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0. Executive Summar,

This Phase I SBIR research effort concentrated on the feasibility of
creating the primary tools for the prototype development in Phase II of a
digital change detection workstation. This system is intended to to be
capable of detecting long-term (6 months to one year) and/or seasonal
changes from all-source imagery. The system is intended to be hosted on a
SUN-4 platform operating under a UNIX/C software environment.

The emphasis of the present effort was on the two major technical
challenges for the development of such a system: precision image
registration and robust change detection and analysis. At the direction
of the ETL customer, most of this effort was directed toward automated
SAR-optical image registration and automated change cueing experiments.
Change cueing is an initial step in change detection for identifying
regions where possible change events may have occured.

The automated registration effort was successful over the data sets
tested. These data sets did not contain appreciable terrain-induced
distortions. Additional testing and refinement of the present algorithms
is recommended for Phase II.

Some theoretical developments for algorithms are made for addressing such
terrain-induced complications in Phase II. The implementation, testing
and modifications of such algorithms will also be a Phase II priority.

However, a useful system must always allow for interactive intervention by
a human operator. This is because automated techniques are not guaranteed
to perform perfectly l(O% of the time. Therefore, recommendations are
also made for an interactive system to supplement the automated
registration techniques.

The second main effort concerned change cueing. This efffort was also
successful over the data set which was attempted. However, more testing
must be performed in Phase II over additional imagery sets.

Change analysis is the subsequent step which evaluates such cued regions
as being legitimate changes or not. Change analysis was not pursued
during this Phase I effort, and will only be pursued to a limited degree
in Phase II. This is because the difficulty of this problem lends itself
better to an interactive approach with a human operator. However, the
operator is expected to be selectively cued to only a small number of
possible change events.

An initial effort was also included for describing some of the image
variabilities that occur as the the sensing scenarios change.

Following a summary in section 7.1 of results obtained so far, an initial
summary of Phase II requirements appears in section 7.2.



1. Introduction to Phase I Report

The Phase I Technical Objectives are summarized in section 1.1, an
overview of the conclusions appears in 1.2, and the layout of this report
is described in section 1.3.

1.1 Background and Objectives of Phase I Research

The two technical objectives concerned the technically demanding tasks of
precision registration and change detection and analysis.

Technical Objective #1: Demonstrate the feasibility of precision
registration of multi-source imagery, both image-image as well
as image-map.

Technical Objective #2: Demonstrate the feasibility of robust change
detection and analysis for multi-source imagery.

The Phase I effort therefore concentrated on registration experiments and
the feasibility of initial cueing for change detection. The registration
effort examined both rough registration as well as sub-pixel estimation
for SAR-optical pairs of imagery.

Change detection involves cueing potential changes and evaluating these
cued regions as legitimate changes or as image artifacts due to other
causes. The Phase I research only dealt with cueing potential change
events. The change events examined were actual changes over time and
synthetic changes inserted into imagery.

The examination of these issues was crucial for achieving the ultimate
Phase II goal of creating a workstation for automatic change detection of
all-source imagery.

1.2 Summary of Conclusions

The image-image registration efforts were encouraging. The two types of
rough registration methods were area-based and contour-based. These
algorithms operated under the assumption of little terrain distortion to
the imagery. A contour-based algorithm for dealing with the problem of
registering SAR image pairs containing considerable terrain relief is
outlined. Fuller development and testing of this procedure is a Phase II
issue.

A two-stage method of combining the area-based and contour-based
algorithms showed some improvement over the performance of each
separately. In particular, small residual amounts of rotation oil the
order of a degree were removed by this procedure.

Two sub-pixel registration estimation algorithms are also presented, with
extensive testing results so far available for one of them. The further
investigation of the other algorithm will be undertaken in Phase II.
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The following statistics summarize registration accuracies achieved in
testing:

o area-based
- K-L algorithm (see section 3.2.1.1): ± 1 pixel in 50% of cases,
- MNF algorithm (see section 3.2.1.2): ± 1 pixel in 75% of cases,

o contour-based: < 2 pixels in all cases,

o combined area-contour: ± 1 pixel (using MNF area method)

o sub-pixel registration:
- Algorithm #1 (see section 4.1.1): 5x10-4 pixel

(using lower frequencies, and without
spectral leakage filtering)

- Algorithm #2 (see section 4.1.2): '<.10-3. pixel (best results
using Hanning filter for filtering spectral leakage)

The sub-pixel results were obtained on simulated data.

The other main technical area investigated was change cueing on the pixel
level, given a registered image pair. Both actual changes and simulated
changes were examined. The results of testing revealed excellent cueing
even for small (two pixels) targets as long as the local image-image
correlation of the background was high, with the performance degrading as
this correlation decreases.

From a signal processing standpoint, this performance dependence on the
background correlation levels is unavoidable for pixel level procesing.
However, considerably more progress can be achieved using processing
methods which effectively increase these background corelation levels by
restricting attention to selective frequency regions.

Progress beyond what can be achieved using such enhanced pixel-level
processing would probably require higher-level procedures on the object-
level. Such methods will be required to make hypotheses on the existence
of objects based on pattern analysis, as opposed to simply thresholding
based on local statistics.

Despite the encouraging results using the automated methods, it is
strongly recommended that the Phase II workstation contain capabilities
for interactive as well as automated modes of operation. Such a dual
capability allows the use of a human operator to examine and assess the
results generated by automated registration procedures, make corrections
if needed, and to provide initial offsets for difficult or ambiguous
cases.

For change detection, the use of automated change cueing requires only
selective attention by the operator, but uses his/her superior judgement
for evaluating cues as legitimate targets.
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1.3 Organization of the Report

The pre-processing methods appear in section 2, initial rough and sub-
pixel registration methods are in sections 3 and 4, and change cueing is
discussed in section 5. Some observations on the variability of these
procedures for changing imaging scenarios is presented in section 6.

Finally, some conclusions on the practicality of these methods are
discussed in section 7.
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2. Pre-Processing

2.1 Characterization of Imagery Set

Any study of registration and change detection methods for multi-source,
multi-spectral imagery first requires compiling a representative set of

imagery containing the relevant objects of interest. More precisely for

change detection, temporal data sets depicting the same region at

different time periods are what is needed. Additionally, multi-source or

multi-spectral temporal data sets provide opportunities for registration

and change detection experiments between imagery types.

During the present Phase I research, the effort concentrated on matching

and change detection between synthetic aperture radar (SAR) and electro-

optical (EO) Landsat TM imagery.

One multi-source data set consists of the JPL quadpole aircraft SAR of the

Raisin City CA site and collateral coverage from 7 bands of Landsat TM.

The SAR and TM data represent imaging times. Also, SIR-B imagery of the
same site was available.

A second data set consists of SEASAT SAR and 7 bends of TM data of the

Yuma AZ site. Again, the SAR and TM data were imaged at different times.

The Landsat TM data was resampled to match the resolution of the SEASAT

data for registration experiments.

Table2-1 Imagry setL
Resolution

Sensor Region (range x azimuth) Wavelength Polarization Flying Altitude

JPL quad-pole Raisin City, CA 7.49m x L-Band omplex 12.22 km
SAR 10.58m quadpole

SIR-B SAR Raisin City, CA 34.6m x L-Band 23 cm H-H 235 kn
28.5m

SEASAT Yuma, AZ 25m x L-Band 24 cm H-H 800 km
SAR 25m

Landsat-4 TM Raisin City, CA 30m x band 1.45 rm - .521m N/A 705 km
Yuma. AZ 30m* band 2.52;Lm - .601un

band 3 .63ptm - .691±m
band 4.76-n- .90m
band 5 1.55imn- 1.75pm
band 6 10.4pm - 12.5pim

* band 7 Landsat resolution 120m band 7 2.08tpm - 2.35un

Table 2-1: Resolutions for Sensor Types
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The resolution of the various data sets is given in Table 2-1. Examples
of the relevant imagery appear in Fig. 2-1 to 2-5.

The JPL quadpole data set involves independent measurements for the
horizontal and vertical polarized SAR returns. From these data, one can
calculate the radar returns arising from any hypothetically transmitted
linearly polarized signals. Recall that the electric (E) field of an
electromagnetic (EM) wave instantaneously resides in a plane of vibration.
If this plane of vibration is constant we say that the EM wave is linearly
polarized.

The most general case is that this vibration plane rotates, with the
magnitude of the E-field vector tracing an ellipse when projected into a
plane perpendicular to the propagation vector. In this case we say the EM
wave is elliptically polarized. A special case of elliptic polarization
is circular polarization.

Elliptically polarized waves can be considered as the superposition of two
orthogonal linearly polarized waves with a phase difference. Therefore,
many, though not all, analyses of polarization involve only the linear
case.

A formalism for representing the outcome of scattering coherent, polarized
waves is by the use of the scattering, or Jones, matrix [s). When post-
multiplied by the incident electric field, or Jones vector, the resultant
scattered electric field is determined, ie:

[E tJ L[21 s2[t (t)J

Another formalism for representing incoherent scattering involves the four
component Stokes vector (S) and the (4x4) Mueller (also called phase or
Stokes) matrix (F]. Operationally, incoherent scattering is described in
an ensemble sense using matrix multiplication:

S-0 Tr1 F12  F1 3  F14  S

Sj F21  F2 2  F2 3  F24 S

S-2 F31  F3 2  F3 3  F34 0

-341  F42  F4 3  F4 4 S

Backscatter from terrain involves depolarization and incoherent returns.
Instantaneously, loss of polarization does not exist, ie. it is inherpntly
a time-averaged concept. Because the scattering matrix formalism always
involves full polarization and complete coherence, it is an instantaneous
concept and cannot be used in an ensemble sense. For this reason and
because of noise reduction, most polarimetry data is in the form of the
Mueller matrix.
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As described in [Zebker et al,871, the JPL imaging radar polarimeter
measures both intensity and relative phase of radar backscatter as a
function of transmitted and received polarizations. This was accomplished
by adding a dual-polarized antenna and a four channel data system to the
JPL aircraft SAR.

The amplitudes and phases of all elements of the scattering matrix are
therefore are measured for each pixel in the SAR image. This allows the
synthesis of any combination of transmitted and received antenna
polarizations. However, as pointed out in [Lukert and Blanchard,88], such
accurate depolarization measurements require adequate antenna polarization
isolation. Otherwise like-polarization feed-through can exist in the
depolarized channel, and this effect can couple with PRF-related azimuth
ambiguities to affect pixels other than the one being processed.

Another consideration is the use of the Mueller matrix rather than the
scattering matrix. Becauise of statistical variations caused by noise,
spatial averaging of radar power measurements is used at a cost of reduced
resolution. In such a case, the assumption of uncorrelated phases of EM
waves from individual scatters allows the (incoherent) Stokes vector of
the sum of these waves to be the sum of their individual Stokes vectors.
This allows the summation of their individual Mueller matrices to form a
composite Mueller matrix for the composite scatter composed of individual
scatters.

For a fuller discussion of polarization concepts and definitions, see
Appendix 9.2.
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Fig. 2-1: Landsat Band 4, Yuma AZ Site



U. F

Fig. 2-2: SEASAT, Yuma AZ Site



Fig. 2-3: SIR-B SAR, Raisn City CA Site



Fig. 2-4: JPL Aircraft SAR (H-H), Raisin City CA Site
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Fig. 2-5: Landsat Band 4, Raisin City CA Site
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2.2 Optical Images

Several image pre-processing algorithms suitable for optical imagery were
investigated. These included procedures for enhancing edges, reducing
noise, and increasing the visual similarity of the optical and SAR images
to be matched.

The strategy for matching SAR to optical imagery was to preferentially use
the lower noise optical images to cue features for matching in the SAR
images. Certain features, particularly those with long linear signatures,
can often be segmented from optical imagery more easily and directly than
from SAR data. Several pre-processing schemes were tested with this idea
in mind.

For edge enhancement, a method which uses the sigma filter (Lee,83] was
found to yield well-defined edge structures. The sigma filter is based on
the use of a Gaussian distribution model for the pixel intensity values in
a local neighborhood. The assumption is that only those pixels whose
intensity values lie beyond two standard deviations (2a) from the
neighborhood sample mean comprise another population. This population
beyond 2-a represents either an edge structure or shot noise, whereas the
population within 2-a represents -n unchanging intensity field, generally
corrupted by speckle noise.

Therefore only pixels within the 2-a region are averaged to reduce the
effects of sp.dckle noise, resulting in an intensity-smoothed pixel. An
ad-hoc thresholding procedure is used to infer the presence of shot noise,
followed by smoothing of those pixels involving only their 4 nearest
neighbors.

The present edge detection procedure uses the sigma filtered image and the
original image together. The pixel-by-pixel differences of the two images
produces a well-defined edge map with stronger edges having brighter
intensities than the edges in the original image.

This enhancement occurs because of the smoothing of flat regions along
with a simultaneous identity operation applied to the edges. The image
difference operation thus results in amplification immediately next to
those areas having abrupt changes and are therefore changed by the sigma
filter, whereas flatter regions are suppressed because of their similarity
in both images.

Note that the original edges themselves are not modified by the sigma
filter, and thus are also suppressed in the difference image. Therefore,
the resulting edges in the difference image are edges which are slicghtly
displaced on the order of one pixel.

In addtion, it was discovered that by allowing the byte values of the
image to wrap in the difference of the original image, it was possible to
obtain an essentially binary image. This occurred because the edges in
the sigma filtered image were slightly brighter than in the original
image. As a result of the differencing process, these locations were

13



assigned a value slightly less than zero while all other locations were
assigned a grey value slightly greater than zero. The result was an image
whose histogram was dominated by the grey values near zero and near 255,
with no no pixels having grey values in between.

A sigma filter edge-enhanced Landsat TM band 4 image of the Yuma site and
one of the Raisin City site are shown in Fig. 2-6. The effect of the
wrapping compared to the clipped difference process can be seen in the
images. The grey values of the clipped images have been scaled to enhance
the dynamic range of the images.
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(a) (b)

(c) (d)

Figure 2-6 Sigma filter edge enhanced images of Yuma (a)
bit-raped (b) clipped at zero in the difference, (c-d)

similar images of Raisin City.



Fig. 2-7: Sobel edge filter enhanced and sigma filter smoothed Landsat
Band 4 image of Raisin City site.
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The spirit of this method is compatible with the concern voiced in [Adair
and Guindon,901 that the usual independent applications of noise
suppression and edge enhancement should not be de-coupled. The essential
point is that the homogeneity criteria for the adaptive smoothing operator
should be consistent with the abruptness detection process in the edge
operator.

Another method for edge enhancement, the Sobel operator [Ballard,82], was
used effectively as a gradient-type edge detector in bands 1-5 of the
Landsat-4 TM data sets. The result of the sobel operator applied to a
sigma smoothed Landsat-4 image of the Raisin City site is shown in Fig. 2-
7.

Continued effort in Phase II will be concerned with segmentation of edges

and contours using such ideas.

2.3 SAR Images

Past work in the field of SAR-optical registration has emphasized the
importance of intensity pre-processing the SAR image prior to matching
with an optical image. SAR images tend to have lower signal to noise
ratios and smaller dynamic ranges than optical images. Another
complicating factor is that SAR images are involve multiplicative noise,
whereas passive optical imagery is corrupted by additive noise.

However, as argued in [Frost et al,82], a more realistic noise model for
SAR image processing is multiplicative-convolved noise. This is because
the product of the terrain backscatter and coherent fading, ie. the
speckle process, is convolved with the radar system's point spread
function. Therefore, a straightforward application of the logarithm of

the SAR image will not necessarily separate signal and noise into additive
components. Direct deconvolution of the signal from this convolved
speckle noise process is generally computationally inaccurate because of
the low signal to noise ratios common to SAR images. Because of this
difficulty, most SAR image processing is simply performed on the basis of
a multiplicative noise model even though it is only approximately correct.

Some of the methods for noise reduction in SAR images include locally
adaptive signal estimation [Frost et al,823, [Lee,83]. These methods
attempt to estimate the signal locally, thereby distinguishing meaningful
grey-value transitions from noise-induced changes. Appendix A contains a
fuller account of such locally based noise reduction techniques.

Depending on the matching methodology to be used, various nonlinear
adaptive spatial filters may be used. For SAR images with a large amount
of noise and speckle content, such as is the case with SEASAT and !IR-B
imagery as well as to a lesser extent with aircraft imagery, an adaptive
filter reduces the effects of noise while still preserving the integrity
of edges. This retention of the edge structure is vital to our contour-
based matching algorithm.

17
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Fig. 2-8: Comparison of sigma smoothed imagery. Original image upper
left, images in upper right, lower left, lower right represent
values of smoothing parameter s= .15, .3, .45 respectively.
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One such filter is the sigma filter, described in section 2.2. VEXCEL has
used the sigma filter for filtering SEASAT arctic imagery on another
project [McConnell,87]. This filter was used to filter the image prior to
successfully thresholding ice floes using histogram techniques.

The sigma filter uses a local statistical model for the flat and edge
popula'ions in the SAR image. Increasing the values of sigma lead to
images with increasing amounts of smoothing, as shown in Fig. 2-8.
Recomendations for sigma values based on maximizing the signal to noise
ratio appear in [Lee,83].

Another edge preserving, adaptive noise smoothing algorithm (Nagao et
al,791 uses a set of nine masks for each pixel. Each such mask covers a
select group of the neighbors of a given pixel. The variance of the pixel
intensities of each mask is calculated, and the mean of the pixel mask
with the minimum variance is substituted for the original pixel value.

An extension of the sigma f'lter to quadpole SAR imagery is given in
[Lee,90]. The extension of such adaptive smoothing techniques to data
sets of polarized SAR imagery represents a promising approach for
increasing the signal to noise ratio of the filtered images.

An algorithm based on relaxation (Rosenfeld,82] was attempted for
reinforcing "smooth" contours formed by local edges. The algorithm is not
rigorous in a probabilistic sense and does not compute updated
probabilities in according to Bayes theorem. Nevertheless, it is
appealing in a heuristic sense, and seems to correspond to intuitive
thinking about locally updating probabilities of an edge being significant
based on its immediate surroundings.

This algorithm is briefly given below:

1) Estimate initial probabilities p(i,j) based on the likelihood that a
pixel is a member of class j. Each pixel in the window of n pixels
is pixel i. There are m-4 classes j-l,...4, corresponding to the
four edge orientations 0, 450, 900, 1358. The sense of the edges is
ignored at this point in this processing for simplicity.

2) For each point, determine the compatibility of each edge class
probability with that of its eight neighbors. Thus, construct
c(i,j;h,k), the compatibility of pixel i wiith class j, and pixel h
with class k. The pixels each have probabilities p(i,j), and p(h,k)
of being a member of the specified class. There are eight
compatibilities h-l,...,8 for each class of pixel i. Therefore, for
each pixel there are 32 compatibilities, ie. 4 for each of 8
neighbors.

3) Update probabilities by first computing q(i,j), which is the mean of
the sum:

q(i,j) - (l/n-l)__1 P. 1{c(i,j) p(h,k)1
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Then the new updated probability is given by:

p..,(i,j) - p(i,j)0 ld(l+q(i,j))

This algorithm did not work well in its present form for SAR imagery. The
results are discussed in section 2.5.

Methods employed for intensity re-mapping include histogram equalization
using the cumulative distribution functions of both images
[Casteleman,79], histogram re-mapping using the Karhunen-Loeve Transform
[Wong,77], and correction using a sensor-dependent, exponential model for
the optical image [Wong,80].

2.4 Infrared Images

The NASA airborne Thermal Infrared Multispectral Scanner (TIMS) has six
wavelpngth channels in the long wave infrared (8-12 microns) region of the
electromagnetic spectrum. It has an instantaneous field of view of 2.5
mrad, a total field of view of 80 degrees and a nominal ground resolution
of 10 meters. Table 2-2 shows the specifications of the six LWIR TIMS
bands.

We havt. acquired two daytime near-nadir TIMS images of Death Valley in the
Mojave Desert of California from the Jet Propulsion Laboratory - one
taken in June of 1983 and the other in July of 1988. Sortie
specifications are shown in Table 2-3. The respective images for band 1
are shown in Figures 2-9(a) and 2-9(b).

Band Wav-length Limits Bandwidth FWHM
(microns) (microns)

1 8.2 - 8.6 0.4
2 8.6 - 9.0 0.4
3 9.0 - 9.4 0.4
4 9.4 - 10.2 0.8
5 10.2 - 11.2 1.0
6 11.2 - 12.2 1.0

Table 2-2: TIMS Wavebands

Death Valley 1 Death valley 2

Sortie Date 6/02/88 7/22/83
Start Time 20:59:53 18:43:38
End Time 20:07:43 18:46:30
Start Latitude 36D 44M 48S N 36D 23M 48S N
End Latitude 36D OM OS N 36D 24M 12S N
Start Longitude 117D iM 24S W 116D 45M 12S W
End Longitude 116D 51M 54S W 117D IM 24S W

Table 2-3: Specifications for Death Valley Flights
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Death Valley is a long narrow valley floor bounded by the Panamint Range
on the west and the Funeral and Black mountairs on the east, which consist
of deformed metamorphic, volcanic, and sedimentary rocks. The floor of
Death Valley, which includes the lowest elevation in the United States, is
a closed salt pan covered by evaporite deposits - the dark, delineated,
stream-like forms near the right side of Figures 2-9(a) and 2-10(b).
These intermittent streams on the valley floor are bordered by floodplain
deposits of clay and slit. The valley floor is bordered by alluvial fan
deposits of gravel eroded from the adjacent mountains - these are the
round skirt-like forms to either side of the valley floor. On the
Panamint mountains, to the west (left) of the featureless alluvial gravel
fans, bedrock is exposed as intrusive bright forms (volcanic rocks) and
rough, jagged dark forms (carbonate rocks). Also of interest are two man-
made features near the upper right (north-east) of Figure 2-9(b): Furnace
Creek Ranch (a mottled square dark feature) and Furnace Creek airstrip ( a
long thin feature oriented in the north to south direction). The only
common man-made feature between these two images is the airstrip.

It is evident from Figures 2-9(a) and 2-9(b) that the Death Valley images
have different scales and are grossly misregistered. The first step in
the preprocessing was therefore to perform a global registration based on
a set of 54 manually located control points in the two images. For each
image dimension, the measured displacements between corresponding control
points were fit to a thin-plate cubic spline and interpolated to generate
a warping surface (one for each image dimension). The local 2-D
misregistrations provided by these surfaces were then used to resample
each of the images using a sliding-window cubic B-spline kernel (discussed
in Section 4.3). The globally registered images for TIMS Band 1, shown in
Figures 2-10(a) and 2-10(b), visually appear to be quite well aligned.
The same global registration step was also applied to the TIMS images in
Bands 3 and 5, so that the three bands for each observation could be
processed together.

The apparent similarity of multi-band infrared data sets is sometimes
greater in certain principle spectral components than in the original
bands themselves, due to enhancement of spectrally distinct features in
the data. Figures 2-11 through 2-13 compare the three respective
principle components computed from Bands 1, 3 and 5 (after global
registration) for each of the two Death Valley data sets. The long-term
correspondence between certain features in Components 2 and 3 (Fig. 2-12
and 2-13) is particularly striking. Note also that the Furnace Creek
airstrip is clearly visible in both second component images as a somewhat
crooked dark line near the upper right-hand edge of the frame. Since the
airstrip is known to be a linear feature, this shape indicates the
presence of residual global registration error near the right frame edge.

2.5 Pre-Processing Results

The SAR imagery used in the present effort contains a large amount of
speckle noise. The SIR-B imagery had the smallest signal to noise ratio
and was more dominated by speckle than the other SAR types. Moreover, the
smaller look angle of the space platform led to a higher degree of
geometric distortions.
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Fig. 2-14: Sigma filtered SEASAT SAR, smoothing parameter s-.25, 5x5

pixel neighborhood.
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Fig. 2-15: Sigma filtered SIR-B SAR, smoothing parameter s-.l, 5x5

pixel neighborhood.
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Fig. 2-16: Sigma filtered JPL (H-H) SAR, smoothing parameter s=.1, 5x5
neighborhood.
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-AlA

Fig. 2-17 Sigma filtered, histogram rernapped SEASAT SAP, smoothing
parameter s- .25, SxS neighborhood.
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The sigma filter was used extensively for smoothing the SEASAT, SIR-B, and
JPL aircraft quadpole SAR data sets. Several variations on the parameters
for filtering were tried. Fig. 2-14 shows a sigma-filtered SEASAT image
of the YUMA scene. Fig.2-15 and 2-16 are sigma-filtered images of the
Raisin City for SIR-B and JPL quadpole sensed data.

In order to increase the amenability of the SAR-optical matching process,
a global histogram remapping was applied to the SEASAT data based on the
histogram of the corresponding optical image. This global filtering step
was then followed by applying the locally adaptive sigma filter. The
resulting image is shown in Fig. 2-17.

Clearly, these sigma-filtered images show improvements in noise content
and the histogram remapping operation improved the visual similarity of
the SAR image to the optical (see Fig. 2-1 and 2-2).

Unfortunately, the relaxation procedure for selectively emphasizing long
contours [Rosenfeld,82] did not work well with SAR imagery. In
particular, most edges were eventually reinforced and strengthened,
creating a confusing, cluttered image instead of selectively segementing
only major contours.

It is believed that this problem is because small e.ge structures that
initially get emphasized are allowed by the algorithm to persist as the
number of iterations increases. Because of the cluttered nature of the
edges in a SAR image, most small edge structures do get emphasized during
the initial iterations.

This suggests that a more successful algorithm should be successively
taking into account larger neighborhoods that are directionally oriented
as the iterations progress, instead of always using a neighborhood of
fixed size.

Another modification that may be considered for pre-processing prior to
SAR-optical matching is to only reinforce those directions that are
contained in a particular streak S that has been extracted in the optical
image as part of a feature (the preferential use of streaks extracted
first from the optical image is discussed in section 3.2.2.1). Then
perform this directionally selective reinforcement sucessively for all
candidate streaks S in the SAR image which are in the region of
registration ambiguity for S. Moreover, the compatibilities C(i,j;h,k),
discussed in section 2.3, should be computed directly from their neighbors
in S using histograms, instead of from the compatibility table presently
used.

These modifications will be examined in Phase II.
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3. Approximate Registration of SAR-Optical Imagery

Image-image registrtion methods occur at three scales of accuracy:

o Very rough registration using geocoding methods, resulting in errors
of multiple pixels,

o Approximate registration using pattern information in the images,
resulting in errors on the order of 1 pixel,

o Sub-pixel offset estimation, followed by interpolation and image
resampling, resulting in residual fractional pixel errors less than
the true sub-pixel offsets.

Three main types of approximate registration methods are discussed in this
section. They are area-based, contour-based, and combined methods using
both areas as well as boundaries for matching.

3.1 General Issues and Strategies

We will classify feature matching techniques as region-based or contour-
based, and an overview of methods is presented in sections 3.1.2 and 3.1.3
respectively. Particulai new methods developed f&r the present effort
appear in sections 3-2 1 and 3.2.2 respectively. Section 3.1.1 presents a
review of the diffL..ies in matching dissimilar imagery.

In either case, airtching requires some analytic metric for making ranked
comparisons c Z good, poor, and ambiguous matches. The challenge is to
find metri:s which ire robust with respect to a wide variety of
illumination and viewing conditions.

One initial approximate registration method is to simply use a reference
geoid and geocode both images using any navigational information, such as
GPS or INS.

If map data are available, either as terrain (DTED), feature (DFAD), or
both, then one approach can employ the geocoding methods described in
[Kober et al,881 as an initial step for approximate dissimilar image-image
registration. The rule-based "expert" assistants described in [Curlander
et al,891 would then be used to select appropriate control features in
both the optical and SAR images.

More accurate SAR-optical registration would then proceed on the basis of
grey-level information in the two images. Of course, in the absence of
any preliminary geocoding, dissimilar image registration would proceed on
the basis of such pattern information alone. The following discuss4iolis
concern matching based soley on pattern information within the images to
be registered.

3.1.1 Overview on Difficulties in Matching Dissimilar Imagery

Precision registration of SAR and optical images is potentially difficult
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because of both terrain-induced geometric distortion and radiometric
differences between the two sensor types (see Fig. 1). Compounding this
problem is the local decorrelation of gray values within a single SAR
image. This smaller correlation length stems from the large amount of
speckle appearing in SAR imagery. Such speckle effects are always present
in coherent imaging systems whenever there is scene microstructure on a
smaller scale than the sensor resolution.

The difficulties for registration involve both geometric and radiometric
disparities. One radiometric problem source is speckle, which has been
discussed in section 2.3. Two remaining major factors contributing to
errors which make precise registration difficult are: nonlinearities
associated with terrain and low contrast regions, local contrast
reversals, and edge migration.

As discussed in [Ramapriyan et. al.,86], grey value differences among
overlapping SAR images are sensitive to range variations both within and
among the images, as well as incidence angle differences.

Relative geometric distortions between two overlapping images will be
accentuated by rapidly varying terrain relief, resulting in compression
and stretching of corresponding regions and distortions of grey level
boundaries. Geometric compression actually involves the accumulation of
returns from multiple terrain resolution elemen.s into the same range
cell. Because of this accumulation of returns, the radiometric value of
the affected pixels can vary widely in one image from the corresponding
pixels in the other image.

An extreme example of discontinuous distortion includes the phenomenon of
layover. The layoer effect results in certain objects which are
planimetrically further distant from the sensor being imaged with a
smaller range than nearby objects planimetrically closer to the sensor.
This occurs because of very abrupt transitions in height, as for example
with flagpoles. Such discontinuities will almost always cause errors in
automated matching, unless the affected feature is very small compared to
the matching window or specialized logic for detection of overlays is
used.

Opposite-side effects in SAR images may be caused by changes in local
incidence angles and environmental changes, both of which can result in a
changed radar scattering cross-section, and result in nonlinear grey value
mappings for corresponding regions. What often occurs in these cases is
called "contrast reversals". These local contrast reversals are not
predictable from one image to the next, and can cause problems for area
correlation schemes if the affected regions are a sizeable fraction of the
matching window. In fact, differences in coresponding local incidence
angles can cause mismatches to occur even for manually ,
correspondences [Leberl,86], [Fullerton,86].

Low contrast regions with superimposed speckle noise and specular effects
can cause problems for area-based matching metrics. In such cases, the
signal-to-noise ratios (S/N) are reduced. In the case of correlation
metrics, such situations often result in broad, relatively flat
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correlation peaks. Therefore, the location of the correlation maximum is
very sensitive in response to relatively small amounts of noise. Shadows
can also be a problem for such matching algorithms, but also represent
impnrtant constraints on the reconstructed terrain.

Another radiometric pathology is edge migration. This situation occurs for
the direction of radar illumination just grazing the terrain, causing an
abrupt transition from light to dark grey levels. As the sensor is
translated in the direction of this terrain element, the position of the
grazing tangent moves away from the sensor.

Matching processes depend on such grey level transitions for
correspondence, either explicitly or implicitly. Edge-based matching
algorithms will match such edges incorrectly. Area-based correlation
methods will be affected by this effect in proportion to their sensitivity
to the higher spatial frequencies corresponding to the affected grey level
edge and its size relative to the size of the matching window. It is
interesting to note that the direction of the edge migration effect is
opposite that of the parallax direction due to relief displacement.

Even after adjusting for differing spatial resolutions, the matching of
dissimilar imagery is difficult. This is because what is desired is
finding the correspondences of similar object features whose image
signatures are not always similar. Some of the geometric and radiometric
factors which contribute to this difficulty are discussed below.

SAR and optical imagery are formed by sensing at different wavelengths.
Therefore the interactions of the different wavelengths and scene
roughness result in different patterns of grey level textures. This
pathology is a result of the' wavelength dependence of the scatttering
cross section coefficient a.

However, there are other dependencies of a that are important at
microwave frequencies but not at optical. The discontinuity of the
dielectric constant is very important for the strength of radar return
from an object, but not at optical wavelengths. This is why mositure from
a recent rainfall will change the SAR signature of a cornfield more than
in the optical case.

Moreover, the SAR is an active, coherently imaging instrument, whereas
optical sensors, with the exception of lasers, are passive. Therefore,
SAR is subject to coherence-induced speckle, modeled as multiplicative
noise, whereas optical images generally are subject to additive noise.

One major problem is the greater radiometric sensitivity of a SAR compared
to a passive optical instrument when imaging the same scene uinder
different viewing scenarios.

Low contrast regions with superimposed speckle noise and specular effects
can cause problems for area-based matching metrics. In such cases, the
signal-to-noise ratios (SIN) are reduced. In the case of correlation
metrics, such situations often result in broad, relatively flat
correlation peaks. Therefore, the location of the correlation maximum is
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very sensitive in response to relatively small amounts of noise. Shadows
can also be a problem for such matching algorithms, but also represent
important constraints on the reconstructed terrain.

Certain radiometric pathologies have been observed in SAR images of lava
flows, forests, and sand dunes [Blom,88]. These features have been
observed to change appearance dramatically, even sometimes disappearing
completely, with variations in look angle and wavelength. Subsurface
imaging in some cases appears to be involved. Some statistical analyses of
scatterometer data seem to indicate that discrimination between lava flows
is better when look angles are less than about 35 degrees
[Blom,85,86,87a]. The same type of smaller angle effect has been observed
for sand dunes [Blom,81,82a,82b,87b].

The mechanisms for such behavior are not completely understood at present,
and can therefore not be reliably predicted. The implication for image
matching is that sometimes certain features and textures visible in an
optical image of the same resolution may be missing in a SAR image of the
same scene even though they are not geometrically occluded.

Another problem is that terrain-induced geometric distortions differ for
both types of sensors.

Relative geometric distortions between two stereo images will be
accentuated by rapidly varying terrain relief, resulting in compression
and stretching of corresponding regions and distortions of grey level
boundaries. Geometric compression actually involves the accumulation of
returns from multiple terrain resolution elements into the same range
cell. Because of this accumulation of returns, the radiometric value of
the affected pixels ci vary widely in one image from the corresponding
pixels in the other image.

As pointed out in [Ramapriyan,861, the requirement for well-conditioned
stereo intersections aggravates these problems.

An extreme example of discontinuous distortion includes the phenomenon of
overlay. The layover effect results in certain objects which are
planimetrically more distant from the sensor being imaged with a smaller
range than nearby objects planimetrically closer to the sensor. This
occurs because of very abrupt transitions in height, as for example with
flagpoles. Such discontinuities will almost always cause errors in
automated matching, unless the affected feature is very small compared to
the matching window or specialized logic for detection of overlays is
used.

3.1.2 Overview of Area-Based Matching

Template matching using any of the various forms of the correlation metric
has historically been a useful method for image-image matching. This
method of matching is generally region-based rather than boundary-based,
although it can also be used with some degree of success for matching
high-pass filtered data. Another area-based metric is the sum of absolute
differences [Barnea,72].
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One classification scheme of image translation estimation methods appears
in [Huang,81], and consists of : Fourier-based, matching, and
differential.

Differential methods apply to image pairs with small amounts of relative
translation, such as successive video frames. Such methods are based on
Taylor's expansion for two variables truncated to linear terms. Obviously,
such an approach is not applicable to this registration problem, and will
not be discussed here.

Matching-type methods refer to the use of correlation-based methods as a
measure of similarity for trial areas of overlap between image pairs. The
use of such methods will be discussed in sections 3.2, 3.3, 4. and 5.

Fourier-based methods refer to an explicit use of the Fourier Shift
Theorem [Champeney,73], which states that if two integrable continuous
functions f(x,y) and g(x,y) are related as: g(x,y) - f(x + Ax, y + Ay)
then their Fourier Transforms are related as:

F(u,v) - G(u,v) exp[ -j 2H (u Ax + v Ay))

In practice, such methods reduce to phase correlation.

A classical method for registering images is to succesively register
corresponding patches within the two images using an analytic metric for
comparison. For each such patch in one image, candidate trial patches in
the second image are compared using this metric. The trial patch in the
second image which optimizes the metric is chosen as the "matching" patch
for the given patch in the first image.

Historically, the normalized correlation coefficient has been the
preferred metric, although other less robust versions of correlation-type
metrics have been used because of computational advantages, such as non-
normalized correlation, or variations on the sum of absolute difference
metrics. These three are given below:

Normalized Correlation:

N N
E E F (j,k) F (j-m,k-n)

J-1 k-1R(m,n)-

N NN

[ZE£ F (j,k)] [Z E F (j-m,k-n)]
J-1 k-1 . 1 k~I

Here F(j-m,k-n) refers to an offset of (m,n) with respect to F(j,k).

Correlation:

N N
R(m,n) = E F (j,k) F (j-m,k-n)

j=1 k=1

36



Sum of Absolute Differences:

N N

R(m,n) - Z Z IF (j,k) - F (j-m,k-n)I
J-1 k-1

Normalized correlation is the preferred method whenever computational cost
is not an issue. The value of the normalized correlation coefficient is
bounded absolutely, and always lies between -1 and +1. Therefore, absolute
values of this metric close to +1 achieved for trial offfsets are close to
local maxima in the correlation surface. The normalized metric can allow
for a constant multiplier between the gray-values for corresponding pixels
in the two images. Also, the normalized correlation coefficient
theoretically achieves its maximum value, in the absense of noise and
nonlinearities, at the correct offset between the two images.

This is not always the case for non-normalized correlation algorithms,
which can achieve high correlation values at some incorrect offsets simply
because of high gray-values at certain localities. The sum of absolute
values of differences generally performs better, in the sense of
acceptable accuracy, than the non-normalized correlation approach, but
also not as well as normalized correlation (Svedlow,77].

Correlation is computationally expensive. One route toward reducing the
amount of computation has been to perform the equivalent operation in the
Fourier domain, using the Fourier Convolution Theorem [Champeney,73]. The
basis of computational savings using the FFT is that the latter requires a
computation asymptotically proportional to N log N rather than N , where N
is the dimension of a square image. For relatively large images, there can
be considerable savings using the FFT approach. Up to an order of
magnitude or more efficiency can sometimes be achieved, depending on the
relative sizes of the convolution block L and image size N (Pratt,78].

However, this approach does not deal with the observation that the
determination whether a certain offset is very incorrect should somehow
require less computation than the determination of a correct offset. This
view is at the root of the idea of recursively searching for the correct
offset in a "pyramid" of increasing-resolution versions of the image pairs
[Rosenfeld,84].

This point-of-view is also the basis of the sequential approach using the
sum of absolute differences metric in [Barnea,72]. Here, for any trial
offset, whenever a pre-determined threshold has been exceeded before the
entire sum has been evaluated, the summation is suspended and a new trial
offset is evaluated.

Hybrid algorithms using this approach for a rough estimate of offset,
followed by a version of normalized correlation using statistical pre-
processing have been suggested [Pratt,73]. Clearly, this idea can be
generalized to the use of other robust metrics following the initial rough
estimate.
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Another problem with correlation measures in general, including normalized
correlation, includes the broad, flat nature of the peak regions in the
correlation surface. This characteristic has advantages and disadvantages.
An advantage of broad peaks is their "pull-in" range for search techniques
that don't sample everywhere or that employ averaging, as in multi-
resolution processing [Rosenfeld,841.

A disadvantage is that registration accuracy can be compromised whenever
peaks are not sharp, and smaller perturbations due to noise can
potentially have greater effects on accuracy.

This broad peak characteristic of correlation techniques occurs because
spatial relationships in images are ignored for the most part. Instead,
the values of the correlation metric are really related to energies of the
broad areas within the images, i.e. the energy content of the low-
frequency portions of the images. Since phase shifts of these lower
frequencies can be relatively large compared to the pixel resolution and
still be relatively small compared to the corresponding low-frequency
wavelengths, there is a lack of sensitivity in correlation metrics to
phase shifts. Therefore, correlation surfaces tend to have broad peaks.

One approach toward solving this problem has involved the preferential use
of phase information in the images. The idea here is that the Fourier
phase content of the images contains more accurate information than the
low-frequencies which dominate correlation metrics. This is the basis for
phase correlation methods [Kuglin,75,79], (Pearson,77], (DeCastro,87].

Using the previous example of the functions f(x,y) and g(x,y) related by
translations 4x and Ay, the inverse Fourier transform of {F(u,v) /
G(u,v)} is just the in-erse transform of the phase term, and thus is equal
to the Dirac Delta Distribution evaluated at 4x and by, i.e. 6(4x,
Ay)

Now, because of the effects of sampling and finite image sizes, sidelobes
occur in addition to a main peak. Therefore, in practice, this technique
reduces to correlation in the Fourier phase domain.

Such methods are also capable of subpixel accuracy with the use of
interpolation, but suffer from the problem of potentially high sidelobes.
Such a correlation surface, with sharp peaks and high sidelobes, does not
lend itself easily to hierarchical processing with reduced resolutions
because of the narrow "pull-in" range of the main lobe. However, used in
conjunction with other methods which can acquire the main lobe, phase
correlation can be a useful method for refining initial offset estimates
to subpixel accuracy.

Another approach to rectify this broad peak problem has bee,, to
concentrate on the edge content in the images. This approach has both
intuitive appeal as well as some theoretical justification.

Intuitively, it would seem that the "meaningful" information in an image
lies at the locations of large, structurally significant contours and
boundaries. Particularly in SAR images, the smaller edges are more often
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due to noise, speckle, and imaging effects. However, the larger edges are
due to terrain and thematic value changes. It would seem that it is these
edges and boundaries that should be involved in a registration scheme.

This notion has been explored on a more analytical basis from the
standpoint of "optimally" filtering the images as a pre-processing step
prior to registration. One approach has been to decorrelate the images by
applying a "whitening" filter [ Pratt,73], (Svedlow,78]. These methods
essentially differ in their assumptions concerning image structure and
statistical properties. The conclusions of these works point toward the
use of pre-processing filters which can be approximated, under certain
assumptions, by gradient filters [Svedlow,781, or Laplacian filters
(Pratt,73].

Of course, there are some problems associated with this approach also. The
high-frequency edge content of an image is relatively small compared to
the total area of an image. Edges can be broken up slightly differently in
two images which otherwise contain no other perturbations. Edges may also
have slight variations in thickness. Therefore, such perturbations can
lead to misalignment sensitivities for algorithms, like edge correlation,
which examine the degree of "match" in overlapping edge images. One
approach is to condition the edges in both images. This would include
normalizing their intensities and broadening them. However, broadening
edges can lead to reduction of registration accuracy.

These considerations mentioned above suggest that correlation-based
matching involves considerable searching and is computationally expensive,
unless the hierarchical "coarse-to-fine" approach previously discused is
used. The capabilities of correlation algorithms for achieving high
accuracies often seems to require some form of pre-filtering to enhance
edge content. However, certain potential instabilities are involved with
the use of edge correlation.

The use of correlation, however, assumes that there is little nonlinear
geometric or radiometric distortion between the template and the actual
imaged feature instance [Lahart,70].

3.1.3 Overview of Boundary-Based Matching Methods

One method of boundary matching in binarized images which has achieved
some success is "chamfer matching" (Barrows, 78]. This method uses a
distance array between features in patches being matched, and estimates
the translations between patches by searching for those offsets which
minimize the distance array sums. This technique generally requires
cleaner extraction of edges than does edge correlation. As is the case
with all edge-based matching techniques, this metric is more sensitive to
perturbations perpendicular to lines in the image than parallel to such
lines.

One method developed at VEXCEL [McConnell,87] performs matching for
translation estimation by creating binarized images from Marr-Hildreth
operator zero crossings. This method has the advantage of accurate
computation of edge content using this second-order operator, as well as
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the stability of regional matching. This method is especially well-suited
for registering opposite-side satellite SAR images.

Another method was developed at VEXCEL for registering ice floes in arctic
SAR imagery. This method performed boundary matching using dynamic
programming, and reduced a two-dimensional search problem to one involving
one-dimension. This method employed the psi-s representation of closed
contours (Ballard,82], which allowed a convenient, representation for
translation and rotation. The particular implementation of the dynamic
programming algorithm [Sankoff,831 was that used for string search and
other sequence comparisons. The assumption was that the ice floes are
rigidly rotated and translated, but some very localized distortions such
as expansion, contraction, insertion and deletion could be tolerated.

Graph matching is a method which incorporates topological relationships
into the matching process without undue emphasis on "exact" metric
correspondence. This method has found considerable use in image-image
matching, for example [Price, 82], [Ballard,821, [Nevatia, 821,
[Shapiro,811, [Ayache,87]. Such problems involve subgraph isomorphism and
can potentially be complex. Although graph matching problems belong to the
worst-case computationally intractable class NP-complete [Aho,74], the use
of heuristics to reduce the search has been successful.

In fact, all computationally successful graph matching algorithms must
somehow use some means of distinguishing salient features in order to
avoid the problem of combinatorial explosion when searching.

For example, in (Medioni,84], graph matching was used for both image-image
and image-map matching. The computational complexity of matching was
reduced by the use of a "coarse to fine" matching strategy which extracted
isolated, long edges first, and matched these to the model at low
resolution using relaxation.

Other boundary-oriented graph matching techniques have emerged from the
field of robot vision. Typical of the problems encountered in this field
is to correctly identify the individual parts in an imaged pile of parts
which may be overlapping and are partially obscured by each other. Since
the surfaces of these parts are often smooth, the boundaries contain most
of the identifying information.

An example of such work is [Bolles,82]. Significant local features are
identified, such as corners and holes. These features are then clustered,
and matching proceeds "cluster to cluster". The algorithm attempts to find
the most significant cluster. A graph matching formulation is created
wherein the nodes are matches of image and model features, and edges are
pair-wise assignments between nodes. The match problem is then equivalent
to searching for maximal cliques, which has complexity NP-complete. This
method assumes that features will be clustered closely together.

Another method is that found in [Ayache,84]. Here, polygonal
approximations of extracted boundaries and model sides are matched using a
strategy of matching the longest sides first, as is done in [Medioni,84].
Lengths of sides and corner angles are used in measures of
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"compatibility". This method also attempts to generate "hypotheses" and
continues until a sufficient number of hypotheses are evaluated and a good
match score has been obtained.

The method of [Turney,85] divides a template of length n into n/2
subtemplates of length h. Every other pixel on the boundary of the
template starts a subtemplate. Each subtemplate of each model object is
then compared to the extracted object boundary in the sensed image.

The boundaries are represented using a variation of the psi-s
representation mentioned previously. The matching metric is the least-
squares measure of the differences. The method attempts to reduce the
combinatorics of the comparisons by selecting "most salient" subtemplates.
The sucessful matching of such salient subtemplates is weighted more than
other matches. Again, this algorithm is slow.

The spirit of this last method, however, is carried out with significant
computational improvements in (Schwarz,85]. Moreover, [Kalvin,86]
continues computational improvements on this approach by employing the
clever idea of "geometric hashing". This hashing is accomplished by the
use of a "footprint" of an object's boundary. Only a small number of
object footprints are retrieved for potential matching checks. This number
of retrieved footprints does not depend strongly on the number of objects
in the model database.

A footprint is a crude geometric characterization of an object boundary
using 5 dimensions. A footprint is generated by a mapping that is not
necessarily 1-1, but satisfies invariance under translation and rotation.
continuity is essentially preserved by having locally similar objects into
similar footprints. The five dimensional representation of each point of
the object's boundary involves the first four Fourier coeficients of the
boundary and the turning angle of a polygonal approximation at that
boundary point.

The hashing occurs because 5-D space is divided into hypercubes of fixed
size, and for each hypercube there is a list of all models whose
footprints lie in that hypercube. In this way, searching for potential
matches of boundary segments is considerably reduced.

Another approach is the method of invariant central moments. The use of
this method as a theoretical pattern recognition invariant under
translation, scaling, and rotation first appears in (Hu,62], and was used
in (Wong,80] for SAR-optical matching. The latter approach essentially
used orthogonal expansions via the first seven invariant moments of a
radar sub-image and a trial offset window in the optical window as the
components of feature vectors to be correlated:

R(x,y) - fE?_MiN (x,y)}/{r7=l M Z 1 Ni(xy)}

where: Mi- i t h invariant moment of the target SAR sub-image

Ni (x,y) _ i
th invariant moment of the optical window at trial

offset (x,y)
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Now, ordinary moments are defined as:

,%q- f. f(x,y)xPy" dxdy

where: f(x,y) - image grey value at (x,y)

These ordinary moments were used in [Hu,62] to define central moments,
which were then used to define the seven invariant moment functions used
above, ;: i-i,...,7. A disadvantage of using the higher invariant
moments is their instability with respect to noise and discretization
effects, as well as integration errors. Moreover, moments are not
contrast invariant [Maitra,79].

Hierarchical matching using a resolution pyramid can decrease the amount
of computation considerably if the important features do not disappear
when the resolution is decreased.

3.2 Methods Used in Present Effort

Three types of approximate registration methods are discussed in this
section: area-based, contour-based, and combined. These are discussed in
the following 3 sub-section-.

3.2.1 Area-Based

Two algorithms were formulated and tested for estimating pixel offsets of
an optical chip within a SAR image. Both of these methods assumed only
translational differences between a small optical chip and the
corresponding region i!, the SAR image. No appreciable terrain distortions
were present.

One method involved the Karhunen-Loeve Transform (K-L), and the other
concerned the use of the Maximum Noise Transformation (MNF). These two
methods are detailed in the next two sections, 3.2.1.1 and 3.2.1.2.

3.2.1.1 Translation Estimation Using the Karhunen-Loeve Transform

The following intensity transformation for SAR images for use in matching
with an optical chip is based on the Karhunen-Loeve (K-L) Transformation.
This orthogonal transformation has been used previously as a pre-
processing step for both noise removal, and for intensity re-mapping a SAR
image on the basis of intensities in an optical image with which the SAR
image has been registered previously.

However, the K-L transformation was used in the following way for
registering a SAR image and an optical chip:

A chip in the SAR image was re-mapped using two distinct intensity re-
mapping functions, one of which was registration independent while the
other was registration dependent. The registration independent method
used involved histogram equalization [Castleman,79]. The registration
dependent method used the eigenvector of the maximum eigenvalue of the K-L
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transformation of the covariance matrix of the pixel co-occurrence values
for a given trial registration.

Therefore, for each trial offset of the optical chip within the SAR image,
tke two resulting intensity re-mapped versions of the corresponding SAR
chip were evaluated using normalized correlation. The idea was that at
the correct offset, there should be a greater similarity between these
versions than at other offsets.

This hypothesis proved to be generally correct only in a local sense, ie.
the correct offset was usually found to be associated with a local maximum
of the resulting correlation surface. However, it was observed that at
those "correct" local maxima which were not also global maxima, there was
a much more dramatic local change in the mean intensity levels of the K-L
re-mapped SAR image. These results are discussed in [Curlander and
Kober,891. Therefore, the combination of these two criteria is a
promising method for further investigation.

This algorithm is briefly described below:

For a trial registration offset of the optical chip in the SAR image,
compute:

o Form the (2x2) composite covariance matrix K corresponding to a sum
of the covariance matrices for each pixel pairing in the window.
Here K is given by:

K - (11N) E. 1 (fi-7m)(fi-!!) t

where m - (I/N) is

fi ( f(i, ,f2(i) )t i l . ,

i " ith registered pixel, i -1,...,N

fli). grey value of ith registered pixel in image 1

f2(l- grey value of it h registered pixel in image 2

o Compute the maximum eigenvalue X of K and its eigenvector (x I ,x2 )t:

X- {a+d+[ (a-d)2 +4b2 ]I/2 )/2

1] . b/ b2+( X,-a) 2  1/2 ]

2 (X-a)/[b 2 +( X-a) 2 ]1/2

where the coefficients a,b,d are entries of the matrix K:

K - [a b]
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o For each SAR pixel in the trial offset window, compute a new grey

value gi:

gi- xif 1'+ x2 f

o Compute the normalized cross correlation of the intensity remapped
SAR window with the same patch in the SAR image which has been
intensity remapped using histogram equalization.

3.2.1.2 Translation Estimation Using the Maximum Noise Fraction
Transformation

Another intensity transformation in the spirit of orthogonal decomposition
is the Maximum Noise Fraction Transformation (MNF) [Green et al,88]. This
transformation is a generalization of the K-L (or prinicipal components)
transformation for multi-spectral imagery.

The conventional wisdom regarding the K-L transformation of a multi-
spectral data set is that it can be used to provide a sequence of
"eigenimages" of decreasing S/N, and that the first two or three
incorporate most of the important information in the dataset. In fact, it
is shown in (Green et al,881 that this is true only if the noise
components in all of the bands are uncorrelated and of equal variance. An
example is given whereby the K-L transformation specifically does not
provide an optimal ordering for image quality in the case airborne
thematic mapper (ATM) simulator data.

However, the MNF transformation is specifically derived to achieve
increasing image quality, as measured by S/N, for decreasing component
number. The MNF transformation can be used to order a new sequence of
images into increasing S/N quality, so that the lowest quality images can
be subjected to the most intense averaging procedures of noise removal.
The MNF transformation is then inverted to return to the original mult-
band data set, but which has now been noise filtered.

In the special case wherein all of the noise resides in one band only,
there is a special solution to this procedure. This is approximately true
in the case of an optical chip and a SAR image, since the SAR image
suffers from a great deal of speckle.

Therefore, in the spirit of the previous algorithm in section 3.3.3.1.1,
this transformation was applied to the SAR image for each trial offset of
the optical chip, followed by normalized correlation. The results,
discussed in [Curlander and Kober,89], were slightly better than for the
K-L re-mapping method.

This algorithm is briefly described below:

o Set z1 (x) - log1 0 R(x)

where R(x) grey value in SAR image at pixel x
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o Set z2 (x) - grey value in optical image at pixel x

o For each offset of optical window in SAR image, form:

- m1 - mean value of z1(x) in window

- m2 - mean value of z2 (x) in window

- - Ky the covariance matrix of the pixel 
co-occurences

V21 V 22

O Set z* (x) - mi- (v 12 /vll)(z 2 (x)-M2 )

o Form new re-mapped SAR window consisting of 10Y for each pixel, where

y - z* (x)

o As an alternative to the exponentiation step above, the use of
histogram hyperbolization [Frei,77] was used. This procedure is
briefly described below.

Histogram hyperbolization represents a modification to the idea of
histogram equalization for contrast enhancement which takes the human
visual system into account. The idea is to create a uniform distribution
of "perceived" intensity values, as distinct from a uniform distribution
of actual values (histogram equalization). Empirically, the use of this
procedure on logarithmically processed imagery has resulted in better
contrast enhancement than with re-exponentiation.

A logarithmic response to image intensities, corresponding to perceived

intensities, can be approximately modeled as:

B - log(J(I)+c)

where: I - intensity value prior to intensity re-mapping

J(I)- intensity value after intensity re-mapping

B- perceived brightness value

Equalization of perceived brightness values leads to the expression:

J(I) - c(exp [log(l+i/c)F11 - 1)

where: FI cumulative distribution function of the image intens ties
prior to re-mapping.

c - arbitrary constant

Another direction for SAR-optical image matching involves concnetrating on
the higher frequency portions of the datasets. Intuitively, the edge
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contents of both images have more in common than do the lower frequency,
broader regions. As an alternative to edge e,-ancement methods, the
following (3x3) spatial de-correlation filter [Pratt,78] was used:

[p2  -P(l+p ) p2 2]

p(l+p2) (1+p2 )2  -p(l+p2

.PL2 -p(l+p 2) p2

This filter was used both by itself, and with both the K-L and the MNF re-
mapped versions of a SAR chip prior to normalized correlation. Results
are discussed in [Curlander and Kober,891.

3.2.2 Contour-Based

Any algorithm that segments data from an EO image to cue a search in a SAR
image must take into account the differing projections for both images.
Projection effects, due to the angle between the sensor look direction and
the feature as well as the sensor depression angle, are important
determinants in the dissimilarity between an corresponding SAR and EO
image pair. Such projection effects are less of a problem for matching
long linear feat,,res than shorter areal features.

3.2.2.1 The Profile Method For Contour-Based Matchiny

One new algorithm developed at VEXCEL searches for long, linear features
characterized by local contrast on both sides of the feature. The
targeted features are only a few pixels wide and are loclly brighter or
darker than a surrounting area of size defined by the user. Essentially,
the algorithm uses a summed profile of the pixel values in a local region
as shown in Fig. 3-1.

In a small window, rows and/or columns" of pixel values are summed to
produce a profile. Ideally, any horizontal or vertical linear feature
that is only a few pixels wide compared to the band size of the profile
will stand out by having a sum value significantly greater than, or less
than, the mean value of the profile. This idea exploits the local
contrast of the edge.

This method is also more sensitive than many other methods of edge
segmentation for regions with narrow edges, ie. having a thickness of one
or two pixels, superimposed on a broad, uniform background. The method's
robustness to noise effects is improved because integration, in the form
of adding pixel values, is a more stable operation than the usual
differentiation step in edge segmentation operations. Searchinq
preferentially for longer horizontal lines than vertical lines can he
accomplished by using a local region mask which is more elongated in the
horizontal direction.

Repeatedly applying this method to multiple, adjacent windows in an image
results in more complex segementations. Rows and columns which were
flagged as outliers in their local profiles are compared with adjacent
rows and columns in the neighboring windows. If the adjacent windows
contain flagged pixels in the adjacent rows and columns, those pixels are
kept. Otherwise, the flagged pixels in the original window are discarded.
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- Im

(a) (c)

(b) (d)

(e)

Fig. 3-1: (a) A feature of interest in a noisy background, (b) window
divided for local summed profiles in vertical direction, (c)
edges extracted by thresholding profiles in each block using
local statistics, (d) edges after removal of discontinuous
segments, (e) vector representation of edge contour.
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feature mask at trial offset in
SAR with profile blocks to be
summed together

actual
feature in
SAR image

Fig. 3-2: Use of edge contour from optical iamge to cue customized
profiling in SAR image. (Note when the slab produced by the
profile is laid around the vector contour is exactly placed
upon the real contour in the SAR image, the profile will
display a peak at the center).
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Fig. 3-3: Slab to be sum-profiled at various offsets in the SAR image.
At each offset any outliers in the profile are highlighted and
added to the output image at the corresponding locations
indicated by the peak in the profile. The actual locations of
the contour in the SAR may be detected by several offsets of
the slab, but will always highlight the same locations in the
output image. The vectorized mask can then be correlated with
the output image to indicate the best offset in the SAR.
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In this algorithm, it is important to ensure that whenever a potential
edge is discarded, it cannot cause another edge in an adjacent edge to
also be discarded and therby cause a cascading sequence of edge discards.

A subsequent process can gather the flagged segements together based on a
closeness threshold for the adjacent endpoints. The output of this
process would be a series of linked lists, each consisting of a "streak"
of some length. The choice of which streaks to use for matching can be
based on streak length.

A similar algorithm is applied to the SAR ima..ry, with suitable
modifications taking into account the characteristics of SAR. Once a
rough estimate of the location of particular feature in the SAR is known,
then a variety of methods may be used to refine this initial estimate.

One variation of the above profile method is now described (see Fig. 3-2).
This algorithm uses the same summed profile, but only for streaks
generated from the EO imagery. The corresponding streak in the SAR can
lie anywhere within a region of uncertainty. An uncertainty in rotation
is also presert. An assumption of +30 is reasonably consistent with
present INS drift rates and mission durations of a few hours.

At a candidate offset location within the SAR image, cued by some streak,
a "total profile" is formed by summing successive profiles centered at
pixels along the streak with respect to one ol" its endpoints. Next, the
total profile is thresholded at N standard deviations above and below the
mean.

Any pixels in the total profile which are identified as outliers indicate
streaks parallel to the currently sought streak in the EQ image at an
offset corresponding to the location within the profile.

This procedure is repeated for trial offsets in the SAR image within the
region determined by the uncertainities in range and azimuth (see Fig. 3-
3). The number of standard deviations associated with each parallel
streak is sumed. into the output image to produce a surface. Follwing
these computations for all trial offsets, the target streak from the
optical image is correlated with this derived surface. Because of the
binary nature of these streaks, a sum of absolute differences metric can
be used as the correlation metric.

3.2.2.2 "Beam Thinning"- A Future Contour-Based Matching Algorithm

Another matching algorithm was also developed theoretically, and is
intended to be investigated during Phase II for matching intensity
contours which have been distorted by terrain. Of course, such terain-
induced distortions will be different for SAR and optical sensors.
Therefore, any successful matching technique must be robust with respect
to metric distortions that represent differences between sensors, while
still retaining sensitivity to similarities arising from the common
terrain imaged.

50



The algorithm described briefly below represents an algorithm which
essentially can represent the local properties of a curve which are more
"topological", as well as metric descriptions. In particular, it can
adequately represent the regions of changing curvature at various scales
of resolution.

It is believed that curve descriptions which contain qualitative
information such as the sequences of positive and negative curvature,
aside from their magnitude, will be important for matching images with
sensor-dependent distortion. This is because the sensor type wil
generally modify the magnitudes of such local curvatures, but will not
change their sign patterns.

This curve representation method, called "beam thinning", works using a
hierarchical description of a curve in which increasing detail appears
with increasing depth of the describing graph structure. The hierarchical
description for extracted curves is the following:

Approximate the curve by a "slab" of thickness C as shown in Fig. 3-7.
For each thickness dk, the curve is easily partitioned into convex and
concave regions. For each such concave/convex portion, there is a node in
the descriptor graph. Such a node contains descriptive information for
that portion of the curve, such as the curvature and the length.

As the thickness of the approximating slab decreases, each convex/concave
region can potentially split into concave/convex subregions. This can be
expressed in graph theoretic form by forming subnodes under each of the
nodes. In this way, there is a description of the curve for a sequence of
slab thicknesses fd} by means of a graph whose node levels correspond to
the (fd. The ultimate level of descriptive detail corresponds to a slab
thickness of 1 pixel (see Fig. 3-4).

Such a description allows a descending sequence of approximate curve
matchings to occur based on a succession of increasingly detailed trends
in the curve description. This is one way to deal with the problem of
insertions and deletions of pixels, as well as small-scale stretching and
dilation of a curve.

Since for each approximation level d,, there is a corresponding level in
the desriptor graph, dynamic programming can be used for matching
convex/concave regions just as it can on the individual pixel level.

An issue is the precise computation of an approximating slab of thickness
d for a curve C. An appealing heuristic is the minimization of the total
mechanical strain energy in the slab:

0fT K2(s)d' where: L - length of the curve C

ds = element of arc length

K(s) = curvature
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Fig. 3-4:"Beam thinning"decomposition of an image curve

However, the previous measure is for curves, not beams. Moreover, it is
scale-variant.

A better measure of stress energy for curves is the scale-invariant
measure proposed by [Bruckstein and Netravali,90]:

C" Y(s)} - LJLk 2 (s)ds - LfL[dT(s)/ds)2ds

where T(s) - the T-s representation of the curve C, ie. the tangent angle
as a function of arc-length s.

This measure will have to be extended to a beam of non-zero thickness d.

Another algorithmic problem concerns the determination of the beam such
that it covers the given curve subject to minimizing this sclae-invariant
energy measure.

Finally, there is the possibility of using eigenvector decompostion for
further hashing of the "feature vector" corresponding to t , -11-
description at any level of the descriptive hierarchy graph.

The proposed method has the advantage of providing a "coarse-fine"
representation that is gaining acceptance for image analysis in general.
However, the choice of a robust computational method to achieve this has
been a problem in the past. Fourier-based and other globally-symmetric,
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orthonormal basis function methods methods tend not to be responsive
enough locally in a compact form.

The proposed method is also stable enough to allow the use of
convexity/concavity concepts which, in the past, have been unstable
descriptors for noisy curves.

3.2.3 Combined

An appealing approach is to combine the area and contour-based methods
described in the previous sections into a procedure which exploits the
strengths of each.

It has been found that the use of correlation methods described in section
3.3.1 depends heavily on knowledge that the images to be mapped are
rotationally aligned. The remapping and correlation algorithms are very
sensitive to residual rotational errors between the images.

Vector-based methods, however, can be used to indicate and quantify the
amount of residual rotation present between the SAR and the optical
images. Thus the vector-based contour methods could be used initially on
an EO-SAR image pair to determine the amount of rotation between the two
images. This method could be used at several locations in any given
image. From the rotational offsets and the angle of the vectorized
contour at each location, an origin and angle of rotation can be estimated
for the entire image set. One of the images can then be rotated and
resampled to match the other. The correlation-based matching metrics can
then be expected to provide improved performance.

3.3 Results

The results of the SAR-optical image registration experiments are
discussed in the following subsections. The results of area-based methods
are described in section 3.3.1, while contour-based streak detection and
matching methods appear in section 3.3.2.

3.3.1 Area-Based Matching Results

As previously described in [Curlander and Kober, 89], a full range of
tests comparing the Maximum Noise Fraction Transformation and Karhunen-
Loeve remapping methods with more conventional algorithms as normalized
correlation and edge mapping for SAR-optical registration. Table 3-1
shows the results of these tests on 15 image sites in four Landsat (Band
4)-SEASAT image pairs. Each region in the SAR image uses 80x80 pixels and
each region in the IR images uses 60x60 pixels. In addition to the Yuma
data set shown in Fig. 2-1 and 2-2, similar data was available ful the
Altamaha River GA region and the Wind River Basin WY region {Curlande. aind
Kober,89].
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The Karhunen-Loeve (K-L) method utilizes a normalized correlation of the
K-L remapped regions of the SAR image with histogram remapped regions of
the optical image. The histrogram remap is a global operation, while the
K-L transformation is a local operation. The normalized correlation is
then operating on two images, one of which changes with each candidate
offset while the other remains constant.

It has been found that the correlation between the K-L remapping and the
histogram remapping produces sharper, more distinct correlation peaks than
are produced by normalized correlation or usual methods of edge matching.

An example of these results is shown in Fig. 3-5 for a region of the
Altamaha River GA region, for which there was also collateral coverage
from Landsat TM and SEASAT SAR.

The Maximum Noise Fraction Transformation (MNF) method uses a normalized
correlation of the MNF transformed SAR image and the optical image. For a
given optical image chip, the MNF transform of a corresponding SAR image
chip is performed for each trial offset in the SAR image.

As an extension to this method, the decorrelation filter was used as a
pre-processor to enhance the edge contant of both images. Then the MNF
transform was applied to the SAR image as described above, followed by
normalized correlation between this remapped SAR chip and the optical
chip.

The results of the MNF method proved promising, and the additional prior
use of the decorrelation filter increased the correlation coefficient in
the match surface in motet cases (see Table 3-2).

3.3.2 Contour-Based Matching Results

The intent in using contour-based matching was to utilize long, linear
features of interest, such as roads or power lines. Such features are
more likely to be highly visible in the optical images, which generally
have a higher signal to noise ratio and often are higher resolution.

Once these linear features have been segemented from the EO imagery, they
are used to cue a variety of segmentation and matching methods for the SAR
image. Also, since these features form image contours, they can be used
to estimate the residual rotation between the SAR and optical images.
Therefore, contour-based matching can be used as a step for removing such
residual rotation prior to area-based matching, which are especially
sensitive to such rotational errors.

The variable profiling algorithm was tested on several Landsat images. It
was found that due to the relatively low noise content of the Landsat
data, it was possible to use a relatively small profile sum region. As a
result, profiling in the vertical direction only provided sufficient
filtering to extract contours up to 450 with respect to the horizontal. A
complementary profiling in the horizontal direction should suffice to
reliably extract all contours of interest.
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The width of the region over which the profile is summed determines both
the level of noise tolerance and, as well as the angle of the line that
can be detected. Wider profiles achieve greater noise inunnity but limit
the angle of the detectable line. This is the reason for using the
profiler first on the lower noise optical imagery to provide cues for
searching in the higher noise SAR imagery. Once the direction of a line
is known, the profiler can be customized for direction in the high noise
imagery so that a wider profile can be used.

The results of the variable profiler on the Landsat band-4 image of the
Yuma scene is shown in Fig. 3-6. Once such an image has been created,
unconnected segments are removed and adjacent segments are connected
together into streaks which are stored as linked lists. These lists can
then be accessed according to length for use in cueing potential
corresponding locations in the SAR imagery.

These lists could also be used in image-map matching, assuming the map
data were in a digital form such as DMA's DFAD. The results of the
variable profiling method for streaks of length 4 segments is shown in
Fig. 3-7. similarly the results for streak lengths longer than 8 segments
is shown in Fig. 3-8.

Once potential streaks have been identified as possible features to be
identified in the SAR imagery, a variety of algorithms car. be used to
segment them in the SAR image. Following streak segementation, image
coordinates are used for resampling.

Given a streak and its extent in the optical image, mission parameters
define a region of uncertainty in the SAR image within which the
corresponding feature must exist. In the worst case, this region will
contain the entire SAR image. More likely, however, the uncertainty
region involves only a smaller subset of the SAR image.

Within this uncertainty region, a "total profile" is created. The total
profile consists of a surface generated by multiple summed profiles at
successive trial offsets within this region. At each trial offset, a set
of profiles corresponding to the shape of the streak extracted from the
optical image is summed, as described in section 3.2.2.1. Fig. 3-9 shows
two total profiles generated from the SEASAT SAR of the Yuma site, and the
corresponding profiles superimposed with the original SAR images.

Each offset in the total profile corresponds to pixel in the SAR image.
Analysis of these profiles and comparison with the correspondinng SAR and
optical image pair shows clearly that the total profile method produces a
surface containing a peak or ridge along the exact location of the target
streak in the SAR image. This peak is especially pronounced fo, the
river and road features in the Yuma site.
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Normalized Correlation Test # 7 Histogram Remap Test # 7

Edge Matching Test # 7 K-L Remap Test # 7

Fig. 3-5: Correlation surfaces derived from normalized correlation of
indicated remapped versions of the Landsat Band 4 and SEASAT
image pairs of Altamaha River GA site.
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Fig. 3-6 Results of the variable profiler on the TM Band 4 of Yuma
before connection into linked lists.
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Fig. 3-7: Linked streaks in TM Band 4 of Yuma that are 4 or more segments
in length.
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Fig. 3-8: Linked streaks in TM Band 4 of Yuma that are 8 or more
segements in length.
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Table 3-2 Numerical results of contour-based registration.

Location in Expected Best
Feature Optical Imagery SAR Offset SAR Offset Error (pixels)

River 199, 192 200, 192 204,192 4

Road 1 7, 300 7, 302 7,301 1

Road 2 261,430 266,427 266,425 2

Railroad (diag) 188, 426 188,423 189.423 1

Tabi 3-3 Numerical results for combined contour-area-based registration.

Location in Expected Best Correlation
Test Optical Imagery SAR Offset SAR Offset Coefficent

#5 K-L 370,430 358,421 358, 422 .8775

#5 MNF 370, 430 358, 421 370,420 .9308

#6 K-L 285,338 273,229 293,231 .7431

#6 MNF 285, 338 273,229 271,223 .9758
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The streak first extracted from the optical image then acts as a mask for
the a sum of absolute differences correlation (see section 3.1.2). Since
the total profile surface has its maximum peaks along a shape which
mirrors the feature's imaged shape, the correlation metric should yield
the correct feature offset within the SAR image. The resulting
correlation surfaces using the sum of absolute differences metric for
comparing the total profile and the optical streak mask are shown in Fig.
3-6, with numerical results tabulated in Table 3-2.

As can be seen in Fig. 3-10, the correlation method produces distinct
peaks at the correct offset location of the start of the optical profile
in the SAR image. The surface given in Fig. 3-7a is slightly misleading
in that the peak in the foreground is actually musch larger than the peak
in the background, but are similar looking because of the perspective
distortion of the surface. The road feature shown in Fig. 3-9 and 3-10
referes to ROAD 2 in Table 3-2.

As an enhancement, the profiling in the SAR image can be enlarged in the
direction along the candidate streak so that the profile is more robust to
speckle but still sensitive to the required shape.

Several other algorithms for segmenting cued features from SAR imagery are
documented in [Adair et al,90]. The methods discussed include Randomness
Center of Mass, Kolmogorov-Smirnov Test, difference Edge Detector, and
Mean-Squared to Variance Ratio test. These methods will be investigated
in Phase II.

The correspondences found by such methods produce a set of "tie points"
which are then interpolated to form a resampling grid (see section 4.2).

3.3.3 Combined Area-Contour Matching Results

It has been found that successful use of the correlation methods described
in section 3.3.1 strongly depends on an initial rotational alignment of
the image pair. The remapping and correlation algorithms are quite
sensitive to residual rotational errors.

Contour-based methods, however, can be used effectively to estimate this
residual rotationt between corresponding vectorized contours in the two
images at various locations. Following a global rotation, one of the
images is then resampled to match the other. This process is then
followed by an area-based matching process.

The streak algorithm was applied on the SAR and TM imagery of the Yuma
site, and a residual rotation between them of 1.730 was estimated. This
rotational error was corrected using a simple bilinear interpolati,, on
the TM image.

Tests #5 and #6 (see Table 3-1) were performed again using the K-L and MNF
transformations. A comparison of Tables 3-1 and 3-2 shows a definite
improvement in the correlation coefficient of the results for the MNF
method. However little improvement can be noted in the actual offset
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determined by the methods, except in the case of the K-L which exhibits
marked improvement from an error of 12 pixels to an error of I pixel with
high correlation of about .88.

3.4 Remaining Problems

Considerably more testing and evaluation of test results over a wider
variety of sensing scenarios must be perfomed to better understand
qualitatively the circumstances under which the area-based and contour-
based registration algorithms are successful or fail. Once such a
qualitative understanding is achieved, a quantitative model for the
registration process can be attempted.

A goal for Phase II should be to develop a performance prediction model
for the success of registering an image pair by a given method, given
quantitative sensor parameters as inputs.
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4. Sub-Pixel Registration Estimation

In this section is a discussion of two sub-pixel translation estimation
algorithms. Such local estimates are then interpolated in order to obtain
a global deformation grid valid for the entire image. To support pixel-
level change detection then requires the application of a resampling
operation.

After inital matching to the nearest pixel has been accomplished, often
what is done is to apply some type of interpolation function of the
matching function surface in the neighborhood of the correct offset. This
serves to locate the position of the extreme point of the match surface to
sub-pixel precision. The choice of appropriate interpolation function is
an issue.

Howiver, examing this problem from a signal processing point of view, the
phase function of a frequency component in the Fourier Transform of an
image is much more sensitive to misalignments than the corresponding
magnitude function. This observation is the basis for most of the recent
work in sub-pixel registration.

4.1 Estimation of Local Translation

The preferential use of the Fourier phase is the basis of the two
algorithms below. Algorithm #1 exploits the Fourier Shift Theorem for
sub-pixel offset values by differencing phases for corresponding
frequencies. Algorithm #2 uses a sophisticated interpolation of the phase
correlation surface.

4.1.1 Algorithm #1

The following is a 1-D version of an algorithm for sub-pixel registration
estimation. It estimates rational sub-pixel offsets using analytic
relationships among non-integer shifts involving the Discrete Fourier
Transform (DFT).

One would like to exploit the linear phase relationship for arbitrary
translations that exists for the continuous function version of the
Fourier Shift Theorem [Papoulis,77].

f(t-a) +- e-ja'OF(w)

where f,F indicate the corresponding time-domain and Fourier domain

functions.

Briefly, the 1-D version is as follows:

o Apply the FFT to each row separately in both windows. For example,
the ith row in the window of images 1 and 2 would be:

(al ,...,aN )(i FFT{ (x, , . . -,xT )

(bl,'-', bN) (j) FFT{(xl,-',xN6I6
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Do for all rows i, i -1,...,M, in both images.

o For each pair {a ,b } in each row i, with k corresponding to the
frequency index, where

ai e(al ,... ,a ) l , b c(b , ... ,bN)(i )

form:
I(a)'- imag fail, I(b)'- imag fb }

R(a)'- real [a'), R(b)'- real {b }

(a)'- Tan- i (I(a)'/R(a)')

+(b)'- TanT- 1 (I(b)'/R(b)i)

d - [#(a)'- #(b)']/(2nk/N)

di*- (1/N) 4.,d ' )

o Cluster the {d[}. The values of the dominant cluster represent the
horizontal shift value. These clustered values should be averaged or
used in some estimation procedure.

Only the 1-D version of this algorithm has been tested. The extension to
2-D is expected to occur in Phase II. An example of the performance of
this procedure as a function of frequency is shown in Fig. 4-1.
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Fig. 4-1:Behavior of Phase for Sub-Pixel Offsets
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Some additional theoretical considerations for the above algorithm follow
below. In particular, the effects of trying to estimate a sub-pixel
offset for two sampled images without prior low-pass filtering are
discussed.

Suppose there are two 1-D time sequences, g(k) and h(k). Suppose further
that h(k) represents a sub-pixel shifted version of of g(k). The
following represents a model which is appropriate for estimating this sub-
pixel offset.

Let f(t) be a continuous time, finite energy signal and let F(W) be the
corresponding continuous Fourier transform. Then let g(k) be a sampled
version of f(t).

Therefore:

g(k) - f(kt0 ) where to is the sampling frequency.

h(k) - f(kt0-a)

Since g(k) and h(k) are both discrete time, finite energy sequences, the
appropriate version of the Fourier transform is the Discrete Time Four.".r
Transform (DTFT). We denote these correspondences between domains as:

g(k) 4-(DTFT)4 G(exp(jwt0 1)

h(k) *(DTFT)4 H(exp[jwt0 )

The DTFT and its inverse are described in (Roberts and Mullis,87], ie:

g(k) - (t0/2n)o
0 G(exp(jwt0 ])exp[jkt0 ]dw

G(exp[jwt0 ]) - E"._.g(k)exp[-jkwt0 ]

where co- 2n/t0

The characterization of G(exp[jwt0 l) and H(exp[jwt0 ]) in terms of F(jw),
the continuous time Fourier transform of the continuous function f(t) is
now required.

It is shown in [Roberts and Mullis,87] that:

G(exp[jwt0 ]) - 1._.F(j&4+jn% )

Therefore G(exp[jwt0 ]) is represented as an infinite sum of shifted
versions of F(jw). If F(jw) is band-limited to w = %/2, then:

F(j(+4n%) 0 for all n*0 (4-1)

This implies:

G(exp[j oto ]) = F(jw)
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If the condition in equ (4-1) is not satisfied, then G(exp[jwto]) will be

an aliased version of F(jw).

In order to describe H(exp[jeto l ), we let:

h(k) - tof(kto-a)

Using the inverse DTFT on h(k) and the inverse Fourier transform on f(t),
we obtain:

(to/2n)J ° H(exp[jwt o ])exp[jokt o ] dw

- (to/2n)j'.F(je)(exp(jw(kto-a)]) dw (4-2)

But the right hand side of (4-2) can be expressed as:

(to/2R)_.F(jw)(exp(jw(kto-a)]) dw

- (to/2n)f'.F(j)(exp[jicto])exp[-jca] dw (4-3)

Breaking the infinite limits of the integral into a sum of finite
segments, (4-3) can be expressed as:

(to/2)n)_.F(jw)(exp[jc*t o ])exp[-joa] dw

" (to/2n)E .fn+l)w'F(jw)exp[j&eto]exp[-j&aI dw (4-4)

Let * - -n&o , then d* - do. This change of variables converts (4-4) to:

(to/2)n)f.F(jw)(exp[jt o ])exp[-jca] dw

- (to/2Ein._. fw°exp[-j(4+n )a] F(j +jnco )exp[jk*t o]
expfjkn to ] df (4-5)

But the exponential factor exp[jkntot o l - 1 since 4oto - 2R. Therefore,
the previous integral expression is given by:

(to/2n) .. _..fo exp[-j(4+n o )a] F(j++jnco )exp(jkt o ] d+

Therefore, using absolute convergence one can interchange the sum and
integral [Fulks,66]:

(to/2n)JO° H(exp[jwt o ] )exp[jok t o ] dw

- (to/2n)En..f°0 exp[-j( +n% )a] F(j +jne)exp[jk~t o ] d

- (t/2)~ ~n~0 ._ .exp[-j(,+n4e )a ] F(j +jne o )exp[jk to ] d (4-6)

Comparing the right-hand side of (4-6) with the left-hand side of (4-2)
implies:

H(exp[jwt o ]) = n _.F(ji+jneo) exp(-j(u+n(A)a ]  (4-7)
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Now, if a - 0, then:

H(exp(jwt o]) - G(exp[jwt]) - _.F(j +jn() (4-8)

Equations (4-7) and (4-8) will now be used to estimate the sub-pixel shift
a. Suppose F(jw) is band-limited to %/2, then:

F(jw) - 0 for IwI>o/2, ie. F(jo+jno) - 0 for n*O.

This implies that:

G(exp[jwto ]) - F(jw)

H(exp[jwto ]) - F(jw) exp[-jwa]

Using a discrete Fourier transform, one can compute samples of
G(exp[jwt0 J) and H(exp[jwt0 ]).

Taking a ratio of the samples of G(exp(jwt0 ]) and H(exp(jwt0 ]), one can
compute exp(jwa] which gives the sub-pixel shift a.

If F(jw) is not band-limited, then F(ju+jno0 ) is non-zero for non-zero
values of n. This results in an aliased spectrum in both cast.. As a
result of the aliasing, one cannot easily compute the sub-pixel offset.

If f(t) is not a band-limited signal, it can be frequency filtered to make
it band--limited. It is critical that the filtering be performed prior to
samplinq. Otherwise, aliasing will again result.

4.1.2 Algorithm #2

Another local translation estimator which was investigated in Phase I is
the phase correlation algorithm [Schaum and McHugh,88], [Stocker and
Claytor,891, (Stocker,9011. Although phase correlation is generally known
to be a t effective method for measuring the translational misregistration
between a pair of optical image sub-frames, there are several "fine
points' involved in applying the technique to discrete data. In the
following, we review the basic phase correlation approach and its
underl, ing model, discuss several important details of its implementation,
show srme test results on synthetically-shifted data, and apply the method
to mea, ure residual misregistrations in the Death Valley scenes.

Basic r3del. Consider a continuous optical background scene s(x,y) that
is pro icted onto the focal plane on Frame 1. At Frame 2, the same scene
appears displaced by an arbitrary 2-D spatial offset (ac) due to apparent
backgroimd translation. The images corresponding to these two frame!7 are
defined as

* 1 (x,Y) - s(x,y) (4-9a)

t 2 (x,y) - s(x-c,y-0) (4-9b)
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Let S(u,v) be the 2-D.Fourier transform of the scene s(x,y), where (u,v)
are spatial frequencies corresponding to the focal plane position
variables (x,y). The 2-D Fourier transforms of the two frames are

fi(u,v) - S(uv) (4-10a)

*2 (u,v) - S(u,v)e- j2K(au+Pv) (4-10b)

The 2-D shift manifests itself as an additive linear phase in each
dimension of the spatial frequency domain.

The optical images *f (x,y) and f (x,y) are sampled on the focal plane to
generate the discrete sensor frames f1(k,l) and f,(k,l). We assume
without loss of generality that the scene transform C(u,v) is bandlimited
by the sensor optics and detectors to the spatial frequency interval [-
0.5, +0.5] in both the u and v dimensions. Then the sampling interval can
conveniently be defined as unity in each spatial coordinate. If each
frame is space-limited to N pixels in the k and focal plane coordinates
and viewed as a periodic function, then it can be shown that the discrete
Fourier transforms defined by

Fi(mn)- E--0f 1f(k,l)exp-j2(km+n)/N) (4-11)

i-1,2

provide N samples of the respective frame Fourier transforms #*(u,v) on
the spatial frequency repetition interval from [-0.5, +0.5] in both u and
v. These samples occur at evenly-spaced frequency increments of 1/N in
either dimension, so that

Fi (m,n)- Oj (m/N,n/N) (4-12)

-N/2<m(N/2-l, -N/2_n/2-l

and from 4-(10) we can write

F, (m,n) - S(m/N,n/N) (4-13a)

F2(m,n) - S(m/N,n/N)e-j2X(.m+on)/N (4-13b)

To simplify the notation, we will use S(m,n) to represent S(m/N,n/N) in
the subsequent discussion.

Phase Correlation. The phase correlator is a whitened cross-correlation
estimate defined by

r(Ax,Ay)- E£E, w(m,n) [F, (m,n)F 2 ( m, n ) ]/ [ IF,*(m,n)F 2 ( m, n ) l ] x

expfj2n(m~x + nay)/N)

as a function of continuous 2-D lag variables (Ax,Ay). The spatial
frequency weight w(m,n) is included here for generality; its role is
discussed later.
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For the pair of perfectly translated frames F and F defined in (4-13),
the above phase correlation function evidentiy peas at the true 2-D
offset (6x,Ay) - (a,$). The translation between the two frames can
therefore be determined by precisely measuring the location of the peak of
(4-14).

Phase correlation is best viewed as a weighted cross-correlation of two
"whitened" image frames whose spatial frequency components are defined by
F1 (m,n)/IF (m,n)I and F2 (m,n)/!F2 (m,n)I, respectively. A whitened frame
retains only the phase information in the original spatial frequency
components, and is often referred to as a phase-only image. Spectral
whitening is a nonlinear filtering process which tends to enhance the
high-frequency scene features (such as edges) that contain most of the
useful information for registration.

Since many natural background scenes from electro-optical sensors tend to
have a substantial amount of power concentrated at lower spatial
frequencies, a conventional (unwhited) cross-correlation often produces a
relatively broad output peak. The spectral whitening used by the phase
correlation procedure tends to sharpen the peak, leading to more precise
measurements of frame displacement.

Discrete jqplementation. The phase correlator in (4-14) is theoretically
defined on the continuous 2-D spatial variables (Ax,Ay). However, in a
digital computer, the correlation is actually computed at discrete
intervals. If the desired lag interval in each dimension is selected as
one pixel, then the phase correlation can be computed by the 2-D inverse
DFT

r(p,q)- k--N/2+1 -1 N/2+1 [xj(m,n)x 2 (m,n)] x

l/[1xj(m,n)x2 (m,n)j] x exp~j2n(pm+qn)/N) (4-15)

for integer-valued pixel lags (p,q) in the range -N/2,...,N/2-1. Note
that the DFT summations are performed symmetrically about the dc spatial
frequency component located at (m,n) - (0,0) to ensure a real-valued
result.

The phase correlation samples in (4-15) can be found by brute-force
calculation or by taking an NxN inverse FFT of the weighted cross-spectrum
phase function. The FFT approach is most efficient unless the required
number of lags is know to be fairly small. It provides circular phase
correlation samples for pixel lags ranging from -N/2 to N/2-1 in either
spatial dimension. A non-circular implementation can be obtained by
zerofilling both frames prior to the forward FFTs, but this requires a
larger FFT size. A less-expensive way of avoiding problems die t-,
circular correlation and the non-periodicity of actual frame data is to
apply a tapered weighting function (such as a 2-D Hanning window) to the
frames prior to the forward FFT in (4-11) that transforms them to the
frequency domain.

The frequency-dependent weighting function w(m,n) in (4-15) is used to
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emphasize those regions of the cross-spectrum phase function that contain
useful phase information. This function is generally chosen to have a
low-pass characteristic (e.g., 1 2-D Hanning or Gaussian window). The
reason is that in most sensor data, the highest spatial frequencies tend
to be heavily corrupted by noise and aliased components; thus attenuating
these components with frequency-selective weighting improves the
misregistration estimates.

The location of the peak in the phase correlation (4-15) is a measure of
the relative displacement or misregistration between frames 1 and 2. To
estimate the displacement to sub-pixel accuracy, the peak position must be
accurately interpolated from the finite set of samples. The classical
solution to this problem involves the application of the appropriate 2-D
"sinc" interpolation function on the discrete cross-correlation estimate.
A far more practical approach is to fit a polynomial to the cross-
correlation samples in the vicinity of the highest peak. A separable
quadratic polynomial is the simplest choice since it uses only three
points in either dimension: the peak sample and its neighbors to either
side. Although the translation estimates provided by this simplified
interpolator are biased, it can be shown that the bias is a function of
known processing parameters [Stocker and Clayton,89], [Stocker,90J. Thus,
it is possible to correct the measurement biases on the fly using pre-
computed lookup tables.

A complete block diagram of the phase correlation based registration
algorithm, including the bias-corrected peak measurement step, is shown in
Figure 4-2. This algorithm has been successfully calibrated on
synthetically-shifted data as noted below.
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Fig . 4-3: Correlation Block Translation Measurements for Death Valley
Data, (a) horizontal dimension, (b) vertical direction.
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Fig. 4-4: Weighted Difference Images for Death valley (1983 and 1988
Scenes) -Band 1, (a) After Global Registiation, (b) After Fine
Registration.
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4.2 Global Interpolation of Local Estimates

Following the computation of offsets for smaller sized blocks of pixels,
an interpolation process will be required to attain "subpixel" accuracy.

One problem with global least-squares matching for interpolation of
registered control points is that errors are averaged over the entire
image. In fact, what is realy required is to find an interpolatin scheme
that is only influenced locally by the data, since the distortions due to
terrain, atmospheric effects, and sensor nonlinearities act are spatially
varying and so should be compensated in a locally adaptive manner.

Another approach is to use splines, -which restricts the effects to be more
local. Consider the surface spline representing an infinite plate under
the imposition of point loads [Goshtasby,88]:

Let: f(x,y) - a, + alx + a2y + n.1 Firi2lnri2

where:

n - # loads

r 2 _ (x-x )2 + (y-yi )2

(x ,Yj) - position of ith control pt.

f(x,y) - elevation of surface at (x,y)

Now, substituting con':rol pts. into equation for f and solving the
following set of equations leads to the parameters: a0 , a2, a3, Fi,
i i.m ... n.

L=. Fi- 0
E .jxj i- 0

Ln=lyi Fi- 0

f (xj 'Y) "o a+ al xi+ a2Yl + ii1Fi r? 11n(r21

f (xn yn ) = a+ a, x,,+ a2 Yn+ i-_ 1Fj ri inr.

This method will be investigated in Phase II for inter-polatingq
registration control points.
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(Control Points)

Surface Fit to Measurements
(Thin-Plate Interpolating Spline)

Fig. 4-5: Surface Fit to a Sparse Set of Translation Measurements
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A related global interpolation method was implemented and tested during
Phase I. This method uses the thin-plate cubic spline [Lancaster and
Salkauskas,861. Physically, the thin plate is analogous to a mechanical
surface spline that is not subjected to torques at the dat points and
deforms only by bending. The thin plat spline is mathematically
formulated as the 2-d equivalent of the well-known natural cubic spline,
which is optimal in the sense miminizing total stress energy.

The thin plate is formally derived from a Boolean sum of two different
projection operators:

a) An interpolating projection formed from translates of the basis
function r ln(ri ) as defined above,

b) A weighted least-squares projection with a weight matrix equal to
the inverse of the Vandermonde matrix of the translates of the
same basis function.

It should be noted that the cemputation of this spline can be
computationally relatively expensive, siice it involves the inversion of a
matrix of dimension N, where N is the n'mebr of data points to be
interpolated.

An example of thin-plate spline interpolation applied to the generation of
a global deformation surface is shown in Fig. 4-5. A set of 2-D
translation measurements using control points taken at a discrete set of
locations within the image frame is created. Then a thin-plate
interpolating spline is computed for the 2-D apparent translation vs.
pixel position. These surfaces are then used for image resampling.

This technique was successfully applied to to perform global registration
for the Death Valley IR imagery discussed in section 2.4.

4.3 Image Resampling

Accurate resampling of the discrete image frames is critical to the
performance of change detection schemes based on weighted frame
differencing. Even if the global registration error measurements are
perfect, a poorly implemented resampling step can introduce significant
noise into a difference image.

The use of sliding-window FIR interpolators is a viable approach to the
image resampling problem, provided that a suitable interpolation kernel is
selected [Wolberg,90]. Tn this approach, a discrete image is resampled by
means of a 2-D convolution operation. Assume that global reqistration
calls for the image frame I(m,n) to be shifted by a variable arnount
( xmn,6ym.n) as a function of the pixel location (m,n). Let

(AX n Iymn ) - (Pmn 'qmn ) + (Nnn' mn )

where (p,q) and (aO) denote the interger and fractional parts of the
desired pixel shifts, respectively. The resampling operation produces a
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new discrete frame Ir defined by

Ir(m+Pmn,n+q..)" £kElx(m+k,n+l)h(k-n,l-kn)

where h(x~y) is the 2-D interpolation kernel. In the present study, only
separable kernels of the form h(x,y) - h(x)h(y) with a finite support of N
pixel intervals in either dimension are considered.

The performance of various kernels can be interpreted and compared by
considering the classical digital signal processing approach to
interpolation [Lucke,undated]. In this approach, we convolve the discrete
frame data with a continuous (or, in prr.ctice, a highly oversampled)
reconstruction kernel of finite extent; then decimate the resulting image
to obtain interpolated samples on the desired frame grid. Although these
steps are often combined into one operation (as in the above equation), it
is useful to think of them as two distinct conceptual stages.

The optimum interpolation kernel for sampled bandlimited data is the
"sinc" function sin (nun)/(nn) with nulls spaced at the discrete pixel
intervals indexed n - -, 2, ... , +W. The frequency response of this
kernel is constant over the normalized spatial frequency interval (-0.5,
+0.5) and zero outside of this interval. It achieves perfect signal
reconstruction since it produces no in-band spectral distortion and
completely removes the aliases of the sampled signal which repeat
indefinitely at the pixel rate. Unfortunately, ideal interpolation can
only be approximated on a finite-length data record and, in any case, is
too computationally demanding to consider for most applications. Thus in
practice, relatively small kernels with frequency responses that
approximate the ideal "rect" function are utilized.

The desired characteristics of an interpolation kernel are linear phase, a
nearly flat in-band response and very low out-of-band sidelobes. A
reasonably flat linear-phase passband reduces the signal distortion due to
interpolation filtering. Low sidelobes minimize the amount of
interpolation "noise" introduced by aliased signal components that fold
into the original band when the filtered signals are decimated (or
resampled) at or near the original sampling rate.

Ideally, it would be desirable to apply the same in-band filtering to each
image frame to be differenced or otherwise combined in a change detection
operation. This condition can be satisfied exactly if each frame is
resampled (i.e., filtered and decimated) in precisely the same way, but
this generally cannot be done in non-trival registration applications.
The problem is that the different resamplings needed for frame
registra-ion Aprny different phase shifts to the out-of-band components of
the inteLpolated scene. These components, which fold back intn the
original band upon decimation, constitute a source of "noise" which ::,:i'
in a rather unpredictable way from one image frame to anolheL.
Significant clutter leakage can result due to mismatches in the spatial
frequeticy content of the interpolated frames being differenced, even in
cases where the resampling itself is geometrically perfect.

A practical solution to this problem is to choose an interpolation kernel
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that attenuates the out-of-band signal components to the point where they
are well below the level of the sensor noise. For a typical electro-
optical sensor that provides a background clutter-to-noise ratio on the
order of (say) 10 (or 20 dB), this implies the use of FIR filter kernels
with peak sidelobes on the order of 25-30 dB or better.

To gain some insight into the performance of various FIR interpolators, we
evaluated frequency responses and some simple figures-of-merit for several
filter kernels. Each kernel was oversampled by a factor of 10 in a
symmetric fashion to ensure that its frequency response would have linear
phase. The squared-magnitude of the frequency response was then
calculated from the DFT formula. Two figures of merit were also computed
for each kernel, based on an assumed work-case ac background "signal"
having a triangular-shaped amplitude spectrum extending out to the band
edges at the normalized spatial frequencies (-0.5, +0.5). These figures-
of-merit are defined as follows:

1) Signal Loss. The loss in signal power in-band due to the filtering
applied by the interpolation kernel (a measure of the amount of
passband attenuation).

2) Signal-to-Noise Ratio (SNR). The ratio of in-band signal power after
filtering by the interpolation kernel (a measure of the relative
strength of out-of-band interpolation noise components).

The following interpolation filter kernels were evaluated in this manner:

a) 4-point cubic convolution
b) 4-point cubic B-spline
c) 4-point custom FIR filter
d) 4-point DFTI filter
e) 6-point DFT filter
f) 8-point DFT filter

Cubic convolution is a 4-point polynomial kernel originally derived as an
efficient approximation to the sinc function [Wolberg,90]. The cubic B-
spline kernel is the filter defined by three successive .self-convolutions
of the unit rectangle function [Wolberg,901. The custom FIR filter is a
special kernel designed by Space Computer Corporation using the Remez
Exchange optimization algorithm with special zero placement. The DFT
filters, originally derived in close-form by R. Lucke at NRL
[Lucke,undated], are obtained by computing the inverse DFT of the N-point
linear phase filter in the spatial frequency domain that implements a
specified image-domain translation.

Fig. 9-2 through 9-7 (in Appendix 9.3) plot the impulse response and
frequency response for each of the above kernels. The calculated fiquires-
of-merit are given in Table 4-1 below.
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Kernel Signal Loss (dB) SNR (dB)

Cubic Convolution 0.202 24.63
Cubic B-Spline 1.110 37.33
Custom FIR Filter 0.730 33.83
DFT-4 Filter 0.004 26.98
DFT-6 Filter 0.008 31.86
DFT-8 Filter 0.000 35.42

Table 4-1: Figures-of-Merit for Interpolation Kernels

Basic tradeoffs among the kernels are evident. For example, cubic
convolution has a good passband characteristic but relatively poor
sidelobe response. In contrast, the cubic spline kernel achieves
excellent sidelobes at the expense of increased in-band attenuation. The
custom 4-point FIR filter represents a somewhat better balance between the
conflicting desires for a flat passband and low sidelobes. The even-
sample DFT kernels are also interesting in that they combine a nearly
perfect passband with reasonably good sidelobe levels.

The performance differences between the three DFT filters illustrate the
general trend toward improved response with increasing kernel length or
number of coefficients. Of course, a resampling algorithm based on a
longer kernel is also relatively expensive to implement. Unless the
signal-to-noise ratio is unusually high, it appears that a well-chosen 4-
point kernel should suffi.ce for most change detection applications with
real imagery. The registration experiments conducted during Phase I
utilized resampling algorithms based on either the cubic B-spline or the
DFT-4 kernel.

In classical interpolation lore, the use of a filter with a smooth
passband response is considered to be of paramount importance to minimize
spectral amplitude distortion of the "signal" being interpolated.
However, for frame dif'ference signal processing applications, it seems
that this criterion might be considerably less important than the out-of-
band sidelobe level. For example, how important is it to faithfully
reproduce the spectral content of the unchanged portion of the background
it is is going to be subtracted out later? Is it necessarily bad to
attenuate higher in-band frequencies if those frequencies are dominated by
sensor noise and/or aliasing components rather than by baseband signal
components.

One way to clarify these trades for electro-optical sensor images wuul'1 he
to formulate a composite signal model consisting of "change" signal, a
random background, and additive noise; properly accounting for important
sensor effects such as optical blur, detector spatial filtering and 2-D
focal plane sampling. An interpolation filter response could then be
applied tu each of these scene components and used to derive more
meaningful figures-of-merit, such as the effective signal-to-clutter +

82



noise ratio after a frame differencing operation. Such an analysis could
be pursued under a Phase II program to help guide the final selection of
the image resampling algorithm.

4.4 Results

4.4.1 Results for Sub-Pixel Algorithm #1

Preliminary 1-D simulation of a square wave function offset to .3 and .9
pixels was performed for VEXCEL's Algorithm #1. No noise was added to the
square wave as yet. The resulting errors for estimation were:

o 4x10-4 pixel for .9 offset,

o 5xi0-4 pixel for .3 offset.

4.4.2 Results for Sub-Pixel Algorithm #2

Both extensive simulation and real data were employed for testing SCC's
Algorithm #2.

4.4.2.1 Simuletion Experiments

Simulation experiments were performed to verify the accuracy of the phase
correlation registration algorithm with the above peak interpolation
scheme. The experiment made use of synthetically-jittered frames (without
added noise) to provide a controlled test of measurement quality for
several variations of the basic algorithm.

The experiments were based on a typical long-wave IR scene collected by
the MIT Lincoln Laboratory IRMS sensor. To determine the accuracy of the
sub-pixel translation measurements provided by the registration algorithm,
we used this scene to create a synthetic sequence of three new frames
having known displacements in the elevation (or vertical) direction. This
was done by Fourier transforming the original 256 x 256 IRMS scene,
bandlimiting the transform with a 2-D Hanning spectral window, and
zerofilling the windowed array to a length of 1024 points in the vertical
direction. The resulting 256 x 1024 array was then transformed back to
the image domain to obtain a filtered scene oversampled by a factor of 4:1
in elevation. This scene was then vertically decimated by a factor of 4,
starting from three different rows 1, 2 and 3, to produce a set of three
new 256 x 256 frames. Adopting the first of these new frames as the
registration reference, the second and third frames have respective
vertical displacements 6f precisely -0.25 and -0.50 pixel.

As a check the accuracy of the phase correlation algorithm, we mea:!,UI-]
the know 2-D shifts between the synthetic frame pairs 2 and 1 and 3 and 1.
The measurements obtained from several variations of correlation
processing combined with parabolic peak interpolation are summarized in
Tables 4-2 and 4-3 below. "Circular Correlation" refers to a conventional
(unwhitened) cross-correlation; it produces biased measurements in either
case. In contrast, the circular phase correlation measurements, after
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appropriate bias correction, are nearly perfect for both the Uniform
(i.e., rectangular) spectral window and a beavily tapered Hanning2

spectral window function defined by

w(m,n) - w(m)w(n) - [1+cos(2m/VN)]2 [[l+cos(2urVN)]2

The calibration results given here establish the systematic accuracy of
the registration algorithm based on discrete phase correlation combined
with an appropriate peak measurement procedure.

4.4.2.2 Application to Real Data

Although phase correlation can be a remarkably accurate procedure for
measuring the sub-pixel displacement between a pair of well-correlated
image frames, its ability to register moderately correlated imagery with
long-term changes is less certain. To gain insight into its performance
in this situation, we processed the three-band Death Valley infrared data
described in Section 2.4.

The basic assumption was that the residual registration error between the
globally-registered 1983 and 1988 Death Valley images could be
approximated by a slowly-varying 2-D translation. Local misregistration
measurements we:! obtained by applying the phase correlation procedure
described above to 128x128 pixel sub-blocks overlapped by 50% in either
dimension. For the 512x512 scene, this resulted in a total of 49 2-D
displacement measurements spaced at 64-pixel intervals within the frame.

Since the Death Valley scene appeared to exhibit more long-term
correspondence in its principle spectral components than in the original
spectral bands, the block phase correlation procedure was separately
applied to each of the three spectral components of the 1983 and 1988
multi-band images. For each block, the component which produced the
highest correlation peak was used to measure the 2-D translation of the
1988 image with respect to the 1983 reference image. In this way, the
spectral component with the best local feature contrast was always used to
estimate the local misregistration.

Figure 4-3 plots the local translation measurements in each dimension of
the Death valley scene vs. the correlation block number. For this
purpose, the blocks are assigned numbers in standard raster fashion
starting in the upper right-hand corner of the scene. Thus correlation
block 1 is located in the upper right-hand (or northwest) corner, while
block 49 is at the lower left-hand (or southwest) corner. Vertical dotted
lines are drawn at 7-block intervals to indicate measurements taken along
the same horizontal row of the image. These measurements indicate the
presence of more or less random multi-pixel registration errors between
the Death Valley scenes following coarse global registration bas,-d on
manual control points.

There is no obvious way to determine the accuracy of these displacement
measurements in the absence of ground truth information. However, one
reasonable check is to perform a second fine registration step based on
the measurements, and determine whether the pixel-to-pixel correrpondence
between the two image sets is improved.
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Table 4-2 Measurement Results for Synthetically Jittered IRMS Frames I and 2.

Actual Jitter in (Azimuth,Elevation) AO-0.25) Pixel

Cross-Correlation Processing FFT Size Cross-Spectrum 2-D Jitter 2-D Measurement

Weighting Measurement Error

Circular Correlation 256x256 Uniform (-0.024,-0.236) (-0.024,0.014)

Circular Phase Correlation 256x256 Uniform (0.000,-0.252) (0.000.-0.002)

Circular Phase Correlation 256x256 Hanning 2  (0.000,-0.250). (0.000,0.000)

Non-Circular Phase Correlation 512x512 Uniform (-0.001,-0.234)- (-0.001,0.016)

Non-Circular Phase Correlation 512x512 Hanning 2 (0.000,-0.247)- (0.000.,0.003)

-bias-corrected measurements

Table 4-3 Measurement Results for Synthetically Jittered IRMS Frames I and 3.

Actual Jitter in (Azimuth,Elevation) (0,-0.50) Pixel

Cross-Correlation Processing FFT Size Cross-Spectrum 2-D Jitter 2-D Measurement

Weighting Measurement Error

Circular Correlation 256x256 Uniform (-4048,40499) (-0.048.,0.00 1)

CirclarPhae Coreltio 256256 Uniorm 0.00,400) 0.00,0000

Circular Phase Correlation 256x256 Uanior 2 (0.000,-0.500)- (0.000, 0.000)

Non-Circular Phase Correlation 512x512 Uniform (40002.40445). (-0.002.0.055)

Non-Circular Phase Correlation 512x5l12 Hanning (40001.40491) (-0.00 1. 0.009)

-bias-corrected measurements
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To do this, the translation measurements made in each dimension were fit
to cubic thin-plate splines to obtain smooth 2-D surfaces of displacement
vs. pixel position for the 1988 image. These displacement surfaces were
then used by a sliding-window interpolator to resample the globally-
registered images from each of the three wavebands. The interpolator
employed for this purpose was the cubic spline kernel discussed in Section
4.3.

Two basic figures of merit were used to assess whether any improvement was
obtained from fine registration. The first was the global average pixel
correlation coefficient between corresponding bands of registered imagery,
which should increase if the unchanged background component is better
aligned. Table 4-4 shoes that small increases in the average pixel
correlation were indeed observed in each of the three bands due after fine
registration.

TIMS Pixel Correlation Coefficient
Band After Global Registration After Fine Registration

1 0.57 0.60
3 0.59 0.62
5 0.69 0.72

Table 4-4. Pixel Correlation in Death Valley 1983 and 1988 Images

A second indicator of registration performance is the rms level of a
minimum-power weighted difference frame formed from each registered band
pair, which is affected by clutter leakage due to background misalignment
as well as actual long-term changes in the scene. Table 4-5 shows that
small improvements in this keasure are also observed after the fine
registration step.

TIMS RMS Level of Difference Image (pW/sr/cm2 /pm)
Band After Global Registration After Fine Registration

1 39.4 38.2
2 46.1 44.5
3 37.7 36.3

Table 4-5: RMS Level of Weighted Difference Image for Death Valley 1983
and 1988 Scenes

Figure 4-4 compares the difference images from TIMS Band 1 on the same
grey-scale before and after the fine registration based on blockwise phase
correlation. These difference images are qualitatively similar in most
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respects. However, in several places denoted by black arrows, it appears
that the fine registration may have reduced the amount of contrast edge
leakage. Most of the pixel-level "changes" observed in these difference
frames result from pixel radiance variations caused by local temperature
changes between looks.

It appears that the phase correlation technique has the potential to
imprQve the local registration of multi-band imagery to be utilized for
change detection. However, it also seems clear that the effectiveness of
this algorithm (and all other area-based correlation methods) will be
reduced by image-to-image decorrelation which results from long-term pixel
intensity fluctuations.

4.5 Remaining Problems

Additional testing, including 2-D offsets, must be performed for Algorithm

#1.
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5. Potential Change Cueing

The fundamental problem of pixel-level change detection is to utilize
multiple image observations of the same scene taken at different times and
possible different sensors to identify those pixels in which significant
changes have occured. Changes of military interest include the presence
of new man-made features such as roads, bridges and buildings in addition
to long-term changes in the boundaries or extent of natural features like
forests and rivers.

In an automated change detection system, the primary role of the pixel-
level processing is to increase the signal-to-clutter ratio of desired
change features to the point where higher level "object" processing can be
effective. This requires a high degree of adaptive cancellation of
undesired "clutter" due to unchanged or minimally-changed portions of the
background scene. If robust background cancellation is achieved, then the
potential scene changes can be reliably "cued" on the basis of intensity
for use in higher-level analysis.

A key objective of the Phase I effort was to assess how well this
objective could be met through the application of multi-image adaptive
filtering methods based on statistical decision theory. In the following
subsections, we present the basic theory of adaptive change detection,
discuss the application of the concept to multi-sensor image data, present
the results of change detection experiments conducted under Phase I, and
describe some remaining challenges for the Phase II effort.

5.1 Theory of Adaptive Change Detection

A basic theory of detection is formulated below for the case of an
arbitrary change signal observed in a multi-image background. A
performance measure for pixel-level change enhancement processing is also
established.

5.1.1 modeling

Consider a set of observations [xkX}- from N distinct images. For
example, the xk might represent the samples observed in corresponding co-
registered pixels from N different images to be processed for pixel-level
changes (although it should be noted that other sets of "observables" can
also be used, as noted in Section 5.2 below). If the significant changes
in these observations are described as additive signals, tnlen the
observation in each image can be modeled by

xk - sk + nkk - 1,...,N (5-1)

where sk and n. represent the change "signal" and the comparatively
unchanged background components in the kth image. Using N-vector
notation, we can write (1) more compactly as

x - s + n (5-2)
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For modeling purposes, we treat the background n statistically by

assigning it an arbitrary vector mean #u and an NxN covariance matrix

K - E(n--u)(n--p) T , (5-3)

where "T" denotes the matrix transpose and "E" indicates an ensemble
average. This is a commonly used model for natural backgrounds in multi-
image remote sensing and signal processing applications. Its utility in
describing the pixel variations over local regions in natural scenes has
been confirmed.

The change signal s is modeled as a deterministic vector. For example,
the s-vector corresponding to a change feature with additive intensity s,
present in the first of the N image observations would be denoted by

_g- [ S 0 0 ... 0IT (5-4)

The use of a general formulation for the change signal provides
flexibility in modeling situations where changes may be present in
differing amounts in the multiple images. A typical example is two sets
of multi-band imagery collected at two distinct observation times.

Given the above model, it is well-known that the optimum linear filter for
the signal s is given by

y(x) - _sK I (x-) (5-5)

This multi-dimensional matched filter forms a linear combination of
observations which is optimum in the sense that it maximizes the ratio of
change signal magnitude to rms background clutter. Note that for the
special case where the background statistics are jointly Gaussian, this
filter is the maximum-likelihood detector for the signal s. For the
special case of change detection in a single image with N-I available
reference images, the above filter also corresponds to a maximum-
likelihood detector derived by (Margalit et al,85].

In practice, of course, the joint background statistics (# and K) needed
to implement the change detection filter are not known in advance, so they
must be estimated from observed data by appropriate spatial averaging.
This averaging, which forces the filter to adapt to the actual background
conditions encountered, is an important aspect of change processing and is
discussed in more detail in Section 5.2.

5.1.2 Change Enhancement Performance

The signal enhancement performance of the matched change detector (5-5) is
best described in terms of the signal-to-clutter ratio, formally defined
by

S [[Ey(x)] 2 ; change signal present (H )11/2
out IVar [y(x)]; signal not present (H- 'VJ5-6)

Using (5-3) and (5-5), we have
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Ey(x) under H, - sTK1_s

Ey(x) under H. - 0

Varfy(x)] under H. - E (x)-sICE(x- )(x-p)TrIs-_r's

The output SCR (5-6) is then

SCR. - (S T
Rs).'/ (5-7)

For comparative purposes, it is useful to define an input SCR in the kth
image prior to multi-image change processing as

SCR.% - ISk I/ak (5-8)

Where IskI and o represent the additive signal magnitude and background
clutter (power) in image k, respectively. The multi-image change
detection processing gain with respect to bank k is then defined by the
ratio

G - SCRout/SC k. (5-9)

To obtain insight into the factors affecting performance, we performed a
sample SCR calculation based on equicorrelated background observations in
N images. The background covariance matrix for this case is

K- a ...... (5-10)

where a is the background power in each image and p is the common

correlation coefficient between images. The inverse of (5-10) is given by

K-1- 012(1-0)}-l ......... (5-11)

where

- 1 -[p/(l+(N-l)p)] (5-12a)

0 - -p/(l+(N-1)p) (5-12b)

The output SCR may be calculated from (5-7) and (5-1l)-(5-12) for any
specified signal vector s. For the change detection application, the
signal is often assumed to be present in just one of the images (say, the
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first one) and the s-vector is given by (5-4). Then we have

SCRot- (S1/[ (l-p)'/ 2J} fl-[p/(l+(N-l)pj)'/ 2  (5-13)

The available SCR in the change image alone is

SCR, - Is/a (5-14)

Thus the change detection processing gain for this case is

G - SCRut/SCR- f{(l+(N-2}p}/f(l-p)[l+(N-I)p]))'/ 2

Fig. 5-1 plots the SCR gain G vs. background correlation p for various
numbers of images N. The gain is fairly small if p is less than 0.9, but
very large gains are possible when the background observations are highly
correlated (p->l). It is important to note that most of the available
processing gain can be obtained from only 2 image observations, one which
contains the change signal and another which serves as the correlated
reference for background suppression. The relative change enhancement for
the dual-image case is l/(l-p2 )1/2 .

5.2 Application to Multi-Sensor Imagery

The basic principle of pixel-level change detection is relatively
straightforward as outlined above. The challenge lies in the application
of the techniques to real-world imagery. Key implementation issues which
were considered in the Phase I study include:

1) The selection of imagery to support change detection processing;
2) The selection of the set of "observations" to which change processing

is applied;
3) The method of averaging used to adapt the change processing to

variable background conditions;
4) The use of spatial information in the change detection process.

These issues are discussed in turn below.

5.2.1 Selection of Imagery

The analysis is Section 5.1 showt that the most important parameter
affecting pixel-level change detection performance is the image-to-image
correlation of the background in which the potential changes are to be
detected. A higher correlation results in more effective background
suppression, which makes small changes easier to discriminate and analyze.

Experience with actual sensor imagery indicates that high values of the
pixel correlation coefficient can in fact be obtained from multiple time
observations, provided that:

a) The images are a-ccurately registered to one another;
b) A close relationship exists between the physical mechanisms that

generated the image observations;
c) The observations are scheduled to minimize decorrelating effects such
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as seasonal reflectivity variations, shadowing, solar heating,
thermal lag effects, etc.

As a general rule, the observed pixel correlation is strongly related to
the phenomenological similarity between various types of images. Thus,
for a given scene, optical images tend to correlate well with other
optical images, somewhat less well with reflected-IR images, even less
with thermal IR images, and quite poorly with radar images. This trend is
indicated in Table 5-1 below, which gives the measured correlation
coefficient for corresponding 512x512 pixel blocks of pre-processed Raisin
City imagery. The reference band TMI is located in the blue-green optical
region from 0.45-0.52 microns.

Correlation
Waveband Pair Comments Coefficient

TMI x TM3 optical x optical (0.63-0.69#m) 0.98
TMl x TMS optical x near-IR (1.55-1.75#m) 0.89
TM1 x TM6 optical x thermal-IR (l0.40-12.50/im) 0.36
TM x SAR optical x L-band aircraft radar 0.12

Table 5-1: Correlation Coefficients for Raisin City Images

on this basis, one would predict that good pixel-level change enhancement
could be obtained by pairing a TM image with a TM3 image, but that little
enhancement would result from processing corresponding pixels in the TMI
and SAR images. Change detection experiments discussed in Section 5.3
generally confirm this expection.

Even when multiple images from the same spectral band are available for
change detection, diurnal and seasonal variations in the imaged intensity
values can decorrelate the observed data. Although certain seasonal
variations may constitute changes of military interest, the presence of
too much image-to-image variation can make it very difficult to achieve
effective image-to-image registration and background suppression. At
thermal infrared wavelengths, for example, images taken at night often
differ considerably from daytime images due to the lack of a solar
reflected component and the presence of temperature differentials
resulting from the variable thermal lags of different materials. Seasonal
variations are induced by changes in the moisture content of the terrain
or vegetation; i.e. damp soil normally has a lower apparent temperiLIte
than dry soil due to the effect of evaporative cooling.

Certain components of long-wave IR images of natural scenes can be fairly
well correlated, even when taken years apart. For example, Table 5-2 show
the measured correlation coefficients for various image pairs from the
Death valley scenes collected in 1983 and 1988. Bands 1, 3 and 5 are the
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original radiance images after global registration. The "PC" images are
the three principle spectral components generated from Bands 1, 3 and 5
and shown originally in Section 2.4

Image Pair Correlation

TIMS Band 1 0.31
TIMS Band 2 0.32
TIMS Band 3 0.40
PC Image 1 0.27
PC Image 2 0.89
PC Image 3 0.59

Table 2: Pixel Correlation of TIMS Death Valley Data Taken in 1983 and
1988

Note that relatively high pixel correlations are observed in the second
and third principal components of the scene.

For change detection within a single waveband, the use of multi-band long-
wave thermal imagery in the 8-12um region appears to have considerable
potential. Although in general terrain features both emit and reflect IR
radiation, the dominant phenomenon in the long-wave region is greybody
emission as a function of object temperature and emissivity. Since
undisturbed natural backgrounds exhibit relatively little long-term change
in emissivity, the major parameter that determines the apparent radiance
is the temperature. High correlations between thermal images taken at
different times can be expected if the observations are carefully
scheduled to minimize differential temperture variations due to diurnal
and seasonal effects.

5.2.2 Selection of Observations

The most natural observations to combine in a change detection operation
are the corresponding pixel values in the registered images. In this
case, the pixel correlation coefficient determines the relative amount of
change enhancement that can be achieved.

In principle, however, one can utilize any set of observables that can be
derived from the image pixel data. An interesting alternative which was
examined in the Phase I study is the use of image spatial frequency
components, rather than image pixels, as the input "data" to the canf,
detection process. This particular choice was motivated by the empiiical
observation that much of the correspondence between displayed images from
different spectral bands resides in the edges and other high frequency
artifacts. If the frequency components corresponding to these features
can be isolated by means of Fourier analysis, their higher correlations
could be exploited to achieve more effective clutter cancellation.

93



Fig. 5-2 shows a portion of the registered TM and Aircraft SAR images
from the Raisin City site. As noted above, the average pixel correlation
coefficient for these images is only 0.12, implying that they are
practically uncorrelated at the pixel level. This is not surprising in
view of the different sensors used and the decorrelating effect of the SAR
image speckle. However, the correspondence between some of the boundaries
in these scenes is evident.

To examine the sensitivity of the correlation coefficient to spatial
frequency for this image pair, the following procedure was used. First,
the two full TMI and SAR images were sub-divided into 16 128x128 pixel
sub-blocks, a 2-D DFT of each block was computed, and the complex
components of the corresponding blocks from each image were conjugate
multiplied together (i.e., correlated). The like-indexed correlations in
all blocks were then averaged together and normalized to obtain an
ensemble average correlation coefficient estimate as a function of 2-D
spatial frequency. The magnitude of the resulting correlation array is
plotted in grey-scale format vs. normalized 2-D spatial frequency in Fig.
5-3(a), where black indicates a moderate positive correlation (0.6) and
white denotes zero correlation. The histogram of spatial frequency
correlations, shown in Fig. 5-3(b), has a mean value of 0.23. Although
many of the spatial frequencies are almost as poorly correlated as the
pixels, there are some notable exceptions. For example, most of the
components in the vicinity of zero horizontal ("X") frequency (oriented
vertically in the plot) have a moderately high correlation (0.6 or
greater). These components are dominated by edges with a near horizontal
orientation in the scene.

Change detection can e implemented with spatial frequency domain in
essentially the same was as for image pixels, with the necessary
modifications for complex-valued data. Given a complex vector x
representing a set of corresponding spatial frequency components from
co-registered image blocks, we compute the linear filter.

y(x) - s"KI(X-1) (5-16)

where s is the change signal, 'H' denotes the conjugate transpose, and p
and K now represent the background mean and covariance at a single spatial
frequency of interest. This same process can be performed for all
available frequency components in each block, after which the results can
be filtered and transformed back to the image domain for interpretation.

5.2.3 Adaptation to the Background

Although the matched change detection filter described in Section 5.1 is
an optimum linear discriminant, its immediate application is limit-] Iv
the apparent need for prior descriptions of the scene backg, oum
statistics (i.e., mean and covariance). A standard way to remove this
dependence is to estimate the ensemble statistics by averaging over a
sufficiently large number of observations. If the changes to be
discriminated are small in magnitude or occupy only a small fraction of
the observations chosen, then their contribution to these averages will be
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small and can be ignored for all practical purposes.

For pixel change processing, the simplest approach to adaptivity is to
perform background averaging and subsequent filtering over the entire
scene. A potential problem with this method is that the background
statistics can vary considerably with changes in local surface content,
leading to local change filter mismatch. The use of small spatial windows
alleviates the nonstationarity problem at the expense of a reduced
sensitivity to extended change features. For dual-band change detection,
it can be shown that a covariance estimate based on at least 49 vector
samples (i.e., a 7x7 window) provided detection sensitivity to within 1dB
of the perfectly matched filter. However, the smaller the window, the
more likely it is that larger sized changes will dominate the averages
taken in particular windows, resulting in self-suppression of these
features during the matched filtering operation. If change features with
a very wide range of sizes and shapes must be discriminated, then the use
of a pyramid of processing window sizes may be appropriate. A more
computationally-intensive option is to perform brightness and texture-
based scene segmentation prior to change processing, to identify those
regions which appear to have nearly homogeneous background statistics.

For frequency component change processing, the assumption is that the like
components taken from the different blocks of an image are drawn from a
stationary ensemble, but that the statistics of different components can
vary arbitrarily. The averaging is therefore performed component by
component across the DFT blocks in the image. For a fixed size image, a
fundamental tradeoff exists between spatial frequency resolution (which
improves with a larger block size) and the number of independent blocks
available in the image (which decreases with the use of larger blocks).

5.2.4 Use of Spatial Information

A purely pixel-level change detection process utilizes the information
available in corresponding pixels of two or more images, leaving it up to
the interpreter to make further inferences based on feature size, shape
and orientation. However, it would be possible to optimally combine
information from multiple pixels for automated change detection based on a
feature "shape" hypothesis. A general formulation of this approach,
utilizes a pixel-level change filter followed by a matched spatial filter.
Although the proper use of shape information could lead to higher signal-
to-clutter ratios for change cueing, several potential problems arise.
The first results from the wide range of potential feature sizes and
shapes, which would require the use of a large bank of change filters
matched to various objects. Secondly, the preferential spatial filtering
performed by this approach would alter the appearance of objects in the
scene, making higher level contextual interpretation more difficult.

Since frequency component change processing is carried out in the FolnrieL
transform domain, it is easy to modify the spatial frequency content of
the change image, if desired, through FIR filtering. The frequency-domain
equivalent of the spatial enhancement approach described above would
involve the application of a frequency-dependent weighting which is
proportional to the spectrum of the feature of interest. However, with no
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prior spatial information about the features, it appears that a better
approach is to simply normalize all frequency components so that they
contribute the same relative power to the final change image. Since the
power in each spectral change component is equivalent to its variance,
such normalization can be achieved by modifying (5-16) to implement

y(x) - s"K- 1 (x-p) (5-16)

at each frequency in the band. This spectral "whitening" appears to be
quite effective for change detection, as seen in the examples below.

5.3 Change Detection Results

The change detection concepts discussed above were qualitatively tested by
processing two different sets of imagery. Preprocessed Raisin City TM and
SAR images with synthetically injected changes were used to examine the
performance of variations of change enhancement processing. Although the
Raisin City multi-band data set does not contain long-term changes, it is
still useful for illustrating the effectiveness of change processing
applied to imagery taken from different bands. Sensitivity to actual
long-term changes was examined by processing TIMS Death Valley long-wave
infrared data collected in 1983 and 1988.

5.3.1 Raisin City Data

The Raisin City multi-band data set consisted of 7 Landsat TM bands and 3
SAR images co-registered to one another. The four images shown in Table
5-3 were selected for change processing experiments.

Band Designation Comments

TMl optical band (0.45-0.521Jm)
TM3 optical band (0.63-0.69pm)
TM5 near-infrared band (i.55-1.75pm)
SAR JPL Aircraft SAR (L-band)

Table 5-3: Raisin City Images Used In Change Detection Experiments

The TMI optical band was selected as the "change image". For reference
purposes, its global histogram was normalized to zero mean and unit
variance. Change features of varying size and brightness were then
synthetically introduced into the normalized TM image using the fouL step
procedure illustrated in Fig. 5-4. The first step was to inject the
following change signatures shown in Fig. 5- 4(a) by direct pixel
intensity replacement:

a) Small Structures. A set of three 2x2 pixel features with negative
local contrast and average replacement amplitude -1;
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b) Road. A linear feature of width 2 pixels and average pixel
replacement amplitude 1, corresponding to the mean intensity of a
diagonally-oriented road in the scene;

c) Large Structure. A rectangular 8x4 pixel feature with positive local
contrast and average replacement amplitude 3;

d) Field. A rectangular feature of size 30x35 pixels with average pixel
intensity 2, comparable to that of several other brightly-reflecting
fields in the scene.

The actual pixel amplitudes of the features were randomly dithered about
their average values to simulate the local rms intensity variation
observed in the TM scene.

The remaining three steps shown in Fig. 5-4 were used to model the effect
of finite-resolution TM optics on the injected feature responses. The
additive change image shown in Fig. 5-4(b) was first extracted by
subtracting the frame shown in Fig. 5-4(a) from the TMI frame prior to
injection. Next, the additive change signals were convolved with a 2-D
Gaussian function having a 1-sigma blur circle of 2 pixels to produce the
frame in Fig. 5-4(c). Finally, the blurred signals were added back into
the original TM image to generate a final scene containing injected
features with more realistic spatial frequency content, as shown in Fig.
5-4(d).

Fig. 5-5 shows the full 512x512 TMI frame with injected changes, referred
to below as TMIC. A number of change detection experiments were conducted
using the TMIC image paired with other Raisin City images in Table 5-3 to
determine how well the change features could be enhanced for reliable
cueing on the basis of brightness; typical results are presented below.
It should be emphasizeed that all of the change images shown are normalized
and presented on a common grey-scale, so that direct visual comparisons
among them can be made.

The TMIC-TM3 pair is used to illustrate several variations of the change
processing. The first experiment consisted of applying the change
detection filter to each image pixel, using global averages of the
background mean and covariance computed over the entire 512x512 pixel
scene. The resulting output frame is shown in Fig. 5-6. The synthetic
change features are obviously enhanced relative to Fig. 5-5 and their
shapes are well preserved. Several other portions of the scene are also
enhanced by the process. However, it is difficult to determine whether
other bright regions correspond to significant changes, or simply result
from poor background suppression due to local mismatch in a change filter
based on global scene averages. The "patchiness" of the change image in
Fig. 5-5 in a direct result of the nonstationary background in the Raisin
City scene.

An obvious way to improve the ability of the change filter to adapt to
local background conditions is to utilize smaller averaging windows. Fig.
5-7 shows a typical result for pixel-level change processing based on an
averaging block of size 16x16 pixels. In each 16x16 block, the local
background mean and covariance were used to compute the change filter to
be applied to the 256 pixels of that block, after which the output was
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variance-normalized for presentation on a common grey-scale. The
uniformity of the suppressed background in Fig. 5-7 is an improvement over
Fig. 5-6,.but the smaller averaging window clearly results in significant
self-suppression of the change features; only the road is easily
discernable.

The results of a frequency-component change detection approach are shown
in Fig. 5-8. To generate this image, the bands TMIC and TM3 were each
subdivided into 16 blocks of size 128x128 pixels which were transformed to
the spatial frequency domain by 2-D DFTs. The adaptive change filter (5-
17) was then applied to each frequency component of every block, based on
background statistics averaged over the like components in all blocks.
Finally, the processed components of each block were transformed back to
the image domain via 2-D inverse DFls and mosaiced to form the output
change image shown in Fig. 5-8. Note that all of the synthetic changes
stand out very well against the suppressed background. Evidently, the
frequency domain technique can provide superior local background
suppression without excessive attenuation of larger change features. This
is a very valuable attribute in situations where a wide range of feature
sizes and shapes are of interest.

Other experiments were performed to confirm the original expectation that
TM3 is the best reference band for change detection in TMI. For example,
Fig. 5-9 and 5-10 shiow the results of frequency component change
processing applied to the image pairs TMIC-TM5 and TMIC-SAR, respectively.
The results obtained with the infrared band (TM5) in Fig. 5-9 are still
rather good, but the overall background suppression performance is not as
high as in Fig. 5-8 due to the lower correlation between the optical and
infrared bands. The results for the SAR image in Fig. 5-10 are poorer
still, with increased edge leakage and almost no enhancement of the large
"field" feature.
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6.. Preliminary Analysis of Effects of Variations in tInaing Scenarios

One concern when creating algorithms for registration and change detection
is the robustness of such procedures over the varieties of imaging
scenarios. This section contains some observations on imaging
variablities for SAR in 6.1 and optical sensors in 6.2.

6.1 Variable SAR Scenario Effects

Radar returns from vegetation canopies consist of scattering from the
vegetation volume, the soil, and the soil-vegetation interaction. These
terms depend on the foliar and woody biomass and the soil state. Near
vertical, the soil term becomes dominant. For higher incidence angles,
the volume term dominates for lossy canopies.

Horizontal (H) polarization couples weakly with vertical stalks, whereas
the opposite is true for vertical (V) polarization. Therefore, as a
general rule, the H polarization reveals more about soils and the V
polarization reveals more about canopies. As always for a given set of
radar parameters, the primary determinant of attenuation in vegetation is
water/unit volume.

Co-polarized returns are usually stronger than cross-polarized returns.
The latter are caused by four basic mechanisms [Fung, Ulaby,83]:

o Polarization dependence of Fresnel coefficients for quasi-specular
reflection;

o Multiple surface scatteriny induced by surface roughness;

o Multiple volume scattering due to inhomogeneities within the skin
depth;

o Physical or geometric target anisotropy.

One measure of the degree of inhomogeneity is the ratio (a6/X)2 , where a,
is the standard deviation of the dielectric constant in the boundary layer
of surface scattering or of the spatial discontinuities in volume
scattering. Therefore, depolarization increases with increasing
frequency.

Also cross-polarization (HV and VH) returns have a weaker angular
dependence than like polarization (HH and VV) returns , especially near
the vertical. Therefore, the cross-polarization ratio 11V/a11 increases
with increasing angle and is larger for crop canopies than for bare soil.
Therefore, cross polarization is generally more suitable for -lope
studies.

6.2 Variable Optical Scenario Effects

The quantity that is directly measured in well-calibrated electro-optical
imagery is the in-band pixel apparent radiance. In general, this "sensed"
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radiance exhibits a complex dependence on two major classes of parameters:

1) Physical properties of the terrain features being imaged;
2) Sensor, environmental and encounter parameters specific to the

imaging scenario.

In the optical and near-IR region, the primary physical attribute of a
material is its reflectance spectrum. In-band reflectance is
conventionally measured from remotely-sensed multi-band imagery by
postulating the existence of a uniform illumination function across the
scene and normalizing it out of the data. A large body of experience with
actual mulit-spectral imagery (e.g., Landsat) has shown that measured
reflectance spectra of terrain regions are subject to significant long-
term changes. For example, the reflectance of healthy ground vegetation
peaks strongly in the near-infrared bands due to relatively high moisture
content, while for stressed vegetation this effect is far less pronounced.
At optical wavelengths, the presence of a surface moisture layer on opaque
materials tends to reduce the measured reflectively.

Sensed radiance in the thermal infrared is a function of material
properties (apparent temperature and emissivity) as well as scenario-
dependent parameters (atmospheric path transmission, path radiance, solar
reflection, etc.). Image nreprocessing can be used to factor out the
effects of certain scenario-dependent parameters in order to obtain
physical measurements (i.e., temperature). Standard tools such as the
LOWTRAN7 computer code, a comprehensive atmospheric model, are available
for this purpose. Change analysis is complicated not by bulk variations
in temperature across a scene during the normal course of a day, but
rather by differential texmperature changes among materials with variable
thermal inertias.

The encounter geometry also influences electro-optical imagery, although
to a lesser extent than microwave radar images. Most natural surfaces are
diffuse reflectors and emitters of optical radiation, and can be
considered Lambertain to a first approximation. The reflectivity and
emissivity of such materials do not show a strong angular dependence. On
the other hand, features like man-made metal surfaces and smooth bodies of
water can appear nearly specular at optical and infrared wavelengths;
their signatures vary considerably with the imaging aspect and the solar
angle. Overhead electro-optical imagery used for terrain surface
characterization is often collected early or late in the day to minimize
specular reflection effects.

Environmentally-induced variations in electro-optical imagery result from
the spectral content of the illumination and local atmospheric rath
conditions (molecular consituents, temperature, moisture content, etc.).
For example, direct solar illumination has different spectral prop, ti-
than indirect illuminations due to blackbody emission from cli)uds.
Atmospheric conditions can generally be predicted as a function of local
meteorological conditions, time of year and earth latitude and longitude.

The primary sensor parameter affecting observed electro-optical imagery is
the waveband of operation, since it determines the basic phenomena being
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measured (i.e., reflection, emission, or bothi. Secondary sensor-induced
variations result from design and sensitivity differences among
instruments, such as scanning vs. staring arrays, detector sensitivity and
spacing, system noise levels, and so on. An important sensor-specific
effect that frequently impedes electro-optical image processing is pattern
noise resulting from detector responsivity variation across the focal
plane array, as well as gain and offset imbalances in the A/iD converters
used to digitize the focal plane readout.
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7. Conclusions

An overview of the results obtained during the Phase I effort and
remaining problems appears in section 7.1. Some recommendations for the
Phase II effort are discussed in section 7.2.

7.1 Summary of Results and Remaining Problems

The image-image registration efforts were initially encouraging. The two
types of rough registration methods were area-based and contour-based.
These algorithms operated under the assumption of little terrain
distortion to the imagery. An contour-based algorithm for dealing with
the problem of considerable terrain relief is outlined. Fuller
development and testing of this procedure is a Phase II issue.

A two-stage method of combining the area-based and contour-based
algorithms showed some improvement over the performance of each
separately. In particular, small residual amounts of rotation on the
order of a degree were removed by this procedure.

Two sub-pixel registration estimation algorithms are also presented, with
extensive testing resuts so far available for one of them. The further
investigation of the other algorithm will be undertaken in Phase II.

The following statistics summarize registration accuracies achieved in
testing:

o area-based
- K-L algorithm: £ 1 pixel in 50% of cases,
- MNF algorithm: ± 1 pixel in 75% of cases,

o contour-based: < 2 pixels in all cases,

o combined area-contour: + 1 pixel (using MNF area method)

" sub-pixel registration:
- Algorithm #1: - 5x10-4 pixel (using lower frequencies, and without

spectral leakage filtering)
- Algorithm #2: < 10- 3 pixel (best results using Hanning filter for

filtering spectral leakage))

The sub-pixel results were on simulated data.

The other main technical area investigated was change cueing on the pixel
level, given a registered image pair. Both actual changes and simulated
changes were examined. The results of testing revealed excellent -11eilly
even for smaller targets as long as the local image-image correlati,n !f
the background was high, with the performance degrading as this
correlation decreases.

The remaining problems/concerns are:

102



o Obtaining a wider variety of multi-sensor image pairs for different
types of scenes and sensor parameters,

o More extensive testing and characterization of performance of present

methods.

7.2 Recommendations for Phase II

Phase II should continue the development and testing of automated methods
for:

o Area-based rough registration.

o Contour-based registration,
- present method for imagery with little terrain,
- new method for terrain-distorted imagery.

o Sub-pixel registration method #1.

" Change cueing,
- usage of physically derived quantities in EO and IR imagery,
- frequency space analysis for determining background correlation,
- target model, object-based analysis.

From a signal processing standpoint, this performance dependence on the
background correlation levels is unavaidable for pixel level procesing.
However, considerably more progress can be achieved using processing
methods which effectively increase these background corelation levels by
restricting attention to selective frequency regions.

Progress beyond what can be achieved using such enhanced pixel-level
processing would probably require higher-level procedures on the object-
level. Such methods will be required to make hypotheses on the existence
of objects based on pattern analysis, as opposed to simply thresholding
based on local statistics. The investigation of such object-based target
cueing methods will require the use of target models.

For optical and IR imagery, it is clear that the performance of algorithms
for sub-pixel registration and change detection will depend heavily on the
degree of correlation between images. Images based on a direct observable
such as pixel apparent radiance can be significantly decorrealted over the
long-term changes in the imaging geometry, season, time of day, amount of
solar reflection, etc. However, it appears that the effects of certain
variations can be reduced in many cases by converting the imagery to a
more fundamental physical quantity prior to change detection.

In the thermal infrared, for example, the sensed radiance is a functinT! ' f
actual megaterial properties such as apiparent temperature, and emissi:ity,
as well as scenario-dependent pa ameters such as atmospheric path
transmission, path radiance, solar reflected component, etc. The ultimate
goal of the pre-processing is to factor out the effects of the scenario-
dependent parameters to obtain physical measurements, such as temperature,
that may exhibit a grecter long-term correspondence between well-scheduled
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image observations. Available tools such as LCWTRAN7 can be used for this
purpose during Phase II.

Despite the encouraging results using the automated methods, it is
strongly reconmended that the Phase II workstation contain capabilities
for interactive as well as automated modes of operation. Such a dual
capability allows the use of a human operator to examine and assess the
results generated by automated registration procedures, make corrections
if needed, and to provide initial offsets for difficult or ambiguous
cases.

In particular, VEXCEL has developed, on another effort, software for an
electronic light table which has all of the capapbilities of a hardcopy
light table. This electronic light table (LT)is sensor independent.
Together with a sensor model, LT provides all of the image manipulation,
visual enhancement, and editing facilites for image registration.

The inclusion of VEXCEL's LT software package into the Phase II prototype
will provide the needed interactive image registration capabilities, which
can then be interface with the library of automated techniques.

For change detection, the use of automated change cueing requires only
selective attention by the operator, but uses his/her superior judgement
for evaluating cues as legitimate targets. Therefore, LT's visual image
enhancement tools can be used for examining such cued potential targets
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9. Aetni

9.1 Additonal Imnagery
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Fig. 9-6: Landsat TM Band 6 (1O.4pm-.12.5pm), Raisin City, CA
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9.2 Polarimetry Definitions

The following definiticns are useful in the analyses of polarimetric
measurements:

o - ensemble averaging

I - absolute value of complex quantity

- complex conjugation

R() - real portion of complex quantity ()

I() - imaginary portion of complex quantity ()

- polarization ellipse orientation angle, 0<*pn

X - polarization ellipse ellipticity angle, -n/4<X<n/4; X>O
corresponds to left-handed sense of polarization, X-6 corresponds
to linear polarization, and X-r/4 corresponds to full circular
polariLation

d - fraction of signal power that is fully polarized, Od~l

SI - Stokes vector, a real valued description of polarization

So - first Stokes parar'-eter, corresponds to power

S- second Stokes p,.ameter, - S0d cos(2*)cos(2x)

S2 - third Stokes paramter, - Sod sin(2*)cos(2X)

S3 - fourth Stokes parameter, - Sod sin(2*)

(s] - (2x2) complex scattering matrix relating transmitted to received
polarization; elememts of matrix (s] are as follows:

sii- complex coefficient relating horizontal received component
to horizontal transmitted component

s12' ccmplex coefficient relating vertical received component to
horizontal transmitted component

s21- complex coefficient relating horizontal received component
to vertical transmitted component

s22- complex coefficient relating vertical received component to
vertical transmitted component
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[F] (4x4) real Mueller or phase matrix, relating ensemble averaged

(time or spatial) received and transmitted polarization as

described by Stokes vector; [F] is skew synmetric if Es] is

symmetric; elements of matrix (F] are as follows:

F11" (Is1 I 12 + Is1 2 F + Is21 12 + Is22 12)/2

F1 2 - (Is 11
2 - IS12 I + Is21 12 + IS2212)/2

F13- R(S1 *S1 2 ) + R(S 2 2 *' 2 1 )

F1 4 - I(s 1 2 1 1 ) + I(S22*21 )

F 2 1 - (IS11 12 + IS12 12 - Is21 12 + IS221 )/2

F2 2 " (Is1i 12 - Is12 12 - Is21 12 + Is 2 2 12 )/2

F2 3 - 1l(S 1 1 * 1 2 ) - R(S 2 2 *S 2 1 )

F 2 4 m I(s 12 $11) + I(S21*'22)

F3 1 - R(s 1 1 * 2 1 ) + R(S22*'12

F3 2 " R(S 1 1 *S 2 1 ) - R(S 2 2 *5 1 2 )

F3 3 1= R(S 2 2 * 1 1 ) + R(s 1 2 *S 2 1 )

F3 4 " I(s11*S21) + I(S12*S22)

F 4 1 - I(s1*s21) + I(s12* 22)

F4 2 - I(s1l*s21) + I(s22 *12)

F4 3 - I(s 1 1 "$ 2 2 ) + I(S12"$21

F4 4 " R(s51 *S 2 2 ) - R(S 2*21
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9.3 Resampling Kernels

(a) Impulse Response
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Fig. 9-8: Cubic Convolution Kernel
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9.4 LCWTRAN7 Atmospheric Model

LCWTRAN7 is a powerful computer software package developed by the Air
Force Geophysics Laboratory to compute the effects of a wide range of
atmospheric conditions within a given transmission path. It can calculate
the atmospheric transmittance and background radiance, and single and
multiple scattered solar and thermal radiance within a spectral resolution
of 20 cm- over the wavelength region [.2,m,-).

LOWTRAN uses a single-parameter band model for the molecular absorption
and includes molecular scattering, aerosol and hydrometer absorption and
scattering. If enough information about a given image sensing scenario is
available (time, date, geoemtry, etc.), then it is possible using LOTRAN7
to compute the atmsopheric contribution to sensed radiance images. Once
these effects have been computed, the images can first be converted into
source radiance and subsequently to source temperature. The latter step
is accomplished by inverting the measured source radiance and the imaging
waveband(s).
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