to understand the performance characteristics of a particular computer.
These are not useful to architects either because they are too specialized. There have been
few intermediate models that describe the general principles on which all architectures must
be built. Sam Ho studied this problem and created such a model called the Normalized Time
Model

Normalized time is a cost/benefit model that generalized earlier work at UW by Holman. The
essential idea is to begin with a base architecture, describing a particular set of capabilities,
and consider alternatives to improvement only to the extent that they "pay their way," i.e.
that the benefits (increased spzed) returned for the costs (increased area, transistors, power,
etc.) improve the base architecture more than any other alternative.

Using the normalized time model, for example, Ho validated the intuition that for almost
all computations the addition of a floating point unit to a (parallel) processor is worth the
cost, i.e. the factor of improvement per transistor added is greater than 1. Alternatively, a
full 32-bit shift register is not, since not enough instructions in the typical stream benefit
from the large increase in area.

Recognizing that architectural components such as multipliers and shifters need not be added
on an all or nothing basis since one can have small versions (e.g. 16-bit) that are repeatedly
used, Ho parameterized the model to find the optimal-size. He found, for example, that the
optimum size for a shifter on Berkeley's RISC II is 10 bits. These parameterizations could
also be used to analyze the size of the data path, and the study lead to the conclusion that
the ideal size for a VLIW machine in current technology is perhaps 3 words wide.

Ho used these concepts to define a new computer architecture he called the asymmetry ma-
chine. The principal idea is to add processors to each of the memory boards to permit
computations with pages concentrated on that board to execute concurrently with the pri-
mary processor. These processors added in a way that limited their architectural impact,
and therefore the costs, are intended to provide limited parallel capability. The analysis in-
dicated that perhaps five such processor enhanced memory boards would be beneficial with
today's technology.

Additionally, Ho developed a model of the processor/memory interface which is applicable
not only to sequential processors, but to SIMND parallel processors as well. The motivating
question was to clarify the argument between architects as to which is the proper approach,

13

word-parallel computers or bit-serial computers. The results, which depend on a simple
model of memory reference, indicate that over a broad- range of algorithmic assumptions,
it doesn't matter much. If there is sufficient parallelism in the computation to hide the
latency, the essential problem is the bandwidth limitations. If not, then the problem is very
complex; but it is not primarily a memory organization problem. Ho used the model to
analyze empirical results on bus organization, finding his model to be effective at predicting
the system behavior.

14

Hardware Assist for Performance Evaluation of Multi-processors

Craig Anderson, Kathy Armstrong, and Gaetano Borrielo

The purpose of this project was to develop a highly configurable VLSI device that could
be used for instrumentation applications and, specifically, the collection of event traces on
mtilti-processors. The chip consisted of a large content-addressable memory that could be
programmed to check for particular conditions on the wires being monitored. The results
of the match could be used to: increment counters (to count events), generate information
to be collected (to trace events), and/or set internal state bits (so that complex compound
events could be detected). [AnArBo89]

The primary considerations in our design were that it be expandable when more wires re-
quired monitoring or more events needed to be detected and counted or traced. Also, the
design included features that would allow multiple devices to collect data from different
sources but merge their collected traces into a single stream for data compression and stor-
age for later analysis. This last feature is crucial for the monitoring of multi-processors.

In our final design, each chip included 64 separate 60-bit wide event comparators. Of the 60
bits, 32 are used to monitor system signals while the other 28 are used to check detecting
complex events by looking at the values of internal counters and state. In this manner,
compound events can also be detected. For example, that a signal went high, followed some
arbitrary time later by another, and then another that must have changed some specified
number of cycles later. The chip also included 24 counters for collecting histograms of events
and logic to generate time-stamped traces.

1.5

Reconfigurable Logic Arrays

Carl Ebeling, Robert Condon and Bill Barnard

We have defined the Reconfigurable Logic Array (RLA) as a solution to the problem of
computing complex evaluation functions quickly and efficiently using reprogrammable, re-
configurable special-purpose hardware. [E1b91] The RLA containstwo major components:
a state vector and an evaluation tree. The state vector captures the information about
the current problem state that is required for the evaluation. The evaluation tree maps an
instance of the problem state contained in the state vector to the desired value.

We first explored a large design space including both custom VLSI circuits and standard off-
the-shelf components to determine the relative advantages of different alternatives. As part
of this exploration, we examined in detail the computational requirements of a wide range
of chess evaluation functions and their implications. We used the results of this study to
design, fabricate and test a set of general, parameterized components from which evaluation
hardware of various types can be constructed. Finally, we attempted to determine the
generality of this evaluation architecture. This was done first by analyzing the restrictions
inherent in the state vector and the evaluation tree, showing the extent to which these can
and cannot be removed.

The state vector component of the RLA maintains the-information relevant to the evalua-
tion in a set of programmable registers. This information can be maintained a number of
different ways depending on the characteristics of the evaluation. We designed a set of state
registers that cover a broad range of problem characteristics and implementation alterna-
tives. These have been analyzed in terms of cost and effectiveness for a range of potential
update modes and evaluation characteristics. One important result is demonstrating how
evaluation computation can be moved from the evaluation tree into the state vector under
certain conditions. We also analyzed these conditions and showed different ways to perform
updates to make this computation possible. This work has led to a much more efficient
design of the state vector that can be implemented either as part of a custom evaluation
chip or using off-the-shelf parts. It has also led to a family of state register designs that can
be "plugged into" a variety of problems.

The evaluation part of the RLA relies on a tree of general function blocks, each of which
computes a mapping function over its inputs. The information held in the state vector
becomes the input to the function blocks at the base of the tree. These function blocks
analyze this information, mapping it into categories of smaller size. The function blocks at
subsequent levels of the tree map this data further until a final value is achieved.

We analyzed the relative effectiveness of RAM and PLA implementations for the function
blocks to determine the most efficient implementation of the evaluation tree. Since dy-
namically reprogrammable PLAs are not commercially available, we designed an efficient

16

reprogrammable PLA structure which we call. an rPLA. We compared the use of RAM and
PLAs for the function blocks by mapping A. set -of general chess evaluations to a range of
different evaluation tree structures. The surprising result was that a combination of these
two methods provided the most efficient implementation. The rPLA's are used near the
leaves of the tree, while RAM is used near the root. We also showed that when more re-
stricted state updates must be used, the rPLA implementation becomes very effective since
evaluation that could otherwise be moved to the state vector now must be done in the tree
itself. This study also explained why a complete RAM implementation of the evaluation tree
is an acceptable alternative for chess based on the fact that the incremental updates used. in
chess allow very general computation in the state vector. We conjecture that this will not
be true for other problems.

We designed, fabricated and tested a set of VLSI modules for use in constructing a state vec-
tor and evaluation tree. These modules are programmable so that different evaluations can
be computed by defining different functions for the function blocks. They are reconfigurable
in the sense that the state registers can be reconfigured to capture different information.
They are parameterizable in that the size and characteristics of the modules can be rede-
fined when a chip is constructed.

We successfully fabricated and tested these modules to validate their functionality and per-
formance. Our test chips showed good yield and the performance results were consistent
with our simulation results.

17

Fully-testable CMOS Asynchronous Counter

Jerry Carson and Gaetano Borriello

We explored testing issues in asynchronous design by implementing a fully-testable asyn-
chronous counter. Our approach was to perform a study similar to one that, had been had
done for a synchronous counter and evaluate the- cost of extra testing logic in terms of per-
formance degradation and area penalty. Finally, our study also considered the time required
to test the counter. [OaBo89, CaBo901

We designed an asynchronous n-bit CMOS counter with a scan path to access internal state
has had been done for the synchronous counter. The counter is thereby converted into an
n-bit "master-slave" asynchronous shift register with the counter's req input also being used
as the shift register input. The only observable outputs are the ack and carry-out signals.
The counter utilizes two-cycle (transition) signaling and guarantees. that new output values
are available before ack is toggled. Two 16 bit counters, one base design and one scan-based
design have been fabricated on the same chip (2.0 pm n-well CMOS) thru MOSIS. There
are three control signals required for the testable counter as opposed to one reset signal for
the base counter. However, the three signals may be wired together after testing is complete
and used as a reset signal for the testable counter.

Four parts were received; all of which passed the test suites developed. Speed testing of
the parts shows a count rate of 22.2MHz for the base design counter, versus 21.0 MHz for
the scan design, indicating a speed degradation of 5.8% for the testable design as compared
to the base design. The testable design is achieved with a 15% increase in transistor count
(from 52 to 60 per bit), and a corresponding increase in chip area of approximately 6%.

Our test vectors checked for all stuck-at and stuck-open faults in the counter designs. In-
terestingly, we showed that test time is 0(n), when the counter outputs are not observable,
compared to 0(n 2) time for a synchronous counter. The asynchronous counter has twice as
many state bits as the synchronous counter due to the extra state required to handle the
more complex asynchronous state changes. The result of 0(n) showed that this extra state
can be taken exploited to dramatically reduce testing time. The two state bits in each cell
may be set independently, and it is the extra state bit that allows testing in 0(n) time since
carry propagation chains may be started/restarted anywhere in the counter by appropriately
setting the pairs of bits in each cell. It rcmains to be shown whether the extra complexity
of asynchronous logic can be similarly exploited in reducing testing time in the general case.

18

Addressable Memory for "Fuzzy" Matches

Bill Barnard

A content addressable memory (CAM), a circuit which when given a target vector finds the
closest match (i.e. smallest Hamming distance) among a set of previously stored vectors,
has been designed with the ability to match "fuzzy" or partially known data. The purpose
of such a project was twofold. First, it was thought. that the*fuzzy CAM would provide an
especially powerful building block for implementation of neural networks. Second,.the mixed
analog/digital nature of the fuzzy CAM allowed us to test our Network C design tool (see
Section on Network C).

An original design with 16 vectors of 48 bits each was created using our standard design
tools. The design was expressed in CFL; the digital portion was simulated using our standard
simulator RNL; and the analog portions were simulated with SPICE, since the full circuit
was too-large to permit complete simulation. This chip was fabricated and tested during the
summer of 1988, but it was only partially functional due to a bug in the dynamic refresh
logic.

In the redesign, extensive use was made of WIN - the Washington Intermediate Notation
(see Section on WIN) - as well as Network C. I n addition to providing a tighter coupling
between the layout and the network description, this recasting had the advantage of simpli-
fying the generator code; source code for the WIN generator was a factor of 4 shorter than
the original CFL generator. Effective though it was as a test vehicle for our CAD tools, this
second design had a bug in it as well.

19

WireC: Combining Graphics and Procedures to Describe Cf cuits

Larry McMurchie, Zhanbing Wu and Nail Ebeling

WireC is a specification language that provides both -the clarity of, graphical representations
and the expressiveness of procedural constructs for the description of complex electronic sys-
tems. Graphics allows fast, intuitive interaction with a design description while procedural
constructs give the power aid 'flexibility to dcescribe circuit structures algorithmically. Pro-
cedures also allow parameterized designs so that a. single description can represent a whole
family of devices. These two types of description ate complementary and WireC gives the
designer the freedom to choose the -most appropriate representation. Since C constructs can
be embedded -in schematics and schematics embedded in a C program, this choice can be
made at a very fine grain.

Behavioral descriptions are easily incorporated in WireC allowing thedesigner to mix struc-
tural and behavioral representations. This is clone by allowing WireC devices to reference
descriptions in other languages. Typical design descriptions use WireC to describe-the struc-
ture of the system and use behavioral and logic descriptions -written in languages like MEG
and BDSYN to describe finite state machines and random logic. WireC then drives the
synthesis programs to generate a compo site circuit. Thus WireC is a framework that can
take advantage of a variety of description languages and synthesis tools.

WireC schematic programs can be com:,iled into different output forms by choosing the
appropriate library. A library contains all the available primitive devices for a particular
technology. The library also specifies the output format to be produced when a specification
is compiled. Although the CMOS library is the one that is most widely used, we have also
compiled libraries for off-the-shelf TTL components as well as a library for designing Xilinx
FPGAs.

WireC, and its predecessor WireLisp, have been used to design a number of substantial
VLSI chips including the Apex graphics chip and an RLA test chip. [EbWu89] These are
large designs containing 60,000 and 120,000 transistors respectively. WireC compiles over
1000 devices per second on a Sparcstation 2 so that even a large design with 100,000 devices
takes less than two minutes to compile. WireC has been distributed to a number of other
Universities including the University of Wisconsin, Stanford, Santa Cruz and Penn State.

20

Timing -Optimization of Multi-Phase Logic

Karen Bartlett,, GaCetano Borriello, and Sitararn Raju

High-performance MOS circuits are frequently designed using precharged and dynamic logic.
This requires the use of multiple phases-of -the system clock to. ensure that the circuitry is
precharged and refreshed at the proper times during each clock cycle. Finite-state machines
used to control this type of logic must therefore be constructed as multi-phase sequential logic
with inputs and outputs stable during the appropriate phases. The timing optimization of
multi-phase logic entails the reduction of the overall, cycle time of the machine and/or input
to output delays by distributing computation throughout the entire clock cycle. We have
developed a tool to automatically perform this optimization task and have implemented it as
a set of extensions to the combinational logic optimization tool, mislI. Our algorithms yield
improvements that are on average 10-20% better than what is achievable using purely combi-
national logic optimization tools that do not move logic across latches. These improvements
represent 75% of what would be possible in the most idealized case. Results on simple two-
phase circuits show average input to output delay improvements of 13% with area penalties
of 11%. For a four-phase controller used in the SPUR processor it yields an improvement
in cycle time of 18% with an area penalty of 11%. Furthermore, our experiments indicate
that the optimization algorithm is highly insensitive to parameter variations in the under-
lying combinational logic optimization routines and initial state assignment. [BaBoRa89,
BaBoR"'0, BaBoRa9l, BuSaBaBo9l]

The basic idea behind our approach is that of guiding the movement of logic across latch
boundaries so as to minimize the length of the critical paths in the circuit. This is accom-
plished by decomposing the circuit into blocks between adjacent clock phases. A goal delay
is then determined for each block that corresponds to the best possible case where as much
logic as possible is moved off the critical path between primary inputs and primary outputs
of the block. This is an overly optimistic goal in that it assumes that inter-block (state)
signals will never be on the critical path. Ilowever, it does give the algorithm an indication
of where there is the most to be gained. Logic movement and resynthesis operations are
then used to move logic off the head and tail of" the critical path of a block and into another
block (hopefully, onto a non-critical path). The algorithm makes tradeoffs to mitigate the
greediness of the approach and makes some detrimental moves in the hope that there will
later be larger improvements.

21

Hybrid Compiled/Interpreted Switch-level Simulation

CraigAnderson, Gaetano Borriello, -and Lariry AcAurchle

We have developed a; switch-level simulator that combines the speed of compiled simulation
algorithms with the flexibility and fast set-up times of interpretive schemes. Compiled sim-
ulation is fast for simple subcircuits and slow for certain complex ones. Interpretive schemes
have a fast set-up time, but are slow in-simulating simple circuits-because of the overhead of
the interpreted data-structures. Our hybrid scheme, based on COSMOS and MOSSIM II,
offers the best of both approaches, reducing simulation time for a variety of common circuits
and saving a factor of 3 or more in set-up time. [McAnBo91J

Simulators that perform a switch-level analysis of MOS transistor networks have existed-since
the late 1970's and are widely used for the veriflcation of MOS integrated circuits. Switch-
level simulators must correctly model a wide range of effects common in MOS circuits (e.g.,
dynamic storage and charge sharing) and all the design methodologies available to MOS
designers (e.g., complementary, ratioed, pre-charged, domino, and pass transistor logic).

MOSSIM II was one of the earliest switch-level simulators to address all these issues. The
MOSSIM algorithm performs an interpret d analysis of the transistor network to determine
how changes in node values propagate. This is a very flexible approach permitting the
modification of the circuit being simulated at run time. However, most of the circuit structure
usually is not changed and this is not exploited in optimizing simulation speed. Recent efforts
in interpreted simulation have made the analysis of the circuit more efficient by refining the
data structures and graph traversal schemes.

The compiled simulation approach was developed as an attempt to improve the performance
of switch-level simulation. In the COSMOS system, a set of Boolean formulas that describe
the mapping of input and current circuit state to output and new circuit state are extracted
from the transistor network. By compiling the equations into an executable file, simulation
time can be dramatically improved. However, the modify-simulate-debug loop is slowed by
the computation required in partitioning the initial transistor network into channel graphs
and the Boolean analysis of those channel graphs.

Interpretive analysis schemes such as MOSSIM suffer from the high overhead of traversing
small channel graphs, such as simple gates. For these types of graphs, the minimal com-
putation required by the compiled approach is clearly advantageous. On the other hand,
interpretive schemes have a clear advantage for large channel graphs, only a small part of
which are active at one time. By virtue of the interpretive analysis of the channel graph,
such schemes can isolate the active part, of a large graph and solve for the steady state.
Therefore simulation time is mostly dependent on the subset of nodes that are changing.
Compiled approaches must solve for the values of all the nodes in the channel graph whether

29

or not they will actually change state. Bryant has-analyzed the-size of the equations resulting
from an n-node network:and has determined that in the worst case the resulting Boolean
formulas- may contain 0(n3)-operations, although most commonly found structures coritain
only 0(n) operations. Compiled apprOaches suffer from another disadvantage. Consider a
large network composed of numerous channel graphs. Even a small -localized, design, change
necessitates a, reanalysis of the entire circuit.. Because the reanalysis time is substantial, these
simulators have been modified to recognize previously analyzed graphs and use the previ-
ously derived and compiled Boolean equations. Even, when all channel graphs have been
previously analyzed so no new equations must be derived and compiled, the analysis time
required to check for this equivalence and generate the.final networks of Boolean equations
may be substantial.

The advantages and disadvantages of the compiled and interpreted approaches to switch-level
simulation suggest a mixed approach. The challenge is to be able to achieve the advantages
of both approaches while lessening the disadvantages and to do so in a single simulator.
There are two goals to strive for in such a hybrid scheme: fast simulation time and fast set-
up time. Total simulation time is minimized by uming the compiled approach of COSMOS
on small channel graphs where the size of the equations is relatively small. The MOSSIM
algorithm is used on complex graphs (where the size of the equations can be prohibitive) as
well-as on certain large graphs which exhibit very localized activity.

The hybrid strategy can also be beneficial in reducing the setup time for large circuits. By
a decomposition of large circuits into modules and use of the interpreted approach for the
channel graphs that cross module boundaries, the setup required for the simulation can be
reduced by a factor of 3. One can think of lhis approach as analogous (and in fact equivalent)
to incremental compilation of object modules and relinking into run-time executables. By
building compiled representations of modules individually, and simply relinking them at
run-time, significant time savings can be obtained in the modify-simulate loop.

Our hybrid scheme was implemented by modifying the front-end to COSMOS and exploiting
its behavioral modelling capability. All interpreted channel graphs are not compiled but
instead are included in a data structure placed in a behavioral module that implements
the MOSSIM-II algorithm. The advantages of this scheme for reducing simulation time
were verified with a series of experiments on common circuit modules such as memories and
shifters. Several large designs were used to demonstrate the improvements in setup times.

23

High-level Timing Specification, Simulation, and SyntheSis

Tod Amon and Gaetano Borriello

The largest CAD effort under the contract involved timing issues in the specification, sim-
ulation, and synthesis of digital circuits. The specification of a digital design encompasses
behavioral and structural aspects with both functional and timing components. A mod-
ern design representation must be able to capture elements in the entire space in order to
support high-level synthesis, simulation, and verification tools. We proposed a new model
called operation/events graphs 'that meets these criteria. The mode" relies on the separation
of functional and timing elements into a bipartite graph that is a hybrid of data-flow and
event-graph models. Special focus has been placed on a general mechanism for timing specifi-
cation using a restricted first-order predicate calculus. The model is interesting in that it has
a clear semantics that make it a solid foundation for a complete set of high-level tools some of
which have been implemented or are under development. [AmBo90, AmBo9la, AmBo9lb,
AmBo91c, AmBo9ld, AmBoSe90, AmBoSe9l, AmBoSeWi89, BoDe88a, BoDe88b, Bo88,
Bo89, Bo90]

Circuit behavior is the high-level description of what a circuit does without overly specifying
how that computation is performed. Circuit structure is the low-level description of how the
computation is implemented, that is, the logic gates and flip-flops used. Functional aspects
of both behavior and structure describe the data transformations and computations to be
performed on the inputs in order to generate the outputs. In contrast, timing relationships
for behavior and structure describe temporal properties such as minimum and maximum
separation times for signal events.

Integration of the entire space of design representation into a unified framework is critical
to tool development. Incremental synthesis algorithms can be employed if a design can be
evolved from behavior to structure in a single representation. A single simulator can be
used to simulate the design at any point in the synthesis process and validate the tools and
specification. Verification tools can analyze timing and functional requirements and report
their satisfaction. Domain specific languages can be used to enter design descriptions which
compile into the underlying representation.

Existing representation methods focus on functional aspects with only rudimentary capa-
bilities for timing information (only structural timing). Specification methods provide rich
models for the transformation of data while assuming a fixed and simple timing model (usu-
ally, a single-phase synchronous clocking scheme). High-level synthesis tools employ this
model to transform functional behavior into a circuit structure that performs the same data
transformations in the same partial order. Simulators exist that designers can use to empir-
ically verify that what was specified is what was desired. Verification tools can demonstrate
the equivalence of behavioral and structural functionality.

24t

Why-is this state of specification, simulation, synthesis, and verification tools not adequate?
These tools enable us to automatically synthesize many interesting, circuits from-high-level
specifications. Why should a design representation also include timing behavior? The reasons
are many.

First, when synthesizing a circuit not all aspects of its environment are under the control of
the designer. That is, the circuit must con fori to the environment in which it will be placed.
The environment may demand that particular timing relationships be respected. These can
be as simple as setup and hold times or as complex as the spacing between messages sent
over a local area network. Second, even within a circuit ,e must be able to adequately
describe the timing methodologies used to implement different parts of the circuit. These
include precharging constraints, pipeline interlocks, and multiple-phase clocks. Last, we
must be able to provide an abstraction of a circuit based on its interface behavior. This
is important for informatic. hiding, that is, the ability to specify the essential aspects of
a circuit's behavior while minimizing the description of its internal realization. Also, we
must have the ability to describe interfaces that may not have a circuit realization at all,
for example, the specification of a system backplane bus protocol and the timing constraints
that must be respected for proper operation.

The representation we have proposed is a straigh.forward graph model whose basis consists
of two types of nodes connected by a directed arc to form a bipartite graph. Both types may
be hierarchical. Event nodes represent changes in logic level on circuit wires and are used
to express timing properties of behavior and structure. Operation nodes correspond to the
functional aspects of behavior and structure. Boxes contain program code that is evaluated
whenever an input event occurs (e.g., C++ source code). The evaluation may conditionally
generate output events which will occur at some future point in time and/or possibly change
internal state. An example of an operation node is a logic gate that may generate an output
event whenever an input event occurs. The delay in generating the output event corresponds
to the propagation delay of the gate. A more abstract example of a box is one that forks
two independent processes- an input event arrives at an operation node that will then cause
two parallel output events thereby permitting two parts of the specification to proceed in
parallel. The events, in this case, do not correspond to logic transitions and instead represent
abstract control flow. Dependency arcs specify the flov of events in to and out of boxes.
The graph is bipartite because dependency arcs specify flow of control by directing events
into boxes and the output of boxes to events. We purposely make no distinction between
data and control to permit optimization and synthesis algorithms full flexibility in making
or not making the distinction.

Although simple timing constraints have an obvious representation (i.e., a labelled directed
edge in the graph representing the difference in tirme between two events) the representation of
constraints between events nested within loops, forks, conditional branches, and concurrent
structures requires a more comprehensive mechanism. The problem is that constraints are
relationships between discrete events (individual occurrences of events) not event nodes.

25

Iden tifying discrete events is problematical in the general case. Chronological relationships
can often be used to identify the discrete events involved. However, constraints may also be
relative to a particular execution path in a complex graph. WVe have developed the concept
of event ancestry to address this issue. Event ancestry is specified by naming the events and
internal state that are used to generate an output event. Every discrete event has an ancestry
tree, consisting of its immediate ancestors and t heir ancestors, transitively. Intuitively, the
ancestors of an output event are the input ewent- that were used to determine whether to
generate the output event.

A first-order predicate calculus is then used to relate discrete events based on the chrono-
logical and ancestral relationships described above. Standard Boolean relations and quan-
tifications are augmented with two new primitives to access the time stamp of an event
and its ancestry. The full first-order-predicate calculus introduces problems which we have
addressed by restricting the representation of timing constraints to the following format: (1)
universal quantification of the discrete events involved in the constraint, (2) specification
of the context within which the constraint must hold and, (3) specification of a particular
timing relationship that is required to be true when the context is true.

These simplifications were made for two primary reasons. First, event generation (existence)
is represented in the functional components of the graph. Therefore, existential quantifi-
cation, which is used primarily to constrain functionality, is already encapsulated within
our representation. Second, in simulation, the universe of discrete events changes as new
events occur and are added to the universe. Constraints are statements about the infinite
universe of events. If the universe is constantly changing, when can constraints be checked
and violations reported?

We have implemented a simulator for OFgraphs, called OEsim, that not only performs
a functional simulation of the circuit but also incrementally checks for timing constraint
violations as events occur. Violation- an bc detected and reported for constraints with
universal quantification because a partcular instantiation of discrete events causes constraint
violation. Many optimizations are performed in the simulator to manage the ever growing
ancestry trees of events. Pruning of the trees is performed at run-time and compile-time
based on an analysis of the timing constraints and determining when events are no longer
needed, that is, they will never be involvcd in a future constraint violation. The simulator is
written in C++ and compiles an OEgraph description into an executable. This leads to an
efficient simulator as well as providing the capability to insert arbitrary code in operation
boxes. This flexibility can be used to model complex environments, use the file systems to
retrieve and store events, and instrument the specification with special-purpose monitors or
user-interface code.

We are now turning to the problems of synthesis using OEgraphs. Our focus is on circuit in-
terfaces. In one effort, we are continuing earlicr work that dealt with the automatic synthesis
of interface glue logic that connects an existing circuit to its environment. This circuitry is

26

mostly control and may include synchronous as well as asynchronous components. Further-
more, timing constraints on interface signalling protocols must-be respected for the circuit
to be able to communicate. A cecond effort is just beginning to-look-at how interfaces in-
fluence the synthesis of the circuit. For example, stringent timing constraint may require-a
higher-degree of parallelism in the circuit than may have been otherwise economical.

Our synthesis work is leading us to a model of synthesis where circuit functionality is de-
scribed free of timing considerations. All timing related considerations (signalling, through-
put, cycle time, latency, etc.) are specified with -the interfaces of the circuit. In thismanner,
as interfaces change (corresponding to a new environment for the circuit) the synthesis al-
gorithms will also generate a different circilit optimized for the new conditions. It is this
modularity of specification and timing-driven synthesis that is the objective of our work in
this area.

27

Parallel Simulation

Mary Bailey

Simulation is unquestionably the most time consuming part of the computationally intensive
task of circuit design. Parallel simulation has been frequently suggested as a means of speed-
ing up simulation. Towards that end, Mary Bailey [Ba89a, Ba89b, SaSn89 conducted an
extensive analysis of accelerating circuit simulation by means of parallelism. She discovered
two principal results. First, using direct experimentation, she showed that there is very little
parallelism in event-based logic level simulators. This was greeted by considerable surprise
in the community since most researchers assumed circuit simulation to be very parallel. Sec-
ond, of the various methods available for logic level simulation, the greatest speedup in the
synchronous case is obtained by unit-delay strategy.

Each topic will be considered separately.

Empirical Results

The intuition that leads one to conclude (erroneously) that there is much parallelism in
circuit simulation runs as follows: Chips have many rapidly switching transistors that "run"
in parallel; these should be able to be simulated concurrently. Concurrent execution can be
easily achieved by assigning one or a few transistors to each processor. The parallelism of
the simulation is thus related to the concurrency of the transistor switchings on the chip.

To test this intuition, we instrumented ourt standard RNL simulator to keep track of the
number of events that execute concurrently for a given chip, i.e. the transistor's switching
activity starts at the same time. An event, is essentially the evaluation of the state of one or
a pair of transistors. The nine chips used for the comparison came from designs done at UW
and ranged in size from a decoder with 208 transistors to the Apex spline curve generator
(see the Section on Apex) with 61,660 transistors. Since most designs had many thousands
of transistors, it was assumed that the parallelism would be measured in the thousands. The
results, however, were astounding.

The average parallelism ranged from a high of 25 for the 1,536-transistor 8-stage, 16-bit shift
register (which was purposely included in the test. to have a large amount of parallelism)
to a low of 2.8 for the 2,162-transistor 8x8 3augh-Wooley multiplier. The Quarter Horse,
a 24,068-transistor RISC processor, had an average of 6.3 transistors switching at once.
(The Apex measured 23.) Since these numbers assume an unlimited processors and no
communication overhead, it would clearly be difficult to speed simulation 100-fold based on
so little transistor switching.

These astonishingly low numbers can be explained by looking at the maximums and mini-

28

mums. The maximum number of concurrent events tended- to be-quite large,-being 69for the
shifter, 22 for the multiplier, 160 -for the Quarter Horse, and 520 for-the Apex. However, to
have such low averages, it was necessary to have a substantial amount of the simulation be
"sequential", where only one event was occuring at once. The percents'of sequential activity
were, respectively, 3.4%, 48%, 40% and 15%. What these data are apparently describingare
simulations when many events happen in a burst, e.g. as a result of a clock edge, followed
by a large number of subsidiary events that happen at differeit times and' are thus unlikely
to coincide with other events. This motivates some of the studies in the next section.

There are explanations for some of this data based on what the circuits do. The RISC
processor is a good example, Large parts of the design, most of the register arrays, the
shifter, etc., are not intended to switch all of the time. These-components are used selectively,
being quiescent most of the time. This will lead to low average parallelism. Also, the Apex
achieved its 23-fold average parallelism from four copies of a vertex node (5.2 parallelism)
and three copies of a processor node (8.0 parallelism). Though the parallelism numbers
don't "add" because of dependencies, large grain concurrency does increase the fine grain
concurrency. This is especially obvious in the sequential activity, where the Apex had only
15% as compared with 38% and 24%, respectively, for the components.

Bailey conducted a wide range of additional experiments that were described in her disser-
tation [Bailey 89b].

Understanding Parallel Circuit Simulation

Having observed that there is little parallelism on a chip and explaining why that might be
naturally leads one to consider how to improve circuit simulation with parallelism. Bailey
conducted such a study and found that two components figure into the performance of a
simulator: timing model and synchronization policy.

Timing Model. To say that the transistors on the chip start and finish switching at a
particular instant in time is, of course, an over simplification. Each simulator models the
continuous charging and discharging of nodes differently. These differences influence not
only the accuracy of the simulation but also its parallelism.

Bailey analyzed three different timing strategies: variable delay, fixed delay, and unit delay.
Each concerns how much time is to be assigned to the activity of switching the node. In
variable delay, the time depends on the topology of the circuit and characteristics of the
current state of the node. In principle, there are an infinite number of different delays
possible for transistors of the circuit. R.NL has this characteristic. In fixed delay models,
a small representative set of these times are selected and used exclusively. Typically, the
elements of the set differ as to whether the gate is rising or falling. Lsim has this character.
Finally, there is the unit delay model where all transitions are assumed to take the same

29

amount of time. MOSSIM II andzCOSMOSare instances of 'unit -delay.

The timing model'is important because it determines the likelihood that transistors that are.
physically switching at the same time will be so modeled by the simulator. Clearly, it is
unlikely in the variable delay model that two transistors start switching at the same time,
while in the unit delay model it is assured, since all of the successors of "simultaneous"
events will also be "simultaneous." Since we define concurrency in terms of the number of
transistors starting at the same time, a variable delay model will exhibit less concurrency
than a unit time model. Experiments pr'ove this out.

Synchronization Strategy. Most circuit. simulators are designed to have synchronous par-
allel execution in that they compute all o' the transistor switchings happening in the same
time step and then perform a barrier synchronization. Processors do not begin computing
transistor switchings for the next time step until all activity for the last time step is com-
plete. This causes many processors to be ideal because the transistors they are modeling are
either inactive during a time step or took less computation to evaluate. It would clearly be
advantageous to "move ahead" of the global clock.

There are two common "asynchronous" strategies. The conservative Chandy-Misra technique
permits each processor to advance the clock as far forward as is "safe," i.e. the "future"
time of all inputs is known and cannot change. Optimistic strategies, pioneered by Jefferson,
move forward keeping track of intermediate state so that if they "get too far ahead" they
can undo the computation back to an earlier time.

Bailey is able to prove that for the synchronous strategies, the unit delay model gives the
greatest amount of parallelism. For a given timing strategy, the asynchronous conservative
is the preferred policy when there are an unlimited number of processors. However, for a
fixed number of processors, cases can be found where the conservative and the optimistic
approaches are each better. Moreover for unit delay, the conservative asynchronous model
provides the same speedup as does the synchronous model. Finally, it was observed that the
circuit simulation is an instance of the "circuit value problem" studied by theoreticians for
years and thought to be "inherently sequential." Bailey's work would tend to be empirical
evidence to support this.

30

WIN descriptions of Circuit Families

Rudolf Nottrott.and Wayne Winder

The Washington Integrated Notation (WIN) is a structured environment for developing
design generators [BaLiMcNo* 88]. Developed by Rudolf Nottrott and Wayne Winder, WIN
is the basis for a set of design generators used extensively within the LIS and distributed as.
a part of Release 3.2- of the LIS toolset.

A design generator is defined as a process that crt:ates multiple representations of a-single
instance from a family or class of VLSI circuits. Examples of instances are: 1) a 3-input,
2-phase clock, precharge style decoder, 2) a 16-bit shift register, and 3) .a 12-bit by 16-bit
precharge style, Booth-encoded, pipelincd multiplier. The differences among instances in
a class can be contained in concise parameters, such as the bit width of a register or the
operand bit width of an arithmetic unit (such as a multiplier). The purpose of WIN is to
allow parametric representation of the entire family of circuits in a clear, concise way that
emphasizes common elements between representations.

A WIN notation instance, or program, describes one or more representations of a single
instance of a circuit family. A different circuit instance from the same family can be described
by the same program with one or more changes to the values of parameters.

Central to the purpose of representing circuit families has been the development of WIN
interpreters which allow construction of the desired representations from a WIN program.
The representations implemented are layout and network. The layout interpreter, laygen,
creates layout suitable for graphical viewing and subsequent processing (by magic [see "1986
VLSI Tools" by Ousterhout, et al. of the University of California, Berkeley, Computer Science
Division], for instance). The network interpreter, nelgen, acts as an input preprocessor for
the simulation system Network C. The common element to be captured is, essentially, the way
in which constituent elements (leaf cells) are put together. WIN allows easy, incremental
development of the description of a circuit family, both top-down for circuit design and
bottom-up for layout implementation. It also allows the facile capture of design expertise.

31

Modeling Electronic Circuits and- Systems with-NMtwork C

William Beckett

Network C, or nc, is a superset of the C programming language designed to facilitate the
construction of simulation models of electronic circuits and systems. Written by William
Beckett, nc has been tested on a variety of systems and included in Release 3.2 of the LIS
toolset.

The nc circuit description constructs of the language are hierarchical and allow subsystem
models of varying levels of abstraction to be mixed. The language provides a range of
modeling capabilities including complete of' approximate solution of Kirchoff equations at
the circuit level and discrete event functional simulation at the system level.

Like C, nc is a compiled language. System, subsystem, and device models are translated
into procedures which are then linked- with the nc run time library to form an executable
simulation model. Since all nc models are procedures, libraries of these models can be built
which can then be used as components in models of more complex systems.

Following translation, the execution of an nc program proceeds in two phases. The first
phase is circuit analysis. The effect of circuit analysis is the decomposition of the system
being modeled into a set of stages. Each stage is isolated in that there is no DC coupling
between it and any other stage. In the case of analog circuits, this decomposition of a circuit
into a set of stages is represented explicitly in the language. In the case of MOS integrated
circuits, the decomposition is performed automatically and the boundaries of stages need
not be explicitly represented.

The second phase of execution of an nc program is the calculation phase. The kind of
behavior calculation performed by nc in this phase depends on the kind of system being
modeled. If the system is composed entirely of functional level models, the behavior will be
calculated using discrete event simulation. If the system consists entirely of analog circuit
level models, a continuous time solution to IKirchoff equations is computed using a non-linear
equation solver.

In general, the calculation phase of ic will utilize a combination of continuous time calcula-
tion and discrete event simulation in which the outputs of each stage are calculated using the
equation solver and propagated to the inputs of subsequent stages using discrete event simu-
lation. This technique is aimed at retaining some of the accuracy of purely con"auous time
systems while realizing the speed advantage inherent in discrete event systems. For models
of MOS integrated circuits, the value of increased accuracy over purely discrete systems is
that a larger class of circuits can be modeled. This class includes circuits which utilize analog
circuit techniques or in which there is a considerable amount of charge sharing. The value
of the increased speed of discrete event systems ovcr purely continuous time systems is that

32

circuits with a, larger number of components can be accommodated.

The continuous time part of thecalculation used by nc is similar in principle to the calculation
done in SPICE but differs in several respects. -First, since nc partitions the circuit into
stages and computes ea.ch stage independently, the, rank of the set of node equations is
dramatically reduced for larger systems. Second, the numerical method used by nc varies
with the kind of circuit being modeled- so that the amount of computation may be reduced
by taking advantage of special properties, of the various types of device models. And finally,
nc generally uses simple first order device models for transistors and other components. All
of these aspects tend to trade accuracy for s)ced.

33

Automatic Layout Compaction

Simon Kahan and Martine Schlag

Compaction of VLSI layouts is well studied, coinputationally intensive and of considerable
practical value. An important special case for 'which our research produced a substantially
faster algorithm is the compaction of a design built from a single cell. The entire array
can be compacted by compacting a single instance of the cell against itself. Alternatively,
the problem may be viewed as finding the smallest area tile enclosing the cell's layout and
capable of 4-tiling the plane. The best previously known algorithm was the Mehlhorn and
Rilling O(n 2logn) iterative solution. Anderson, Kahan and Schlag present an O(nlogn)
solution for one dimensional, planar constrained networks [AnKaSc89, AnKaSc90]. The two
dimensional case is found by iteratively applying the one dimensional solution.

The algorithm was implemented in C in fewer than 500 lines. An effective way to apply the
technique is to combine two or more base tiles ihto a. super tile which is compacted internally.
This allows components to shift internally making a smaller overall design. The program
showed that this technique could be quite powerful [AnKaSc89, AnKaSc90].

34

Release 3.2 of the LIS Design Tools

One of the spinoffs of the research 'perfornled under the contradt was the development of
software tools to aid IC design. Because of t.he need for such tools, p ,4rticularly within
Universities, a package of these tools was assembled and distributed. This package contained
not only those developed at the University or Washington, but also software developed, at
various other sites, including UC Berkeley, CMU and MIT. The intent was to provide a
reasonably integrated set of tools and docunentation that sites could simply load and' run,
eliminatingthe time-consuming process of obtaining individual tools from a variety of sites
and making them work together.

The entire tools package was ported to and tested on 4 different hosts - SUN3, DEC VAX
(running ULTRIX), IBM RT (running Berkeley Unix 4.3) and Sequent. Some of the tools
in the toolset and their authors are:

* Network C (William Beckett). A multi-level simulation system designed for con-
structing and simulating models of VLSI circuits and systems. The input language, a
superset of C, supports a range of modeling capabilities including solution of Kirchoff
equations at the analog level and discrete event simulation at the system level.

* Gemini (Carl Ebeling). A circuit comparison program that is used to compare ex-
tracted circuit layout with a speciflication.

e Ohmics (Wayne Winder). Checks CMOS designs for the adequacy of ohmic contacts.
The output of the circuit extractor Mextra is analyzed to determine the shortest path
from each transistor to an ohmic contact of the correct type.

* WIN (Rudolf Nottrott and Wayne Winder). A specialized circuit design language for
assembling layouts and netlists.

* CFL (William Beckett). A library of routines that allows parametrized layouts to be
assembled within C programs.

9 Xl Support (Warren Jessop), The X lI drivers for the popular layout editor Magic.

Release 3.2 of the LIS toolset was distributed to over 90 sites. Besides the value to the site,
the LIS received considerable useful feedback.

:35

References

[AmBo91a] T. Amon, G. Borriello, "A Restricted Calculus for the Specification of
Timing Behavior," the International Workshop on Formal Methods in
VLSI Design (poster-). Miami, FL, January 1991.

[AmBo90] T' Amon, G. Borriello, "On the Specification of Timing Behavior," Inter.
national Workshop: on 7intig Issues in the Specification and Synthesis Of
Digital Systems (Tau ') - A CM/IEEE), Vancouver, BC, August 1990.

[AmBo9lb] T. Amon, G. Borriello, "Sizing Synchronization Queues: A Case Study
in Higher Level Synthesis," 5th International Workshop on High-Level
Synthesis, Buhlerhohe, Germany, March 1991.

[AmBo91c] T. Amon, G. Borriello, "Sizing Synchronization Queues: A Case Study
in Higher Level. Synthesis," 28th A CM/IEEE Design Automation Confer-
ence, San Francisco, CA, June 1991.

[AmBo9ld] T. Amon, G. Borriello, "OEsim: A Simulator for Timing Behavior,"
28th A CM/IEEE Design Automation Conference, San Francisco, CA June
1991.

[AmBoSe9l] T. Amon, G. Borriello, C. Sequin, "Operation/Event Graphics: A De-
sign Representation for Timing Behavior," 10th International Symposium
on Computer Hardware Description Languages, Marseille, France, April
1991.

[AmBoSe90] T. Amon, G. Borriello, C. Sequin, "Operation/Event Graphs and OEsim,"
Dept. of Computer Science and Engineering, University of Washington,
CSE 89-01-17, January 1990.

[AmBoSeWi89] T. Amon, G. Borriello, C. Sequin, W. Winder, "A Unified Behav-
ioral/Structural Representation for Simulation and Synthesis," 4th Inter-
national High-Level Synthesis Workshop, Kennebunkport, ME, October
1989.

[AnArBo89] C. Anderson, K. Armstrong, G. Borriello, "Proceedings of CS568: PHM
- A Programmable flardware Monitor," Dept. of Computer Science and
Engineering, University o1' Washington, CSE 89-09-11, September1989.

[AnKaSc89] R. Anderson, S. Kahan, M. Schlag, "An O(nlogn) Algorithm for 1D Tile
Compaction," in M. Nagl (ed.), Graph-theoretic Concepts in Computer
Science, LNCS 411, Springer-Verlag, pp. 287-301, 1989.

36

[AnKaSc96] R. Anderson,-S. Kahan, M. Schlag, Single-Layer CylindricalC:ompactibn,
Technical Report 90-10-11, Dept. of Computer Science, University of
Washington, 1990, '(to appear in- Algo rithmica),

[BaLiMc88] J.L. Baer, M. Liem- L. McMurchie, R. Nottrott, L. 'Snyder, W. Winder,
"A Notation for Describing Multi pie Views of VLSI Circuits,' 1988Design
Automation Conference (DAC), Anaheim, CA, June 1988, pp. 102-107.

[Ba89a] M.L. Bailey, "How to Measure thc Parallelismof CMOS VLSI Circuits,"
Progress- on Computed Aided VLSJ Design, Vol. 5,1989.

[Ba89b] M. 'Bailey, "The On-Chip Parallelism of VLSI Circuits," Ph.D. disser-
tation, TR #89-08-05, Dept. of Computer -Science and Engineering, Uni-
versity of Washington, July 1989.

[BaSn89c] M.L. Bailey, L., Snyder, "A Model for Comparing Synchronization-Strate-
gies for Parallel Logic-lxvel Simulation," Proceedings of ICCAD, Novem-
ber 1989.

[BaSn88] M.L. Bailey, L. Snyder, "An Empirical Study of On-Chip Parallelism,"
Design Automation Conference (DA Q, Anaheim, CA, June 1988, pp.
160-165.

[BaSn89a] M.L. Bailey, L. Snyder, "The Effect of Timing on the Parallelism Available
for Parallel Circuit Simulation," in Distributed Simulation, 1989, pp. 157-
163, SCS, 1989.

[BaSn89c] M. Bailey, L. Snyder, "Towards a Unified Theory of the Parallelism Avail-
able for Circuit Simulation," TPR #88-11-08, Dept. of Computer Science
and Engineering, University of Washington, 1989.

[BaBoRa89] K. Bartlett, G. Borriello, S. Raju, "Timing Optimization of Multi-Phase
Sequential Logic," TR #89-12-05, Dept. of Computer Science and Engi-
neering, University of \Washington, December 1989.

[BaBoRa90] K. Bartlett, G. Borriello, S. R aju, "Timing Optimization of Multi-Phase
Sequential Circuits," Htawau'ii [nWernational Conference on System Sciences
(HICSS23), Kailtia-Kona, Ill, January 1990.

[BaBoRa9l] K. Bartlett, G. Borriello, S. Raju, "Timing Optimization of Multi-Phase
Sequential Logic," IEEE Transactions on CAD, Vol. 10, No. 1, January
1991.

[BeEbWiDe9l] R. Bedichek, C. Ebeling, G. Winkenbach, T. DeRose, "Rapid Low-Cost
Display of Spline Surfaces," in C. Sequin (ed.), Proceedings of the Con-
ference on Advanced Research in VLSI, MIT Press, pp. 340-355, March
1991.

37

[BoSn9l] K. Bolding, .L. Snyder, "Perfoemance.Study.of Twd Dimensional Chaotic
Routers," in preparation, 1991.

[Bo88] G. Borriello, "Combining Event and Data-Flow Graphs inBehaioral Syn-
thesis," International Confierence on Computer-Aided Design "(ICCAD),
Santa CIAra, CA, pp., 322-325, November 1988.

[Bo89] G. Borriello, "Synthesis of Asynchronous/ Synchronous Control Logic,"
Proceedings of the 1989 International Symposium of Circuits and Systems
(ISCAS'89), Portland, OR, May 1989.

[Bo90] G. Borriello, "Synthesis of Interface Logic," Proceedings of the IEEE VLSI
Workshop, Tampa, FL, February 1990.

[BoDe88a] G. Borriello, E. Detjens, "H1igh.,Level Synthesis: Current Status and Fu-
ture Directions," 1988 Design Automation Conference (DAC), Anaheim,
CA, June 1988, pp. 477-482.

[BoDe88b] G. Borriell, E. Detjens, "ligh-Level Synthesis: Current Status and Future
Directions," Dept,. of Compiit.er Science, University of Washington, CS
88-07-01, July 1988.

[BoEb89] G. Borriello, C. Ebeling, "A One-Year Graduate Course Sequence in VLSI
Design and CAD," Pioceedings of the Second VLSI Education Conference,
Santa Clara, CA, July 1989.

[BoKa87] G. Borriello, R. Katz, "Synthesis and Optimization of Interface Trans-
ducer Logic," International Conference on Computer-Aided Design (IC-
CAD), Santa Clara, CA, November 1987.

[BuBo89] S. Bunton, G. Borriello, "Development of a Theme by Ziv and Lempel,"
Dept. of Computer Science and Engineering, University of Washington,
CSE 89-10-08, October 1989.

[BuBo90] S. Bunton, G. Borriello, "Practical Dictionary Management for Hardware
Data Compression, 61h AIIT Conference on Advanced Research in VLSI,
Boston, MA, April 1990.

[BuBo91j S. Bunton, G. Borriello, "Practical Dictionary Management for Hardware
Data Compression," Cominuiinicalion.q of the ACM, accepted in July 1990,
expected to appear in .July 1991.

[BuSaBaBo9l] T. Burks, K. Sakallah, K. l3artlett, G. Borriello, "Performance Improve-
ment through Optimal Clocking and Retiming," International Workshop
on Logic Synthesis (poster), Research Triangle Park, NC, May 1991.

38

[CaBo89] J. Carson, G. Borriello, "A Testable CMOS Asynchronous Counter,"
Dept. of Computer Science and Engineering, University of Washington,
CSE 89-10-07, Octobcr 1989.

[CaBo90] J. Carson, G. Borriello, "A Fully Testable CMOS Asynchronous Counter,"
IEEE Journal of Solid-State Circuitls, VoL SC,25, No. 4, August 1990.

[DeBaBa*89] T. DeRose, M. Bailey, B. Barnard, R.. Cypher, D. Dobrikin, C. Ebeling,
S. Konstantinidoti l. LcNlurichie, 11. Mizrahi, B. Yost, "Apex: Two Ar-
chitectures for Generating Parametric Curves and Surfaces," The Visual
Computer, Vol. 5, No. 3, .June 1989.

[Eb88] C. Ebeling, "Geminill: A Second Generation Circuit Comparison Pro-
gram," Proceedings of the International Conference on Computer-Aided
Design 88; 1988, pp. 322-325.

[Eb89] C. Ebeling, "Gemini 1: A Sccond Generation Layout Validation Program,"
Proceedings of ICCA D, pp. 322-325, November 1989.

[Eb9l] C. Ebeling, "Flexible Hardware for Computing Complex Evaluation Func-
tions," Technical Report, Dept. of Computer Science and Engineering,
University of Washington, 1991.

[EbBo90] C. Ebel:ng, G. Borriello, "Making tiha Most of a Design Project," Pro-
ceedings 1990 Microelectronic Systems Education Conference, 1990.

[EbMc90] C. Ebeling, N. McKenzie, "MacTester: A Low-Cost Tester for Interac-
tive Testing and Debigging," Proccedings 1990 Microelectronic Systems
Education Confcrence, July 1990.

[EbWu89a] C. Ebeling, Z. Wiu, "WircLisp: Combining Graphics and Procedures in a
Circuit Specification Language," Proceedings of IEEE International Con-
ference on CAD (ICCA D-89), November 1989.

[Eb89b] C. Ebeling, Z. Wu, "WireLisp: Graphical Programs for Digital System
Design," Proceedings of the International Conference on Computer Aided
Design, November 1989.

[HoSn9O] S. Ho, L. Snyder, "A Formal Model of the Processor Memory Interface,"
Proceedings of the International Conference on Parallel Processing, Vol.
1, Penn State, pp. 181-184, 1990.

[HoSn88] S. Ho, L. Snyder, "A Model for Architectural Comparison," Dept. of Com-
puter Science, University of Washington, TR #88-04-01, 1988.

39

[HoSn89a] S. Ho. L. Snyder, "Are Bit. Serial or Word Parallel Computers Faster,'
Dept. of Computer Science and Engineering, University of Washington,
1989.

[HoSn89b] S. Ho, L. Snyder, 'Balance in Architectural Design," Technical Report
-#89-12-04, Department of Computer Science and Engineering, University
of Washington, December 1989.

[HoHoSn89 S. Ho, T. Holman. L. Snyder, -Normalized Time and its Use in Architec-
tural Design," Proceedings of 271th Allerton Conference on Control, Com-
munications and Compuling, pp. 712-713, September 1989. -

[Ko9O] S. Konstantinidou, "Adaptive. Minimal Routing in Hypercubes," Sih
MIT Conference on Advanced Rccscarch in VLSI, Boston, MA April 1990.

[Ko91] S. Konstantinidou, -Deterministic and Chaotic Adaptive Routing in Mul-
ticomputers," Ph.D. dissertation, Dept. of Computer Science and Engi-
neering, University of Washington, 1991.

[KoSn90J S. Konstantinidou, L. Snyder, 4The Chaos Router: A Practical Applica-
tion for Randomization in Network Routing," Proceedings of 2nd Sympo-
sium on Parallel Algorithms and Architectures, ACM, pp. 21-30, 1990.

[McAnBo9l] L. McMurchie, C. Anderson, G. Borridello, "Hybrid Compiled/Interpreted
Simulation on MOS Circuits." 2nd European Design Automation Confer-
ence, Amsterdam, February 1991.

[Mc9O] N. McKenzie, "UW VLSI Chip Tester," TR #89-12-01, Dept. of Com-
puter Science and Engineering, University of Washington, December 1990.

[Sn88] L. Snyder, "A Taxomony of Synchronous Parallel Machines," Proceedings
of the International Conference on Parallel Processing, 1988, pp. 160-165.

[Ty87] A. Tyagi, "Hercules: A Power Analyzer for MOS VLSI Circuits," Proceed-
ings of the International Confcrcnce on Computer-Aided Design, ICCAD,
1987, pp. 529-533.

[Ty89] A. Tyagi, "The Role of Energy in VLSI Computations," Ph.D. disserta-
tion, Dept. of Computer Science and Engineering, University of Washing-
ton, 1989.

[Ty88] A. Tyagi, "The Role of Energy in VLSI Computations," UW Dept. of
Computer Science, TR #88-06-05, 1988.

[WuEb89a] Z. Wu, C. Ebeling, "\Vircbisp Manual," TR #89-12-02, Dept. of Com-
puter Science and Engineering, University of Washington, 1989.

'10

[%VuEb89b] Z. Wu, C. Ebeiiag. -I)rvikg \ircLisp,7 TR #89-12-03, Dept. of Com-
puter Science andUEiizwcrisig. Vniversity-of Washington, 1989.

41

