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Abstract

In today's highly competitive and constantly growing market for software products, planning and scheduling of
large software projects has become a bottleneck to increasing production productivity [1331. This work is to
investigate the mechanisms required to support software project planning and scheduling (SPPS).

Our approach is to
1. define SPPS as a reactive process that involves human negotiation, and

2. develop a heuristic search model, that is consistent with the negotiation process, to improve an
existing schedule by incrementally revising it.

The main contribution of this thesis is that it represents the first major effort in building a problem solving

model for SPPS that accomodates the dominant characteristics of SPPS. Our problem solving model is based on

the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence
in manufacturing planning and scheduling, and the traditional approaches to planning in artificial intelligence,

and extends the techniques that have been developed by them in dealing with SPPS.

We demonstrate the sufficiency of the model that has been developed on specific test cases that reflect actual

software project planning and scheduling circumstances. A program called NEGOPRO that uses our basic
model to support SPPS in large software projects has been implemented.
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Chapter 1

Introduction

In today's highly competitive and constantly growing market for software products, planning and scheduling of
large software projects has become a bottleneck to increasing production productivity [133]. Although in the
recent years, many tools have been developed that improve the productivity of individuals in developing
software, little has been achieved in the area of improving the productivity of planning and scheduling of
software projects [121]. This is because previous scheduling models that have been developed fail to address the
major issues of SPPS. Software projects are planned and scheduled under an array of conflicting technical and
organizational constraints including budget constraints, temporal and resource capacity constraints, tool and staff
productivity limitations, organizational rules and regulations, and so forth. The task of planning and scheduling
is further complicated by the fact that some of these constraints are negotiable (i.e. can be satisfied to varying
degrees) and are subject to a diverse set of preferences i. SPPS is distributed among multiple agents each with its
own set of resource requirements and involves face-to-face human negotiation between them to resolve the
scheduling conflicts (i.e. constraints that can not be satisfied) that arise due to differences in goals, technical
judgements, etc [48]. Uncertainty in the budget estimates of a project activity (including the time and resources
needed to complete that activity) is another source of problem in SPPS [13]. Human errors only add to the
inaccuracy in resource requirement estimates by inflating or deflating them to serve their own personal
objectives. Last but not the least, the occurrence of frequent unexpected events (e.g. discovery of a major bug in
the product, high rate of staff turnover) can make some aspects of the plan/schedule that has been developed
obsolete frequently [91).

In the remainder of this chapter, we provide a definition of SPPS, our approach to solving it, and the
contributions of this thesis.

1.1. Definition of SPPS Problem

A clieat organization is an organization that orders software systems. Each order consists of a product (e.g. a
hardware simulator), a set of feature requirements for that product (e.g. deadline, portability, reliability), the
degree which each feature requirement has to be met, and a set of budget constraints. A software development
organization is an organization that can carry out orders from several clients at the same time. For every order, a
project is created to undertake that order.

Assuming that feasibility studies have been conducted earlier, the creation of a project starts with building a
plan for meeting the project requirements. Intuitively, a project plan is a specification of how the project product

tln the case of negotiable constraint, for instance, these preferences might state the importance of meeting each constraint to varying
degrees.
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can be produced by employing a set of primitive resources that are either readily available inhouse or can be

acquired from outside (e.g. software libraries, software tools, developers, workstations) within the budget. For

each product, the specification includes names, quantities, and the periods (relative to the beginning of
production) that the required resources have to be allocated for the production of the product.

Inside a software project organization, the specification of how a project product can be produced from a set of
primitive resources is developed in an incremental fashion. This specification is developed incrementally
because the project agents who are made responsible for producing a product specify the production of that
product locally in terms of the resources that they use directly during the production. For instance, if they require

the use of a graphic interface software, their specification would include how the graphic interface software
would be used in the production but would not include how it would be acquired (or produced). This scheme
illustrates how the production of a final product of a project can be specified recursively in terms of more
primitive project products (also called intermediate project products). Furthermore, it shows that what is
considered to be a resource request to one group of agents would appear as production goal (or responsibility) to

another group of agents. A graphic illustration of the relationship between a resource request and a
responsibility is provided in Figure 1-1.

Figure 1-1: The Relationship of User Defined Constraints and Resource Requests

Since a project product can be developed in more than one way, alternative project plans (or process plans as
named in manufacturing literature) are normally generated and evaluated to choose the best one among them.
Project plans are evaluated by studying alternative schedules that can implement them. A software poject
schedule is a specification that for each product in the plan includes the names, quantities, and absolute periods
of the resources that have to be reserved for its production. The resource reservation data can be used to assess
how well the project can meet the resource requirements of its plan if that plan is chosen to be implemented. In
studying SPPS, we consider both the selection of a project plan and the scheduling of that plan, and frequently

refer to their combination as scheduling.
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A major problem with scheduling of software development projects is that there exists a great deal of
uncertainty about their budget estimates (i.e. their resource requirement predictions are frequently inaccurate).
As a result, the schedule which is originally constructed is at best a rough approximation of what will happen
during execution. Some software project managers go as far as saying that it is not unusual to a software project
manager if a schedule that is considered 'good' in the morning of one day becomes a 'bad' schedule and has to
be scrapped on the afternoon of that same day, and argue that why should anyone build a schedule for a project
that contains so much uncertainty. This uncertainty in budget estimates is largely due tc the facts that (1) the
process of developing software is not yet well understood [69, 75] (thus leading to inaccurate estimates), and (2)
unexpected events such as discovery of a bug late in the project (that nullify schedule assumptions) are common.
These unexpected events are not just caused by improper implementation of project procedures (e.g. formal
reviews), and cap be attributed to politics inside the organization, change in customer requirements, failure of a
supplier to deliver a resource by a deadline, and so forth as well.

SPPS is more of a schedule revision problem than a problem of schedule generation (which constitutes the
traditional perception). The traditional perception of SPPS gives way to obscuring the need to schedule software
projects by characterizing it as a problem of schedule generation. To manage the uncertainty in schedules, they
have to be continuously revised over the course of project. This is also supported by studies of actual software
development organizations, which have indicated that the majority of scheduling time in a software project is
spent on revising a pre-existing schedule [48, 121].

SPPS is also a distributed problem solving process involving a set of agents with conflicting interests [75]. Each
agent specifies a set of resource requests in order to satisfy his responsibilities and refuses to commit to a
compromise (or to a different resource mix) unless he is convinced that no feasible schedule exists which
satisfies his requests. This implies that frequently a schedule can not be found until several rounds of negotiation
have taken place each resulting in a more refined set of resource requests. Another way of looking at this, which
we adopt here, is that an inconsistent schedule (a schedule that contains conflicts) is repeatedly revised to react to
the changes in resource requirements as they become available until a consistent schedule emerges from the
process.

Software project schedules evolve through human negotiation, which continues through all phases of SPPS.
Since negotiation plays a major role in SPPS, a scheduling model for this domain needs to be consistent with the
negotiation process. In fact, some scheduling experts believe that they will be better off using human intuition
than automated support during scheduling since automated support involves spending huge amounts of time
entering the constantly changing scheduling data for rescheduling purposes. However, the belief that scheduling
data changes so frequently is justified only if each organizational unit builds its own schedule without
considering how it will affect the schedule of other organizational units. While the crux of rescheduling within a
large software development organization lies in selecting the local scheduling decisions that do not trigger new
changes in the schedule of other agents, it is difficult for human schedulers to analyze the interaction between the
schedules of different agents, and to discover the impact of a local scheduling decision on the schedule of the
project as a whole. Therefore, it is important to use a scheduler (other than human) to aid the making and
evaluation of scheduling decisions.

Even idealized formulations of SPPS, where reactivity, negotiation, and uncertainty are not modeled, are
NP-hard in the general case. This is because the number of possible schedules that can be generated for a given
SPPS increases exponentially with the number of products that need to be produced (each product is realized by
one activity) as well as with the number of types of primitive resources used during the course of a project [62].
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1.2. Existing Solutions

When we reviewed the literature, we found that while the research in building problem solving models for SPPS
is at its early stages [64, 9, 851, commercially available project management tools [96] have been in the
marketplace for a long time. However, we also found out that these tools lack the knowledge representation and
specification language that are needed to specify and model SPPS.

Operations research has developed a set of techniques to be used during the scheduling process. A set of
commercially available tools have been developed to operationalize these techniques which include PERT/CPM
[70], Monte Carlo [127], and visual aids such as WBS (Work Breakdown Structure) and Gantt chart [96].

Although these tools can be used to estimate the duration of a project and figure out how critical the on-time
completion of each production is to the project as a whole, they are not capable of resource allocation. Heuristic
techniques are often augmented to PERT/CPM systems to provide resource allocation capability but the
effectiveness of this synthesis is limited by the type of constraints that can be considered. Linear programming
(LP) [96] can consider a broader set of constraints (i.e. those that can be formulated as linear inequalities) and

finds optimal solutions, but it is difficult to formulate many constraints as linear inequalities. Moreover, linear
programming is not appropriate for reactive scheduling [50].

PMA [64] is a knowledge-based project management assistant prototype tool which integrates a set of
conventional visual and activity network analysis aids with an intelligent data base, and assumes the
development of software project plans and schedules is very similar to writing software. Although this restrictive
assumption prevents PMA from modeling the problem solving process during software project scheduling
(because software planning/scheduling has an organizational dimension as much as it has a technical dimension),
PMA does provide a wide-domain logic-based plan and schedule specification language (REFINE) to assist the
specification of project plans and schedules. REFINE supports high-level specification of task assignments,
milestones, and temporal constraints, but it lacks a problem-solving model to use the knowledge base that is

created from the specification of a project in REFINE to build schedules.

Bimson and Boehm [9] also provide a knowledge based project management assistant prototype tool that uses a
frame-based knowledge representation scheme for representing project knowledge borrowed from Callisto [119].
The main contribution of the Bimson and Boehm's work is in the area of knowledge representation. However,
this is not accompanied by a problem solving model for scheduling that accomodates different types of
constraints and preferences, supports negotiation, and manages uncertainty.

In summary, although existing models for SPPS [64,9, 851 provide rich representation schemes and high-level
software project specification languages, they rely on human decision making for scheduling.

1.3. Our Approach

In this thesis, we focus on the development of a problem solving framework for scheduling that accomodates the

dominant characteristics of SPPS.

Our approach is to
1. define SPPS as a reactive process that involves human negotiation, and

2. develop a heuristic search model, that is consistent with the negotiation process, to improve an
existing schedule by incrementally revising it.
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Figure 1-2: Reactive Cycle

Each reactive cycle is triggered by a change in the schedule assumptions which include change in user resource

requests or items in the schedule that have deviated from actual execution. In the case of building a schedule for

the first time, the assumptions that change (and trigger a reactive cycle) are limited to user resource requests.
Each reactive cycle involves finding a schedule for which the penalty of resolving its conflicts2 (i.e. making it

consistent) will be minimal (we will introduce a variable to measure this consistency); see figure 1-2. This is

achieved by heuristic search through the space of possible schedules to improve (lower the inconsistency of) a
given schedule by incrementally revising it. The space of possible schedules spans along the following

dimensions:
1. The available capacity of a resource can vary over time.

2. The same production (activity) can start at different dates.

3. The same production can be carried out with different mixes of capacities of resources. This
occurs because some resources are interchangible. For instance, suppose that the allocation of
more manpower to a production can reduce the duration of producing a product under certain
circumstances. Then two different combinations of capacities of manpower and time can carry out
the production of that resource.

4. Different productions might require the same resource. Then, if there is not enough of the resource
to satisfy all requirements, a scheduler has to decide which production the resource should be
allocated to or whether a product should be preempted from its resource so that the resource can be
reallocated to another product.

5. The same product can be developed with different process plans. For instance, a business
application software can be developed by acquiring an application generator and hiring a group of
specification language experts or by developing the entire application inhouse by hiring high-level
language experts and system designers.

6. Product feature requirements can be compromised thus multiplying the number of ways that the
requirements of a product can be satisfied. For instance, the testing of a software module might
require conducting formal reviews periodically, but it also might require to abandon this
requirement if a major cost overrun would occur otherwise.

Once such schedule (a schedule with minimal inconsistency) is found, it can be used to advise the users on the

2Conflicts can be relaxed to varying degrees.
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constraints that still need to be satisfied in order to make the schedule consistent. The users could then use this

advice in conducting negotiation aimed at making the schedule consistent. For instance, they could reconcile the

requirements of the constraints that could not be satisfied (to varying degrees), or they could propose alternative

process plans under which those constraints are more likely to be satisfied. These changes in turn trigger a new

reactive cycle which tries to exploit those changes to develop a less inconsistent schedule (by revising the

existing schedule). A new reactive cycle will begin to be executed until a consistent assignment (a schedule

inconsistent schedule

Junexp c te
No evt

revised revised
" !'assumption Re ctv nss e

inconsistent Ngtain ncsistentI  Cycle schedule yes

schedule schedule I

Figure 1-3: Incremental Scheduling Loop

without a conflict) has been found, or until the users stop introducing changes that trigger reactive response 1-3.

The heuristic search model that has been developed is composed of three principle components: a set of search

(revision) operators, each of which modifies a subset of the commitments comprising the current schedule to

produce a new schedule, an evaluation function (i.e. a metric on the potential solution space), which provides a

basis for comparing the transformations produced by the application of alternative operators to a given schedule,

and a scheduling strategy , which specifies knowledge relating to use of the search operators and the evaluation

function within the search (e.g. conflict prioritization heuristics, operator selection heuristics, termination

criteria, etc).

We can contrast our heuristic search model with traditional search-based planning models (e.g. [1461). In these

models, the general objective is to find a feasible solution relative to a given set of non-negotiable constraints

(i.e. a course of action that brings about a particular goal state in a manner consistent with the physics of the

domain) and it is assumed that it is plausible to explore the entire search space (even if knowledge that enables

more efficient search is seen as fundamental in practical applications). This assumption, even as a worst case

scenario, is unworkable in the context of most scheduling problems, where the crux of the problem is balancing a

conflicting set of preferences, each of which can be satisfied to varying degrees (i.e. optimizing within the space

of feasible solutions3). The search space is too large to ever exhaustively explore, and reliance on heuristic

3 Feasible solutions ae the solutions that satisfy the physics of the problem.
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strategy knowledge and heuristic evaluation functions to optimize the search within the time allowed is

imperative [115]. Since we have adopted a schedule revision (in contrast to a schedule generation) approach to

scheduling, we always keep a copy of the most recently revised schedule. Moreover, since this schedule

represents the best schedule that has been developed so far, we can always return the best complete schedule that

the heuristic search has produced as soon as the bound on the scheduling time is reached. We have also

developed a heuristic to exploit the conflicting nature of problem constraints to optimize the search within the

available time, but the utility of this heuristic remains to be tested through a set of experiments. The advantage of

such heuristic is that it allows users to balance the quality of a solution with the time that they can afford for

finding it.

Although flexibility in specifying the time that users can afford to wait for finding a solution allows search to be

optimized with respect to time, this result can be improved if a human scheduler is used as a collaborator. A

human scheduler can make qualitative scheduling decisions about selectively abandoning (or alternatively

focusing on) search paths when the scheduler's heuristics are insufficient to take the appropriate course of action

in specific situations. We define an interactive scheduling framework that supports the collaboration between the

machine and human schedulers during scheduling search. To collaborate with computer during search, a human

scheduler needs to be familiar with this interactive scheduling framework. Moreover, he should be able to

understand the representation that we use for a schedule.

We can also contrast our heuristic search model with manufacturing scheduling heuristic search based models

[42, 104]. The overall revision strategy in ISIS [42] (i.e. highest priority order first) dictates a single trajectory

through the search space and thus there is no use of a global evaluation function4 . The OPIS factory scheduling

system [104, 128] implements a more sophisticated approach to reactive schedule revision which operates

according to an opportunistic scheduling strategy. More specifically, a heuristic theory relating the implications

of current solution constraints (e.g. important reoptimization needs and opportunities) to the strengths and

weaknesses of various revision operators is used as a basis for conflict prioritization and operator selection. In

our framework: which also relies on opportunistic scheduling, the use of heuristic strategies is integrated with the

use of heuristic search (by virtue of a global evaluation function) [115]. While we have similarly developed a set

of heuristics to relate the implications of current solution constraints to the strengths and weaknesses of various

revision operators, we also use a global evaluation function to compare revision operators if the heuristics fail to

subscribe to one.

This basic heuristic search model has been extended to incorporate uncertainty. Although reactive scheduling

addresses the uncertainty in resource estimates, the risk of building inaccurate schedules in SPPS can be reduced

by considering the data available about uncertainty during the heuristic search. For instance, if we are not sure

about the exact duration of an activity but can estimate its lower and upperbound, then we can make scheduling

commitments more accurately if we account for the duration of the activity to be anywhere between its lower

and upperbound. We have developed a weighted interval estimate approach (as opposed to point estimate

approach which is used in most scheduling systems) to specify the resource requirements of each project activity

and have modified our evaluation function to take into account the uncertainty.

4It should be noted that the "order reschedulig" procedure itself employed a heuristic beam search to locally explore alternative sets of
commitments for the order being scheduled, and this search was focused by an evaluation function that reflected scheduling preferences
relevant ro the order (e.g. meeting the due date, utilizing preferred resources, etc).
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It is not possible to eliminate face-to-face negotiation in SPPS entirely because it is simply impractical (from the

stand point of both computational complexity and knowledge) to hypothesize all negotiations and their possible
outcomes. Instead, we have to look into how negotiation can be supported in an environment that integrates
negotiation and schedule revision. We investigate how our basic heuristic search model can be used to support
negotiation by determining and prioritizing the conflicts and resources that need to be negotiated, and also by
identifying the agents that have to be involved in the negotiation. This problem is not as easy as it might first
look because the resource that should be negotiated to resolve a conflict is not always the same as the resource

that has caused the conflict, and the agents who should be involved in the negotiation might be different from
those who are directly affected by the conflict.

A program called NEGOPRO that uses our basic heuristic search model to solve SPPS has been implemented.
NEGOPRO is a reactive scheduler that reacts to the changes in schedule assumptions (specified by multiple

decision-makers) and uses heuristic search to improve a given (e.g. human generated) input schedule. The
architecture of NEGOPRO is depicted in figure 1-4).

"tl sod sre s cri ye s

noaction no,'

progres:

Figure 1-4: Architecture of NEGOPRO

The database in NEGOPRO holds the current schedule and the information about unallocated capacities of all

resources. Each scheduling session begins by entering the specification of the schedule assumptions that have to

be updated or by entering a new seed schedule5 to NEGOPRO. If the schedule assumption update violates a

constraint that is related to the physics of the problem (e.g. committing to a reservation which is larger than the
available capacity of a resource) then the physical-consistency checker will restore the consistency of the

physical constraints that have been violated (e.g. by selectively undoing the reservations that violate the physical

A seed schedule can also be constructed mnualy or through other techniques such as linear programming. In appendix E, a linear

programming design has been described for building a seed schedule.

coflc acio
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constraints6 ). Once the physical-consistency checker completes, NEGOPRO begins heuristic search through
incremental refinement of the existing schedule. During each incremental step, first conflict analyzer is invoked

to find the conflict that needs to be resolved next. Action manager includes a set of operators and a set of
heuristics to reason about the circumstances that each operator is applicable. Action manager prescribes one or

more operators that will be applied to revise the schedule by revision manager. Once the schedule is revised, it

is dispatched to progress examiner to measure the degree of progress in resolving the intended conflict. If the

measurement indicates that sufficient progress has been made (or if the temporary digress is tolerable), then the

next incremental step will begin. Otherwise, NEGOPRO backtracks and tries alternative commitments that have

not yet been examined. The scheduling process will stop when there is no more conflict left to be resolved or

when the user specified bound on scheduling time has been reached.

1.4. Contributions

The main contribution of this thesis is that it represents the first major effort in building a problem solving

model that addresses the major issues of SPPS. Other artificial intelligence approaches to software project
management have focused primarily on the development of high-level specification languages for specifying

scheduling knowledge and frame-based knowledge representation schemes [9,64, 119]. Our problem solving
model is based on the previous results in social analysis of computing, operations research in manufacturing,

artificial intelligence in manufacturing planning and scheduling, and software project management.

We found the social analysis works to be a good starting point to understand the complexity and issues of SPPS.

Social analysis approaches [121, 48] identify the recurring patterns of social actions in software projects that
influence the planning and scheduling and formulate a set of strategies to pursue in dealing with them. Since the

social analysis studies rely on empirical data, they provide a significant insight into why software projects fail,
what the nature of conflicts in software projects are, and how negotiation is used to resolve those conflicts.

As in many recent operations research approaches [3, 66, 981, we use cost/benefit analysis to compare

alternative scheduling commitments during manufacturing scheduling. In our heuristic search model,

cost/benefit analysis has been used to construct an evaluation function which measures the change in the

consistency of a given schedule before and after making a scheduling commitment. The problem with

cost/benefit analysis approaches in operations research, when applied to SPPS, is that they assume all cost and

benefit data are provided by a single agent. However, in SPPS there is a possibility of discrepancy in the
perceived costs and benefits of product requirements since they are specified by different decisions-makers with

conflicting interests. We have extended cost/benefit analysis to distributed decision-making environments in
which decision makers have conflicting interests, and have provided a framework for reconciling conflicting

positions (these positions are expressed as resource requests) that can not be directly compared. In addition, our

framework (1) can model the delegation of authority, (2) is flexible enough to allow the impact of an alternative

decision to be measured both locally and globally, and (3) can attend to a rich set of static and dynamic
preferences. The framework that we have developed to build an evaluation function for SPPS through

cost/benefit analysis can be applied to other manufacturing scheduling domains as well.

60f course, undoing these reservations is likely to create new constraints in the form of resource requests that are not met by the current
schedule. However, the new conflicts will not be of physical nature any longer.
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Our approach to designing of a set of schedule revision operators and a control strategy for applying these
operators during the scheduling process extends the previous artificial intelligence-based scheduling approaches
[104, 120, 1281 in two respects. First, a search space is defined that includes selection among alternative

process plans, and a problem solving model that integrates the search for a process plan with the search for a

schedule that implements that process plan. This enables preferential concerns relating to process plan selection

to be appropriately balanced against those relating to resource allocation and time interval selection.

A second contribution of the present work is that it formally defines a criterion, navigational minimality, for
improving the design of search operators for manufacturing scheduling problems which have to optimize the

search relative to the time allowed for scheduling. If we consider that the search space in these problems (e.g.
SPPS) is extended along many dimensions, it is important to allow selective disbandment of search or

reprioritization of search operators along some dimensions during scheduling. A navigationally minimal set of

primitive operators (which constitute the building blocks of more complex operators) insures that (during
scheduling) this goal can be achieved without a major reorganization of the underlying heuristic theory of

schedule revision - a task which is both difficult and costly.

Our approach in the area of incremental schedule revision also differs from previous approaches in the heuristic
strategies ,.aed for opportunistic scheduling. Specifically, the present work focuses on minimization of
disruption (or change) to the schedule as the primary criterion for operator selection. Disruption of (lack of

stability in) the schedule over time is a particularly important concern in SPPS as (1) a project schedule serves to
coordinate the interdependent activities of a large number of project teams, and (2) attempting to change the

schedules of several other teams in order to fix the problems that has arisen in the schedule of one frequently has
undesirable political ramifications. Although the importance of non-disruptive incremental revision is noted in

OPIS [104], it is considered as secondary to reoptimization concerns during operator selection. We believe that
minimization of disruption as the primary goal also could be helpful because disruptive revisions might undo the
commitments made during previous iterations of opportunistic scheduling [128] by creating new conflicts at the

points where previously resolved conflicts used to reside, thereby slowing down the convergence of scheduling.
Although this strategy has been implemented, its utility has not been compared with the utility of the previous

selection strategy that considers the importance of non-disruptiveness as secondary to reoptimization.

Traditionally, interactive scheduling has been used to refer to the ability of receiving and processing scheduling

input interactively. In the present work, we use this term to refer to the ability of a human scheduler to control

the heuristic search interactively. Domain independent planning systems [146, 15] have proposed and

implemented schemes to allow a human expert to control the expansion of goal nodes, and also to post

constraints on plan variables thereby guiding the planning along intended paths. Although these systems
increase the involvement of a human scheduler in the scheduling process, they still fail to allow him to become

involved in search-related decision making (e.g. make or undo a scheduling commitment while the heuristic

search is in progress) to improve the efficiency of search7 . We have developed a multi-mode scheduler which

conducts heuristic search in two modes: automatic and manual. A human scheduler can enter the manual mode

any time, where he is allowed to make (or undo) scheduling commitments (e.g. apply an operator, disband a
search sub-tree), and switch back to automatic mode later.

For long, operations research has been involved in developing methods that can account for the uncertainty in

7the ability to reach results that are as good (schedules that are not less consistent) faster, by conducting search more mtelligently.
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the duration of project activities [79]. PERT (D.G. Malcolm) provides a probabilistic treatment of activity
duration by relying on interval duration estimates, and Monte Carlo [1271 uses simulation to estimate the
duration of a schedule within a range. The weighted interval estimate approach that we have developed for
calculating the value of evaluation function in conducting heuristic search extends the existing operations
research approaches (which account for the uncertainty data only after the schedule has been built to analyze the
potential risk) by taking into account the uncertainty data during the scheduling. This allows us to optimize
scheduling decision-making relative to uncertainty data. Moreover, we do not limit the consideration of

uncertainty data to activity duration by generalizing it to all resource requirements.

We provide a realistic analysis of negotiation and its role in SPPS, and investigate that how our heuristic search
model can be used to support negotiation without assuming that

1. project agents are aware of (or willing to) specify their compromises in advance. This is captured
in the reactive view of SPPS in which each reactive cycle schedules a fixed set of resource requests
(and their associated compromises) by revising the pre-existing schedule with the objective of
minimizing its inconsistency.

2.face-to-face negotiation can be entirely eliminated from the scheduling process. Face-to-face
negotiation is supported by determining and prioritizing the conflicts and resources that need to be
negotiated, and also by identifying the agents that have to be involved in the negotiation.

In contrast, the presence of these assumptions in [120, 134, 81] prevents them from modeling the negotiation

process and its support mechanisms in SPPS in a realistic way.

We also extend previous artificial intelligence-based manufacturing planning and scheduling works in the area
of constraint knowledge representation by allowing: (1) the specification of a reservation that includes variable
quantities of a resource over time (2) a higher-level representation of temporal relations among activities. Our
representation provides a useful abstraction device, and more importantly, allows a more efficient interpretation

for scheduling purposes.

1.5. Verification

We demonstrate the sufficiency of the basic heuristic search model that has been developed on specific test
cases that reflect actual SPPS circumstances, using NEGOPRO, in chapter 8. The test cases do not include
experiments that deal with uncertainty or support for negotiation because the present implementation of
NEGOPRO does not support these features. We argue the validity of the extension of the basic heuristic search
model to deal with uncertainty on the basis that it is consistent with the process behaviour descriptions that are
abstracted from experimental studies of software project risk assessment and risk control literature [13]. We also
argue the validity of our approach to support human negotiation through heuristic search on the basis that it is

consistent with the empirical studies of social analysis of computing (47, 1211.

8We allow the start (or completion) time of an activity to be specified relative to any point between the start time and completion time of
another activity.
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1.6. Overview of the Thesis Chapters

The remaining chapters of this thesis are organized as follows. The first step in describing our problem solving
model is to develop a formal definition of SPPS that can be modeled by heuristic search. This is provided in

chapter 2. In chapter 2, we also describe a constraint representation language for specifying SPPS resource

constraints for the case that uncertainty information need not be modeled. Last but not the least, in chapter 2, we

provide an overview of the components of our basic heuristic search model. These components are later

described in detail in chapters 3 and 4. The evaluation function component of our basic heuristic search mode is

discussed in chapter 3, while the scheduling strategy and search operators are discussed in chapter 4. The issues

which are related to the control of heuristic search, and the collaborative role of human schedulers in making

scheduling decisions are described in chapter 5. The design of experiments for validating the basic heuristic

search model and the experimental results are provided in chapter 6. The extension of the basic heuristic search

model to deal with uncertainty is discussed in chapter 7, and the use of heuristic search to support negotiation is

studied in chapter 8. The final chapter of this thesis, chapter 9, is devoted to exploring the avenues for future

research.
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Chapter 2

Formal Definition of SPPS and Our
Problem Solving Approach

SPPS is a distributed and reactive scheduling problem involving a set of agents with conflicting interests

[48] involving revising the existing project schedule in order to maximize the overall satisfaction of all

constraints and preferences. SPPS is subject to four types of constraints:
1.feature requirement constraints denoting the constraints on each feature requirement of a product,

2. available capacity constraints governing the available capacity of each resource over time,

3. resource request constraints denoting the required capacity of each resource over time by each
project agent (these capacities are essential to him in meeting his responsibilities), and

4. authority constraints used to limit the agents who can specify their preferences with respect
satisfying various constraints.

These constraints often interact (e.g. might compete over the same set of resources) and can be satisfiable to

varying degrees. Moreover, constraints of different types can not often be directly compared.

The SPPS problem is defined in two stages: first it is defined under a centralized authority framework (CAF)
and then the definition is extended to accommodate a distributed authority framework (DAF). In the centralized

authority framework, the specification of all preferences is made by a single agent. In contrast, in a distributed
authority framework, alternatives are selected according to the preferences of multiple decision making centers

that are organized in an organization hierarchically. We begin by defining the notation that we use throughout

this work.

In the first section of this chapter, we provide a formal definition of SPPS problem. This definition provides the

basis to viewing SPPS as heuristic search under a centralized authority framework. In the first section, we also

describe a constraint representation language for specifying SPPS resource constraints. In section 2, we analyze
and compare the constraint representation language in section 1 with the constraint representation languages that

have been used in related research. In the third section, we generalize the formal definition of SPPS to a

distributed authority framework, and in the fourth section we discuss an overview of our problem solving
approach.
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2.1. Notation

The notation used is described in two parts: symbols and constructs. The symbols are merely introduced in this

section, and will be formally defined as they appear during the formal definition of the problem in the next

section. The symbols uniquely identify SPPS objects while constructs are used to manipulate the symbols. Let

" r, p, and q be resources,

" G denote a software developing organization,

" p denote a set of available capacity (resource availabilities) constraints and Pr denote the available
capacity constraint of resource r over time,

" I denote a project,

" Rpri denote a set of primitive resources and Rp, denote a set of products,

" 4) denote a set of product feature requirements,

" I be a set of user defined preferential concerns,

" F be a process plan,

" A be a schedule,

" be a temporal capacity resource constraint, and

* A* and F* denote the set of all schedules and all process plans of a product respectively.

Furthermore, let
* [A) denote a set of objects Ai,
" [AJ denote an ordered list of objects A i (if A is declared as an ordered list, then A t is used to refer to

its i-th element),

" Card(A) denote the cardinality of an ordered list or set A,

of g/h be functions,

" n-th(Aj) be a function which returns the i-th element of an ordered list A.

" membership test for ordered lists be defined, and be referred to by the symbol E,

" and [a b] s.t. ab r N represent a time interval that denotes the inclusive set of time points
between a and b.

Last but not the least, all sets, ordered lists, and domains will be finite unless stated otherwise.

2.2. Formal Definition of SPPS Under Centralized Authority Framework

The set of resources that need to be allocated to support or be produced during the execution of a project l' can

be broken to two subsets: Rpro and Rp,,i. Rp i denotes the set of primitive resources and includes those resources

that are not produced inhouse. In contrast, Rpro denotes the set of products and includes those resources that are

produced inhouse9 . A file server, an office, any type of software, hardware, documentation, staff, or time are
typical examples of primitive resources. Furthermore, all products in a software project are either software or

documentation and are considered to be "infinite capacity" resources (therefore they need to be produced only

once). RPi itself includes two types of resources: unshared primitive resources which is denoted by Rup, and

91n software projects, these resources will remain available indefinitely once they ame produced.
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represents all primitive resources that their capacity is divided between their reservations, and shared primitive
resources which is denoted by Rspri and represents all "infinite capacity" primitive resources. A file server, an

office, and any type of software or documentation are typical examples of shared resources while a system

analyst, a coder or a workstation are typical examples of unshared resources. A system designer is an unshared

resource despite the fact that it can be allocated to different projects at the same time. This is because if the size

of time window is chosen small enough (e.g. manhour) a system designer can be working only on one project at

any given time. Time has a special status that no other resource has, namely it is not treated as a separate

resource and instead is implicit in the specification of every temporal resource constraint.

According to our definition, if each product that shares a resource reserves a portion of its capacity, then the
resource should be specified unshared and the scheduler should handle its reservation as if it is an unshared

resource that can be allocated to several products (projects) at the same time. However, if we are certain that the

available capacity of an unshared resource always exceeds its reservations, it is recommended that it be specified

as a shared resource. This is because the procedures that are used to handle a shared resource are more efficient

than the procedures that are needed to handle an unshared resource. The librarian of a library is a typical

unshared resource that can not service an arbitrary number of library users at the same time because each library
user reserves a portion of his capacity. However, it can be specified as a shared resource if the aggregate required

capacity for the librarian is less than one.

To allow an agent to work cn several products (or projects) at the same time (i.e. 1/3 time oit product X and 2/3
time on product 1), the available, requested, and reserved capacities of an unshared resource can be multiplied

by the common denominator of all requests for that resource. For instance, in the above case, they all will be
multiplied by three.

Both available capacity constraints and required capacity constraints (resource requests) are types of temporal

resource constraints surrounding resource usage. Moreover, they share a common representational syntax despite

their semantic differences (this representational syntax has been described in definition 2.1) because they both
represent variable capacities of a resource over a period of time. Resource reservation (allocation) of a given

resource to a schedule of a product also shares this syntactical representation since it represents the capacity of

the resource that has been allocated to the product over a period of time.

The relaxation of an available capacity constraint represents an increase in the available capacity of the

resource, and can be specified as capacities over a period of time (i.e. the syntactical representation of a temporal

capacity constraint). When a required capacity constraint is relaxed, a new reactive scheduling phase is triggered.
This is because we assume the resource requirements that are specified during a reactive phase are not artificially
inflated by the agents who specify them. The relaxation of a required capacity constraint marks a drop in the

required capacity of the resource, and is represented as a temporal capacity constraint as well.

We use the symbol C to refer to a prototypical temporal resource constraint. When multiple temporal resource

constraints are needed, we use subscripts to distinguish between different temporal resource constraints.

Definition 2.1: if C is a temporal resource constraint for a resource r which is required by a product p,
then C is of the form:

if rE RUpi then [(t2i t2(i+1) qi) Vie O..n] qi is a rational number
else if re Rspri then [(02i t2(i+l)) Vie O..n]

elseifreRp,, then t

such that t is a negative offset from the date that p is expected to be completed (initially mapped to
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zero) and denotes how early r has to become available in order to complete p on schedule, and for all i,

(2i t2(i+l)) denotes the period during which r needs to be reserved (like t, t2il° and t2(i+) are negative
offsets from the date that p is expected to be completed) and qi is the quantity of r that is requested
over (t2i t2(i+1)). Since t2i denotes the beginning of a period and t2 (i+1 ) its end, then
t2i t2(i+1) Vie O..n.

The above definition implies that when r is a primitive resource, then C specifies variable capacities of a resource

over different intervals (e.g. required capacities of a primitive resource r for a product p). Otherwise (i.e. when r

is a product), C specifies a time point that indicates how early r has to be available in order to complete p on

time. If r is a primitive resource, then can be plotted as a step function, whereas if r is a product, then C will

represent a single point on the coordinate system.

The following two examples illustrate the use of our constraint representation language in specifying resource

requirement constraints:

Example: Consider the resource requirement specification [(-5 -3 2) (-1 0 1)] for a senior programmer. The

specification requires 2 senior programmers for the first three months, no senior programmer for the fourth
month (therefore the specification of this month is left out) and 1 senior programmer for the last month of

development.

Example: Consider that to develop a debugger (a product) we need a simulator (also a product). Furthermore,

suppose that the simulator has to be available at least three months before the debugger can be completed. This
resource requirement can be specified as -3. The specification of the upper bound of the interval is redundant

because the required resources which are products will remain available once they are produced for the first

time.

Given the specification of C, we are now in a position to introduce a set of symbols that are defined for temporal
resource constraints. For a product p, we use r; to refer to the resource requested by , C(p) to refer to the set of

resource requests of a given schedule of p, and r;(p) to refer to the set of all resources requested by a given

schedule pi 1.

In section 2.1, we defined p as a set of available capacity constraints. This implies that p, for a given project,

can be formally defined as a set of temporal resource constraints:

Definition 2.2: Resource Availability Constraints

p = [C) s.. V E p r; is unique, and in the specificition of p, t is the date from which
% becomes available, qi is the quantity of % that will be available over 02i t2(i+l)),
(t2i t2(i+1)) is the period during which r; will be available, and ViE O..n t2i-t2(i+l).

On the basis of the definition of C, we can also formalize the overall software project planning and scheduling
problem. A software development organization is an organization that can carry out orders from several clients

concurrently:

Definition 2.3: Software Development Organization

G = <(nllp>

10the value of subscript 2i is 2 times i

"Since our notation allows r; to be used both as a function and as an object, we use the context of usage to determine whether it is a

function or an object More specifically, if it is followed by an argument which is enclosed in a parenthesis, then it is a function (the function
value is a set). Otherwise, it is an object.



19

This definition implies that all projects within G compete for resources that are globally available (i.e. they can

be shared by all projects).

For every order, a project is created to undertake that order. However, our definition of a software project is

recursive in that every inhouse order generated to meet a client order can be considered a project in its own

rights.

Definition 2.4: Software Project

n = <p,,p,0> s.L p is the product of nI, D is the ordered list of feature
requirements Di that p has to meet, af[a i] s.t. oti is the ordered list of levels
at which feature requirement (Di of p can be met, JP=[P3i] s.t. Pi is the ordered list of

desired levels of meeting each feature requirement 12, and 0 is a
set of user defined preferential concerns.

The above definition implies that each feature requirement (i of a product can be satisfied at multiple levels

1 (1 <l<_Card(ai)), from which, one, Pi, constitutes the desired level, and all others constitute different degrees
of relaxation. Of course, a schedule can be constructed to satisfy a feature requirement above its desired level

but this might be undesirable or incur additional cost without satisfying any new objectives. Modeling the

satisfaction of feature requirements at multiple levels allows us to study the consequences of relaxing the desired
level of meeting a feature requirement, or alternatively the consequences of reserving additional resources to

assure that a feature requirement will be met at a level which is closer to what is desired.

A software project considers a wide range of preferences including the preferences among

* resource or resource mixes,

" process plans of a product,

" different feature requirements of a product,

" degrees of meeting each feature requirement of a product,

" degrees of relaxing available capacity constraints (if in fact these constraints can be relaxed), and

" degrees of relaxing required capacity constraints (if in fact these constraints can be relaxed).

Formally, a preferential concern i E 0 is a function Oi:A- -4N s.t. A is a finite set of alternatives (e.g.

substitutable resources) and N is the set of possible ratings of A (e.g. preference of each substitutable resource).

Consider a hypothetical software project to develop a runtime environment for a TMS3020 chip 13.
Furthermore, consider that the environment has to provide interactive response time and integrate the debugging

and assembly functions. Once the project is awarded, the developing organization produces production

dependency graph of the final and intermediate products that need to be developed along with the feature
requirements of each product (figure 2-1). In the production dependency graph of figure 2-1, products are

represented by nodes while activities (productions) are represented by directed arcs. For instance the activity of

producing the debugger is denoted by the directed arc that is incident from the simulator on the debugger.

According to definition 2.4, the project to develop a run-time environment in figure 2-1 only includes the

activity to produce the run-time environment once the assembler and the debugger are completed. In general, the
production of every single product (e.g. the simulator in figure 2-1) is formalized as a project. A complete

"Therefore, 3f I -I onto Of:= -- I s.t. Vt i Acti) E ai.

13TMS3020 is a trademark of Texas Instrument Inc.
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Figure 2-1: Production Dependency Graph of the
TMS3020 Runtime Environment

project of producing a run-time environment is constructed by recursively replacing each intermediate product
by its complete project.

To illustrate the use of our representation language to specify the constraint knowledge of a problem, consider
again the example of developing a runtime environment for a TMS3020 chip (figure 2-1). Figure 2-2 depicts the
basic topology of the resource requests of each product that has been specified in our representation language
under a fixed process plan. Hardware description (HD) is the only shared primitive resource that is included in
the resource request graph while the unshared resources consist of junior programmer (JP), senior programmer
(SP), graphic generator (GC), and lexical analyzer (LA). The labels of the arcs that connect two nodes reflect the
resource requirement constraints of a product end of the arc for the resource end of the arc. For instance, HD is
required one month into the production of assembler while to develop the run-time environment 2 senior
programmers will be required for the first two months and only one senior programmer for the third month.

Each product can typically be developed through many process plans. A process pian specifies how a product
can be produced from its required resources but stops short of allocating resources and temporally instantiating
that plan. However, the process plan of a product does not specify how its required resources are acquired or
produced. A complete process plan of a product p can be constructed by recursively merging p with the complete
process plans of all products that are required by p.

Process plans of a product are different in the type of resources that they use to produce the product. For
instance, a business data base application software can be developed by acquiring a business application
generator and hiring an application generator expert to develop the application, or by designing and then
developing the entire application inhouse using database designers and data base coders. Project agents
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normally indicate their preference with respect to different process plans. The preference of each process plan of
a product p can be specified by associating it with the degree that it meets different feature requirements of p.

For instance, if a process plan p achieves more reliability than another at the cost of additional development
time, then that process plan meets the reliability requirement of developing p to a higher degree while it meets
the deadline requirement of developing p to a lesser degree.

Among the set of resources required to produce a product under a process plan, some resources can be replaced
by others. For instance, it might be possible to implement a process plan of a product by either 2 senior
programmers and 3 junior programmers or 1 senior programmers and 6 junior programmers. The set of
resources required under a process plan can be broken down to disjoint partitions "o such that each resource is in
the same partition as all other resources that it is replacable with. For each partition, the user can specify multiple
mixes of resource allocation requirements (e.g. two senior programmers and 3 junior programmers vs. one senior
programmers and 6 junior programmers). We denote the set of these mixes for all partitions by xr. In the

following, we have illustrated 'o and t through an example.

Example: Suppose that a possible plan for a product p is to use 4 Spark workstation and either two senior
programmers (Sprog) and 3 junior programmers (Jprog) or one senior programmer and 6 junior programmers for
8 months. Then the set of all resources used in producing p, Rp = (Spark, Sprog, Jprog), the set of partitions of
Rp, 'o = {Spark) u {SprogJprog} and the set of resource mixes of Sprog and Jprog,

'r= ( ((Sprog(-802))(Jprog(-803)))((Sprog(-801))(Jprog(-806))))}.

The specification of a process plan r of a product p is formalized in the following definition:
Definition 2.5: Process Plan
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Let r be a process plan of project 1 which produces p. Then r = <R1,,u.'r> s.t. R, is
the set of resources required to implement n, p e Rp, "o Q 2 RP

(power set of R,) is a set of disjoint partitions of Rp denoting substitutable resources,
and t=[;i] s.t. "i is the ordered list of resource mixes of each partition in -o14.

Each process plan can be implemented through many schedules. A schedule is constructed by
1. determining which feature requirements (if any) have to be compromised (to avoid violating more

important requirements such as missing a delivery deadline). For instance, the testing of a software
module might require conducting formal reviews periodically, however, the development
organization might decide to abandon this requirement if a major cost overrun would occur
otherwise. We use xV to denote the actual level at which each feature requirement of a product is
met in a schedule.

2. committing to specific resource mixes among all alternative sets of resource requirements for each
set of substitutable resources. We let X be the ordered list of indices of the selected resource
requirement mixes.

3. committing to a set of resource allocations ir to budget the process plan which the schedule
implements. In section 2.1, we described that each available capacity constraint possesses the
syntactical format of a temporal resource constraint. Then nt can be formally defined as a set of
temporal resource constraints:

Definition 2.6: Resource Reservations of A

7C = [1j s.L VC G 7 r; is unique, and in the specification of p, t is the date
from which r; becomes available, qi is the quantity of r that is allocated over
(t2i t2(i+)), (t2i t2(i+l)) is the period during which % is alocated,
Vie O..n t2i<t2(i+l).

A schedule can be formally defined in terms of it, X, and W, the elements that are used to construct it:

Definition 2.7: Schedule

Let A be a schedule of F and p be the product of the project for which F is a process
plan. Then A = <n,X,W> s.t. ?r denotes the reservations of members of Rp15 ,

X is an ordered list denoting the selected resource requirement mixes1 6, and y is an
ordered list that denotes the actual level of meeting each feature requirement 7 .

The duration and start time of a schedule can be derived from the resource requirement specification of that

schedule. The duration of a schedule can be calculated by finding the start time of requiring the resource that is

needed the earliest in implementing the schedule. This can be achieved by scanning all resource requirement
specifications of the form C and recording the earliest required date of each resource, then taking the smallest of

the numbers that have been recorded, and finally taking the absolute value of that number. This is depicted in the

following definition:
Definition 2.8: Duration of a Schedule

Let VC E i t = if r; E R pro then t else to endif
where t and to are as defined in definition 2.1. Then dA = max(l t; V E it).

"i bis can be formally stated as 3 I -I onto ft --+,c where V' i ftri) denotes the alternative resource requirement mixes of T, and
Card(ti)=Card(;) V'' e.f'Q.

"'This can be formally stated as 3 1-1 onto h'R - it.

16This can be formally stated as 3g I-1 onto g.x -X s.t. Vc i I Sg('ti) Card() (a position withint,).

17This can be formally stated as 3f I -I ontof a -4 W where Va i flct) E Cx.
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The start time of a schedule can be calculated by deducting the duration of that schedule from its deadline. This
is formally illustrated in the following definition:

Definition 2.9: Stan Time of a Schedule A

Let eA be the value of the level at which the deadline feature requirement of p has to
be met. Then sA = eA - dA.

Therefore these parameters need not be specified as independent variables.

Normally we are interested not only in the schedule that describes how p is produced from its required resources

but also the schedule of all intermediate products that need to be produced in order to develop the required

resources of p. The complete schedule of p, Ap., can be defined as the union of the schedule of p and the

complete schedules of all required products of p. This can be formally written as follows:

Definition 2.10: Complete Schedule

Let AP and Ap. denote the schedule and the complete schedule of producing p
respectively. Then Ap. = Ap u Aq* s.t.
Vq p E product-transitive-closure(q)

Ap. can be constructed by starting from p working back recursively and including the schedules of all resource

requirements of p that are of the type product. The product-transitive-closure of a resource r is the set of all

products {p.) that require r either directly (because r is on the requirement list of each) or indirectly because r is

on the requirement list of a product q which is required by every member of [p)..

A schedule A for a software project is consistent if and only if it meets the resource requirements that are

necessary to satisfy the feature requirements of the product p of that project without violating the temporal and

capacity restrictions p of available resources (recall that p is a set of element of the form C)18. Since a consistent

schedule might be non-existent (i.e. the problem might be over-constrained) or exist but take a very long time to

find, the task of scheduling during each reactive phase can be formulated as finding the assignment of values to

variables Rp, y, X, and 7t that maximizes the overall satisfaction of feature requirements of the project product

and capacity restrictions of primitive project resources under a variety of preferences. Later in this chapter, we

discuss the development of an evaluation function which measures the overall satisfaction of all constraints and
preferences for a given assignment of values to all the variables. Variables p, 0, 03, v, r, and p, Vre R i are

assumed to be fixed since their values are set by project agents.

In our formalism, the consistency of a schedule A for a product p can be verified by comparing the aggregate

demand 19 and the available capacity for r, for every resource rE Rp. The aggregate demand for a resource by a
schedule A reflects the capacity of r that is essential to satisfy all feature requirements of p. A is consistent if

and only if the aggregate demand for every re R , never exceeds the available capacity of r. This can be

formally stated as follows:

Definition 2.11: Schedule Consistency

Let A be a schedule to produce p, 3 1-1 onto h'Rp -- 7t, and 3g 1-1 onto g:r -- X s.t.
VT i 1 <g(' i) 5 <Card(T) (a position within 'r). Then A is consistent iff
V't i Vq p e product-transitive-closure(q) n-th('ri , g('Tr)) Q h(q)

18Since meeting the feature requirements of p is tied to meeting the feature requirements of the resources that p requires, then consistency

needs to be measured across the complete schedule of p.

"Aggregate demand for a resource can be constructed by aggregating the requests for that resource by all products produced under A.
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2.3. Analysis of Constraint Representation Language

In chapter 1, we stated that our constraint representation language (which we defined in the previous section)
allows the specification of a reservation that includes variable quantities of a resource over time, and also
provides a higher-level representation of temporal relations among activities by allowing the start (or
completion) time of an activity to be specified relative to any point between the start time and completion time of
another activity. The need to specify a reservation that includes variable quantities of resource over time
frequently arises in SPPS. For instance, many development tasks require more senior programmers during the
starting and completion stages of the task, while they require fewer ones in the middle stages. This is because
senior programmers are used to construct a detailed design of different components of a software module before
more junior programmers are assigned to undertake the development. Senior programmers are also used to
integrate the module components after they have been separately developed.

The need for a higher-level representation of temporal relations among activities during scheduling arises when
the traditional specification of activity precedence relations (i.e. linking activities through before relation) is not
sufficient to specify more sophisticated temporal relations among activities [1]. For instance, suppose that the
execution of an activity is allowed to overlap partly with the execution of another activity which succeeds it.
Then, a limited concurrent scheduling of the two activities could lower the combined duration of both.

Previous research [41, 104] require that the activities which require complex reservations or the activities that
the relation before is not sufficient to express their temporal relation with other activities be exploded to a larger
number of more primitive activities which can be represented using previous schemes. Our representation
provides a useful abstraction device in these cases by allowing the user to specify reservations and temporal
relationships among activities at a higher level. More importantly, our representation allows a more efficient
interpretation of specification for scheduling purposes. In the remainder of this section, we illustrate that why our
representation allows a more efficient interpretation of constraint specification through an example.

Example: Suppose that 0 is an activity with a linear sequence of 5 resource reservations each for a different
resource r, through r5 as depicted in figure 2-3; the available capacity of r, through r5 is shown in figure 2-4.
Furthermore, suppose that 0 has to be completed in 12 months and that the objective is to optimize the allocation
of resources to 0. The priority of each resource in the descending order is r4 , r3, r2 , r5 , r1, and time is assumed
to be the least important of all.

rl r3 r5 r4 r2

0

0 15

Figure 2-3: Resource Requirements of Activity 0

In order to schedule 0 using the previous approaches, 0 needs to be exploded to 5 primitive activities A,
through A5 (see figure 2-5) reflecting the reservations of r, through r5 . The relation between these primitive
activities is that the completion time of Ai maps to the start time of Ai+ 1 for all i between 1 and 4.

If a scheduler which uses previous approaches does not use opportunistic scheduling (i.e. an order scheduler),
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Figure 2-4: Resource Availabilities

Al

A2

Figure 2-5: Resource Requirements of A, through A5

then it will not be able to meet the optimization objective of the scheduling problem because it will ignore the

resource-based perspective in scheduling A1 through A5. Otherwise, the activities are scheduled in the order As,

A4 ... and A1. The scheduling of A. is straight forward and requires only one iteration of opportunistic

scheduling since there exists only one choice of time that satisfies the resource requirements of A5, namely to
start A5 when r5 becomes available first. During the scheduling of A 4, the three periods during which r4 is

available and can best satisfy the demand for r4 are examined first. Once each of the three periods is examined,

opportunistic scheduling concludes that scheduling of A4 to map to either one is inconsistent with the previously

made scheduling commitment to start A5 when r becomes available. Therefore the scheduler will schedule A4 to
start when A5 completes, and to do that it executes 3 x4 (i.e. 12) iterations. Since the same process will repeat

for scheduling A3 , A2, and A1, the scheduler will require (4x 12 + 1) (i.e. 49, where I is for the iteration that

scheduled A5 ) iterations in order to build a schedule for 0.

Now consider the case that a scheduler can schedule 0 without exploding it to more primitive activities. Then,

once the reservation for r5 is temporally instantiated to start at the point that r becomes available, the start time

and completion time of 0 (including the reservations for r4 through rj) will be temporally instantiated
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automatically. This results in a performance ratio improvement of roughly 50 to 1 over the previous case (where
each reservation that resulted from exploding 0 was scheduled independently). In general, the performance
improvement ratio is a multiple of the number of complex reservations that are required by an activity.

Moreover, in the above example we chose 0 such that it can be exploded to a set of non-overlapping primitive
activities. However, if we had chosen 0 to explode to overlapping primitive activities, then the ability to
represent 0 at a higher level enhances the performance ratio even to a larger degree. For instance, in the
example that we described earlier, if the reservations for r, through r5 overlap temporally then the explosion of
0 might produce many more primitive activities than when r, through r5 did not overlap. This will in turn
increase the computational cost of scheduling the exploded pieces of 0 further.

2.4. SPPS Under A Distributed Authority Framework

Scheduling under distributed authority assumes a framework in which the agent who is responsible for a product
can delegate part of his authorities and responsibilities to other agents in the form of assigning them to produce
more primitive products and allowing them to decide the weight (preference) that should be given to each feature
requirement of the primitive product. Distribution of authority is inspired by the fact that global decision making

by a central authority is very costly and has to be avoided as much as possible. This is because global decision
making requires the measurement of the effect of a commitment which is local to a part of project on the entire

project before making that commitment.

The authority and responsibility structure of a typical software development organization is illustrated in figure
2-6. Rlinks denote the assignment of responsibilities by one agent to other agents. A responsibility consists of a
project nI that produces a product p. Each agent who receives a responsibility makes a set of resource requests

that are essential to carrying out that responsibility. The resource requests are denoted by Qlinks. Alinks denote
the authority to make preference rulings (relative preference of each feature requirement). If this authority is not
delegated with the responsibilities, then the decision to make preference rulings can not be made locally.

Normally, in a software project, the authority to weigh different feature requirements of an intermediate product

locally is delegated conditionally (if it is delegeed at all): if the revised schedule insures that the overall
requirements of the parent products of that intermediate product can be met to a certain degree, then the authority
might be delegated. The reason for this heuristic is that the agent who delegates the authority tends not to

consider the decision making crucial enough to directly step in if most requirements are guaranteed to be
satisfied under the new schedule.

An agent can delegate the authority to make a decision only if (1) he himself possesses the authority to make
that decision in the first place, and (2) he has been given the authority to delegate the responsibility.
Furthermore, the set of agents who he can delegate to is always constrained by the authority space of the agent20 .

While we allow the distribution of responsibility among various agents, the responsibility to develop a product
is assigned to exactly one agent. Moreover, the weight (preference) that should be given to each feature

20The authority space of an agent who is reSp(nsible for developing a product p includes the agents who are assigned to develop the more
primitive products that am used n developing p.
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Figure 2-6: A Distributed Authority and
Responsibility Structure

requirement of a product is determined by exactly one agent 21 . Our assumption is based on the realization that

the agents who are directly responsible for a product normally belong to the same team (in SPPS a team consists

of 3-4 agents) and it would be far more efficient if they develop their positions and reconcile their differences
through face-to-face negotiation.

Since responsibilities and authorities are specified at the product level (in contrast to feature requirement level),
extending the formalism that we presented in the previous section to a distributed authority framework involves
refining the product level definitions. The following definition is a distributed authority version of the definition

of software project which is the main product level definition in our formalism. We use anonager to refer to the

agent who originally possesses the authority to delegate his authorities and aassigned to refer to the agent who

awnaSe r delegates this the authority to.
Definition 2.12: Software Project (Distributed Version)

Let -I be <p,4),aP,O,ar, naeraassi gnedE> s.t. pOot, and 3 are as in definition 2.4,
apanager is the agent who is responsible for the development of p,
aassigned is the agent who amanager assigns to develop l, and E is an
authority activation threshold specifying the minimum overall level at which () has to be
met before aassigned can exercise (activate) his preferences. Otherwise,
the preferences of amanager will be considered instead. 0 is the set of
user defined preferences that will be considered.

In the above definition, 4),ca4,E are decided by aanager. The authority to weigh different resource requests

21Te agent who decides the weight that should be given to each feature requirement of a product is either the agent who is responsible for

the product or the agent who requires that product to meets his own responsibilities.
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locally is delegated to aassilEd only if the present schedule insures that at least a prespecified percentage of the
requirements of p (i.e. E) can be met. The reason for this heuristic is that a does not consider the decision

making crucial enough to directly step in if most requirements are guaranteed to be satisfied under the present

schedule. An advantage of the above definition is that it can model an array of software project organizations by
avoiding commitment to a predetermined policy of how agents aassigned and aaager are picked as well as who
is responsible for picking them.

2.5. Overview of Our Problem Solving Approach

SPPS is a reactive process which involves continuous revision of project schedule during the course of project.

In our approach, each reactive cycle in SPPS establishes R, , X , W, t by heuristic search during which

P , 4, Pi 1 <i5Card(?) . 1), T - Pr VrE R P i are fixed. During each reactive cycle, heuristic search is initiated
with respect to an input schedule that contains one or more conflicts (i.e. constraints or preferences that can not

be satisfied), and the goal is to transform this schedule into one in which these conflicts (schedule

inconsistencies) are eliminated (or reduced) within the bound on scheduling time. In other words, the goal is to

revise the existing project schedule in order to maximize the overall satisfaction of all constraints and

preferences.

The heuristic search model that has been developed is composed of three principle components: a set of search

(revision) operators, each of which modifies a subset of the commitments comprising the current schedule to

produce a new schedule, an evaluation function (i.e. a metric on the potential solution space), which provides a

basis for comparing the transformations produced by the application of alternative operators to a given schedule,
and a scheduling strategy , which specifies knowledge relating to use of the search operators and the evaluation

function within the search (e.g. conflict prioritization heuristics, operator selection heuristics, termination

criteria, etc).

To guide the heuristic search process, we use an evaluation function to compare alternative scheduling

commitments 22 at any point during the search. By comparing the utility calculated for each alternative

commitment, the commitment that yields the highest utility can be chosen. The evaluation function measures the

distance cd between a given schedule and a schedule in which all constraints are fully satisfied (consistency-
distance of the given schedule). cd of a schedule can be calculated by inverting a measure of the overall

satisfaction of all constraints and preferences under that schedule. Although cd only reflects the distance of the

schedule being evaluated and should not be perceived as a look-ahead (predictive) measure, it can be exploited

for look-ahead purposes if it is used to evaluate potential alternative revisions of the schedule: if cd is lowered

after applying a revision operator, then the application of that operator should improve the schedule; otherwise,

the application of that operator, at least on an immediate basis should worsen the schedule or have no effect.

Potential alternative revisions can be compared on the basis of the cd of the revised schedule which each

generates. The use of an evaluation function to guide the heuristic search enables the search to focus

immediately on those decisions most critical to schedule revision objectives as opposed to encountering them

only after other restricting commitments have been made.

22A schedule is a collection of scheduling commitments and a schedule revision involves changing some of the commitments that were
made in the schedule that is being revised.
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The basic heuristic search model uses two types of operators: primitive and complex. Primitive revision

operators are responsible for implementing an elementary change in the schedule (e.g. moving the start time of

an activity). More complex revision operators, which can be constructed from primitive revision operators,

combine many elementary changes and implement them as an atomic revision (e.g. relaxing the quality

assurance requirements of all activities that complete behind schedule).
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Chapter 3

Evaluation Function

In this chapter, we describe the design of an evaluation function for incremental heuristic search in SPPS. Otv
framework can be used to design evaluation functions for heuristic search in other manufacturing scheduling
domains as well. In the last section of this chapter, we specifically provide a taxonomy of the preferences that
our evaluation function accounts for.

In section 2.5, we described that an evaluation function for SPPS should measure the overall satisfaction of all
constraints and preferences of all scheduling agents under a given schedule. The impact of a scheduling decision
on a schedule can be evaluated by comparing the overall satisfaction of these constraints and preferences before
and after revising the schedule to incorporate the decision. In the following, we review the recent research in
operations research and artificial intelligence in evaluating decisions during scheduling, and compare it to our
own approach.

The design of evaluation functions for evaluating scheduling decisions based on utility theory [144, 68] has
been under investigation by investigators in operations research and more recently by artificial intelligence
researchers independently. Although the focus of these approaches has been on the shop and factory scheduling,
the techniques that they have developed can be refined for use in SPPS as well.

Recent operations research approaches in scheduling [66, 3, 98] describe that utility of a scheduling alternative
is driven by cost and benefit. The cost associated with a scheduling decision refers to the cost of such items as
material, machine, and labor which are needed in order to implement that decision, while the benefit associated
with a decision refers to the effect of implementing that decision on such items as revenue. The reason for
breaking the utility of a scheduling decision to cost and benefit is that

1. labor and raw material cost of budgeting alternative decisions are not the same, and

2. client requirements that can be satisfied under alternative decisions are not the same.
Once the cost and benefit of a scheduling decision are calculated, they are traded off to measure the utility of that
decision. The following example explains that how alternative scheduling decisions can be compared on the
basis of this trade off: if the decision is related to choosing one among two substitutable resources r, and r2 to
allocate to a product, and r, is significantly more expensive to acquire than r2 but satisfies a set of feature
requirements that are only marginally more important than those satisfied by a2, then a tradeoff between the cost
and benefit for each resource, r, and r2 determines that r2 is a more appropriate choice.

Artificial intelligence approaches to job-shop and factory scheduling [42, 104, 120] also have relied on utility
functions as a means of evaluating a decision, however, these approaches assume that the tradeoff between the
cost and benefit of a decision has been already made by the user, and the result is encoded in a function that
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reflects the utility of the decision 23. For instance, job-shop and factory scheduling approaches use utility

function to specify the preference to reserve one resource (or start time) over another [42] in an activity, or to

prioritize orders. This differs from cost/benefit analysis in operations research which calculates this utility from

primitive cost and benefit data.

Cost/benefit analysis has been widely used by operations research for making scheduling decisions and
optimizing shop parameters by working with externally given cost functions and with internally derived prices

for work center capacity. Zimmerman and Sovereign [147] have developed a "dual" pricing scheme for machines
in simple production contexts. Prices are positive if the machine is fully utilized, and zero otherwise.

Costbenefit analysis also has been studied in economics literature. Turvey [1391 has developed "peak load"

pricing for resources in production contexts with nonstationary demands. Essentially, demand can be increased
or decreased to capacity in each period by decreasing or increasing the price in that period. Thus, in this type of
analysis, prices are explicit instead of implicit and vary in a less extreme fashion than for the operations research

models.

There is also a fair amount of literature on developing costs and decisions when the demand is stochastic.
Karmarkar [66] has developed the idea that congestion (demand exceeding the supply) develops from the
inability to fully adjust in the planning process to dynamic changes in the lead times. He also argues that
capacity (availability) constraints are effective (in making scheduling decisions) at any level of effective
utilization, and not just at full utilization. His queuing model gives an important link between lead time,
capacity, and a determination of the optimal batch size. The basic model of Karmarkar has been extended to
multi-item and multi-workcenter models [66]. Banker [3] uses the multi-item model of Karmarkar as a
foundation for determining relevant costs (resource prices) in a stochastic single machine shop with a mixed
Poisson arrival stream and stationary demand. Morton [98] generalizes this scheme to also work when the
demand is not stationary. In his model, the objective of a frm is to maximize the net present value of cash flows,
even if some of the flows are implicit and therefore difficult to deal with, while others are explicit and therefore
easy to deal with. Figure 3-1 shows the stream of cash flow due to scheduling a single job on a single machine.

There are two major problems with this approach when applied to SPPS. First, the investigation of cost/benefit
analysis in operations research and economics literature is limited to the case where all cost and benefit data are
provided by a single agent. In SPPS there is a possibility of discrepancy in the perceived costs and benefits of
product requirements since they are specified by different decisions-makers with conflicting interests. Sathi
[120] and Sycara [134] have proposed distributed frameworks to combine the utilities of different agents. The

problem with these frameworks is that they assume the preferences of agents are on the same scale and therefore

can be compared and used directly to prioritize them. In chapter 8, we argue why this assumption is not valid in
the general case.

We have extended cost/benefit analysis to distributed decision-making environments, and have provided a
framework for reconciling conflicting preferences of a group of agents by relying on primitive cost/benefit data
which includes the specification of resource requirements of each project product, and acquisition cost of each
resource. In our framework, the agents who carry conflicting preferences are only required to specify the

23A utility function is normally a i-1 continuous function utility:A -*1 where A is the set of alternative decisions and ! = [0 11 represents
the normalized preference of each.
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Figure 3-1: Cash flows due to scheduling a job

resource requirements of the products that they are responsible for24 . These requirements reflect the preferences

of each agent since he decides the capacities required to meet the feature requirements of the product that he is
responsible for, to varying degrees. The acquisition cost of a resource is independent from agent preferences and
is used to discriminate alternative resource requirements by comparing the acquisition cost that each incurs on
the project (i.e. comparing resource requirement alternatives on the basis of project preferences). In the next
section, we discuss the representational issues of acquisition cost. To evaluate a scheduling decision, such as
reallocating a capacity from one product to another, first the new set of resource allocations that result from
making the decision are calculated, and then the new resource allocations are propagated through the production
dependency network (see section 2.2) until they reach the final product of the project. At that point, the effect of

those allocations on meeting different feature requirements of the final product will be measured, and the
decision will be evaluated on the basis of how important each feature is to the customer and also on the basis of
how the cost of budgeting the project will be affected by the decision.

The second problem with cost/benefit analysis in operations research and economics literature is that they
evaluate the cost and benefit of a scheduling decision locally relative to the conflict that the decision is trying to
resolve. Suppose that a local evaluation of a decision (i.e. the impact of the decision on an intermediate product)
concludes that the decision is important to meeting the feature requirements of an intermediate product, whereas
a global evaluation of the decision concludes that the decision is of little importance to meeting the feature

requirements of the final product of the project. Then a local evaluation of the decision would depict an

inaccurate picture of how important it is to make the decision. We evaluate a decision (i.e. assess the global
impact of a decision on different project feature requirements) locally when local impact is a good estimator of
global impact. Otherwise, the impact of the decision is measured globally. The scheme that we described in the

previous paragraph evaluates a decision globally. To measure the local impact of a decision, we rely on the

authority structure of the project organization and the delegation of decision making privilages to local agents.
In the next section, we describe a model of the distributed authority structure of software project organizations,

and the rules and regulations which govern the delegation of authority within them.

24
1n chaiver 2, we define, the structure of resource requirement data and provided a language to specify these requirements.
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We also have identified two problems with artificial intelligence approaches to decision evaluation when

applied to SPPS. First, it is difficult to develop a utility function that accounts for the preference to reserve one
resource (or start time or product feature requirement) over another when preferences have a dynamic nature (i.e.
their value depends on the scheduling state). Our evaluation function derives the preference of resources, start
times, and product feature requirements by measuring their impact on meeting the requirements of (the final
product of) the project.

A second problem with artificial intelligence approaches is that they are not appropriate for a distributed
framework because the utilities of different agents relative to the same decision (scheduling commitment) can
not be compared accurately. A utility function for a scheduling commitment (to resolve a conflict involving a
product p) can be modeled by -x w where C denotes cost, B denotes benefit, and w specifies the weight that has

to be given to their ratio. In the above equation, B is the only variable that reflects the agent preference. Benefit
of a scheduling commitment represents the local assessment of a manager about the importance of feature
requirements of p that will be met if the commitment is made, but this local view may not ,e 'ared by other
managers. C on the other hand, is independent of agent preferences (and instead depends on the market forces),
reflects the cost of making the commitment to the project, and needs to be measured only once. If the calculation
of C is left to the agent (as required by related artificial intelligence approaches), then different agents might

calculate different costs for the same commitment which in turn will result in a bias comparison of preferences.
Our evaluation function solves this problem by measuring the cost of scheduling commitments while requiring
each agent to only specify the benefit. The idea of measuring the cost of a commitment is not advocated by ISIS
[411 and OPIS [104] on the ground that the cost of certain primitive resources is not usually available.

More recent work (e.g. [43]) has used constraint propagation and analysis to measure the global impact of a
commitment, but this impact is measured only relative to the project deadline (while a project has other feature
requirements such as reliability and portability that might be affected by propagation as well).

3.1. SPPS Evaluation Function Design

The first step in developing an evaluation function for a scheduling problem domain consists in identifying and
classifying the problem constraints according to their types. We provided a classification of all SPPS constraints
in chapter 2. There, we divided all problem constraints to four classes: feature requirement constraints, available

capacity constraints, resource request constraints, and authority constraints.

The second step in developing an evaluation function for a scheduling problem involves separating the hard
constraints (constraints that can not be relaxed) from the constraints that can be relaxed, and establishing a
representation of relaxation level for each relaxable constraints. Generally speaking, each SPPS constraint that
has a potential of being relaxed is either a product feature requirement constraint or an available capacity
constraint. These two sets of constraints are conflicting because normally by relaxing some of the available
capacity constraints, feature requirement constraints can be satisfied to a higher degree, and vice versa.
Moreover, some feature requirements are in conflict with each other since they compete for scarce resources that
are essential to meeting them. Authority constraints can change in an organization but they are not relaxable

since they change over time scales that are longer than scheduling horizon. Resource request constraints simply
translate the feature requirement constraints to a form that can be traded off with available capacity constraints

but they too can not be relaxed. This is because changing the resource requirements of a product feature marks

the beginning of a reactive cycle (i.e. it triggers a new reactive cycle).
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The third step in the development of an evaluation function involves developing a metric for measuring the
penalty of relaxing each type of constraint as a function of its relaxation levels. This metric serves as a reverse
indicator of the degree that a constraint has been satisfied. In the case of SPPS, this penalty has to be measured
for feature requirement and available capacity constraints since they constitute the only types of constraints that
are relaxable. In the following, we discuss how the penalty of relaxing these types of constraints can be
measured.

The penalty of not meeting the feature requirements of a product by a given schedule can be calculated by
summing the penalties of the feature requirements that can not be met by the schedule. For instance if meeting
the deadline and meeting the reliability goals are the only two feature requirements of a product and one is twice
as preferred as the other, then the benefit of a schedule that meets only the more preferred one is 2/3. The
benefit of a schedule can be calculated by subtracting the penalty of relaxing the feature requirements that can
not be satisfied (within the relaxation limits allowed by the user) from one. We normalize the relative preference
of feature requirements of a product by mapping their sum to one: (1) "one" quantifies the case that all feature
requirements of the project product are satisfied at the desired level, and (2) the relative preference of each
feature requirement is normalized to a number between zero and one.

In the following definition, we have shown that how the benefit of a schedule can be calculated formally for the
case that each feature requirement can be met at only one level. The benefit has been calculated in terms of two
intermediate functions: D which returns the penalty of not meeting a feature requirement of the project product
p, and a which indicates whether schedule A of p meets each feature requirement.

Definition 3.1: benefit of a schedule A
Let A be a schedule of r (a process plan for a product p) and 4i= Oi.Furthermore, let

* L2:I-, [0 1] be the penalty of not meeting each Oi, and

• :-* (0,11 be such thatf(a)=1 iff A does not meet 0.

Then B(pA) = 1- Xoe 0 () X ( ().
Later in this section, we discuss that how this scheme can be generalized to the case that each feature
requirement can be relaxed to different degrees.

Example: Consider the specification of penalties and the ability of two alternative schedules of a process plan
for developing the simulator in figure 2-1 to meet its feature requirements as depicted in table 3-1. The column
headings of table 3-1 denote the feature requirements of the simulator and the row headings denote alternative
schedules as well as the penalty of not meeting each feature requirement.

To be able to fill out the rows that correspond to schedules I and 2, first the reservations needed to meet each
feature requirement of the simulator have to be identified, and then it has to be determined whether those
reservations are satisfied under the schedules that are being compared. In table 3-1, X is used to mark if a feature
requirement is met under a given schedule. Once table 3-1 has been filled, the formula in definition 3.1 can be
used to calculate the benefit of a given schedule of the simulator B(p,A,) = I - .1 = .9 and B(p.A2) = 1 - .3 = .7.
We therefore prefer the first schedule over the second.

Relaxation of capacity constraints refers to increasing the supply of resources by purchasing them off-the-shelf
or by renting them. Therefore, the degree of satisfying a capacity constraint in a schedule can be measured by
calculating the cost associated with relaxing the constraint. If a capacity constraint is not relaxed, then it will
incur no cost (zero cost). The combined satisfaction of all capacity constraints under a schedule can be measured
by summing the benefit associated with each capacity constraint.
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meet -the wel 1
Simulator deadline reliable documented portable

production
plan i X X X

production
plan 2 X X X

penalty .3 1 .1 .1

Table 3-1: Input for the Measurement of Local Benefit

The fourth step in developing an evaluation function for a scheduling problem domain consists in investigating
the comparison of the metrics developed for measuring the satisfaction of each type of relaxable constraints by
bringing them on a common scale. This can be used as a basis to measure the overall satisfaction of all problem
constraints. Since feature requirements and capacity constraints are the only types of relaxable constraints in
SPPS, the evaluation function in SPPS measures the combined satisfaction of both feature requirement and
capacity constraints under a given schedule. The value of this satisfaction is maximized if the benefit of that
schedule is maximized and its cost is minimized (i.e. a schedule is preferred over another if it balances the
satisfaction of a more important subset of feature requirements or incurs a smaller cost overrun). Since the cost
is normally stated in dollars while the benefit is typeless, we rely on a user specified weight factor to bring the
two on a common scale and preferring one over the other. The evaluation function to measure the overall

desirability of a schedule in SPPS can be built by taking the ratio of cost and benefit of the schedule and then
multiplying the result by the weight factor. The evaluation function measures the distance cd between the
schedule being evaluated, and the ideal schedule:

Definition 3.2: Consistency-Distance cd
Let A be a schedule of r (a process plan of 11 which produces p). Then

C(A)cd(p,A) = xw s.t. 0< w< I is a weight.

The smaller the value of the evaluation function for a given schedule, the more desirable the schedule. Therefore,
the goal of search should be to minimize the value of evaluation function. The weight w can be specified as a
function (e.g. constant, linear, quadratic) depending on the requirements to tradeoff cost and benefit in a given
SPPS problem. However, it is usually suitable to specify w as a step function of cost and benefit. The reason for
using a step function (as opposed to a constant function) is that the weight should reflect the magnitude of both
cost and benefit. For instance, if the benefit is already low but the cost is very high, the value of w should favor
cutting both the cost and benefit in half by multiplying the benefit (denominator) by a positive integer which is

greater than I (how large this number should be depends again on how important it is to cut both the cost and
benefit by similar ratios). On the other hand, if the benefit is large relative to the cost, then a weight that
discourages cutting both the cost and benefit by similar ratios might be more appropriate. By defining w as a step

function, we will have the freedom of associating a different weight with different ranges for the cost and
benefit. Moreover, it is relatively convenient to develop a step function than high order polynomial or non-
polynomial functions that reflect the actual tradeoff needs between the cost and the benefit.
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The value of evaluation function in definition 3.3 is always non-negative since the cost function always returns a
non-negative value and the benefit function always returns a positive value which ranges between 0 and I

(excluding 0). 0 is excluded from the range of benefit function since the search algorithm is prohibited from

compromising any feature requirement beyond the maximum level of relaxation allowed (a level that yields a

minimal yet positive benefit). The fact that the benefit of a schedule is always a positive number prevents the
emergence of the situation in which both cost and benefit are zero at the same time (i.e. evaluation function is

ambiguous). A schedule is consistent if its cost is zero and its benefit is one. The value of the evaluation

function can be interpreted as the balance between the degree of satisfaction of feature requirements that are met

and the cost overrun that is incurred in order to meet those requirements in a given schedule.

Moreover, according to definition 3.3, two schedules are equally optimal if the cost of each is zero but the
benefit of one is greater than the other. In this case, the scheduler insures stability (i.e. it will always stick with

the schedule that has the highest benefit), since it avoids a compromise (of a feature requirement) when the cost
of implementing the schedule is already zero.

To analyze the opportunities (possible commitments) at a given point during search, the evaluation function can

be used to measure the progress due to making a commitment. Earlier in this section, we stated that this progress
can be measured by deducting the inconsistency of A2 (the new schedule) from the inconsistency of A1 (the old

schedule). This is formalized in the following definition:

Definition 3.3: progress due to a commitment

Let A 1 denote the previous schedule of p and A2 denote the schedule of p after making

a commitment s. Then cd(p,A1 ) - cd(pA 2 ) measures the scheduling progress due to s.

For an indication of the utility of making a commitment s during search, let C1 and C2 denote the costs of

implementing A1 and A 2, and B1 and B2 denote the benefits of A1 and A2 respectively. Then, according to

definition 3.3, s is desirable if and only if C=C2 but B2 >B1 , or C 1 > C2 but Bl=B2 , or C2 > C1 but B 2 >B1 at a

greater proportion, or C 2 < C but B 2 <B l at a smaller proportion; otherwise, s is undesirable.

Our methodology for measuring the cost and benefit of a schedule can be extended to evaluate process plans as

well. Since each process plan can have many schedules, then we define the cost of a process plan r as

min[C(A VA E A(I")], where A() denotes the set of all schedules of r, and the benefit of a process plan F of a

product p as min[B(pA VA E A(r')].

In the following two sections, we discuss the low level issues related to the measurement of cost and benefit.

These include: (1) how to measure the cost associated with relaxing a capacity constraint, and (2) how to figure

out which feature requirements will be met given a set of reservations.

3.1.1. Cost Associated With Relaxing A Capacity Constraint

The cost of purchasing (or renting) a primitive resource to increase the capacity of that resource to its relaxed

level 25 depends on both the time window over which the capacity is requested and the capacity size. The relaxed

capacity can be viewed as a resource request and is of the form . The cost of a resource request can be

calculated from the marginal cost of purchasing or renting the resource, a function that is available.

7-We call the diffemnce between the before ad after relaxation capacity of a resource the relaxed capacity of that resource.
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Marginal cost of an unshared primitive resource (e.g. manpower, off-the-shelf hardware) returns the cost of
acquiring each incremental unit of that resource over time intervals of different length. This cost is allowed to
vary in relation to the capacity size as well as in relation to the length of the interval over which the capacity is
requested. For instance, the average cost of hiring a programmer can be specified larger if he is hired on a

month-to-month consulting basis than when he is hired as a regular employee, as is the case in the real world.
We use MC(rltb tj,q,q,) to denote the marginal cost of acquiring qr new unshared primitive resource r over a
period Jib te, when q. of r has been already acquired. Marginal cost of a shared resource is only a function of
the duration that the resource is requested because shared resources are infinite capacity. We use MC(r,ltb te' to

denote the marginal cost of acquiring q, shared primitive resource r over a period [Ib te.

The cost of satisfying a request for a resource r can be calculated using the marginal cost of that resource. First
the request is broken to more primitive requests that their cost can be directly returned by the function, and then

the component costs are summed up (aggregated). If r is a shared primitive resource, then the aggregation takes
place only along time as the capacity of a shared primitive resource is infinity. This is to insure that the cost of a
shared primitive resource will not be counted more than once during any period. The cost of satisfying a resource
request C (for a resource r) is formally defined in definition 3.4. If r is an unshared primitive resource, however,

aggregation takes place along both time and capacity of the resource. Definition 3.5 calculates the cost of
satisfying the relaxed capacity of r by summing the costs of satisfying each unsatisfied request for r. Since
definition 3.5 does not optimize the cost of the relaxed capacity of r with respect to the marginal cost of r, we
have developed a mechanism to preprocess the unsatisfied requests for r for optimization purposes before

attempting to measure their combined cost. This mechanism is discussed in the next section.

Definition 3.4: cost of satisfying a resource request

if r=Rspri then

X(ob ,t) = ; C(r ,ltb Vd)
else if r;ERupri then

1 0(b t, q) , ; C (r ,lftt'  1,],q )

Definition 3.5: cost of qr unshared primitive resource r over (lb lei

let E be the set of largest adjacent subintervals over ib t,1 s.t. t&-, present
capacity of r over each subinterval is constant. Then
C(r,ltb 1,Iq , ) = I I MC(rJ.qr,q)"

of satisfying a request of the size equal to the difference of the relaxed capacity and the original capacity of r.

3.1.2. Unification

Unification is a form of preprocessing the unsatisfied resource requests in a schedule before attempting to
measure their combined cost. The purpose of unification is to translate the requests for a resource to utilize its
marginal cost. The translation will result in reduction in the number of requests and also in minimization of the

cost to satisfy them. These features of unification are formally stated in definition 3.6. In definition 3.6,

unification is defined as a translation function f:

Definition 3.6: Unification

:{} ( is an onto function s.t. ))Card( )A C(j)C())

Therefore, the requests that emerge from unification are at least as desirable as the initial resource requests.
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The advantage of reducing the number of requests during the scheduling is that the fewer the number of

unsatisfied resource requests (conflicts), the fewer iterations of the algorithm will be needed (each incremental
iteration of the algorithm is to resolve one conflict). Minimization of cost in unification is different from the cost
reduction that results from discovering the correlation between requests although the end result will be the same

in both cases.

The reason for unification is to optimize the requests for a resource with respect to the marginal cost function of
that resource which is often not a linear; see figure 3-2 which illustrates the marginal cost of acquiring a
programmer as a concave curve. According to figure 3-2, the average cost of acquiring a programmer drops with

the duration that he is required. This is because hiring of most human resources on a month-to-month consulting

basis is more costly on the average than hiring them over a longer period as regular employees. On the other
hand, the average cost of purchasing hardware or the right to use a software decreases with the quantity

purchased or installed. For instance, the average cost of a workstation to a company drops with the number of
workstations being bought.

Price
in dollar

20K

IO
10K

I IN

1 12
T.ime

in month

Figure 3-2: Marginal Cost Curve for Programmer

Unification is implemented through leveling temporally adjacent resource requests of the same resource. The
leveling effectively coalesces any two adjacent resource requests that are at the same level until the smaller
request is completely consumed. The resource requests that are leveled need not be fully adjacent as long as the
"no request" whole between them is sufficiently narrow in comparison to them. Unification is different from
existing resource leveling techniques in that it tries to optimize the marginal cost function of the resource. This
implies that the shape of the leveled curve will depend strictly on the marginal cost function of the resource

while existing resource leveling algorithms [53] implement cost independent leveling heuristics (i.e. the

aggregate demand curve26 of a senior programmer will be leveled exactly the same way that the aggregate

demand curve for a workstation is).

Consider the aggregate demand curve (aggregation of 15 requests) for programmer in figure 3-3. The cost of
satisfying these demands as they are stated amounts to $3,074,000. By breaking down these requests vertically

at the points that the request level changes (figure 3-4), the number of requests is reduced to 7 and the cost of
satisfying them is lowered to $2,380,000. By breaking down the requests horizontally (figure 3-5), the number

26Aggregate demand curve for a resource can be ounstructed by aggregating all resource request curves of that resource
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Figure 3-3: Aggregate Demand Curve for Programmer
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Figure 3-4: Vertical Breakdown
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Figure 3-5: Horizontal Breakdown

of requests will increase to 8 but the cost of satisfying them is lowered further to $2,080,000. However, if we

unify the requests (figure 3-6) then the number of requests will drop to 2 and the cost of satisfying them drops to

$1,768,000.

Below the kernel of the algorithm for unification is presented. This algorithm should be executed for each
primitive resource (member of Rpri) once. Suppose A is a schedule of p, dA is the duration of A, and r is the

resource such that the resource requests of r are to be unified. Furthermore, suppose s., the start time of A, is
mapped to 0. This mapping can be obtained by the translation of absolute times. The input of the algorithm
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Figure 3-6: Unified Demand Curve for Programmer

consists of the unsatisfied request list of a resource r. This list is stored in the array ulist that has a dimension dA.
Each index of the array stores the size of unsatisfied request at the point in time that is designated by the array
index. ulist can be calculated by summing the requests for r and subtracting the result from the available capacity

of r. Since unsatisfied resource requests denote a deficit of capacity, ulist is stored as an array of negative
capacities. The output of the algorithm, the new set of unsatisfied resource requests, will be stored at
unified-requests at the end of execution. The new set of requests will consist of a list of triples of the form <s d
ulevel> where s is the start time of the request, d is the duration of the request, and ulevel is the quantity
requested. The algorithm includes two loops: and inner loop and an outer loop. The outer loop iterates over all
intervals that are shorter than dA. The inner loop iterates within the dA interval with steps equal to the size of the
interval fixed by the outer loop combining adjacent resource requests when the cost of the combined request is
less than the sum of the cost of individual requests. Then the algorithm is as follows:



42

unified-requests=0D

ulist = PP - q e P hq(r)

(where h denotes requests of q for r that remain unsatisfied, and
P= {xLXE R p'SR pro) up

for d=dA down-to I
j=1
while (i+d) 5 dA

ulevel = 0
demand = *dAI if ulist(i)<O then I else 0
if (demand x C(r,1,1qa)) > C(rdlqa)
then

ulevel = ulevel + I
for k=j to j+d

if alist(k) < 0 then ulist(k)=ulist(k)+I
endfor

else
if ulevel > 0
then

push(c<j d ulevel> , unified-requests)
j=j+d

else
j=j+l
while (ulisI(j) = 0)

j=j+l
endif

endif
endwhile

endfor.

Card(dA) x (Card(dA)-1)
In the worst case, the above algorithm requires l+ 2 +...+dA or 2 steps to measure the unified

cost of r. This occurs when the height of aggregate demand curve for r is very uneven over a period. The best
case occurs when the height of resource requirement curve for r is constant. In that case, the algorithm will

require only I steps where I is the height of the constant resource requirement curve. The quadratic complexity

of the algorithm can be eliminated if the "while loop" is always incremented by cd. This is because the algorithm
dadA d

will need to execute only '"+' A- steps. To achieve this however, one would risk the chance of computing a

slightly inaccurate cost.

Without unification, the computational cost of measuring the dollar cost of satisfying the relaxed capacity of r is

0(1). However, calculating the relaxed capacity of r requires O(n+]) where n+I is the number of intermediate

products produced by the project.

3.1.3. Propagation of Reservations to Feature Requirements

At the beginning of this chapter, we stated that we have developed a scheme to evaluate a schedule (or a
sequence of scheduling decisions) on the local basis when local measurement is a good estimator of the global
evaluation, and on a global basis otherwise. Moreover, we stated that this scheme involves constraint

propagation. In this section, we describe the scheme that we have developed, for evaluating the benefit of a

schedule.

To measure the benefit of a schedule (for a product p). a scheme is needed to find the feature requirements of p
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that will be met given the reservations available to the schedule. This scheme can be extended to measure the
benefit of a scheduling commitment by fixing the reservations available to the schedule and finding the change
in meeting each feature requirement if the new reservations tied to making the scheduling commitment are taken
into account.

If the local benefit of a set of reservations (i.e. the benefit of the feature requirements of the products that have
directly required those reservations) is a good estimator of the global benefit of those reservations, then the effect
of reservations need not be propagated to all other project products that are indirectly influenced by the
reservations. Otherwise, the effect of reservations have to be propagated globally to all other products produced

by the projecL

The benefit of a set of reservations is measured locally when
1. there is a fair idea about the usefulness of a scheduling commitment to the entire schedule.

2. there is not enough time to measure the global usefulness of a scheduling commitment.
The drawback of local measurement of benefit is that global consequences of unmet feature requirements are
speculated not measured. On the other hand, it has the advantage of being computationally faster. In contrast,
this benefit is measured globally when

1. there is a great deal of uncertainty about the global usefulness of a local scheduling commitment

2. there is enough time to measure the global benefit.
The advantage of measuring the global benefit of a scheduling commitment is that global consequences of a
local decision will be taken into account. If the global benefit is measured, then the need for specifying the
penalties will be eliminated in all but the level that ultimately makes the ruling. The main drawback of global
measurement of benefit is that it is computationally slow.

In the global measurement of benefit, to measure the degree that A meets each feature requirement of p, the
reservations of A (i.e. x) have to be propagated to reach the feature requirements of p. The reason for
propagation is that the resource requirements of p are often expressed recursively (by the agents who work on
the project) in terms of more primitive products than directly in terms of primitive resource requests. Moreover,
it is not possible to measure the satisfiability of feature requirements on the basis of available capacity of each
primitive resource because this capacity can be divided between the resource requests in different ways each
causing the feature requirements to be satisfied differently.

Since the computational cost of propagating a reservation C increases rapidly (with the number of levels that
separates C from p), it is desirable to measure the effect of that reservation locally when the local impact of
satisfying a reservation is believed to be a good estimator of the global impact. Under a centralized authority
scheduling, the propagation stops when the effect of all feature requirements of intermediate products which
have been affected by propagating C have been neutralized (e.g. the delay in the production of a product is offset
by the slack of that product) or when p has been reached. In a distributed authority framework, the propagation
can also stop when it reaches an agent who has the authority to make preference ruling on the feature
requirements of the product that the propagation has reached (under a centralized authority framework, this agent
is always positioned at the final product of the project). If the authority has been delegated conditionally, then
the condition for delegation (see section 3) has to be evaluated first to determine whether the authority can be
delegated. A major limitation in applicability of stopping the propagation after reaching a local agent with
appropriate authority is that it is allowed only when the propagation being stopped is the only path along which
propagation is taking place.
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If there are multiple paths along which propagation is taking place, then propagation should continue even if the
authority to rule on the preferences of feature requirements of every product that a propagation path has reached
has been delegated to local agents. This is because the interests of the local agents lashes and we have no scale
to weigh (balance) the preferences of each local manager against the others. In general, the propagation to
measure the global benefit under distributed scheduling should continue along each path until all propagations
reach a single product. When all propagation paths have reached a single product, then the evaluation function
only needs to consider the preferences of the agent who possesses the authority to rule on that product. Since a
reservation might be required by multiple products, the propagation path at every product point could spread to
many more product points (spawn multiple propagation paths). In other words, every step of propagation could
yield a list of products, and also for each product the feature requirements of that product which can be met.

The computational cost of propagation is proportional to the number of products that propagation spreads to. At
each propagation step this is equal to the number of products that require the resource from which propagation is
being spawned. In the worst case, the cost of propagation is equal to the number of intermediate products
produced by the project. The best case occurs when no propagation is needed (one of the propagation stoppage
criterias is met before any propagation has started). In appendix F, we have described an algorithm to measure
global benefit of a scheduling commitment with respect to a product p if all other scheduling commitments are
fixed:

A major point in our propagation scheme is that it is the feature requirements not the penalties that are
propagated. Propagation of feature requirements amounts to propagating the data on the satisfaction of product
features until a stoppage criteria is satisfied. In contrast, if the penalties were propagated then the measured
benefit would have been the combined preference of all agents while we are interested in the preference of the
customer.

3.1.4. Multiple Level Relaxation

In this section we discuss that how the scheme for measuring the benefit of a schedule can be generalized to the
case that each feature requirement is relaxable to different degrees. If the feature requirements of a product can
be met only at one level, then it will not be possible to specify that a feature requirement is only partially
satisfied under a fixed schedule. If the binary restriction on meeting.a feature requirement is relaxed, then each
feature can be satisfied at multiple levels.

The main advantage of allowing a feature requirement to be relaxed at multiple levels is that the satisfaction of
the feature requirements of a product and the balance between the cost and the benefit can be specified at a finer
level of detail. The disadvantages of allowing a feature requirement to be relaxed at multiple levels are:

1. the resources required to meet a feature requirement at multiple levels should be specified
independently.

2. the scheduler should search a larger space for finding a solution.

The following definition extends definition 3.1 to the case that each feature requirement can be met at multiple
levels. As in definition 3.1, the benefit has been calculated in terms of two intermediate functions: fL which
returns the penalty of not meeting a feature requirement of the project product p, and a which indicates whether

schedule A of p meets each feature requirement.

Definition 3.7: benefit of a schedule A
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Let A be a schedule of r (a process plan for a product p) and 4= Di. Furthermore, let

* Q:(4,ca) -4 [0 1] be the penalty of not meeting each Di at each level oxij, and

* o:(0,cc) - [0 1] be such that a(ci,a.)=O iff A meets Oi at or above the desired level that
generates a benefit.

Then B(pA) = I - _( 4ctXi) x a(O,atj) where qi is the level at which A
meets Oi.

Since each requirement of a product is allowed to be met at different levels and each level can be met with

different mixes of resources, the amount of specification needed to propagate a set of reservations would grow

rapidly with the number of products being produced by a project. By observing that the specification of different

resource mixes and also the specification of resources needed to meet a feature requirement at different levels are

only slightly different (their difference is in the quantity of some required resources), we use an alternative form

of specification which only requires the resources that will be saved if that feature is relaxed. We require the

specification of a 1-1 onto function h:(Z,c )--rl that returns the possible resource savings from relaxing a

feature requirement Oi of each project product to a degree cij.

The advantage of the new form of specification is that (1) agents need to specify the resources that will be saved

only for those feature requirements that can be relaxed, and (2) there is no redundancy in the specification (in
contrast to the previous form that repeated the part of specification common between different resource mixes of
each relaxed level of a feature requirement). The disadvantage of this scheme is that the interaction between
feature requirements can not be captured. This, however, is offset by the fact that these interactions are
infrequent in the software project scheduling domain.

Interaction between feature requirements is manifested in a set of resource requirements that once met result in
the simultaneous satisfaction of multiple feature requirements. To capture the interaction between feature
requirements in the feature-to-cost traceability scheme, the scheduling system needs to be extended to support
the specification of a new class of resources that has limited sharability. This means allowing a resource to be
sharable among a selected set of products while remaining unsharable to others. By specifying an unshared
resource 'shared' among the feature requirements that interact then a resource satisfaction for that resource can

be tied to the simultaneous satisfaction of multiple feature requirements thereby capturing the interaction among

them.

Example: In this example, we examine that how a scheduler can decide the relaxation of a feature requirement
in a product when there exist multiple feature requirements, some of which can be relaxed at multiple levels. The
product being considered is a software module, the feature requirements being considered are quality assurance

(QA) and documentation (Doc), and senior programmer (Sprog) is the only resource being considered for

relaxation:

0 D Resources Saved
QA .1 .5 fewer Sprog Needed

Doc .1 1 fewer Sprog Needed
.2 1.5 fewer Sprog Needed

If the weight w (of cost with respect to benefit) is 1, then the relaxation of documentation at the first level is the
most appropriate choice. This is because *I is smaller than both I and .
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3.2. Consideration of Preferences

It is important to account for preferences in evaluating a schedule because frequently problem constraints can

not be met at full. When a set of schedules can not meet the problem constraints at full, then they be compared

on the basis of the degree that each meets constraint related preferences and also other types preferences.

In section 2.2, we described that a software project needs to consider a wide range of preferences including the
preferences among resource or resource mixes, process plans of a product, different feature requirements of a
product, degrees of meeting each feature requirement of a product, degrees of relaxing available capacity

constraints, and degrees of relaxing required capacity constraints. We divide these preferences to two groups

based on whether they represent the utility (in actuality the penalty) of relaxing a constraint to varying degrees.
The preferences that represent the utility of relaxing a problem constraint include feature requirement
preferences (which represent the utility of relaxing a feature requirement constraint) and available capacity
preferences (which represent the utility of relaxing an available capacity constraint). Much of the discussion in

this chapter up to this point concerned how the value of evaluation function is calculated on the basis of .iese
preferences. More specifically, we described how the dissatisfaction with having to commit to the relaxed

capacity of a resource or the penalty associated with relaxing the feature requirements of a product can be
measured and traded off.

The second group of preferences include the preferences that do not represent the utility of relaxing a constraint.
These preferences include resource or resource mix preferences, process plan preferences, start time and
completion time preferences, and feature requirement preferences (between feature requirements). In contrast tc
the first group, this group of preferences are dynamic in the sense that they depend on the scheduling state27 . For
instance, the preference of a resource over another, which is substitutable with the first, depends on the available
capacity and the acquisition cost of each, both of which depend on the scheduling state. The available capacity
of a resource depends on the scheduling state since it is calculated by subtracting the reserved capacity of the
resource under the schedule that represents the scheduling state from the initial available capacity. The
acquisition cost of a resource also depends on the scheduling state because it is a function of the capacity which
is required but is not available under the schedule that represents the scheduling state. The first group of

preferences are static because they are solely dependent on the agent preferences and are independent of the

scheduling state.

The specification of dynamic preferences is redundant in evaluation approaches that are based on cost/benefit

analysis since they themselves are derived from cost/benefit analysis results. For instance, the preference of

using a resource over using another resource in an activity is the result of comparing the cost involved in
acquiring each when they make no difference to the activity, and the result of comparing both the cost and

benefit involved in choosing each when they make a difference to the activity.

Our evaluation function can also be extended to model other preferences that do not belong directly to either of
the main categories which we defined. For instance, it is preferred to assign the same programmer to two

activities (e.g. A and B) that involve developing similar software (if each activity requires only a portion of the
time of a programmer) than assigning each activity to a different programmer (because the programmer
productivity will he higher under the first arrangement). This can be viewed as preferring a resource mix that

27We define the scheduling state as the schedule that is being revised at any given point during scheduling.
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involves assigning the same instance of a resource (programmer in this case) to a group of activities (two in this

case) over another (which involves assigning different instances of the resource).

To model these type of preferences, we need to support the specification of alternative resource mixes and
alternative process plans for a group of activities in addition to supporting it only for a single activity, and also

use a set of operators (built from the primitive operators in our heuristic search model) that can manipulate a
group of activities. Then, the above preference can be indicated by specifying two alternative resource mixes for

* a group of two activities, A and B. Suppose that the first resource mix, which involves using two different
programmers for A and B, requires a total of 3/2 of programmer. Moreover, suppose that the second resource

mix, which involves using the same programmer for both A and B, requires less programmer time (e.g. 1
programmer) because of the jump in programmer productivity. The evaluation function realizes the advantage

of the mix that involves assigning the same programmer to both activities A and B because it incurs a smaller
cost while achieving the same benefit (because both mixes meet product feature requirements equally).



48



49

Chapter 4

Scheduling Strategy And Search Operators

In chapter 2 we described that our basic heuristic search model is composed of three principle components: a set

of search (revision) operators, each of which modifies a subset of the commitments comprising the current

schedule to produce a new schedule, an evaluation function (i.e. a metric on the potential solution space), which

provides a basis for comparing the transformations produced by the application of alternative operators to a
given schedule, and a scheduling strategy, which specifies knowledge relating to use of the search operators and
the evaluation function within the search (e.g. inconsistency prioritization heuristics, operator selection
heuristics, termination criteria, etc).

In this chapter, we present the design of a set of schedule revision operators and a scheduling strategy for

applying these operators during the scheduling process. Several previous efforts in manufacturing scheduling

have considered the problem of incremental schedule revision28 . The ISIS job shop scheduling system [41,42]

provides the capability to reschedule an order in response to the unexpected loss of required resources. This is
accomplished by transforming the commitments pertaining to the problematic order into scheduling preferences,
and generating a new schedule for the order. In situations where multiple orders are found to have schedule

conflicts, the priorities of orders are used to determine the sequence of rescheduling them. Thus, in terms of the

above heuristic search model, ISIS can be seen as utilizing a single search operator (i.e. the order rescheduling

procedure). The overall revision strategy (highest priority order first) dictates a single trajectory through the
space and thus there is no use for a global evaluation function". The OPIS factory scheduling system
[104, 128] implements a more sophisticated approach to reactive schedule revision. It emphasizes the use of

several schedule revision operators, each with selective advantages in resolving certain types of scheduling

conflicts, and operates according to an opportunistic scheduling strategy. More specifically, a heuristic theory
relating the implications of current solution constraints (e.g. important reoptimization needs and opportunities)

to the strengths and weaknesses of various revision operators is used as a basis for conflict prioritization and
operator selection [115]. This enables the scheduler to focus immediately on those decisions most critical to

overall schedule revision objectives as opposed to encountering them only after other restricting commitments
have been made. This heuristic theory (scheduling strategy) is used in lieu of a global heuristic search30 . A final

approach to incremental schedule revision is implemented in the RESOURCE REALLOCATOR system [120],
although in this case the problem addressed is quite different in that it is strictly a resource reallocation problem

28Both the ISIS and OPIS scheduling systems mentioned below also address the problem of schedule generation. We limit our attention
here to issues relating to schedule revision.

21t should be noted that the "order rescheduling" procedure itself employed a heuristic beam search to locally explore alternative sets of
commitments for the order being scheduled, and this search was focused by an evaluation function that reflected scheduling preferences
relevant to the order (e.g. meeting the due date, utilizing preferred resources, etc)

"Although, as in ISIS, OPIS operators do exploit local heuristic search.



50

which is void of any temporal constraints. Nonetheless, the approach constitutes a heuristic search model that
includes each of the principal components that can be found in our model [1161.

Our overall incremental revision methodology is similar to that of OPIS [1041 and includes choosing a conflict

(focal point around which revision should be centered), selecting a revision operator (action) to resolve the
conflict, applying the operator to the schedule, and repeating the process until all conflicts have been resolved.
Detection of conflicts in the current schedule is the means by which the need for reaction is recognized.
Constraint propagation in response to schedule changes can lead to detection of two types of conflicts in OPIS:
time conflicts and capacity conflicts. Moreover, sometimes the aggregation of currently posted conflicts may be
necessary. Conflict aggregation is intended to group together those conflicts that should be simultaneously
addressed (e.g. conflicts that are caused by lack of the same resource). In this chapter, We provide a novel way
of transforming conflicts through unification (a special form of aggregation that involves coalescing adjacent
conflicts). The advantages of unification are that it aggregates conflicts only if the cost of satisfying the
aggregate conflict is less than the combined cost of conflicts which are aggregated, whereas the benefit of the
aggregate conflict is equal to the combined benefit of the conflicts that are aggregated.

The design of our search operators and operator selection heuristics differ from other approaches in two major
ways. First, we define a scheduling search space that includes alternative process plans, and a problem solving
model that integrates the search for a process plan with the search for a schedule that implements that process
plan. This enables preferential concerns relating to process plan selection to be appropriately balanced against
those relating to resource allocation and time interval selection.

Secondly, we formally define a criterion of navigational minimality for measuring the utility of design of a set
of search operators. A set of operators is navigationally minimal if and only if it is the smallest set of operators
that insure any given schedule is reachable from any other schedule. A navigationally minimal set of operators
insures that it is feasible to start the heuristic search from any point in the search space in order to reach the
desired schedule.

If we consider that the search space in SPPS is extended along many dimensions, it is important to allow
selective disbandment of search or reprioritization of search operators along some dimensions. A navigationally
minimal set of primitive operators (which constitute the building blocks of more complex operators) insure that
this goal can be achieved without a major reorganization of the underlying heuristic theory of schedule revision -
a task which is both difficult and costly. With respect to our formulation of the software planning and
scheduling problem, we define a navigationally minimal set of primitive search operators. More complex search
operators can be constructed by sequencing the primitive ones.

Our opportunistic scheduling strategy also differs from other related research in that it does not exclude global
heuristic search. While we have developed a set of heuristics to relate the implications of current solution
constraints to the strengths and weaknesses of various revision (search) operators, we use a global evaluation
function to compare revision operators if the heuristics fail to subscribe to one.

In addition to the above differences, we also have defined an alternative heuristic strategy for opportunistic
scheduling which focuses on minimization of disruption (or change) to the schedule as the primary criterion for
operator selection. The purpose of this heuristic is to minimize the disruption of the project schedule which has
undesirable political ramifications and complicates the coordination of interdependent activities of a large
number of project teams as well. Within any opportunistic scheduling scheme, the revisions prescribed by a
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selected operator to solve a particular conflict can lead to considerable disruption of the original schedule (i.e.,
create new conflicts and necessitate a large number of additional schedule revisions). Given the existence of a
complete schedule, the search space is often highly constrained and thus provides little flexibility for revision.
Disruption of (lack of stability in) the schedule over time is a particularly important concern in SPPS as (1) a
project schedule serves to coordinate the interdependent activities of a large number of project teams, and (2)
attempting to change the schedules of several other teams in order to fix the problems that has arisen in the
schedule of one frequently has undesirable political ramifications. Although the importance of non-disruptive
incremental revision is noted in OPIS [104], it is considered as secondary to reoptimization concern during
operator selection. We believe that minimization of disruption as the primary goal also could be helpful in other
distributed scheduling domains because disruptive revision might undo the commitments made during previous
iterations of opportunistic scheduling by creating new conflicts at the points where previously resolved conflicts
used to reside, thereby slowing down the convergence of scheduling. To minimize the disruption, we have
studied the amount of disruption that is caused by each search operator, and have developed a set of heuristics to
control the application of each operator on the basis of the disruption that it causes.

In the remaining of this chapter, first we discuss our conflict prioritization scheme, and then describe the design

of primitive operators. In section 3, we explain the operator selection heuristics that are used in our basic
heuristic search model. In the fourth section, we describe the advantages of designing complex operators from
sequencing the primitive operators that are discussed in section 1, and show how these operators can be
constructed.

4.1. Conflict Prioritization

Our goal in prioritizing the scheduling conflicts is to allow the scheduler to focus immediately on those
decisions most critical to overall schedule revision objectives as opposed to encountering them only after other
restricting conflicts have been resolved. In the previous chapter, we used the cost and benefit functions to
measure the consistency distance of a schedule from the cost and benefit of individual conflicts (constraints that
can not be satisfied). However, these functions can be used to measure the criticality of a conflict (urgency of
resolving a conflict in relation to the urency of resolving other conflicts). Since the criticality of a conflict is
directly proportional to both the cost benefit of that conflict (because the higher the cost and benefit of
resolving a conflict, the smaller the chance that it can be resolved merely through a compromise), we measure it
in terms of their product.

The advantage of using cost as a criticality factor is that it provides a qualitative measure of the expense of
resolving a conflict (recall that a conflict is represented as variable capacities of a resource required over
different time intervals). The advantage of using benefit as a criticality factor is that it provides a qualitative
measure of the desirability of resolving a conflict from the stand point of project requirements.

Although our formulation of criticality accounts fully for both the cost and benefit of a conflict, in reality it is
not desirable to compute the benefit of each conflict during every reactive scheduling cycle, from a
computational cost stand point. In the present implementation of NEGOPRO, we measure the criticality of a
conflict by relying only on the cost.
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4.2. Primitive Operators

In this section, we address the issue of search operators. We first define the concept of navigational minimality

as an operator design objective, and then describe a set of primitive operators for software project schedule

revision that satisfy this property.

A search (revision) operator is an operator that transforms an input schedule to an output (revised) schedule:

Definition 4.1: Search (Revision) Operator

Let A* be the set of possible schedules of r and 8i. Then

8i:(A*,A) --. A* where A is the set of possible arguments with which 8i can be applied.

In the definition of each revision operator in the remaining of this section, the formalism will focus on the part of

schedule that each operator transforms. This is provide a clearer understanding of the revision operator.

In order to define navigational minimality, first we need to state three other definition: composition of operators,

orthogonal set of operators, and navigational completeness. Composition of a set of operators is the successive

application of a sequence of operators to a schedule. The end result of this application will be a new schedule. A

set of revision operators is orthogonal if and only if no member of that set can be written by a composition of

other members of that set. A set of revision operators is navigationally complete with respect to a set of

schedules if and only if for every two schedules in that set, there exists a composition of revision operators (that

belong to the set of revision operators) that transforms one schedule to the other. In the following, the above

definitions are restated formally.

Let S be the search space of the problem (which includes the set of all possible schedules A that can be

constructed) and A be the set of all possible revision operators that is defined on that space. Then

Definition 4.2: Composition of Operators

C: . - S S.t. C(6 1. .,A 1)=8,(6 2(...68(A 1)))=A 2

where8 . .nA A A1 ,A2 E S

Definition 4.3: Orthogonal Set of Operators

A is orthogonal iff VSj E A VA E S -, 3 S.. E A- [8j) S.t C( .... ,A)=Q(jA)

Definition 4.4: Navigational Completeness

A set of operators A to navigate through a search space S is
navigationally complete iffVAiA 2 E S 3w=-81 ... .. 8,e A s.t. C(wA 1)=A 2.

According to this definition, A is navigationally complete if and only if a machine scheduler that uses it can

navigate from any points within the space of possible schedules of a project to another point within that space. A

navigationally minimal set of operators would assure that it is feasible to start the heuristic search from any point

in the search space (i.e. any A E 5) in order to converge to a solution.

Definition 4.5: Navigational Minimality

A is navigationally minimal for S iff A is orthogonal and navigationally complete.

Our principal goal in designing A for software project scheduling is navigational minimality. We divide the

design process into two steps: (1) formal declaration of the space to be searched, and (2) development of a set of

operators that are orthogonal and navigationally complete with respect to this space. In chapter 2, we formulated

a sarch space S for software project scheduling that involves search along the following dimensions (which

refer to as D):
I. the amount of resources that are available for allocation to a project can vary over time.
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2. the same production (activity) can start at different dates.

3. the same production can be carried out with different mixes of resource capacities.

4. different productions might require the same resource. Then, if there is not enough of the resource
to satisfy all requirements, a scheduler has to decide which production the resource should be
allocated to or whether a product should be preempted from its resource so that the resource can be
reallocated to another product.

5. product feature requirements can be compromised thus multiplying the number of ways that the
requirements of a product can be satisfied.

6. The same production can be carried out with different process plans.
We now define a set of search operators that span this search space.

Definition 4.6: Operator Supply

asuppty(P,) = Py s.t. p. and py denote
the available capacity of r; before and after adding the capacity C.

Supply involves resolving a conflict by providing the disputed resource. A project is an open-ended system that

communicates with the outside world by receiving budgets and delivering products. The commitments that a
parent organization has made about the budget of a project could change if the major requirements of the project
can not be met under the current budget. An operator, supply, is defined to increase the supply of that resource
when major requirements of the project can not be met under the current level of supply. Similarly another

operator, take-away, can be defined to decrease the supply of a resource dynamically.

Definition 4.7: Operator Move

= AY s.t. Ax and Ay denote the schedule of a product p
before and after the move, and I E [n m] denotes the amount of move (n represents
the maximum possible left shift and m denotes the maximum possible right shift of
A).

Move is to move the start date of a schedule by delaying or expediting it: the start date is expedited if the

schedule is moved left and delayed if the schedule is moved right. Let p be a product and Xj and rj denote the

Ouantity Available
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Request Cun'e

Time
0 t
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req avail

Quantity

Time
0 t

S - t s 0
req avail

Figure 4-1: A Request Curve (a) prior to the Move (b) after the Move
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j-th element of X and r. Then, to expedite the completion of p by I days, the following steps need to be executed
in the order presented:

1. VC s.t. r;E (R~i r) Rd first remove r; from Rp and then return to the list of available
resources i.e. let Pr =P% u C. This would preempt p from the primitive resources that are
allocated to it.

2. Let Di denote the deadline feature requirement of p. Then let Wi = Vi + I (this moves the
completion deadline of p forward by I days).

3. VXj E X and C the Xj element of j, if r; r RP.0 then translate by I on the time line.

4. Rebudget p. This would rebudget the primitive resource requests of p after they have been
temporally moved.

5. Vq e Rp move the schedule of q by k< I such that q is completed before p requires it. If q already
becomes available prior to the shifted completion time (i.e. q already enjoys a left slack which is
larger than 1) then the schedule of q need not be moved. However if q holds no left slack w.r.t. p or
holds a left slack that is smaller than 1, then a left shift in the schedule of q is essential. The left
shift has to be propagated to any q that holds an insufficient left slack w.r.L to their product.

If Ap is moved left, then not only the schedule of s s.t. se product-transitive-closure+(p) remains unaffected,
but also the slack of s w.r.t, p will grow.

If Ap is moved right by 1. then the move needs to be propagated to q s.t. q E product-transitive-closure+(p). If
the right slack of p w-r.t. q is larger than I then q need not be moved. The right shift should be propagated
recursively until the final products of the project are reached.

If the propagation reaches the final products of a project, then there is a chance that the duration of that project
will increase. Duration of the project could increase even before the project has reached its final products. The
recursive application of move-right along the path that starts with p should stop if the propagation causes the
duration of the project to become the dominant cost factor.

Definition 4.8: Operator Substitute (Switch-Mix)

= X where x and y are the indices of the set of
selected mixes of resources before and after one of the selected mixes is chp-iged.

Substitue involves switching from one mix of levels of resources that produces a product to another mix of
levels of the same group of resources producing that product. For instance, by allocating more manpower to a
project that includes many parallel tasks, the duration of that project could be reduced; figure 4-2.

Definition 4.9: Operator Reallocate

greanowate(tw,'x,r) = (r,,;) s.t. w and x are the present indices of the schedules of p
and q, r is the resource to be reallocated from p to q, and y and z are the
new indices of the schedules of p and q.

Reallocate is to reallocate an unshared primitive resource from one product to another. The application of
reallocate to a schedule does not affect the overall cost of resolving the conflicts in that schedule; figure 4-3.

Definition 4.10: Operator Compromise
8 compromae(O x,y) = 4) where x is the index of the set of levels of meeting each
feature requirement before the compromise and y is the index of the set of
compromised levels of meeting each feature requirement.

Compromise is to lower the desired level at which the feature requirements of p should be met. Lowering the
desired level at which the feature requirements of a product should be met in turn might affect the amount of
resources that will be needed to meet the feature requirements of the product; this is illustrated in figure 4-4.
Although it appears that a lower amount of resource requests will always lower the cost that is incurred for
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Figure 4-2: Different Mixes of Levels of Resources Produce the Same Product

Module X Module Y

Before
Reellocatior 10 Senior Prog 2 Senior Prog

40 Junior Prog 20 Junior Prog

After a Senior Prog 4 Senior Prog
Roellocetloa 40 Junior Prog 20 Junior Prog

Figure 4-3: Reallocation of Senior Programmers From Module X to Module Y

satisfying those requests, if the request that is lowered belongs to a shared resource r and the lowering refers to
shortening the period I that a product p requires r, then the relaxation might save no new cost This is because

although the request of p for r is lowered, other products could continue to require r over I. The demand for r

over a designated period I can be eliminated only if all requesting products drop or compromise their requests for

r together.

Definition 4.11: Operator Switch-Plan

68,W,_,,ln(Fxy) = Fy where x is the index of the present process plan among all
process plans of the present schedule and y is the index of the new process plan to
which the switch is to be made.
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Switch-Plan is to switch from the present process plan to another. Suppose Z is an application software.

Moreover, suppose that Z can be produced in three different ways:
i. Acquiring an application generator off the shelf to expedite the development.

2. Subcontracting the entire production to another firm.

3. Producing Z entirely inhouse.

In each case an entirely different process plan wil emerge (see figure 4-5).

The procedures that implement each operator that we have described invoke two primitive operators: release

and allocate. However, the procedures that implement each operator can not be expressed as a sequence of calls

to release and allocate because they also include other decision constructs and heuristics.

Definition 4.12: Operator Release

allocate(Ax,) = Ay where C = liixY.

The capacity of % that is released from p will be added to p,."

Definition 4.13: Operator Allocate

allocate(A.,3) = Ay where C r itY-

The capacity of r that is allocated to p will be subtracted from Pr "

For instance, reallocate can be constructed from release and allocate as follows:

8,,alo.IA,(AWA.,r) = (Ay,A2) s.t. (release(A.,C) = Ay) A (allocate(Ax,C) = A)

Let S* = (supplytake-away,reallocate.movesubstitute.compromiseswitch-plan). Then

Claiml: S* is Navigationally Minimal

Proof: We show that S* is navigationally minimal by proving that it is navigationally complete and also it is

orthogonal. Let f.D-* S Sbe a function that returns the name of the operator that spans the search space

dimension denoted by the domain value such that f(l)=supply f(2)=take-away f(3)=move f(4)=substitute

f(S)=reallocate f(6)=compromise f(7)=switch-plan. Clearly f is 1-1 onto. Therefore, S* is navigationally

complete. Furthermore, since the dimensions of the search space are orthogonal (by the definition of each

dimension), the cardinality of S is minimal.
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Figure 4-5: Three alternative process plans for developing an Application Generator

Given the generality of our formulation of the problem, we argue that S* can be used to realize the same results
as the "larger-grained" operators employed for incremental schedule revision in previous approaches31 . In the
following, we demonstrate how two operators employed by RESOURCE REALLOCATOR [120], a transaction
and the more complex cascade of transactions, can be constructed by a sequence w of operators in S*.

Suppose that G is a multiproject software developing organization. G begins a new project 17 in an environment
that several projects are already in progress each controlling a set of resources. n usually has to deal with the
problem that there are less resources available than it has requested. One way to resolve this problem is to
reallocate the resources that are demanded by H from other in-progress projects. This alternative is preferred if
other projects can replace the reallocated resource with other resources that are available. RESOURCE
REALLOCATOR refers to this sequence of reallocation and replacement (substitution) as a transaction. A
chain of transactions is called a cascade [1201. For instance, group Ga might be in possession of rl but have no
skilled personnel, r2, to operate it. In contrast, Gb might be in possession of skilled personnel r2 but lack
resource r] to operate on. As a result of a transaction, both G. and Gb could possess r] and r2.

The semantics of a transaction in Sathi [120] is slightly different from the one we defined above because of the
different rules that govern the organization that they assume. According to Sathi, the set of available resources
consists of the resources that are under the discretionary control of some organizational unit. G. can obtain a new

31Of course the advantage of doing so from the standpoint of scheduling efficiency is another issue.
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resource (e.g. r) only from other units within G (e.g. Gb) that control r. The only method to obtain r in G is to

trade a resource that Gb requires and Ga controls with r, a resource that Gb controls and G, : quires.

The main difference between the setting that Sathi defines and the one used here is that here an organizational

unit is not allowed to maintain its control over a resource unless that unit keeps the resource at work. This

however does not prevent Ga from bidding for r and at the same time offering s which it currently uses.

Claim2: 3w=-. ... .S . A s.t. QwA)=8,ransctio(A).

Proof: The main point in the proof is that a conditional release such as "G. will give up s only if it can obtain r"

can be broken down to "Ga will give up s" and "Ga will obtain r." Consider the sequence "substitute reallocate

substitute" of operators in S*. First substitute substitutes r for s in Ga, then reallocate reallocates r from Gb to

Ga, and finally substitute substitutes s for r in Gb. Since the initial substitution has released s from G. to p, s will

be allocated to Gb from p.

Claim3: 3w=81...8. 81 _....&E A s.t. QwA)=&casau,(A).

Proof: Recall that a cascade is a sequence of transactions and consider all sequences of operators in S* that is

represented by the regular expression e of the form "substitute (reallocate substitute)+." Then the same

argument that we used to prove claim2 can be used to show a cascade of length n (a sequence of n transactions)
is the sequence e such that the sequence (reallocate substitute) in it is repeated exactly n times.

The only difficulty that we faced in realizing the function of "larger-grained" operators used in previous

approaches through our primitive operators was related to scheduling of setup operations. In the formalism
which we presented in chapter 2, setup operations can be viewed as activities that produce a dummy product.
While the semantics of setup operations in a job-shop allow that operation to be repeated many times, the

definition of a resource in chapter 2 required that all products have infinite capacity (i.e. the operations which
produce them are carried at most once). To remedy this problem, our formalism can be extended to allow
mutually exclusive products. A set of products are mutually exclusive if at most one of them can be available at

any given time, and the production of one implies the exclusion of all other members of the set. Once a product
which belongs to this set is produced, it will remain available (with infinite capacity) until another member of the

set is produced (to exclude it).

4.3. Operator Selection

In this section, we describe an operator selection strategy which attempts to keep schedule disruption at a
minimum while making the most progress toward resolving a given conflict. To reduce disruption during

schedule revision, we have studied the amount of disruption that is caused by each primitive search operator, and
have developed a set of heuristics to control the application of each operator on this basis. To break ties among
operators that are likely to cause roughly the same degree of disruption, we consider the progress that each will
make toward solving the target conflict. This implies that operators will first be sorted in the decreasing order of

disruption and then in the decreasing order of progress made toward resolving the conflict. The advantage this
heuristic strategy for opportunistic scheduling (which is a goal oriented process) is that it helps to maintain the

solution structure that earlier opportunistic operators have shaped unless it is found not to be converging to a

solution. For instance a disruptive revision might undo the commitments made during previous iterations of

opportunistic scheduling by creating new conflicts at the points where previously resolved conflicts used to
reside.
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Although the minimization of disruption is not a major concern during the initial construction of a schedule, it

becomes critical during the reactive refinement of an existing schedule (which characterizes the software project

scheduling process). This is because decision making is much more constrained in the presence of a pre-existing

set of commitments. Although the importance of non-disruptive (local) operators is noted in OPIS [104], it is
considered as secondary to reoptimization concerns during operator selection.

An analysis of the operators in S* illustrated that reallocate, supply, take-away, and compromise are the only

operators that always have strictly local effects. For instance, reallocate only affects the allocation of resources

in the product that the resource is reallocated from and the product that the resource is allocated to. Since

reallocate, supply, take-away, and compromise can cause no disruption, then they are considered first during the

operator selection. Discrimination between these operators is made by comparing the degree of progress that

each makes toward resolving the intended conflict. The remaining operators namely substitute, move, and

switch-plan, have the potential of causing disruption. Substitution of a mix of required resources for another in

the schedule of a product p will be disruptive only if
1. a resource r in that mix will be required earlier by p after the substitution is made. In this case

disruption will occur if the new required date of r is earlier than the available date of r.

2. the duration of p increases after the substitution is made. In this case disruption will occur if the
new available date of p is later than when other products require p.

The disruptiveness of move and switch-plan can be studied in a similar way.

Intuitively, we anticipate that move will be more disruptive than substitute since it requires that the entire

schedule of p be shifted. We also anticipate that switch-plan be more disruptive than either move or substitute

since not only the schedule but also the process plan of p (consequently the required resources of p) is altered. In

our approach, we first determine which of the operators move, substitute, and switch-plan will actually disrupt

the schedule if they are applied to resolve the current conflict. This is accomplished by simulating the effect of
applying each operator on the schedule without the need to study the type of global changes that it will cause.

The simulation is not computationally expensive because it will stop as soon as it learns that other parts of the

schedule need to be changed. If none are found to be disruptive, then the operator that makes the most progress

toward resolving the intended conflict is chosen. Otherwise, if all three operators are found to be disruptive then

we choose them in the following order: substitute, move, switch-plan. This ordering is based on the least-

anticipated-disruption-first heuristic which we briefly described above.

The policy of prioritizing the operators on the basis of how local their consequences will be could also be

generalized to operator arguments by considering the arguments that cause a smaller disruption in the schedule

first. Figure 4-6 shows the implementation of this policy in the action manager.

In the remaining of this section, we describe two alternative methods to approximate the degree of progress that

an operator makes toward resolving a conflict. The first method involves explicit measurement of the cd of both

the current schedule and the schedule that results from applying the operator, and then calculating their
difference. Although the cd of a schedule can be measured for the entire schedule, it is often preferred to restrict

the measurement to a subset of the schedule in order to avoid the computational complexity of repeated

measurements. In chapter 3, we provided a detailed description of how the cd of a schedule (or part of a
schedule) can be measured.

An alternative method to approximate the degree of progress that an operator makes toward resolving a conflict

is to use a set of heuristics that has been developed to selectively choose an operator by assessing the parameters
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Figure 4-6: A Diagram of the Action Manager

of the conflict or the schedule. These heuristics eliminate the need to measure the cd altogether when they arm
successful in selecting an operator. If they fail, however, we need to fall back to the first alternative. These
heuristics have been developed by studying the effectiveness of each operator in resolving different conflict
scenarios and also the degree of disruption that the operator might cause in each case, and are outlined as follows
for the case that the conflict is over a resource r:

1. If the aggregate demand for r (combined demand of all products for r which is not satisfied) is
constant throughout most of the project, then increase the supply of r uniformly across the entire
project schedule.

2. If the available capacity of r increases in the neigbourhood of the disputed period, then move one
of the products that requires r over the disputed period.

3. If the request for r can be substituted in one of the products that requires r over the disputed period
and one of the resources that r can be substituted with is largely unutiized over the disputed
period, then substitute is recommended.

4. T' r can be reallocated from another product which has the choice to substitute or compromise r,
then a reallocate is recommended.

5. If the conflict can be entirely resolved by agreeing to a marginal loss in the feature requirements of
the project product, then a compromise is recommended.

A heuristic for selecting "switch-plan" is not recommended because the switch from a process plan to another
might affect many schedule parameters which in turn significantly reduces the accuracy that can be achieved by
providing a heuristic which relies on the value of only a small subset of those parameters. These heuristics
represent the scenarios (patterns) that make the application of an operator attractive, and are unrelated to the
heuristics that measure the global disruption of each operator.
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4.4. Design and Selection of Complex Operators (Primitive Operator Sequences)

In addition to improving the efficiency of search by developing a set of heuristics that approximate the effect of

an operator on a schedule without measuring the cd of that schedule, we have also recognized the utility of

heuristics which prescribe a sequence of operators (i.e. more complex operator) once the schedule is known to

satisfy a set of properties. The advantage of these heuristics is that they require only a single iteration of the

algorithm to decide a sequence of operators that should be applied while normally each iteration is able to
prescribe only one operator. Although the present prototype of NEGOPRO does not include these heuristics, we

expect that they improve the efficiency of search significantly.

A typical situation where a whole sequence of operators can be prescribed is when we are certain that many

conflicts in the schedule can be resolved by the repeated application of the same operator/argument pair to each

conflict. For instance, when there is a manpower shortage across the board and formal review can be eliminated

from the quality assurance requirements, the machine scheduler could enforce a policy to relax (compromise) the

need for formal reviews altogether. This can be implemented by coding a heuristic that is triggered once a
pattern of shortage of manpower across the board is detected during the reactive scheduling.

Some of the heuristics that we described in section 4.3 also provide a crude way of prescribing a sequence of

operators. For instance the heuristic that approximates the applicability of "reallocate" examines if the resource

to be reallocated can be later "substituted" or "compromised". In contrast, the direct measurement of cd can
provide information on only one operator (reallocate in this case). It is important to be able to approximate the
cd due to a sequence of operators since occasionally a sequence of operators should be applied to a schedule

before the effect of them on the schedule can become apparent. For instance, a reallocation of r from p to q
might have no affect on the consistency of the schedule. However, if p can substitute the resource r with another

resource which is unallocated, then one could anticipate that the schedule become more consistent after a
"reallocate substitute" sequence.

In the same way that a sequence of operators could provide a uniquely efficient way to converge to a solution,

there exist sequences of operators that should be prohibited because they might cause redundancy or cause the

formation of cycles. We use additional heuristics to prevent the formation of these sequences. For instance,

consecutive moves can be simulated by a single move in order to prevent redundancy. In this case, we check that

if the previous operator was "move", then "move" is prevented from being the next operator because any number

of consecutive moves could have been achieved by a single move.
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Chapter 5

Interactive Revision of Schedules

In the previous two chapters, we provided a detailed description of a heuristic search reasoning framework to

reactively revise schedules. In the present chapter, we deal with the issues that are related to the control and
triggering of heuristic search from the standpoint of a human user. The main issue in the control of heuristic

search is defining the involvement of human schedulers in conducting heuristic search. The main issue in
triggering heuristic search is to determine the types of reactive changes that are allowed and the way that these

changes can be introduced. These changes trigger new reactive cycles. We study these two issues in the order
which we have stated them above.

5.1. Interactive Human-Computer Collaboration During Search

The architecture of our heuristic search control system allows human schedulers to control the heuristic search

interactively. The involvement of human schedulers in conducting heuristic search goes beyond defining the
problem and changing its parameters interactively, and is designed to engage the human schedulers in search-

related decision making to improve the efficiency of search. Although good heuristics can increase the accuracy
of search, experimental studies suggest that most heuristics are problem specific. A solution to this problem is to

allow the automatic search algorithm to use a partner who masters a broader knowledge base and can propose
new scheduling commitments or screen out the unpromising commitments that are proposed by the automatic

search algorithm, namely a scheduling expert.

On the basis of the interviews that we conducted with software project managers, human schedulers can make

qualitative assessment of schedules and propose new commitments (to revise a schedule) without working out

the details effectively, but they usually have difficulty in checking whether the schedules that have been
constructed independently are consistent. Machine schedulers, however, are more suitable for

1. checking whether different parts of a schedule that have been developed independently are
consistent and can be merged together.

2. reacting to resolve the discrepancies that arise between the scheduled and actual courses of action
during the project execution.

Traditionally, manufacturing scheduling systems have been either completely human centered or completely
machine centered. However, the goal of our design is to allow human and the computer to collaborate as

partners. In a collaboration, each partner acts according to each one's competence. This is a more generous
view of the computer than that of viewing it as a submissive server where the scheduler is the principle actor. In

this view of human-computer interaction, the computer should behave as the extension of the human scheduler's

skills. The computer should let the human scheduler act freely and take control arbitrarily. The difficulty of
designing an interactive interface for this collaboration lies in identifying the transition points where control

shifts from human to the computer and back.
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The state of the art commercially available SPPS tool capabilities and features vary a great deal among the many

tools available but the variation is more in the depth and sophistication of the features such as its storage,

display, interoperability, and user friendliness, than in the role of the human and the machine during the problem

solving. Most project planning and scheduling support software systems provide an interactive interface but this

interactive feature is only within a machine centered framework.

In both cases, whether the computer is a tool or a collaborator, users should not be modeled as finite state

machines [7]. States involved in human problem solving are rather unknown and their relations are mostly

unpredictable. Human problem solving is basically opportunistic, mixing various problem solving approaches.

As a result, it must not be constrained by an inflexible model of interactions. To summarize, human should be

given the illusion of driving the system. To this end, he should be allowed to stop the search process at a desired

state, change the value of a variable in that state, contemplate to determine how the search should proceed,

command the program to apply a set of operators in a sequence to implement his choice, and resume the

automatic search or backtrack to any previous search state.

Domain independent planning systems [15, 146] have proposed and implemented schemes to allow a human to

control the expansion of goal nodes, and also to post constraints on plan variables thereby guiding the planning

along intended paths. Although these systems increase the role of human in getting involved in the problem

solving, they still do not allow him to control the search.

In our implementation, collaborative problem solving between human schedulers and our search algorithm is

supported by providing a set of functions to control the search process. Human schedulers can interrupt or
resume the search through a key stroke. Two functions, push and pop, are provided to allow human schedulers

browse through the search-history tree for this purpose. A search-history tree is a directed n-ary tree T=(VE)

such that each node v in V represents a schedule S and includes a package of data that is essential to restoring the

schedule which belongs to parent(v) in T32 from S, and each edge in E is a transition tuple of the form (OA)
where 0 points to an operator name, and A is a list of arguments that 0 is being applied with. By revising the

schedule that a node represents, through a transition (OA), we obtain the schedule that belongs to the node that
(0,A) is incident on. The root node represents the original schedule before any revision has taken place. At each

point, there is exactly one current node, and the schedule which belongs to that node represents the current

schedule.

The semantics of E implies that each node in the search-history tree represents a schedule which is an

incremental revision of the schedule that belongs to its parent node. Since an incremental revision usually affects

a small part of a schedule, to curb the memory consumption of T, the restoration data which is kept in each node

includes only the incremental changes that are essential to restore (or backtrack) to the schedule of the parent

node. The schedule of the parent node can be restored by starting from the current schedule and orderly undoing

the changes that have taken place until all incremental changes have been undone. If the operator which links the

parent schedule to the current schedule is invertible, then the content of the current node could be empty since

the changes can be undone uniquely by inverting the operator.

Pop instructs the algorithm to backtrack to the schedule that preceded the current schedule (see figure 5-1) and

to reinstate it as the current schedule. This implies that required capacity, available capacity, and allocated

capacity are all reinstated.

32Each node (except the root node) has exactly one parent because the data structure which is being examined is a tree.
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Push is used to advance to a child node and update the current schedule to the schedule of that node. This update

is achieved by revising the current schedule through a transition (which is represented by an edge). Since the

current schedule can usually be revised through multiple transitions, a call for push should be accompanied by an

operator-argument pair to uniquely distinguish a transition (see Figure 5-1). If the target node already exists as a

child of the present node in T, then the tree itself need not be updated. In this case, the scheduler revises the

current schedule through the transition data which accompanies push and advances the current tree node pointer
to point to a child node (the one reached through the transition). Otherwise, the algorithm also has to record the

data which is affected by the transition, create a new tree node, store the data which is affected by the transition

in that node, and attach the node under the current tree node.

@6 0

Push(o, a)

0 

(o, a)

@000
Pop

0 00

LEGEND

0 schedule

Present Schedul

Figure 5-1: Functions to Control the Search Process

The algorithm works in two modes: automatic and manual. In the manual mode, a human scheduler can control

the search by a series of pushes and pops. For instance, he can opportunistically terminate the search along the
present path, backtrack, and then manually guide the search along another path. Once the search is guided to a

point from which automatic search can take over, automatic search can be resumed by a key stroke. The search

can be switched from manual mode to automatic mode and vice versa by a single key stroke.

A human scheduler can
1. set one of several parameters that the algorithm provides for monitoring the automatic search. For

instance, a human scheduler can establish the maximum number of operators that the algorithm can
apply, or establish a cost or benefit threshold that has to be met before transferring the control of
program to manual mode.

2. control the level of detail at which scheduling (henceforth search) has to be carried out by only
encoding the resource requirements that are more important, and also by avoiding to break down a
production to more primitive productions that in turn need to be scheduled.
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To collaborate with the computer, a human scheduler needs to be familiar with the interactive heuristic search
framework interface that has been developed. This includes familiarity with the search control functions (i.e.

push and pop), and also familiarity with the structure of the search-history tree. Moreover, he should be able to
understand the representation that we use for a schedule. It is also useful if the human scheduler is familiar with

the primitive search operators and building more complex operators from them, since the scheduling problem

that he is trying to solve might require building more effective operators.

Although the interactive heuristic search framework has been implemented, the impact of collaborative human-

computer heuristic search on increasing the efficiency of search has not been measured. The evaluation of this

framework requires designing sophisticated experiments using human subjects and the development of special

evaluation measures.

5.2. Interactive Specification of Reactive Changes

Available Requested Temporal Discrepancy
Capacity Capacity Constraint With
Changed? Changed? Changed? Execution?

Trig gerler

Old New
Schedule Schedule

Figure 5-2: Reactive Scheduling

The control of reactive revision of schedules in our implementation is highly interactive. During each reactive
schedule revision cycle, a human scheduler is allowed to:

1. alter the available capacity constraints (associated with each resource) and resume automatic
search to react to them. The available capacity of a resource could change during the execution of a
schedule in the real world because the commitments that were made earlier might fail to
materialize. Moreover, human schedulers tune the available capacity of different resources by
adjusting them to the schedule needs (after the schedule has been constructed). This allows a
project manager to modify the resources that were initially committed to a project to reach a higher
resource utilization by allocating more capacity to high contention intervals and deallocating
capacity from highly unutilized intervals.

2. alter the capacities of the resources that are required for developing a product. Initial resource
requirement estimates for developing a product usually changes during the implementation of the
schedule, as those estimates are refined to reflect the actual needs of those products 33.

3. alter the feature requirement constraints of a product. These constraints have to be altered because

33Basically, a clock is provided to monitor the execution of a project. If the actual execution data which is entered by a human operator
differs from the planned behaviour, then heuristic search is triggered to to repair the schedule. Otherwise (i.e. when the actual execution data
is identical to the planned behaviour), the history clodc will simply be advanced.
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the customer requirements might change during the execution of the project. Moreover, human
schedulers could change these requirements to balance the cost and benefit of satisfying them.

The changes that a human scheduler can make to the problem interactively is depicted in figure 5-2. Alteration

of the available capacity constraints, required capacity constraints, or ieature requirement constraints all trigger a

new reactive cycle that resumes heuristic search to revise the current schedule (to accommodate the change).

5.3. An Example of the Role that A Human Can Play During Search

In this section, we provide an example of the role that a human scheduler can play during collaborative heuristic

search in increasing the efficiency of reactive scheduling. Figure 5-3 illustrates the aggregate demand curve for a

programmer before the arrival of a new request for programmer (in figure 5-3, the new request is attached to a

question mark).

quantity

time

in month

Figure 5-3: Aggregate Demand Curve And A New Request For Programmer

The new request reactivates NEGOPRO to schedule that request. The most logical course of action for

NEGOPRO is to schedule the request at first possible available slot (unless there exists a scheduling requirement

that prefers to schedule the request at a later time); this is illustrated in figure 5-4.

Now consider a new request for programmers that arrves after the previous request has been scheduled. This

request has been depicted in figure 5-5. As figure 5-5 shows, this request has a hard deadline (all parts of the

request have to be scheduled before the deadline) as well. If the rescheduling is carried out in the automatic

mode, then NEGOPRO first tries to schedule the request at time zero, but since the cost of such allocation is very

high (because it results in a highly unbalanced curve), the next candidate time slot (i.e. the next unit of time) is

examined. Since all candidates fail, the iteration continues until the request curve reaches the deadline. At that

point, the scheduler begins to consider other alternatives such as compromise or reallocation of a previously

scheduled request. The examining of each of these alternatives can be very time consuming since it might

require further investigation to examine the consequences of committing to that alternative. For instance, in the

case of reallocation, NEGOPRO has to decide the request that has to be reallocated, the new time to reschedule

that request, and so forth.

Now, the same rescheduling problem can be solved through simple visual analysis of a human scheduler. By
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time
in month

Figure 5-4: Aggregate Demand Curve For Programmer After the Request Has Been Satisfied

quantity

time
deadline in month

Figure 5-5: Another Request for Programmer

looking at the aggregate demand curve for a programmer, the attention of a human scheduler will be
immediately focused on the four holes that marks a lower demand for a programmer. At the same time, the
human scheduler would notice that the new request curve can be projected over the empty holes, and that the
outcome will be an exact fit, but the deadline of the request would prevent him from instructing NEGOPRO to
schedule the request to start where the first (leftmost) empty hole is situated. Next, the human scheduler would
spot the request that was last scheduled and the hole that it is occupying. As a result of a simple inference, the
human scheduler would figure out that by reallocating the previous request to the last (rightmost hole), a
sequence of four holes is generated that constitutes an exact fit for the new request. Moreover, this fit does not
violate the deadline of the request either. The resulting solution is depicted in figure 5-6.

Once a human scheduler finds a solution, he would interrupt the machine scheduling, instruct NEGOPRO to
make the necessary commitments, and resume the rescheduling activity.
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Figure 5-6: Aggregate Demand Curve After Scheduling Both Requests
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Chapter 6

Verification of the Basic Heuristic Search Model

In the present chapter, we describe the design of a set of experiments to verify the basic heuristic search model

and analyze the results of running those experiments on NEGOPRO. NEGOPRO is the name of a program that
has implemented the basic heuristic search model which was described in chapters 1 through 5.

Although the collaborative human-computer problem solving architecture that was presented in chapter 5 for

increasing the efficiency of search has been partly implemented in NEGOPRO (we have mainly implemented the

push and pop functions), the experiments are not suitable for evaluating this architecture. Empirical verification

of the collaborative problem solving architecture requires more sophisticated experiments that include human

subjects and also new criterias to evaluate the impact of collaboration on the time and quality of schedule
revision. Instead, in this thesis, we have confined ourselves to providing an example in which the use of typical

human intuition to complement the search reduces the search space significantly (this example was provided
earlier at the end of chapter 5).

In the first section, the verification measures that have been used are defined, In the second section, a simple

experiment to develop a schedule using NEGOPRO is worked through. Design of experiments is discussed in
section 3. In the fourth section, first we describe the experiments and then provide an analysis of those results.

6.1. Verification Measures

We rely on two measures for verifying the basic heuristic search model:
1. computational cost of rescheduling a project. In most reschediing problems, there is always some

kind of restriction on the "time" that is allowed for rescheduling. Therefore, computational cost of
a scheduling algorithm is almost always a concern in evaluating the usefulness of that algorithm.

2. improvement in the quality of the revised schedule. We rely on the "quality" of revision as a
criteria for verification since it is important to be able to distinguish between two algorithms that
spend the same amount of time on rescheduling a schedule, but one generates a far better revised
schedule than the other.

Computational cost and quality of search can be generally viewed as opposite measures in heuristic search that

cancel out each other. This is because in order to construct a better revised schedule, an algorithm might have to

search a larger space and therefore it is likely to spend more time. Conversely, in order to lower the time that an
algorithm would use to revise a schedule, the quality of the revised scheduled might have to be compromised.
Due to the opposing nature of these measures, in our analysis, we

calculate both the "computational cost" and "quality" of a schedule revision, and tradeoff the value of one

against the value of the other to determine the overall performance of the algorithm.

Although it is trivial to measure the "time" that takes to reschedule a project in NEGOPRO (by inserting a time
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parameter in the body of the program code), "execution time" of the algorithm constitutes only one component
of the computational cost in NEGOPRO. The other component of this cost is the number of operators that the
algorithm applies before reaching the desired solution (i.e. completing the schedule revision). The "time" that
takes to reschedule a project (through heuristic search) alone is not a good indicator of computational cost of the
search since it does not take into account size of the scheduling problem. This implies that slowness in
rescheduling a large problem would be interpreted as a weakness of the algorithm, despite the general fact that
the larger the size of a problem, the longer it takes to reschedule that problem. On the other hand, the number of
operators that are applied during search alone is not a good indicator of computational cost of the algorithm
either, since one algorithm could spend a long time to look ahead before applying a new operator, whereas

another algorithm could spend much less time on looking ahead but instead apply more operators. To achieve a
more accurate measurement of the computational cost of NEGOPRO, we measured and based our analysis on

the value of both "execution time" and "operator count" parameters.

It is important to base the verification on the "improvement" in the quality of a schedule (rather than the
"quality" of a schedule itself), since by starting from a bad schedule we reduce the chance of constructing a
revised schedule that is as qualified in absolute terms as another revised schedule that is created from a near
optimal seed. By calculating the improvement in the quality of a schedule, we effectively account for not only
the quality of the revised schedule, but also the quality of initial schedule.

The problem in using the improvement in the quality of a schedule as a criteria to verify our model is that it is

difficult to quantify the degree of this improvement. Although a scheduling problem might have many objective
functions (e.g. maximize the resource utilization, JIT, minimize the tardiness), there is no single function that
calculates the overall satisfaction of all of them. The construction of this function is specially complicated by the
fact that objective functions are interacting and their interaction varies from one problem to another. Other
approaches (e.g. RESOURCE REALLOCATOR [120]) have used such measures as "the number of conflicts
solved minus the number of conflicts generated" to estimate the quality of a schedule, but these measures do not

account for different objectives functions and the interaction that exists between them. One of the main
contributions of the present work has been to develop a scheme to measure the overall satisfaction of all
objective functions. For instance, a user can easily raise the importance of meeting the deadline by assigning a
higher penalty to violating that objective, thereby insuring that the tardiness will be minimized. We measure the
"improvement" in the quality of a revised schedule by calculating the cost and benefit of both the initial and
revised schedules and trade off their values. Since the preference of many objective functions including JIT,
minimizing the tardiness, and maximizing the resource utilization can be expressed in terms of the cost and
benefit of a schedule (see chapter 3 for more details), our analysis provides an overall measure of satisfaction of
a variety of objective functions.

6.2. Solving A SPPS Problem with NEGOPRO

The purpose of this section is to discuss the behaviour of NEGOPRO program and show how a software
manufacturing problem is rescheduled using NEGOPRO. During each incremental step, first conflict analyzer is
invoked to find the conflict that needs to be resolved next. Once conflict analyzer has found a bottleneck

conflict, action manager prescribes the most suitable operator that can be applied to revise the schedule. Action
manager includes a set of operators and a set of heuristics to reason about the circumstances that each operator is

applicable. Progress examiner measures the degree of progress in resolving the intended conflict by examining

the revised schedule that has resulted from applying the candidate operator.
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In contrast to linear programming techniques, NEGOPRO relies on heuristic search to cut dc vn the search

space intelligently at the risk of not finding the best solution. More specifically, NEGOPRO always tries to find

a good schedule, not necessarily an optimal one. Moreover, in contrast to nidy schedulers that rely on heuristic

search, NEGOPRO does not extend the deadline of a schedule by default when all other choices fail, thereby

increasing the tardiness. This is because NEGOPRO treats time like any other resource that beyond its available

capacity incurs a cost. Once the deadline of deliverables for a project is set, the cost of completing the project on

or before the deadline is automatically set to zero (because software products require no inventory cost). The

user of NEGOPRO, however, is allowed to set the penalty of a late delivery. A different penalty can be attached

to each day/week/month of late delivery. The above scheme enables NEGOPRO to tradeoff time and other

resources, and to look at the size of unavailable capacity of each important resource when the scheduling is

completed. Thus in NEGOPRO the violation of a capacity constraint is not exclusive to "time".

Since NEGOPRO continues the search only along the paths that make constant progress, it was important to
figure out how many scheduling revisions has to be tolerated along a path before that path is abandoned. The

determination of this parameter is important because frequently a schedule worsens before it significantly gets

better. If the tolerance L chosen to be too high, then the size of search space could increase significantly. If the

tolerance is chosen to be too low, then some converging solution paths could be overlooked and missed. For the
experiments which we ran, we found that a limit of 4 revisions before abandoning a path is sufficient to enable

NEGOPRO reach the same results that by increasing the limit of revisions to 5, 6, or 7 can be achieved in most
cases, and therefore provides the best tradeoff between the limit on the computational cost of the algorithm and

quality of the revised schedules. We were unable to compare the decision to limit the number of revisions to 4
with the decision to increase this limit to 8 or more since the search space resulting from this increase became

too large for NEGOPRO to explore.

To demonstrate the ability of NEGOPRO in successfully revising a schedule, in the remainder of this section,

we explain that how NEGOPRO revises a seed schedule that incurs a high cost for implementation. First, the

project and the seed schedule are described. Then, the execution of NEGOPRO on the seed schedule to revise

that schedule is discussed. Finally, the schedule that has emerged from executing the NEGOPRO on the seed

schedule is evaluated and analyzed.

Suppose that ChipTest is a software development organization involved in the development of software for

testing of integrated circuit boards. Moreover, suppose that ChipTest has received two orders: one to develop
SoftTest, a software that tests manufactured Intel chips, and another to develop SIM, a simulator to test the

design of a circuit board. ChipTest also has to complete an inhouse project, MAIN, which involves enhancing

and tuning a test generating software. There are two kinds of resources: programmer and time.

The process plan of SoftTest is described in terms of two modules: X and Y, and is illustrated in figure 6-1.

While the development of X and Y can overlap with the development of SoftTest, SoftTest needs to use module

X at least five months and module Y at least three months before it can be completed. Both modules X and Y are

carried out in two phases. Activities of the first phase of either module are parallel in nature and hence by

assigning more manpower they can be completed in a shorter time. Activities of the second phase are sequential

in nature and hence the addition of more manpower would not affect their duration.

The process plans of SIM and MAIN are described directly in terms of programmer and time (figure 6-2). Since

the design of circuit board is done in three phases, the development of SIM is also carried in three phases such

that each development phase succeeds a design phase. Since the customer of MAIN is the firm itself, the
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management has agreed to compromise its quality assurance requirements by relaxing the need to conduct a
formal review. The management decides not to associate a requirement loss with relaxing the quality assurance
requirements of MAIN because the sacrifice will be insignificant. Should the quality assurance requirements of

MAIN relax, the need of MAIN for programmers will drop to half the level before the compromise.

The level of manpower available to the organization to assign to various projects is assumed to vary over time.
The curve of this availability is shown in Figure 6-3. The marginal cost of allocating new programmers in

addition to the existing level is given in figure 6-4. The penalty of delivering each of the projects later than their

specified deadline is also given in the form of cost in the table of figure 6-4; An asterik in a table entry denotes

that the cost is unbearable if the roject is not completed within the period specified in months specified by row

label. Our goal in designing a seed schedule was to minimize the duration of each project at the cost of other
resources. To achieve this goal, we built two sets of seed schedules where the first set was characterized by

scheduling the development of module X (of SoftTest) first, and the second set was charac-rized by first

scheduling the development of module Y (of SoftTest). We ruled out the scheduling of either SIM or MAIN first

because we believed that since the development of X and Y always has to be succeeded by the development of
SoftTest scheduling of X or Y is more urgent. Furthermore, we ruled out simultaneous scheduling of X and Y

because it did not utilize the availability of programmers which is depicted in figure 6-3. Among the seed
alternatives that we generated, the seed that its resource requirements is depicted in figure 6-5 was chosen based
on human intuition with the goal of minimizing the cost.

The seed schedule that is used in this example requires eighteen months to complete and schedules X to be the
product with which the development begins. If the start of X is taken as the reference, then the seed schedule

requires that Y and SIM start a month later, MAIN start seven months later, and SoftTest start 11 month later.
Furthermore, the seed schedule uses the first personnel/manpower combination for module X and the second
personnel/manpower in the case of module Y. The aggregate manpower requirements of this schedule is

depicted in Figure 6-5. The requirements are colored to denote the product or project that has requested them. As
Figure 6-5 illustrates, aggregate manpower requirements of the seed schedule does not form a level curve. A
level curve is ideal from the standpoint of resource allocation since project staff cannot be hired on a month-to-
month basis, and hiring consultants that work on a month-to-month basis turns out very expensive.

Figure 6-5 depicts the manpower that is no longer available (it is allocated to the seed schedule). This Figure
also shows the manpower that would remain unutilized if the seed schedule is implemented. The unutilized area

constitutes nearly half of the available capacity during the second half of the development period. In contrast,
there is a significant need for additional manpower in the first 7 months of development that can not be fulfilled.
The cost of acquiring new manpower to cover these needs during the the first 7 months of the development

exceeds $300,00034.

34this figure can be calculated on the basis of the manpower required and the manpower cost carve.
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6.2.1. NEGOPRO in Operation

NEGOPRO starts with passing the control to the conflict analyzer to discover whether the seed schedule needs
to be revised at all. The transcript of the actions that NEGOPRO has prescribed along with the progress that has
been made after exercising each action is shown in figure 6-6. The progress is measured through the cost of

additional resources that need to be allocated to the activities within the schedule. After examining the unmet
resource requests, the conflict analyzer finds out that the seed schedule contains two conflicts: one due to the
unmet programmer requests of X and the other due to the unmet requests of Y for programmer. Furthermore, the

cost/benefit scheme computes that the cost of resolving the conflict due to Y is $285,000, far more than the
$12,000 that is needed to resolve the conflict due to X. This suggests that the conflict due to Y is currently the

bottleneck.

Once the action manager is invoked, it first examines whether any of the local actions including substitute,

reallocate, local-move-right, and local-move-left can resolve the bottleneck conflict. At the end of the

examination, substitute emerges as the best candidate since a substitution in Y would relax the conflict to a large

extent without generating any new conflict. This is because the sizable right slack of Y can be traded to lower

the per unit of time requirement of Y for programmer. On the basis of above reasoning, action manager chooses

the operator substitute and passes the control to the revision manager which in turn applies the action.

A substitution from the first manpower/time combination to the second in Y nearly relaxes the conflict due to Y

but at the same time it generates a new conflict. This conflict involves acquiring new manpower for the extended
tail of Y. To determine the choice of action to be taken next, the set of local actions have to be examined again.

Since a second substitution in Y undoes the previous substitution, it will be rejected. A local move left or move

right do not produce any progress either. NEGOPRO chooses reallocate to reallocate programmers from X to Y

because it figures out that programmers can be traded for time in X thus relaxing the conflict that would shift to
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cost bottleneck conflict action argument

534 (Y prog) SUBSTITUTE 0
236 (Y prog) REALLOCATE from X capacity: ((0 1 5)(3 6 2)(7 8 6))
236 (X prog) SUBSTITUTE 0
236 (X prog) REALLOCATE from MAIN capacity: ((7 8 3))
176 (MAIN prog) LOCAL-MOVE-R MAIN leap size: 1
116 (MAIN prog) COMPROMISE MAIN 2 programmers
98 (X prog) GLOBAL-MOVE-R X leap size: 2
84 (X prog) GLOBAL-MOVE-R X leap size: 1
236 (MAIN prog) LOCAL-MOVE-R MAIN leap size: 3

Figure 6-6: Sequence of Actions Prescribed by NEGOPRO

X. The application of reallocate and substitute in sequence moves the conflict from the tail end of Y to the tail

end of X.

At this stage of the search, all substitution choices have been exhausted and no choice of reallocation appears to

be promising. In contrast, a local right move of the MAIN could provide the much needed programmers to X

because MAIN and the tail of X share the same time intervals in the revised schedule. Once the schedule of
MAIN is moved to the right where there is not enough programmers to be allocated to MAIN, the bottleneck

conflict is carried over to MAIN. Figure 6-6 shows that compromise is the next action that is prescribed by
NEGOPRO35. This is because neither local nor global actions produce any promising results. Once a

compromise relaxes the conflict due to MAIN, the conflict due to X becomes the bottleneck conflict. The next

action by NEGOPRO, a global move right, generates the best result that NEGOPRO produces within the

sequence of the first twenty five actions prescribed by NEGOPRO.

6.2.2. Analysis

The total cost of hiring more programmers to satisfy all demands for programmers in the revised schedule is

$84,000 while it amounted to $534,000 in the seed schedule. This shows an improvement of about 250 percent.

The results that are tabulated in figure 6-8 suggest that the schedule at this stage is very close to optimal because:
1. the available manpower is nearly fully utilized.

2. the unsatisfied requests for manpower constitute a thin band (i.e. one with a short height). This is
ideal, since according to the marginal cost function, the total cost for satisfying an aggregate
demand is minimized when the demand curve is flat and continuous.

3. the only compromise that has been made does not sacrifice the requirements in any significant
way.

4. there is no tardiness cost as all three projects can be completed on time.

35The specification of compromise in the problem suggests a compromise in the quality assurance of MAIN will save 2 programmers
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Resource Resource Benefit Tardiness
Utilization Leveling Sacrificed Penalty Cost

SeedSchedule Low Low None $ 0 $534,000

RevisedSchedule High High None $ 0 $84,000

Figure 6-8: Comparison of the Seed Schedule and the Revised Schedule

6.3. Experiment Design

We designed a total of 46 experiments that varied in the number of operations (or alternatively the number of
products), resources required, resource mixes allowed, plans available, compromises allowed, and objective

functions specified. All experiments sketched a multi-project organization that is engaged in the concurrent
execution of three projects. A summary of the characteristics of all 46 experiments is shown in table 6-9. Each
row of the table corresponds to two experiments (i.e. although the two experiments are different, they share the

same statistics in case of the number of products, compromises, and so forth). The "number of exploded
activities" specifies the total number of activities (operations) that have to be scheduled if each activity that
requires different capacities of a resource over different intervals is exploded to a sequence of activities each
requiring a constant capacity of a resource during the entire duration of that activity. The "duration" of each

experiment, which specifies the maximum duration of the project that it represents without any penalty of late
delivery, is approximately 16 months (or 480 days).

In accordance with the requirements of our verification strategy, we divided the experiments (all 46 of them) to

subgroups along two different dimensions: problem size and quality of the seed. The experiments could be
divided along problem size to two general groups on the basis of the number of their products. The number of
products in each experiment in the first and second groups are 5 and 12 respectively. This implies that the second

group of experiments had to deal with a considerably larger search space. The experiments within each group
shared the same production dependency graph (see chapter 2), however, they varied in the number of resources

being scheduled, substitution opportunities among those resources, number of process plans, and the number of

possible compromises.

On the basis of the quality of seed, the experiments were divided to three groups: problems with bad seeds,
problems with average quality seeds, and problems with good seeds. The quality of a seed has been determined

by the cost of allocating more capacity to meet all unsatisfied resource requirements of that seed: good seeds

represent the seeds that are least costly whereas bad seeds represent the most costly ones. The degree that each

seed meets the feature requirements is not a criteria for discrimination since each seed meets all feature

requirements.
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No. of No. of No. of
Exp No. of No. of Process Resource Primitive No. of exploded
No. Products Compromises Plans Mixes Resources Activities

1 5 0 1 4 2 16
2 5 0 I 4 2 163 5 0 1 4 2 16
4 5 0 4 1 3 23
5 5 2 1 4 2 16
6 5 2 1 4 2 16
7 5 2 I 4 3 238 5 2 4 I 2 169 5 4 1 4 2 23

10 5 4 I 4 3 16
II 5 4 4 1 2 16
12 5 6 I 4 2 16
13 5 6 4 1 3 23
14 12 0 1 4 3 27
15 12 0 1 4 3 27
16 12 0 2 I 3 27
17 12 0 4 I 7 35
18 12 2 1 4 3 27
19 12 2 2 I 3 22
20 12 2 4 1 7 22
21 12 4 I 4 3 35
22 12 4 2 1 3 22
23 12 4 4 1 7 35

Figure 6-9: Summary of the Characteristics of the Experiments

In assigning the relative weight of the feature requirements of each eriment, we assumed that all feature
requirements are roughly equally importanL As a result of this assumption, the choice of "which compromise to
make next" at each decision point during running each experiment was not transparent any longer.

By dividing the experiments along the size and quality of the seed, we ,/ere able to measure the effect of the
choice of seed schedule (which needs to be revised) and size of the scheduling problem on (1) the quality of the
revised schedule, and (2) the computational cost of revision.

Although it has been common among previous artificial intelligence based factory scheduling programs [42] to
test the system on randomly generated experiments, our experiments were not randomly generated because we
had no strong reason to believe that there is no difference between a set of randomly generated experiments and
a set of experiments that reflects realistic micro multi-project cases.
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6.4. Analysis of Experimental Results

We conducted all 46 experiments that we had designed and in each case we measured the improvement in the

quality of the revised schedule iii comparison to the quality of the seed schedule, the time that took NEGOPRO

to produce the revised schedule, and the number of revision operators applied. We were unable to compare our

results with those of other approaches [9, 64, 96] since they do not provide the type of problem solving

capabilities that NEGOPRO offers.

Once we conducted all 46 experiments, we analyzed the results by measuring the correlation between the input

and output parameters. In each case one or two input parameters were allowed to vary while all others were

fixed. Among the output parameters, those that were relevant to our verification goal, were recorded and then the

results were tabulated into a number of tables such that each cell of a table averaged all experiments that satisfied

its rows and column attributes.

Table 6-10 compares the effect of the two different groups of input on the output. This table shows that by
increasing the overall size of the problem, the time that is spent on conflict analysis, operator selection and

schedule revision, and schedule evaluation all increase. However, the rate by which the computational cost of the
latter two increase is smaller than the rate by which the computational cost of conflict analyzer increases. This
we learned is because the number of conflicts that have to be analyzed is directly affected by both the number of
products and the number of resources, while the number of potential operators that have to be compared is less

strongly affected by these factors. Another important conclusion which can be drawn from the results in table

6-10 is that schedule evaluation does not constitute a bottleneck from the computational standpoint and theref're
may be coupled with other scheduling strategies as well.

Time in Time in Time in
Group AVG # of Conflict Action Progress Quality

No Operators Analyzer Manager Analyzer Improvement

Group1 6 1.2 0.7 0.1 490%

Group2 19 3.1 1.1 0.2 260%

Figure 6-10: The effect of the size of the problem on the speed

and quality of the revised schedule (time is in minutes).

Table 6-10 also shows that with increasing the size of the problem, the number of operators that need to be

applied to achieve the same degree of improvement in the schedule increases, but that this increase appears to be

linear. Last but not the least, table 6-10 shows that NEGOPRO has improved the quality of the seed schedule in

the first group of experiments more than it has improved the quality of the seed schedule in the second group.
However, this result would be offset by the fact that the available capacity for the second group of experiments

was chosen to be significantly tighter than the available capacity for the first group of experiments.

Table 6-11 shows that the choice of seed schedule affects the quality of the revised schedule. as well as the speed

by which that schedule is produced (measured in terms of the number of operators applied), but that the quality
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of the revised schedule is affected most. Although our goal in designing seed schedules was to minimize the

duration of each project at the cost of other resources, the resulting seed sometimes proved close to the schedule

that NEGOPRO generated after revising it and far from it in other cases. Rather than averaging the quality
improvement of all NEGOPRO generated schedules we decided to break the seeds to three groups according to

their cost where, bad seeds represented the seeds that were the costliest to revise, while good seeds represented

the seeds that were the least costly to revise, design enabled us to study the variance in quality improvements

between groups that are different in the quality of their seeds.

Table 6-11 also shows the conclusion that bad seed schedules lead to lower quality revised schedules could be

misleading if it is not studied in conjunction with the results shown in the second column of the table. This

column illustrates that the quality improvement of the final schedule w.r.t. to the seed schedule (improvement

ratio) is not affected by the quality of the seed schedule in a significant way. Although the experiments

confirmed that the seed schedule made a difference, they also confirmed that NEGOPRO improved the quality of

the seed schedule significantly in all cases. The fact that the rate of convergence is not very sensitive to the seed

schedule is encouraging since it implies that the response time of NEGOPRO remains reasonably low over

different choices of seed.

Seed AVG # of Quality Quality of Final

Quality Operators Improvement Schedule

Bad Seed 9 380% .2

AVG. Seed 13 430% 1

Good Seed 21 340% 2.6

Figure 6-11: The effect of the seed schedule on the quality of the final schedule

Table 6-12 shows the level of success that NEGOPRO had in revising each schedule. A major obstacle was that

we only knew what the optimal schedule was in less than 25 percent of the experiments while in the remaining

75 percent of the experiments we were not sure what the optimal schedule is. In the latter case, we compared the
NEGOPRO generated schedule with those generated by hand (with the help of a human expert), and found out

that over 70 percent of times, NEGOPRO generated schedules were better that the hand generated ones, while

16% of the time they were worse.

The reason that NEGOPRO does not produce the optimal solution within a finite amount of time is that it

always relies on a small set of heuristics that it has been programmed to use. Human experts on the other hand

employ a large set of heuristics to analyze a scheduling problem. For instance, in one of the experiments we

found out that when NEGOPRO had to choose between scheduling a final product and an intermediate product,

it chose to schedule the final product first despite the fact that the intermediate product was linked to many other

products that also needed to be scheduled once the intermediate product was. NEGOPRO made this

opportunistic decision because the constraint to produce the final product was a bottleneck constraint. The right

decision in this case, however, was to schedule the intermediate product first because it affected the schedules of

many other products as well.
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Figure 6-12: Comparing quality of NEGOPRO generated schedule against the optimal schedule

The last issue that we dealt with in the analysis was whether there exists a shorter sequence of revisions that

achieves the same results that NEGOPRO achieved in the case of each experiment. The examination of all runs

showed that in no case there existed a shorter sequence of revisions that could have reached the same point as

NEGOPRO did (because we found no repetition of a sequence of operators within the entire list). However, the

results of our sample does not imply that NEGOPRO always finds the shortest possible sequence of revisions to

revise a schedule.



86



87

Chapter 7

Extending Heuristic Search To Deal With Uncertainty

A major problem with scheduling of software development projects is that there exists a great deal of

uncertainty about their budget estimates (resource requirement predictions). As a result, the schedule which is

originally constructed is at best a rough approximation of the actual execution and fails (to predict the actual

resource requirements) frequently. Experimental studies [1211 show that schedule failures could also be avoided

or strongly reduced if there is an explicit early concern with identifying and accounting for the high-risk

elements (uncertainty, in other words) [13] in them. The uncertainty in budget estimates can be attributed to the

following reasons:
1. Software projects are different thus the data from previous projects can not be freely used to

predict the duration and resource requirements of a new project [13].

2. The process of developing large software systems is not understood well enough to provide
sufficient guide to predict resource requirement needs accurately [69].

3. Unexpected events which cause schedule breakdown are not uncommon [75]. For instance, a
major bug may go undetected and surface very late in the development. Unexpected events are not
just caused by improper implementation of project procedures (e.g. formal reviews), and can be
attributed to politics inside the organization, change in customer requirements, failure of a supplier
to deliver a resource by a deadline, sudden departure of a senior staff member, and so forth as well.

Human errors only add to the inaccuracy in resource requirement predictions by inflating or deflating them to

serve their own personal objectives.

A major problem with the basic heuristic search approach that we presented in chapters 3 and 4 is that it

assumes all resource requirement predictions are accurate. In this chapter, we discuss that how the basic heuristic

search model can be extended to deal with the uncertainty in resource requirement predictions. The main issues

that are related to extending the basic heuristic search model to deal with uncertainty are:
1. how to represent uncertainty.

2. how to quantify and measure uncertainty.

3. how to account for the uncertainty during heuristic search.

To manage the uncertainty in schedules, they have to be continuously revised over the course of project. To

minimize the need for schedule revision, a number of revision prevention measures are used in practice including

building a detailed schedule only for short time horizons and avoiding commitment to detailed schedules for
long horizons, enforcing higher standards for quality assurance, and reserving additional resource upfront for

high risk activities. While being popular methods for managing uncertainty, each of these measures raises a new

set of problem. For instance, building detailed schedules only for short time horizons limits the schedule

predictability, or the reservation of additional resource upfront for high risk activities [53] has the disadvantage

that the reserves (which are kept as a safety net) might never be used. The main problem with preventive

measures is that they do not modify the underlying scheduling process to account for the uncertainty in resource

requirement estimates.
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A second set of measures have been developed to manage the uncertainty by building contingency plans to be
used if the present schedule fails. A contingency plan modifies the requirements of the original plan (e.g. if an
activity takes more time than specified in the basic plan, then the documentation requirements of the remaining
L.ztivities could be relaxed to reduce the time needed to complete the activity thus compensating for the time
lost), or changes part of the original plan (e.g. if several members of a development team quit and other
development teams are busy working on other projects, then the assignments of the development group could be
subcontracted to an outside consulting firm). The main problem with managing the uncertainty through
contingency planning is that it does nothing to reduce the chance of a schedule breakdown. Moreover,
integration of a contingency plan with the rest of the project plan might require other parts of the plan (and

subsequently the schedule) to be fixed as well.

A third set of measures have been developed to analyze schedules which have been constructed without any
regard to uncertainty. In paricular, these measures calculate the duration of a project according to its schedule
when there exists uncertainty in the duration of various activities. PERT [791, developed by D.G. Malcolm,
requires the attachment of three duration estimates to each activity: most likely duration, most optimistic
duration, and most pessimistic duration. These three estimates are used to produce a probability distribution for
estimating the duration of an activity. The resulting probability distribution is set aside until after the schedule
has been constructed when it is used to develop a minimum and maximum estimate for the duration of project.
The Monte Carlo simulation approach to computing project duration [127] uses the average of a series of
independent simulation runs to estimate the project duration. During each run, a random number gererator is
used to choose a duration for each task based on beta distribution. The Monte Carlo method eliminates the
major problem with the PERT technique known as merge event bias. Merge event bias is caused because the
PERT technique implicitly assumes that there is only one critical path. By simulating the network multiple times,
Monte Carlc eliminates the problem. The Monte Carlo method also generates an important value for each task
known as the criticality index [79]. The criticality index, computed by dividing the number of times a task is on
the critical path by the total number of simulation runs, represents the probability that a task will be on the
critical path. This variable is a better estimator of how much attention a task deserves than slack is [96].

The main problem with existing measures for managing uncertainty (which we divided to three groups and
discussed each separately above) is that they try to account for the uncertainty either before or after schedule
revision, and fail to model it during the scheduling, where it is needed most. Our approach is to extend the basic
heuristic search model by modifying the evaluation function to consider the uncertainty in resource requirement

predictions. By implementing a more intelligent search (i.e. one that considers the uncertain nature of a resource
requirement estimate while making a scheduling commitment), we reduce the likelihood of schedule failure.
Like PERT, we use weighted interval estimates to represent the uncertainty in activity duration predictions of
each project activity. If a user can predict a resource requirement accurate enough, then he can specify as a point
estimate. Otherwise, he could predict a range within which the actual resource requirement is likely to fall. It is
important to provide this freedom because it is not always possible to make accurate point estimates of a
resource requirement. In fact, by committing to a single point estimate, the interval estimate information which
reflects the state of affairs more accurately, will be lost. Unlike PERT, we do not limit the use of weighted
interval estimates to activity duration predictions, and instead extend this concept to all types of resource
requirements. For instance, an activity might be specified to need 2 to 4 programmers while it is more likely that

it requires exactly three programmers.

As opposed to other approaches account for the uncertainty only before or after the revised schedule has been
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constructed, our approach takes into account the uncertainty knowledge during the making of each scheduling

decision. The advantage of our approach over contingency planning is that it reduces the chance of a schedule

failure by taking into account the uncertainty knowledge in revising project schedules. Furthermore, our

approach differs from preventive measures for managing the uncertainty in that it does not achieve more reliable

schedules at the cost of slashing the requirements. The key to our approach is the ability to represent and model

uncertainty during the scheduling. In the next section, we discuss how uncertainty knowledge can be represented

and modeled, and also how the heuristic search can be modified to account for this knowledge.

7.1. Heuristic Search in the Presence of Uncertainty

The purpose of this section is to describe how uncertainty can be represented, measured, and taken into account

in our basic heuristic search model. The representation of uncertainty can be achieved by modifying the

definition of temporal resource constraints (definition 2.1). The following definition illustrates how definition

2.1 can be modified to allow weighted interval estimates:

Definition 7.1: if C is a resource requirement for a resource r by a product p, then C is of the form:

if rE Rupi then [(2i t2(i+l) qia qib qim) ViE 0..n]

else if rE RSpri then [(t2 i t2(i+1)a t2(i+1)b t2(i+1)m) ViE O..n]

else if rE Rp o then [ta tb tin]

such that 1, qi, t2i, and t2 (i+) are as in definition 2.1 and subscripts a, b and m distinguish the most
optimistic, most pessimistic, and most likely approximations of the requirement for r respectively.

Example: Consider the resource requirement specification [(-5 -3 1 4 2) (-1 0 1 1 2)] for a senior programmer.

The specification requires at least 1, at most 4, and most likely 2 senior programmers for the first three months,

no senior programmer for the fourth month (therefore the specification of this month is left out) and at least 1, at

most 2, and most likely I senior programmer for the last month of development.

Example: Consider the resource requirement specification 1-2 -4 -3] for a debugger, that is being developed

inhouse (i.e. the debugger is a product within the project), by a simulator. The specification requires the

debugger at least 2 months, at most 4 months, and most likely 3 months before completing the simulator.

We can measure the probability of meeting 4), the feature requirements of a product p, under an exact resource

allocation specification Cx of a resource r by calculating the probability that the request for r by p is a subset of
C,, (i.e. P(O,C, -- Cr,)).

Using our weighted interval representation, we can measure P(1,C c C) for all C by modeling it through a
probability distribution function. By default, we construct a 03 distribution from the three point estimates most

likely, most optimistic, and most pessimistic. However, a user might provide a probability distribution function

based on the three point estimates as well.

If a user has more accurate information about the probability that (D can be met under a given resource

allocation, then he might choose an alternative representation such as breaking down the range between the most

optimistic and most pessimistic approximations to a set of subintervals and associating a probability with each.

We can measure the probability of meeting 4D, the feature requirements of a product p, under the combined

exact resource allocations specifications C for all resources r E RP by multiplying the probabilities that the

request for each re RP is a subset of Crx (i.e. , This measurement can be generalized to a given

schedule of p which can be stated formally as follows:
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Defimition 7.2: Probability of Meeting 40 under A Schedu.le A of p

P(PA) = R, R,
This definition assumes that the contribution of each resource r to satisfying 4 of a product p is independent of
the contribution of all other resources that are also required by p (i.e. are in R).

We define the reliability of a schedule A of a product p as the probability of meeting 4' of p under A and denote
it by O(Ap). The definition of reliability implies that to increase the reliability of a schedule effectively, it is not
enough to increase the allocation of only one required resource. Furthermore, the definition implies that the
reliability is maximized when the level of allocations is balanced across all required resources of p.

Definition 5.3 is recursive since R, the set of required resources of p, usually includes both primitive and
product resources. The recursion occurs only at the required resource nodes that are product since their
probability has to be calculated in terms of their resource requirements as well. The reliability of a primitive
resource is 1 since it denotes an allocation commitment. The computational complexity of measuring the
probability of meeting the feature requirements of p, the final product of a project, is 0(n2) where n is the
number of products that produced by the project. If the probabilities of meeting the feature requirements of all
products which are required by p are given, then the computational complexity measuring the probability of
meeting the feature requirements of p will drop to 0(1).

To account for the uncertainty during the search, the heuristic evaluation function of our basic heuristic search
model needs to be modified to consider the uncertainty in resource requirement predictions. In chapter 3, we
described that the value of heuristic evaluation function for SPPS depends on two measures: cost and benefit.
Although the exact cost of completing a project can not be predicted unless its resource requirements are exactly
known, cost of implementing a given schedule is independent of any uncertainty can be calculated accurately (its
value is the same as if there was no uncertainty). This is because the resource allocations of a given schedule are
fixed.

In contrast, the benefit of a given schedule of p (i.e. the degree that the resources allocated to a schedule meet
the requirements p) is affected by the uncertainty of resource requirement predictions. This is because the less
certain the predictions, the smaller the probability that the feature requirements would be met and the schedule
would not fall apart. We have stated this relationship formally in the following definition:

Definition 7.3: Benefit Under Uncertainty
Let UB(Ap) be the benefit of a schedule A of p under uncertainty.
Then UB(Ap)=B(Ap) xE(Ap) where B denotes the benefit of A
if there was no uncertainty.

The calculation of benefit according to definition 5.3 allows the consideration of uncertainty during the
calculation of heuristic search evaluation function. Since the value of the heuristic that approximates the degree
of progress that an operator makes toward resolving a conflict (section 4.3) is dependent on the cd of the revised
schedule and the cd of the revised schedule is dependent on the benefit of the revised schedule, our approach
allow the uncertainty knowledge to be taken into account during each scheduling decision.

Although we have not implemented the approach which we described in this chapter to manage uncertainty, we
can argue for the validity of our design on the basis that it is consistent with the process behaviour descriptions
that are abstracted from experimental studies of software project risk assessment and risk control literature [13].
These studies stress that while project schedules need to be continuously revised in order to account for the
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uncertainty in their resource requirement estimates, the need to for revisement can be reduced by accounting for
the uncertainty knowledge during the making of each scheduling decision. This is because such consideration
increases the reliability of the schedule that has been developed.

In our approach, uncertainty knowledge is accounted for during the making of each scheduling decision because
(1) the value which is returned by the evaluation function constitutes the basis for evaluating a decision, and (2)
the value of the evaluation function is computed on the basis of uncertainty knowledge. The former point has
been discussed thoroughly in chapters 3 and 4. The latter point is evident from definition 5.3, where an increase
in the allocation of resources to A will increase the value that the evaluation function returns for A, in

accordance with the uncertainty knowledge. By increasing the level of allocations in A, first the reliability of A,
8, will increase in accordance with the probability distribution of the resource requirements of each project
product (definition 5.2). This, in turn, will affect the benefit of A since the benefit of A is directly proportional
with 0 (definition 5.3). Lastly, an increase in the benefit of A (which has resulted from an increase in the

allocation of resources to that A), while the cost remains fixed, will cause the evaluation function to return a

higher value for A. The same argument can be repeated to show that the evaluation function would return a

smaller value for A in accordance with the probability distribution function of the resource requirements of each

project product, if the allocation of resources to A is lowered.
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Chapter 8

Using Heuristic Search to Support Negotiation

Throughout this thesis, up to this point, we discussed a heuristic search model for scheduling which is consistent
with human negotiation. However, we never discussed that how negotiation itself could be supported. In chapter
1, we characterized SPPS as a reactive process which involves continuous revision of prcject schedule. During
each reactive cycle, first heuristic search is used to reduce the overall inconsistency of the schedule. Once such
schedule (a schedule with minimal inconsistency) is found, it can be used to advise the users on the constraints
that still need to be satisfied in order to make the schedule consistent. The users could then use this advice in
conducting negotiation aimed at making the schedule consistent. For instance, they could reconcile the
requirements of the constraints that could not be satisfied (to varying degrees), or they could propose alternative
process plans under which those constraints are more likely to be satisfied. These changes in turn trigger a new
reactive cycle which tries to exploit those changes to develop a less inconsistent schedule (by revising the
existing schedule). A new reactive cycle will begin to be executed until a consistent assignment (a schedule
without a conflict) has been found, or until the users stop introducing changes that trigger reactive response. In

the present chapter, we provide a realistic analysis of the nature of negotiation and its role in each reactive cycle
of SPPS, and investigate that how our heuristic search model can be used to support the negotiation process by
advising the project agents.

Negotiation during SPPS is a process of multi-agent problem solving between a group of heterogenous agents
with conflicting goals and interests to (resolve their conflicts and to) produce agreements among them.

Negotiation during SPPS has both a cooperative and an antagonistic nature. The cooperative nature of
negotiation is due to the fact that it is often essential for an agent to reach an agreement with other agents in

order to protect his individual goals (e.g. continued employment or promotion) because they happen to coincide
with the overall goals of the organization (meeting the requirements of its clients). The antagonistic nature of

negotiation is due to the fact that each individual competes with -ither agents to insure that his own demands will
receive top priority even if it means that the goals of other agents will not. Negotiation during SPPS occurs at

different levels of organization, continues during the lifecycle of a project, and carries a mix of technical and

organizational agendas.

A conflict in a schedule is a constraint that can not be satisfied by that schedule, and is caused by an array of

technical and organizational reasons such as informational deficiency and goal incompatibilities. Informational

deficiency is exemplified by the failure to execute an assigned task (which constitutes the constraints that can not

be satisfied in this case) because the instructions are ambiguous or lack sufficient detail such that they become
subject to multiple interpretations among the task carriers. In other cases, a decision maker may arrive at
different conclusions because he might have used different sources of information. Conflicts based on
misinformation or misinterpretation of information tend to be easier to resolve in the sense that clarifying the

previous messages or obtaining additional information can often resolve the dispute. Incompatibility of goals
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refers to the incompatibility between the goals that are pursued by different project agents. This type of conflict

is exemplified by the classic goal conflicts between line and staff, production and sales, or production and R&D.

Each organizational unit has different responsibilities in the organization, and as a result each places different

priorities on the organizational goals (customer satisfaction, product quality, production efficiency, compliance

with government regulations, etc).

Although negotiation is the principal way of resolving conflicts during the scheduling process, it is not the only

one. By scrutinizing the nature of each conflict, human experts reason about the conflict resolution methods that

need to be employed for resolving the conflict. Other popular ways of resolving a conflict (excluding

negotiation) include
1. resorting to authority: when this method is used to resolve a conflict, the agent who forces his way

out will feel vindicated, but other agents will feel defeated and possibly humiliated.

2. avoid dealing with the conflict: the agents who are involved in the conflict choose to remain
neutral on the issue because they expect the conflict to relax as a result of the passage of time.

3. quickfix: agents become conditioned to seek expedient rather than effective solution.

4. accommodating: agents compromise because they believe that their positions are not so important
that is worth risking bad feelings between each other.

It is interesting to note that not all types of conflicts are entirely negative to always need o be resolved. As a

matter of fact, sometimes they are intentionally generated. Occasionally progress is achieved by engaging

uninvolved individuals in a cause, and the creation of tension and conflict may be a desirable organizing

strategy.

If negotiation is chosen as the method of resolving a conflict, then further scrutiny of the characteristics of the

conflict is needed to identify the type of negotiation needed to resolve it. There are many characteristics of a

conflict that affect negotiation type including:
1. principle causes of the conflict: For instance, a conflict which is motivated by political rather than

purely technical reasons can not usually be resolved by a technical solution such as changing of
product requirements.

2. the number of parties (agents) involved: For instance, if a negotiation involves more than two
parties, then the geographical location and area of expertise of the parties could affect the
negotiation plan.

3. monoliticity of each party: If the parties are not monolitic (i.e. include smaller groups that carry
conflicting interests), then their internal conflicts might affect the process of formulating their
positions.

4. the number of issues involved: For instance, if a negotiation involves many issues, then the
existence of linkage effects between the issues affects the order of considering those issues for
negotiation.

5. requirement for an agreement: If reaching an agreement is mandatory, then the negotiators can not
risk the failure to reach an agreement, thus will be more willing to compromise.

6. existence of time-related costs: If one or more parties are constrained by a time-related cost, then
they are likely to lower their requests when the negotiation appears to drag.

7. private or public nature of negotiation: If a negotiation should be conducted in private, then a set
of measures have to be taken to insure this requirement, etc.

8. group norms: This refers to whether each party should expect that the other parties tell what they

truely feel, disclose all the relevant information, honor their word, and so forth.

9. knowledge of each party about the reservation prices of other parties]
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10. 36. If a party has this information, then he can.begin with a more intelligent bid and bargain better
than the others.

11. the need to resolve the conflict permanently: If a conflict needs to be resolved permanently, then
the parties might have to scrutinize the conflict in more depth than when it only needs to resolved
temporarily.

Previous research in negotiation in artificial intelligence [21, 81, 120, 134]has not considered different methods

of resolving conflicts (excluding negotiation) which are common in SPPS. Moreover, previous research has been

limited to studying negotiation under idealized circumstances by assuming that there is no politics, all parties tell

the truth, and so forth. Based on these assumptions, previous research in negotiation has developed

computational models for negotiation process in a number of domains such as labor management contracts,

air-traffic control, and resource reallocation. Among these works, we study RESOURCE REALLOCATOR

(which we abbreviate as RR) [120], the one which is most relevant to this thesis from the stand point of

commonality in the domain, in more detail. We also study PERSUADER [134] to show that how the difference

in domain affects the underlying negotiation model.

RR [120]studies the reallocation of resource and identification of changes to resource allocations for a given set

of changes to resource requirements in engineering projects via negotiation. Negotiation occurs when project

agents who "own" a set of resources sell their allocation in order to buy new allocations that meet their

requirements; see figure 8-1. The decision to reallocate a resource from one owner to another depends on the

utility of the resources that an owner is prepared to sell and also on the utility of the resources that he is prepared

to buy. The utility of a resource to a user is stored in a payoff (position) matrix.37 . Scheduling constaints

constitute the columns of the matrix and scheduling alternatives constitute its rows. Each project agent specifies

his own payoff (position) matrix.

preetpsto rsn osition

Figure 8-1: Negotiation Model in RESOURCE REALLOCATOR

Agents can propose a compromise using a variety of negotiation operators, such as slightly relaxing interacting

36 T|he reservation price of a party as defined in negotiation literature is the degree that it will be prepared so comnpromnise if the alternative
is the failure to reach an agreement.

" Payoff matrix was first used by game theoretic approaches [11121.
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constraints (log-rolling), agreeing to relax the solution criteria, substituting one resource with another, bridging
the different viewpoints by proposing a completely new solution, overlooking weak interactions among
constraints, or appealing to third parties to settle the disagreement. The problem with RR is that it assumes
project agents have fully determined their positions and also the compromises that they are willing to make, well
in advance 38. Consequently, neg.' ation is reduced to iteratively relaxing constraints until a compromise
(feasible) reallocation of resources is reached 39. This assumption oversimplifies the negotiation process in SPPS
since

1. the space of feasible agreements and compromises that are acceptable to a negotiating agent is
defined and refined (evolved) during the negotiation and not in advance.

2. a negotiating agent usually specifies enough information to only generate those solutions which are
most desirable to him unless he is convinced that his demands as they are stated can not be
satisfied.

Moreover, even if the positions (payoff matrices) were known in advance, for large negotiations involving many

agents and outcomes, the matrix may quickly become intractable.

Compromise-negotiation to iteratively exchange offers until a compromise is found also has been advocated in
the design of COEX [811 and PERSUADER [134]. However, the difference between compromise-negotiation in
PERSUADER and compromise-negotiation in RR is that in PERSUADER relaxation is not constrained by the
payoff matrix and continues until a solution is found. The idea is to continue to relax the less important

constraints to generate a solution that can be proposed if no solution with positive payoff can be generated.

PERSUADER [134] implements a model of negotiation in which it acts as a mediator in union/management
labor contract negotiation. PERSUARDER performs negotiation through proposal modification and goal
relaxations. PERSUADER integrates case-based reasoning with the use of multi-attribute utilities to portray
tradeoffs and propose novel goal relaxations and compromises. PERSUADER also generates persuasive
arguments to compel an agent to change his position. The difference between the negotiation during SPPS and
labor management contract negotiation is that:

1. In the software project domain, project agents tend to resolve their conflicts locally, within the
organizational unit they reside, and will propagate them to a more global level (their parent
organizational unit) only if the local problem solving effort has failed. In contrast to this, in the
labor management contract negotiation domain, the entire negotiation is carried at a global level by
two parties each representing one side cf the dispute.

2. In contrast to the labor management contract negotiation domain, where conflicts always arise as a
result of organizational politics, scheduling conflicts in the software project domain at times arise
because there has been a technically inaccurate projection of the level of resources required.

Furthermore, negotiation in SPPS is a harder problem than labor management contract negotiation in two

respects:

1. software project scheduling is analogous to a contract negotiation case that every individual
negotiates for a contract separately. If the agents negotiate for separate contracts and the sum of
salaries and benefits that can be granted is limited, then the employees will have to compete for
meeting conflicting goals.

2. contracts (agreements) that result from negotiation in the software project domain have to meet not
only the requests of the negotiating agents but also the objectives of the project. These objectives
include meeting the delivery deadlines without violating the available capacity constraints.

3*This is true generally of payoff matrix schemes (e.g. Rosaishein).

39This method of negotiation is known as compromise-negotiation.
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Although some of the ideas used in PERSUADER (e.g. persuasive argumentation) can be applied to negotiation
in SPPS, the domain differences prevent us from using the negotiation process model in PERSUADER to reason
about the negotiation in SPPS for the most part. For instance, PERSUADER formulates novel solutions to
resolve a conflict by focusing on only satisfying the constraints that are considered to be very important to reach
a solution4° and considering drastic relaxation of other constraints, while generation of novel solutions during
SPPS negotiation involves redefining parts of the problem space such that we no longer deal with the same set of
constraints.

Our approach is to try to support the negotiation during SPPS (making it more efficient) by providing the
information which is essential to organizing and conducting negotiation to project agents. In contrast, previous
approaches have concentrated on automating the negotiation processes by replacing the human negotiators with
automated reasoning systems. Our approach relaxes the need to be concerned with modeling restrictions which

oversimplify the actual negotiation process during SPPS.

In fact, the need for human negotiation is imperative in many cases including when
1. the way an agent presents his positions does make a difference in resolving the conflict. A program

cannot present a position with emotion, with sincerity, or any other presentation and speech
technique that are specific to humans. Sometimes presentation and speech acts turn to an effective
tool in resolving a scheduling conflict.

2. human-centered attributes of a negotiation such as whether the negotiation is public or private
influence the negotiation.

3. negotiators are not logic bounded. Previous work (e.g. [135]) assume that all negotiators are logic
bounded beings and are strictly motivated by economic interests. These assumption do not agree
with what goes on in the real world. Frequently, a political or personal motivation or even illogical
rationality might be behind a stand of a project agent. Suppose that a testing team is scheduled to
carry integration testing on a set of module that are to be delivered by a group of development
teams. Furthermore, suppose that one of the groups is way behind the schedule and requests an
extension of the delivery date. After being convinced that the module can not be completed by the
deadline, the project manager contacts the testing team to find out if a delay in the delivery of the
module will delay the delivery of the integration testing. The testing team might choose to
complain but agree in principle to make up for the delay in obtaining the software modules to
complete the integration testing on time. The testing team might take this stand despite being
aware of the unlikelihood to complete the testing on time because it can not only strengthen its
position by creating the impression that it is very responsible, but also will provide an excuse if it
fails to complete the teting on time. The testing team also might use the agreement to make up for
the delay in obtaining the modules as a bargaining chip to get concessions later.

Even if human negotiation is not imperative, automating the negotiation should be avoided when the cost of
encoding a conflict and the data needed to resolve it exceeds the time that takes to resolve the conflict on a
face-to-face basis.

Unlike previous approaches, in our approach we do not keep relaxing the feature requirement constraints until a
conflict free schedule has been reached, unless the resources which will be saved by each relaxation have been
specified in advance. On the other hand, the cost of resolving a conflict through increasing the available
capacity of the required resources (i.e. relaxing the available capacity constraints) could be determined easily.
This can be used to tradeoff the possibility of relaxing a feature requirement constraint of a product with other
feature requirement constraints of that product, with the feature requirement constraints of other products, or
with the available capacity constraints of the project.

IThis approach is along the line of selective relaxation but implements it to a greater extenL
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In the remainder of this chapter, we discuss that how heuristic search can be used to support negotiation during

SPPS. The interviews that we conducted as well as the software project management literature that have been

cited at the end of this thesis showed that the first step in a negotiation during SPPS is to identify the conflict that

has to be resolved; this the conflict which is most critical to the overall improvement of the schedule. The task

of finding the bottleneck conflict is not as easy as it might look. Frequently, it is not possible to speak about a

conflict without including other conflicts that it relates to.

The second step in a negotiation is to find the conflict that has to be negotiated. Frequently, further examination

of the bottleneck conflict might suggest that it can be translated to one or several other conflicts that are easier to
resolve. Suppose that a team leader needs a senior programmer for a task when the available capacity of senior
programmers is zero (conflict A). Moreover, suppose that the same task can also be carried out by two junior

programmers, and that it is possible to acquire 2 junior programmers from a different division. Then it might be

best to translate the first conflict to the second, and resolve the second conflict instead.

In NEGOPRO, first finding the bottleneck conflict and then finding the conflict that has to be negotiated is
achieved through heuristic search. Basically, NEGOPRO finds the bottleneck conflict during each incremental
revision step and (if possible, translates it to one or more conflicts that appear to be easier to resolve), until what

it considers as the conflicts that can be solved through the least costly set of commitments, are reached. The

conflict which are returned by NEGOPRO represent those that need to be negotiated.

NEGOPRO could provide several kinds of assistance in resolving the conflicts that are found. These include
1. examining the circumstances that led to the emergence of the conflict; since NEGOPRO keeps a

history of the scheduling states, a user can find when and what led to the emergence of the conflict
which has been selected for negotiation (or aggravation of the conflict that previously existed).
This is achieve by undoing the operators that have been applied to resolve each conflict
chronologically, and by stepping back through the conflicts that have been examined. Although
this reasoning can not provide any clue about the source of a conflict in the seed schedule (before
being revised by the heuristic search), it can reason about these sources since the heuristic search
was first applied to revise the schedule.

2.finding the agents who should be involved in resolving it; this involves not only the agent who has
made the resource request that can not be satisfied, but also other agents whose decision can affect
the conflict, and benefit or lose from resolving the conflict.

3. impact analysis: impact analysis refers to finding the impact of making a new scheduling
commitment on the schedule as a whole. Impact analysis allows negotiators to gain more insight
into possible settlements routes by investigating the consequences of different compromise
scenarios not only on the conflict under negotiation but also on all other parts of the project
schedule. These statistics show that how important it is to resolve a given conflict, not just from the
local perspective, but also from the perspective of the project as a whole. In NEGOPRO, impact
analysis is achieved through constraint propagation.

Persuasive argumentation [134] and due process conflict resolution (481 might be integrated with our model to

further assist the negotiation process. For instance, persuasive argumentation could be provided to convince the
negotiators of the importance of a conflict by showing the impact of leaving it unresolved.

A diagram of negotiation support architecture is depicted in figure 8-2.

Although we have not implemented the approach which we described to support human negotiation during

SPPS through the results that can be obtained from heuristic search in this chapter, we can argue the validity of

our design on the basis that it is consistent with the empirical studies of social analysis of computing [47, 121].

These studies provide a realistic analysis of the complexity of human negotiation process during SPPS. We
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Figure 8-2: Negotiation Support Architecture

explored the obstacles that exist in replicating human negotiation through automated reasoning, and recognized
the need to focus on supporting human negotiation by providing analysis capabilities, as opposed to making
simplifying assumptions that depict an unrealistic sketch of the negotiation process.

Although the analysis capabilities that can be provided by implementing our approach satisfy analysis needs that
are commonly raised during human negotiation in SPPS, it would be interesting to measure their impact on
increasing the productivity and effectiveness of negotiation. To measure these impacts, in addition to
implementing the analysis capabilities, a suitable user interface to communicate the analysis results to the user
needs to be designed. This is because demonstration of the effectiveness of our approach also depends on how
the analysis results are presented to the user.
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Chapter 9

Conclusions and Future Directions

In today's highly competitive market for software products, the on-time and within budget delivery of software

products has become the key to the success of a software development organization. Furthermore, the ever

growing demand for software products has led to the establishment of large software development organizations

that work on multiple software projects concurrently. Manual SPPS in these organizations is not only time

consuming and costly, but also produces limited success as the size of organization grows.

Software projects are planned and scheduled under an array of conflicting technical and organizational

constraints including budget constraints, temporal and resource capacity constraints, tool and staff productivity

limitations, organizational rules and regulations, and so forth. The task of planning and scheduling is further

complicated by the fact that some of these constraints are negotiable (i.e. can be sati-ed to varying degrees) and

are subject to a diverse set of preferences. SPPS is distributed among multiple agents each with its own set of

resource requirements and involves face-to-face human negotiation between them to resolve the scheduling

conflicts. Uncertainty in the budget estimates of a project activity is another source of problem in SPPS. Human

errors only add to the inaccuracy in resource requirement estimates by inflating or deflating them to serve their

own personal objectives. Last but not the least, the occurrence of frequent unexpected events (e.g. discovery of

a major bug in the product, high rate of staff turnover) can make some aspects of the plan or schedule that has

been developed obsolete frequently.

The main c atr~oution of this thesis is that it represents the first effort in building a problem solving model that

accounts for the major issues of SPPS. We identified the full range of issues that make SPPS a difficult problem

and described the reason that previous approaches have been unsuccessful in addressing them in chapter 1. Our

approach was to
1. define SPPS as a reactive process that involves human negotiation, and

2. develop a heuristic search model, that is consistent with the negotiation process, to improve an
existing schedule by incrementally revising it.

Our approach was the result of recognizing that (1) software project schedules evolve through human

negotiation, which continues through all phases of SPPS, and (2) SPPS is more of a schedule revision problem

than that of schedule generation. In the contrary, previous research in developing a problem solving model for

planning and scheduling [64, 9, 85, 96]considers that negotiation during SPPS is limited to a set of compromises

that are known in advance, and also assumes that SPPS is a purely schedule generation problem. Our approach

was also the result of recognizing that the problem solving process in SPPS can be modeled by a synthesis of

heuristic search and human negotiation. This recognition enabled us to formulate a problem solving model that is

consistent with the process of human negotiation during SPPS.

We divided the reactive revision of a software project schedule to a set of reactive cycles such that each cycle

involves successive revisement of the schedule until the penalty of resolving the conflicts in that schedule(i.e.
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making the schedule consistent) becomes minimal. While heuristic search is carried out within each cycle to
minimize the inconsistency, human negotiation takes place between two reactive cycles to revise the scheduling
assumptions. In chapter 2, first we provided a formal definition of SPPS and on the basis of that showed each
reacive cycle can be achieved by heuristic search through the space of possible schedules to improve (lower the
inconsistency of) a given schedule by incrementally revising it. Once a schedule with minimal inconsistency is

found, it can be used to advise the users on the constraints that remain unsatisfied. The users, we showed in

chapter 8, could then use this advice in conducting negotiation aimed at making the schedule consistent. The
result of negotiation can be recorded as changes in the assumptions of the problem. We described the set of

these possible changes in chapter 5. The changes trigger a new reactive cycle. Heuristic search is used to exploit

these changes to develop a less inconsistent schedule (by revising the existing schedule). A new reactive cycle

will begin to be executed until a consistent assignment (a schedule without a conflict) has been found, or until
the users stop introducing changes that trigger reactive response.

At the end of chapter 2, we provided an overview of the components of our basic heuristic search model. The
evaluation function component of our basic heuristic search model was discussed in chapter 3, while the
scheduling strategy and search operators were discussed in chapter 4. In chapter 3, we described that how our
evaluation function takes into account an array of conflicting technical and organizational constraints including

budget constraints, temporal and resource capacity constraints, tool and staff productivity limitations, and so
forth, which are negotiable to varying degrees and are subject to a diverse set of preferences. In previous SPPS
approaches, these factors were largely not modeled. In chapter 4, we discussed a design of operators that allows
the span of the entire search space for SPPS and building of more complex operators from a set of primitive

operators. In this chapter, we also discussed a heuristic theory to control the application of operators. Our
heuristic theory was different from that of previous approaches (e.g. f 104] in that it emphasized the minimization

of disruption as the primary criteria for optimization.

We explored how the assistance of a human scheduler might increase the efficiency of search by providing an
interactive collaborative scheduling framework in chapter 5. In previous SPPS approaches, a human scheduling

expert has mainly played a passive role in problem solving. In chapter 6, we verified our basic heuristic search
model through a set of experiments which we ran using NEGOPRO, a program which we developed to
implement our problem solving approach. In summary, these experiments showed that

1. by increasing the overall size of the problem, the time that is spent on conflict analysis, operator
selection and schedule revision, and schedule evaluation all increase. However, the rate by which
the computational cost of the latter two increase is smaller than the rate by which the
computational cost of conflict analyzer increases.

2. schedule evaluation does not constitute a bottleneck from the computational standpoint and
therefore our scheme based on cost/benefit analysis may be coupled with other scheduling
strategies as well.

3. the choice of seed schedule affects the quality of the final schedule as well as the speed by which
that schedule is produced (measured in terms of the number of operators applied), but that the
quality of the final schedule is affected most.

In chapter 7, we extended the basic heuristic search model by designing a more intelligent search (i.e. one that

considers the uncertain nature of resource requirement predictions) to reduce the likelihood of schedule failure.
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9.1. Future Work

While our goal from conducting experiments throughout this thesis was to study the effectiveness of the basic

heuristic search model as a whole, it will be useful to conduct additional experiments to test each component of

this model separately. This is because the present work has developed several novel ideas in modeling

scheduling problems through heuristic search that each is worthy of being investigated on its own. For instance,

it would be interesting to see how the heuristic strategy which we have proposed (i.e. keep the schedule

disruption at a minimum while making the most progress toward resolving a given conflict) actually compares

with other heuristic strategies that have been proposed in the literature [43, 98, 104] when other components of

the heuristic search model are fixed.

Furthermore, it would be useful to
1. implement our design to extend the basic heuristic search model to account for uncertainty in

resource requirement predictions and measure its effectiveness in building more robust schedules,

2. evaluate the impact of supporting negotiation on the efficiency of negotiation through the results
that can be obtained from conducting heuristic search, and

3. evaluate the impact of collaborative human-computer heuristic search on increasing the efficiency
of search

through empirical results. Although the reliance on empirical studies in addressing these issues [13,47, 121] in

the present work was sufficient to verify the correctness of our approach, the degree of its effectiveness can be

measured only by conducting sophisticated experiments at real world software development organization sites in

a timely fashion.

Last but not the least, we have recognized the importance of developing a heuristic to optimize the search within
the available time for scheduling. This heuristic should allow users to balance the quality of a solution with the

time that they can afford for finding it. Since we have adopted a schedule revision (in contrast to a schedule

generation) approach to scheduling, we always keep a copy of the most recently revised schedule. Moreover,

since this schedule represents the best schedule that has been developed so far, we can always return the best

complete schedule that the heuristic search has produced as soon as the bound on the scheduling time is reached.

However, the heuristic search is not optimized within the available time.

Our preliminary analysis suggests that we could exploit the conflicting nature of problem constraints in order to

optimize the search within the available time for scheduling. In planning and scheduling problems such as SPPS

that constraints are frequently of conflicting nature, sometimes it is useful to relax a less important constraint at

the cost of satisfying more important constraints that it is in conflict with, before exhaustively considering all

alternative ways of satisfying all conflicting constraints together. This is because if the search space is highly

constrained, then we can relax some of the less important constraints without searching for an assignment that

satisfies all conflicting constraints together.

Exploitation of the conflicting nature of problem constraints as a basis to optimize the search has the potential of

allowing a user to trade off search time with the probability of finding a consistent schedule. The search space is
reduced according to the bound on scheduling time by discontinuing the search for finding a consistent schedule

along the paths that the probability of finding a consistent schedule in them is low (i.e. are highly constrained)

during scheduling (i.e. switching to solving a weaker version of the problem that is in line with the bound on

scheduling time). In trading off search time with the probability of finding a consistent solution, the saving in

search time should be even greater when a schedule exists that satisfies every disputed constraint but at the same

time violates new constraints elsewhere within the network of problem constraints (i.e. will disrupt the network).



104

In the present work, we distinguished SPPS from traditional Al planning approaches through its unique

emphasis on efficiency during the revision of schedules, a goal that is apparent in the design of our heuristic

search approach. Unfortunately, the emphasis on efficiency did not become a priority in the implementation of

NEGOPRO and remains a potential that needs to be exploited, because the the development of NEGOPRO itself

took a very long time. Presently, NEGOPRO schedules projects that contain 15 or fewer activities very

efficiently; this is true even if most activities have alternative process plans and allow variable mixes of

resources, some of the feature requirements of project products can be compromised, and an array of constraints

and preferences have been specified. However, real world software projects include a larger number of activities.

In order to scale up NEGOPRO for scheduling larger experiments, its present implementation needs to be

optimized considerably.

There are two other areas which deserve further exploration in the framework of the SPPS problem solving

model that we developed in this thesis: types of resource related preferences and organizational modeling

constraints that can be posted, and learning new heuristics. In the remaining of this chapter, we investigate these

two area in the order that have been stated above.

The constraint and preference representation language which we formally defined in chapter 2 lacks the

expressiveness needed to discriminate among different instances of the same resource. For instance, a project

manager might advise against assigning John to the same task that Dave is assigned to because they might have a

history of personal differences. The discrimination among different instances of the same resource can be

provided if the present representation language is extended to support hierarchical (and recursive) representation

of resource classes and instances (in order to be able to reason at different levels of abstraction). Our

representation also lacks the expressiveness needed to specify such organizational policies and regulations as
"each junior programmer should be assigned to work with one senior programmer and at most three junior

programmers can be assigned to each senior programmer." Although the problem specification language that has

been developed for PMA [641 supports the specification of a wide variety of constraints and preferences

(including those that are stated above), there exists no underlying problem solving model to generate a schedule

that satisfies them.

Although we have modeled the authority structure (constraints) of a software development organization during

planning and scheduling, the organizational structure of a firm including the policies and regulations that govern

it impact the planning and scheduling decisions as well. For instance, in a matrix organization functional units

are organized on the basis of their functions (thus a functional unit can be working on several projects

concurrently), while in a different type of organization, they might be divided along the project boundaries.

Furthermore, a software development organization might include interdisciplinary units, special committees, and

so forth that allocating them to different projects might require following special rules. We advocate the

development of a representation language that allows the specification of the structure of an organization from a

set of primitives organizational elements (e.g. employee), and extending our heuristic search model to take the

organizational rules and regulations into account during SPPS. Previous research in this area (24,40, 47] can

provide a starting point for this effort.

The need for diversity in the type of resource preferences and organizational modeling constraints which have to

be modeled has been manifested in an experiment involving the scheduling of a real world software development

project. The data which is used in this experiment is a combination of real world and hypothetical data. The real

world data belongs to Travelers' Guide (TG), a real world software project that started in the summer of 1988 in
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Los Angeles under the initiation of Negofirm. The hypothetical data belongs to NegoTech, a medium size

software manufacturing firm which is engaged in software development for business applications and will play

the role of parent organization of TG. In contrast to TG which describes a single project, NegoTech serves as a
multi-project case. A study of multi-project software organizations was conducted to assure that NegoTech is
representative.

The organization that began to develop TG was a startup software company that did not have a well defined
organizational structure. The data about the development of TG that is used in the experiment is collected from
reviewing the project planning and scheduling reports that we obtained in the hardcopy form and conducting a

set of lengthy interviews with the manager of the project.

We believe that the data which has been collected is valid because:
1. the manager was highly informed on the undocumented planning and scheduling data. The main

reason for being informed was that the project was very young at the time of interview and the
manager remembered most undocumented details.

2. the manager did not have any interest to provide biased data.

3. the data which had been collected was reviewed to assure that it was consistent.
Information on the present state of the project and the organization is withheld on the request of the
management.

The hypothetical data covers the organization on which TG is being executed. The design of this organization
was influenced by three factors: the actual organization that carried out the TG project, demands of the
experiment, and the documented description of the structure of software organizations in the sources that we

studied. Since as it presently stands NEGOPRO is insensitive to project communication, it fails to account for

the organizational structure that has been designed. Furthermore, NEGOPRO is not able to model various
staffing and resource allocations regulations and policies that are described in the experiment A detailed

description of the experiment is provided in appendix A. This experiment can serve as a benchmark for
evaluating and comparing the problem solving models that will be developed for SPPS in the future.

While in this thesis we emphasized the problem solving aspect of planning and scheduling that is based on

precompiled knowledge, much remains to be done in providing NEGOPRO with a capability to learn from the
previous projects that it has scheduled. Since it is not feasible to encode every possible heuristic in NEGOPRO.

the need to learn new heuristics increases with the diversity of the problems that have to be solved by
NEGOPRO. Existing general purpose planning systems that learn, largely operate on problems with small search

spaces and limited subgoal interaction [95, 113]. Furthermore, the interaction of learning and scheduling, for the

most part, has been in the arena of genetic algorithms. Application of these techniques to software
manufacturing scheduling constitutes an area of future research. More Recently, Merl-Soar [58] has casted the

job-shop scheduling problem as a set of problem spaces within the Soar architecture [102] and has investigated

the use of chunking [1021 for learning purposes. The merits of the capability to learn is by no means limited to

learning new heuristics in NEGOPRO. For instance, one area that learning can be very useful is in screening
inflated resource requests (also called validating resource requests). Inflated resource requests (demands) are

caused by inexperience, or are motivated by personal interests and politics. By screening out inflated resource
requests, a scheduler can

1. eliminate the need for negotiation by lowering the resource requirements to a level that can be met.

2. help the negotiation process by preventing the negotiators from making inflated demands that
could endanger the success of negotiation.
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Appendix A

Travelers' Guide

Travelers' Guide is to be a widely available electronic system which provides a community (in particular
travelers) information in the following three areas:

1. Local entertainment alternatives

2. Local points of interest for Tourists

3. Navigational information to help a driver travel from one part of the city to another
We use Al, A2, and A3 to cross reference these.

TG is functionally divided into three logical components, each with the purpose of fulfilling the above system
objectives. Below is a description of the three components of the system.

The entertainment component of the TG allows the user to query and receive information about the following

items:
1. Local Restaurants

2. Local Movies

3. Local Stage Performances

4. Sporting Events

5. Shopping Centers
The user will select one of these categories to receive a hardcopy printout listing of pertinent information about
the category that he chose.

The tourist information component of the TG allows a tourist to query about the:
1. Local Tourist Attractions
2. Local Hotels

The navigational (path finding) component of TG allows the user to enter a source and a destination address
within a city, finds a path that can be followed to reach the destination address from the source address, and
outputs the path to the user. If TG is accessed through a touchtone phone, then the output will be in form of
voice. If TG is accessed a teller machine, then the output will be a hardcopy map including a graphical
representation of the path and written directions which describe the path.

A decision has to be made as to whether TG should be widely accessible through touchtone phones or only
accessible through geographically distributed teller machines with local computing power throughout the city. In
either case, a powerful central host computer will be needed. If tellers are used, then user input is entered at a
teller and then transmitted to the host computer. The processed information is later transmitted back to the teller
where it is displayed on the teller monitor. Information is passed between the host and the teller, via phone lines.

Users will be able to pay for the service that they receive in cash or charge.
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Customer Requirements

The customer has defined the main requirements of TG as follows:

1. TG has to be a user friendly system.

2. The product must work on a network of hosts and teller machines.

3. Multiple users have to be supported simultaneously.

4. The response time of TG once the user completes typing a string of input or selects a menu option
has to be below 10 seconds regardless of the number of users.

5. A prototype of the system has to available for demo within 4 months.

6. TG has to complete in 8 months.

7. The maximum budget ceiling is $900,000.
The implementation of TG has to validated against these requirements.

Initial Deals

The description of the process of reaching an agreement between NegoTech and Negofirm, the firm that has
ordered TG, has been greatly simplified since the process is not the focus of attention of the experiment. The
policy of NegoTech is to first conduct a technical feasibility study to learn if a project is technically feasible. If
the answer is positive, then a cost estimate for each component or requirement of the system that can be
measured independently is produced. The cost sheet is then passed on to Negofirm. Once the cost and the
requirements are negotiated between NegoTech and Negofirm, a new budget and a new set of requirements is
mapped out and an agreement is signed between the parties. For instance, after a negotiation, NegoFirm agreed
to drop its requirements to see a demo of the prototype of the system in 4 months after NegoTech argued that the
time which is needed to go into the preparation of a demo might result in missing the completion deadline.

Project Initiation

A project is initiated in NegoTech by selecting a project manager. In the case of TG, the name of the project
manager is NegoMan. NegoMan brings together a small group of team leaders and consults with them to
construct a project plan. The plan divides the development process into four major phases: specification, design,
coding, and testing and validation.

Basic Setting for Inter-Project Resource Sharing

NegoTech starts in an environment where two other projects are already under development in NegoTech. The
addition of TG implies that organizational resources have to be shared between all three projects.

Activities

This section is to describe the project activities that belong to various software lifecycle phases. Although the
choice of touchtone or teller machine for accessing the system was made prior to system specification, the
activities that are related to making this decision are included as part of the specification. The reason for this
decision was to capture the dependency of major planning decisions even prior to system specification.

It is important to note that the specification of project activities that are enlisted in this section was itself a result
of preliminary project work that has not been included in the present experiment.

The activities that belong to the specification phase include:
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1. specify the exact queries that an end user can ask the system.

2. specify the maximum time that can be afforded to log on an end user and respond to a query of an
end user. To this end, the time that takes to initially hook up through a touchtone phone or a teller,
and the time that takes to respond to queries of different types needs to be estimated. The time that
takes to respond to queries of different types depends on the portion of query processing that can
be done by the teller or the front-end computer.

3. estimate the minimum, maximum, and average load (number of users logged on at any given time)
and the kind of queries that they ask. Furthermore, determine the number of phone lines or teller
machines that are required to handle this load.

4. determine whether TG should be accessible through touchtone phones or through geographically
distributed teller machines with local computing power.

5. specify the choice of hardware for use. If information is entered on teller machines, then it has to
be decided how to divide the processing power between a teller and the host.

6. specify the choice of hardware and software for development. This includes the choice of computer
language, operating system, graphic tools, and so forth.

7. specify the exact end user input and machine output in Al, A2, and A3. As part of this, it needs to
be determined if the secondary streets are to be included in the representation. Although the task of
specifying the input and output of Al, A2, and A3 can be executed in parallel, the present task
design provides a more interrelated specification process.

8. specify the format in which an end user has to provide his input, and also the format in which the
machine has to provide the output to him in Al, A2, and A3.

9. specify the information that needs to be updated in Al, A2, and A3 by an engineer user, and
furthermore specify the frequency of updating.

10. specify the exact input and machine output for the engineer user menu interface.

11. specify the format in which an engineer user has to provide his input, and also the format in which
the machine has to provide the output for the engineer user menu interface.

12. specify the criteria that can be used to compare the paths that exist between a source address and a
destination address. Although distance is one of these criteria, other criteria such as the time to
travel, and the number of traffic light (which contributes to the chance of getting lost) also have to
be considered.

These activities are cross referenced as SPI through SPl2.

The activities that belong to the design and implementation of Al include:
1. design a file system for Al that specifies the data files that have to be constructed, the schema of

each file, and the format of information in each schema. The design should consider many factors
such as optimizing the retrieval (search) time at the cost of update time. Such information as an
estimate of the number of entries in the entertainment directory files could effect the choice of
structure of a file in the file system.

2. design a set of file access and file update operations for the file system to allow the access that is
essential to respond to end user queries and allow the update that is carried out by the engineer
user. Such questions as "what part of the entertainment database has to be resident?" has to be
answered here.

3. design and attach an access right to each file system access function.

4. prototype the file system and the operations that access the file systems to evaluate the file system.
The prototype of the operations has to enforce the access rights. Use the prototype to revise the
original design of the file systems to fix the problems that are identified in the prototype.

5. implement the file system for Al.
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According to the cross referencing scheme, these activities are A1.DC.1 through A1.DC.5. The same set of

activities need to be executed for the design and implementation of A2. According to the cross referencing

scheme, these activities will be A2.DC.1 through A2.DC.5.

To implement Al and A2, the organization can alternatively use a data base generator such as RBASE, Clipper,

or DBASE. The use of a DB generator will significantly reduce the time to execute A.DC.4, AI.DC.5,

A2.DC.4, and A2.DC.5.

A data base generator also can be used to reduce the time to prototype and implement the menu interfaces. This

is because DB generators such as Lisa or RBASE provide high-level screen layout specification languages.

There are three problems with using a DB generator. The first problem with using a DB generator is that it

usually requires an inflexible interface to a programming language. This poses a problem to smooth integration

of Al, A2, A3, and the menu interfaces thus increasing the integration time. The second problem with using a

DB generator is that it could degrade the response time of the system. The third problem with using a DB

generator is that NegoTech does not employ the necessary skills to develop a sophisticated application in

RBASE. This implies that the skill has to be acquired from the marketplace.

The activities that belong to the design of A3 include:
1. define the logical structure of the city map. This requires the identification of the elements of a city

map that are important in processing end user queries, and building an abstraction of the city map
that includes those elements in a logical structure.

2. design a search algorithm to search through the logical structure of the city map and find the most
qualified path that connects a source to a destination according to the criterias that are defined in
SP12. The algorithm is also required to take into account the

a. congestion due to traffic at different periods during a day.

b. on line traffic information about the accidents, freeway closing, etc.

3. design and declare the data structure of the city map and the functions necessary to access it. The
design should distinguish between one way streets and two way streets, 3-way, 4-way, and 5-way
intersections, streets with only one exits, and so forth.

a. congestion due to traffic at different periods during a day.

b. on line traffic information about the accidents, freeway closing, etc.

4. design a module that takes input from a scanner and encodes a map of the city in the designated
data structure.

5. design an algorithm to sort multiple destinations that are to be reached from a source address. The
goal is to minimize the overall travel distance, travel time (traffic lights and traffic can increase the
travel time), and the number of turns.

These activities are cross referenced as A3.D.1 through A3.D.5 where A3 is a component name, D is an

abbreviation for design, and the number is the index of the activity.

The activities that belong to the coding phase of A3 include:
1. develop the functions that have been designed to access the data structure of the city map.

2. construct a toy map that is representative of the city but encodes only a small subset of the map of
the city.

3. build a prototype of the search algorithm and test the algorithm to find the path between a source
and a destination address on the toy map. The implementation needs to account for

a. the congestion due to traffic,
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b. on line traffic information, and

c. multi-destination search.

4. implement the search algorithm that has been designed. The implementation needs to account for
a. the congestion due to traffic,

b. on line traffic information, and

c. multi-destination search.

5. construct a complete map of the city. In order to construct a city map, questions such as "what part
of the city map should be kept resident?" should be answered first.

According to the cross referencing scheme, these activities are A3.C.I through A3.C.5.

The design and implementation of a menu determines what should be displayed on that menu and also when and

where that information has to be displayed. The activities that belong to design and implementation of the end

user menu interface (DM1) include:
1. develop a set of standards for screen design, warning and error message display, and on line help

for the end user menu interface system.

2. design credit card and cash taking menus. The design is required to display appropriate warnings
and error messages on erroneous input and also provide multiple levels of help.

3. build a prototype of the design of the credit card and cash checking menus to evaluate the design
and use that to revise the design to fix the problems that are detected in the prototype.

4. implement the revised design.

5. design the menu system for Al. The design is required to display appropriate warnings and error
messages on erroneous input and also provide multiple levels of help.

6. build a prototype of the design of Al to evaluate the design and use that to revise the design to fix

the problems that are detected in the prototype.

7. implement the revised design.

8. design the menu system for A2. The design is required to display appropriate warnings and error
messages on erroneous input and also provide multiple levels of help.

9. build a prototype of the design of A2 and use that to revise the design to fix the problems that are

detected in the prototype.

10. implement the revised design.

11. design the menu system for A3. The design is required to display appropriate warnings and error
messages on erroneous input and also provide multiple levels of help.

12. build a prototype of the design of A3 and use it to revise the design to fix the problems that have
been detected during the prototyping.

13. implement the revised design.

14. revise the design of menu systems for Al, A2, A3, and credit card and cash taking menus to meet
the requirements of integration and then integrate the designs of menu systems for Al, A2, A3, and
credit card and cash taking menus into an integrated end user menu interface.

15. prototype the integrated menu interface design and use that to revise the integrated menu interface
design to fix the problems that have been detected during the prototyping.

16. implement the integrated menu interface design.

According to the cross referencing scheme, these activities are DMI.DC.1 through DMI.DC.12 where DC

indicates the fact that coding does not sequentially follow the design thereby design and coding are

accomplished in one phase.
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The design of a menu determines what should be displayed on that menu* and also when and where that
information has to be displayed. The activities that belong to design and implementation of the engineer user
menu interface (GMI) include:

1. design the update and maintenance menus. The design is required to display appropriate warnings
and error messages on erroneous input and also provide multiple levels of help.

2. build a prototype of the design of the update and maintenance menus and then revise the design to
fix the problems that are detected in the prototype.

3. implement the new menu design.
According to the cross referencing these activities are GM.DC.1 through GMI.DC.3 where DC is as in the DM1.

The activities that belong to specifying, designing and implementing a hardcopy map generator (HCPY)

include:
1. specify the information that has to be drawn on the map and specify the format and layout of that

information.

2. conduct a study to choose a hardcopy device that is suitable for the rapid generation of the
specified format.

3. design a program to generate a hardcop, map using the hardcopy device.

4. implement the hardcopy generating program.
According to the cross referencing scheme, these activities are HCPY.SDC. I through HCPY.SDC.4.

During a congestion (i.e. multiple users asking for service simultaneously), end users can not be serviced or, a
FIFO basis. A FIFO policy inevitably causes long delays for the end users that have been among the last to
request a service. In general, any major variance in the response time could be very annoying. This suggests that
a special design is needed to service a set of requests in parallel. The activities that belong to designing and
coding a control system that can service multiple end user requests in parallel (PCS) include:

1. define the elements of a state of an end user query process and design a process management
model that contains process swapping strategies, process state queues, process data structures.

2. prototype a multi-tasking demo kit that simulates the process swapping on a single monitor.

3. prototype the process management design on multiple processors to evaluate the design and revise
the design to account for the problems that are detected in the prototype.

4. implement the new process management design.
According to the cross referencing scheme, these activities are PCS.DC. I through PCS.DC.4.

The activities that belong to designing the communication between the subsystems of TG (COM) include:
1. design the protocol for communication and format of the information that is passed between the

end user menu interface and the multi-user process manager.

2. design the protocol for communication and format of the information that is passed between the
engineer user menu interface and A 1, A2, and A3.

3. design the protocol for communication and format of the information that is passed between
multi-user process manager and Al, A2, and A3.

These activities are COM.D.1 through COM.D.3. For each design activity, a coding activity is needed to encode
and decode these protocols and communication formats. These activities are COM.C. I through COM.C.3.

The activities that belong to unit testing include:
1. develop a sct of test cases for each component of TG that verifies the requirements and

specifications of that component and a set of test procedures to carry out those tests.
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2. test each component of TG and tabulate the results for analysis and analyze the test results.

3. conduct a formal review.

These activities need to be executed for each component of the system independently. If the activities are

executed for a component Z, then they are cross referenced as Z.UT.1 through Z.UT.3. For instance if Z is Al

then the cross referencing codes will be A1.UT.1 through AI.UT.3.

The activities that belong to integration and integration testing of the system (IT) include
1. develop a set of test cases for integration testing of TG that verifies the requirements and

specifications of TG and a test procedure to carry out those tests.

2. integrate the components of TG to build an integrated system.

3. test the integrated system and tabulate the results for analysis and analyze the test results.

4. conduct a formal review.

The cross referencing codes for these will be IT.1 through IT.4.

The unit and integration testing are parts of the alpha-test. If the test of a unit fails, then the unit has to be sent

back to the developers and in some cases to the unit designers in order to fix the bug. This implies that a new set

of activities have to be scheduled and further integration be delayed until the unit is successfully tested again.

To reduce the work delay in the case of finding a major bug, it is preferred that the development of each unit be

scheduled with a slack.

Partial Ordering of the Activities

A major limitation of the activity ordering model of many production scheduling systems is that all activity

ordering constraints should be expressed through the binary operator "before". This limitation prohibits the user

from specifying the situations in which two activities can be executed partly concurrent. For instance, it is not

possible to use the binary relation "before" to specify that a coding activity can begin as soon as two thirds of the

design is completed.

In contrast to the production scheduling systems in which all activity ordering constraints should be expressed

through the binary operator "before", NEGOPRO provides a ternary version of "after" to allow the specification

of concurrency. In NEGOPRO, after(A1,A2,i) specifies that Al should complete i days after A2 starts at the

latest. From a production dependency perspective, this means that the products of Al are used in A2 but that they

are needed only after the execution of A2 has already begun. The partial ordering of the activities in TG is

provided in appendix B.

Staff Classifl :ation

In NegoTech, a staff member is one of the following: team member, team leader, project manager. A staff

member can assume only one of these roles at any given time. These roles are cross referenced by TM, TL, and

PM. The staff is also divided along the line of experience to senior and junior such that senior can be cross

referenced by S and junior can be cross referenced by J. Last but not the least, the staff is divided along the line

of expertise. A division based on life cycle phases produces four categories of expertise: specification specialist.

system analyst/ system designer, coder, quality assurance specialist. These categories are cross referenced as

R1, R2, R3, and R4. A senior coding team leader is referenced as TL.R3J. A junior member of a design team is

referenced as R2J.

Only a senior staff can assume the role leading a team. The leadership of a team involves controlling,
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replanning, and monitoring of the team work. Carrying the leadership activities of a team takes up to half of the
time of a senior staff. Thus a senior staff can spend only half of his time on the development.

Those lines of expertise that are not based on a lifecycle phase include database specialist, database generator
specialist, language specialist, graphic and menu design specialist, and multi-tasking specialist. These expertise
are referenced by DB, DBG, LG, GD, and MT. The cross referencing codes imply that support staff, secretaries,
office space, and so forth will not be accounted for in the plan as was the case in the real world TG project plan.

It is possible to assign two roles to a staff member if he possesses the required expertise for both roles and the
interests of the project dictates so. It is also possible to have a staff member to work on multiple projects or
multiple activities; In fact, it is preferred that a staff member work on concurrently executable activities at the
same time because their works often overlaps.

According to the organizational regulations, a rule of thumb to compare the productivity of the junior and senior

staff. The rule of thumb says that the productivity of a senior staff is three times the productivity of a junior staff
but one third of the time of a senior staff has to be spent on speaking to a junior staff if he is to work with a

junior staff.

Initially, the manager of the project had requested that the manpower requirements of each activity be expressed
only in terms of senior staff but a more closer look showed that junior and senior staff should not be considered
replacable under all circumstances. For instance, the activities that are critical during each phase should be
strictly assigned to senior staff and it should be required that each junior staff should always work along and be
supervised by a senior staff. As a result of this observation, the project manager decided that manpower
requirement specification of each activity should list all possible combinations of junior/senior staff that can

carry out that activity.

Activity Resource Requirements

Activities are referenced by their cross reference name. The resource requirements of an activity is specified
through a sequence of request pairs such that each request pair consists of the cross referenced name of a
requested resource and a pair of numbers. The first element of the pair of numbers denotes the requested

quantity and the second element denotes the requested duration. If two request pairs are sequenced then the
second request pair is to start after the first request is completed. If two sets of pairs are separated by an or, then
those two sets are substitutable. A request pair can be augmented by a compromise pair. A compromise pair
specifies the reduction in the cost if a requirement that is referenced in the compromise pair is relaxed. The only
type of switch plan is specified in the request lists is when RBASE (a data base application generator) is
available. In general, the introduction of RBASE greatly reduces the development of a user interface or data base
application but slows down the integration of those applications with modules that have been developed in a
programming language. If RBASE is not used, then the alternative is to develop the entire system inhouse. A
glance through the resource requirement lists shows that whenever the execution of subactivities of an activity
can be carried out concurrently, the assignment of more heads will reduce the development time. The effect of

assigning more resource to an activity on the development time of that activity will be marginal if the
subactivities of an activity are largely sequential. All requests are assumed to have been expressed in terms of
senior staff. The time to develop the coding document is always included in the coding activity. A rule of thumb
is that 10% of the time to code a module goes into documenting that code. Thus if the project plan decides to
relax the requirement on documenting the code, the duration of development will be reduced by 10%. Activity
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resource requirements of TG is outlined in appendix C. Since all resource requests are stated in terms of senior

staff, a possible area of tradeoff is related to balancing the number of senior and junior staff.

Resource Configuration

We describe the resource configuration by first specifying the resources that are configured throughout the

organization and then specifying the allocation plan of these resources to other projects that are already

undertaken by NegoTech.

After negotiating with other project managers and the senior management, NegoTech agrees to assign'5 teams
to work on TG on a full time basis. Among these 5, two are coding teams, two are design teams, and the

remaining team can handle both specification and quality assurance. In addition, one other experienced coder
will be available on a full time basis, two more experienced coders will be available on a half time basis, and a

experienced designer who is presently assigned to another project will become available all in 3 months. One
senior staff who is experienced in both specification and testing but is currently working on a low priority
assignment can be asked for help on a half time basis at any time as well.

Each team has a team leader. The first coding team has only two members: a team leader and a regular member.

The second team has three members: a team leader and two regular team members. One member of each coding
team is a junior programmer while all other coders are experienced coders. Both design teams have three
members and only one member of each team is a junior designer. The specification/quality assurance team has

four members. The first two members of the specification/quality assurance team are experienced in quality
assurance but unexperienced in testing. The other two mem' _ ,. the specification/quality assurance team are
experienced in testing but unexperienced in specification/quality assurance. The high percentage of junior staff
in the organization is the result of the fact tiat NegoTech has recently expanded and hired a number of junior

staff. Organizational policies require that all members of a team work on the same activity if such choice exists

during the resource allocation.

Organizational policies require that each junior staff has to be assigned to and work with exactly one senior

staff. Furthermore, organizational policies require that a senior staff can work with at most three junior staff.

Neither of the coding teams has had any prior experience with RBASE but the strong background of the second
coding team in data base applications makes its experienced members a good potential for becoming junior
RBASE application developers. To use the RBASE, NegoTech basically needs to hire at least one experienced

RBASE application developer.

The management of NegoTech has declared the staff budget of TG as fixed and is unlikely to change this

commitment unless it would be in the benefit of the organization to temporarily reallocate one or two more

coders or designers from another project to NEGOPRO. The management also has required that the budget for
hiring new staff, paying consulting fees, and paying for new software licenses to help the development of TG

should not exceed $100,000.

The fact that other resources such as workstations, time-share computers, other software beside RBASE, and

offices are not encoded implies that either they are less important or there is an excess supply of them.

Other attributes of a staff member such as his personal interests, his experience with the tools and so forth were

taken into account during the real world planning of TG but these attributes played a secondary role in the

analysis and we decided not to include them in the experiment.



116

Resource Acquisition Cost

The cost of acquiring each incremental unit of a resource for different spans of time beyond the level that is
available within the organization is specified in the cost table of that resource. The rows of the table denote
incremental units and columns denote duration in month. The cost tables of some resources are depicted in

appendix D. Cost of the resources in appendix D does not vary with multiple units because all resources are of
the type human. However, the cost would have changed with multiple units if we were considering a hardware
resource such as a workstation. The initial cost of purchasing sufficient number of RBASE licenses for use in
the organization will be $10,000. Once RBASE is purchased, the cost of maintaining it will be less than
$500/month.



117

Appendix B

Ordering of Activities in TG

In this appendix, a partial ordering of all project activities within each unit of TG that has a unique namne for
cross referencing is described through the ternary relation "after":

1. partial ordering of the specification activities:
after(SP1 SP3,0), after(SPJ SP7,0), after(SPJ ,SP6,O),
after(SPJ ,SP9,O), after(SPJ ,SPJ2,0), after(SP2,SP3,0),
after(SP3,SP4.O), after(SP4SPS,0), after(SP7,SP8,0),
after(SP9,SPO,O), and a4ier(SPJO,SPJJ .0).

2. partial ordering of the activities within Al:
after(A3D.,A3.D.2,0). after(A3D.1,4ASD3,0),
after(ASD3,A3.D.2,O), after(A3D.3A3.D.4.0),
after(A3D.3A3.DS5,0), after(A3.C.1,A.C.S,O),
after(A3.C.2,A3.C.S,0), after(A3.C.3,A3.C.4,0).

3. partial ordering of the activities within A2:
WiE [1,3] after(A2DC.iA2DC.(i+1).O),
after(A2DC.442-DC.S.S8).

4. partial ordering of the activities within Al:
VWE [1,31 after(A 1.DC.iAI1DC(I-1),O),
after(AJ DC.4A1.DC.S.,6).

5. partial ordering of the activities within HCPY:
ViE [1,2] afier(ICPY.SDC.iHCPY.SDC.(i+ 1),O),
after(HCPY.DC.4,HCPY.DC..,6).

6. partial ordering of the activities within PCS:
Vire [1,3] after(PCSDC.iPCS.DC(+I),O)

7. partial ordering of the activities within DM1:
after(DM1DC.1 JJMIDC.2,0), after(DMJDC.1 ,DMJ.DC.5,0),
after(DMILDC.1 .DMIDC.8,O), after(DMIDC.1 .DML-DC.1 1,0),
after(DMJ.DC.2 ,DM1DC.3,0), af~er(DM1DC.3.,DM1.DC.4,0).
after(DMIDC.S.DMIDC.6,0), afier(DMJDC.6 DM1 .DC.7 .0),
after(DMI.DC.8.DMJDC.9,0), after(DMJ-DC.9.DMIDC.l0,0),
after(DMIDC.11I,DMIDC.12 .0), after(DMJ.DC.12,DMI.DC.13,0),
after(DMI.DC.4,DMIDC.14,O), after(DMJDC.7.DMIDC.14,0),
after(DM1.DC.1O,DM1.DC.14,0), after(DM1.DC.13,DM1DC.14,O),
afker(DM1.DC.14,DMJDC.IS.3), and

after(DMI.DC.ISDMJDC.16,6).

8. partial ordering of the activities within GNU:
WE [ 1,2] after(GMJDCJi,GMI.DC.(i+1),O)

9. partial ordering of the activities within COM:
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after(COMJJ.1 ,COM.C.1 .0), after(COM.D.2,COM.C.2,O),
and after(COM.D.3,COM.C.3,0).

10. partial ordering of the unit testing activities:

Vie (1,.. after(Al.UT.iAI.UT.(i+I),O),
Vi C [ 1,2J after(A2.UT.iA2.UT.(i+l),O),
Vi E [ 1,2] after(A3.UT.iA3.UT.(i+l),0),
ViE [ 1,21 after(DMI.UT.iDM.UT.(i+. 1 ),0),
ViE [ 1,2) afier(GMI.UT.i,GMI.UT.(i+1),O),
ViE [ 1,2] after(PCS.UT.iPCSJJT.(i+ 1),0),
Vie [ 1,21 after(CPY.UT.i,CPY.UT.(i+ 1).0),
ViE [ 1,2] after(HCPY.UT.iHCPY.UT.(i+1),0)

11. partial ordering of the integration testing activities:

Vie [1,31 aft er(JT.UT.(i+ 1),O)

A partial ordering of all project activities between the units of TG that have a unique name for cross referencing
is also described through the ternary relation "wafter":

after(SPS,COMD.) .0). after(SP5DMLDC.1 .0),
aft er(SPS ,CPY.SDC.1 .0).
after(SP6.DMIDC.1 .0), after(SP6,CPY.SDC.1 .0),
after(SP7,DMIDC.1 .0), afker(SP7,CPY.SDC.1 .0),
after(SP7,ALDC.l .0). after(SP7,A2.DC.J .0),
after(SP8.COMD.2,0), after(SP8,COM.D.3.0),
after(SPIOGMJDC.1 .0).
after(SPJJ .GMl.DC. 1,0),
after(SPI2.43D.1,.0).

after(COMD.l .PCS.DC.1 .5). aft er(COM.D.241 DC.1 2).
after(COM-.3,PCSDC.1 .3). after(A3D.3A43.C.J .0),
after(A3D.SA3.C.4,2), after(A3D.543 C .3 .5),
after(A3.D.A3.C.3.5), after(A3D.4,A3.CJ..5),
after(A3.C.4.A3.UT.) .0). after(A3.C.A,3.UT.1 .0),
VXE (A1,A2,PCS,CPY,GMIDMI) let i be the max index

in indices (X)
then after(XDC.iX.UT.1,1), and

VXE (Al A2A3,PCS,CPYGMIDMI) after(X.UT3JT. 1,2).
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Appendix C

Activity Resource Requirements of TG

SPJ: (RJ.S (1 4))
SP2: (RJ.S (1 4))
SP3: (RJS (1 6))
SP4: (RJ.S (1 4))
SPS: (RIJ(1 7)) (RI.S (1 10))
SP6: (Rl (1 6)) (RJ.S (1 7))
SP7: (Ri.S (1 6))
SP8: (RI.S (1 4))
SP9: (RI.S (1 6))
SP1O:(RJ.S (15S))
SP1 1:(R1 J (1 4)) (RJ.S (15S))
SPJ2:(R1 J (1 6)) (RI.S (1 7))
A3.D.1: (R2.S (1 8)) or (R2.S (2 S))
A3.D2: (R2.S (1 20)) ('f] ((.2 (R2.S -2))) (.4 (R2.S -4))) or

((R2J (1 10) (R2.S (2 12))) (fl ((.2 (R2.S -1))) (.4 (R2S -2))))
A3.D3: (R2.S (1 20)) ('f] ((.2 (R2.5 -2))) (.4 (R25 -4))) or

((R2J (1 10) (R2.S (2 12))) (fl ((.2 (R2.S -1))) (.4 (R2.S -2))))
A3.D.4: (R2J (1 8)) (R2.S (1 10)) or (R2J (1 7)) (R2.S (2 7))
A3DS5: (R2J (1 8)) (R2.S (110O)) or (R2.J (1 7)) (R2.S (2 7))

A3.C.1: (R3J (1 8)) (R3S (1 8)) or (R3J (2 S)) (R3.S (2 S))
A3.C.2: (R3.S (1 10)) or (R3.S (2 7))
A3.C.3: (R3J (1 20)) (R3S (1 2S)) (fl ((.2 (R2.S -3))) (.4 (R2.S -.5)))) or

(R3J (11IS)) (R3.S (2 15)) (f1 ((.2 (R2.S -2))))
A3.C.4: (R3J (1 15)) (R3.S (1 15)) (fl ((.2 (R2.S -2))) (.4 (R2.S -3))))

(Y2 ((.2 (R2.S -1)))) or (R3.J (2 10)) (R3S (2 10))
A3.C.S: (R3J (1 2S)) (R3S (1 25)) or (R3J (2 12)) (R3.S (2 14))

DMI.DC.1: (R2.J (1 8)) (R2.S (1 10))
DMJDC.2: (R2.S (1 5))
DM.DC.3: (R3.S (2 4)) (R2.S (1 2))

if RBASE then (RB (1 3))
DMJ.DC.4: (R3S (1 5))

if ROASE then ('RB (1 2))
DMJDCS5: (R2J (15)) (R2.S (15))
DMJDC.6: (R3.S (2 6)) (R2.S (1 3))

if RBASE then (R3S (1 4)) (RB (1 4))
DMIDC.7: ('R3J (1 5)) ('R3S (1 6))

if RBASE then (RB (13))
* DMIDC.8: (R2.S (1S))

DMIDC.9: (R3.S (2 6)) (R2.S (1 3))
if RBASE then (R3.S (1 4)) (RB (1 4))

DMIDC.10: (R35 (1 6))
if REASE then (R3.S (1 4)) (RB (1 3))
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DMIDC.11: (R2.S (15))
DMI.DC.12: (R3.S (2 8)) (R2.S (1 3))

if RBASE then (R3.S (1 4)) (RB (15))
DMJDC.13: (R3J (15S)) (R3.S (1 6))

if RBASE then (R3.S (1 4)) (RB (1 4))
r)ML.DC.14.(R2.S (15S))
DMIDC.JS:(R3J (1 8)) (R3S (2 10)) (R2.S (1 3))
DMI.DC.16:((R3.S (1 40)) or (R3.S (2 25)))

if RBASE then (R3.S (1 10)) (RB (1 10))

GMIJJC.1: (R2.S (1 10))
GMJDC.2: (R3S (1 10)) (R2.S (1 2))
GMIJC.3: ((R3.S (140)) or ((R3.S (1S)) (R3.S (2 20)) (R3.S (1 2))))

if RBASE then (R3.S (2 10)) ('RB (1 10))

HCPY.SDC.1: (R2.S (1 5))
HCPY.SDC.2: (R2.S (1 5))
HCPY.SDC3: (R2.S (1S))
HCPY.SDC.4: ((R3.S (1 20)) or (R3J (1 10)) (R3.S (2 10)))

A2.DC.1: (R2.J (115S)) (R2.S (11iS))
A2.DC.2: (R2.S (1 10))
A2.DC3: (R2.S (15S))
A2.DC.4: (R3.S (115S)) (R2.S (13))
A2.DC.S: (R3J (1 30)) ((R3.S (1 30)) or (R3J (2 15)) ((R3.S (2 1S)) (R3.S (1 4))))

if RBASE then (R3.S (1 10)) (RB (110O))

A]1.DC.1: (R2.S (1 10))
A] .DC.2: (R2.S (1 7))
A]J.DC.3: (R2.S (15S))
A] DC.4: (R3.S (I112)) (R2.S (1 2))
A] .DCS5: ((R3.S (1 20)) or (R3.S (2 12))) (R3.S (1 3)))

if RBASE then (R3S (1 10)) (RB (1 10))

PCSDC.1:(R2.J (2 15)) (R2.S (1 20)) or (R2.S (2 12))
PCSDC.2:-(R2J (2 20)) (R3.S (1 25)) or (R3.S (2 15))
PCSDC.3:(R3J (1 20)) (R3.S (1 20)) (R2.S (1 3)) or

(R3J (1 15)) (R3.S (2 IS)) (R2.S (1 3))
PCS.DC.4:(R3J (1 25)) ((R3.S (1 30)) or (R3J (2 18))) (R3S (2 20))

COMD.1: (R2.S (1 4))
COMD.2: (R2.S (1 4))
COMD.3: (R2.S (1 4))

COM.C.1: (R3.S (1 4))
COM.C.2: (R3.S (1 4))
COM.C.3: (R3.S (1 4))
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A1.UT.1: (R4i (1 3)) (R4.S (1 3))
AJJT2: (R4J (1 3)) (R4.S (1 4))
Al. UT.3: (R4J (1 3)) (R4.S (1 4))

A2.UT.1: (R4J (1 3)) (R4.S (1 4))
A2.UT.2: (R4J (1 3)) (R4.S (15S))
A2.UT.3: (R4J (1 3)) (R4.S (15))

A3.UT.1: (R4J (1 3)) (R4.S (1 4))
A3.uT.2: (R4J (1 3)) (R4.S (15S))
A3.UT3: (R4J (1 3)) (R4.S (15S))

DM1 JJT.):(R4.J (1 3)) (R4.S (1 4))
DMI.UT.2:(R4J (1 3)) (R4.S (15S))
DM1 .UT.3 :(R4J (1 3)) (R4.S (15S))

GMI.UT.1 :(R4J (13)) (R4.S (1 3))
GMJ.UT.2:(R4J (1 3)) (R4.S (1 4))
GM! .UT.3 :(R4J (1 3)) (R4.S (1 4))

PCS.UT.1 :(R4J (1 3)) (R4.S (1 4))
FCS.UT.2:(R4J (13)) (R4-S (15))
pCS.UT.3:(R4J (1 3)) (R4.S (1 5))

HCPYUT.1:(R4J (1 2)) (R4.S (1 2))
HCPYUT.2:(R4J (1 2)) (R4.S (1 2))
HCPY.UT.3:(R4J (1 2)) (R4.S (1 2))

)7'.: (R4J (1 10)) (R4.S (1 10))
JT.2: (R3J (1 2S)) (R3.S (1 30)) or (R3J (115S)) ((R3.S (2 iS)) (R3.S (1 5)))
1T3: (R4J (1 10)) (R4 (1 10))
JT.4: (R4.S (1 20)) or ((R4.S (2 10)) (R4.S (15S)))
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Appendix D

Resource Acquisition Cost

RB:
1 2 3 4 5 6 7 8

1 1836 54 72 90 108120130
2 18 36 54 72 90 108120130

RIS:
1 2 3 4 5 6 7 8

1 12 24 36 45 54 63 72 80
2 12 24 36 45 54 63 72 80

R1J:
1 2 3 4 5 6 7 8

1 8 16 24 32 3844 50 55
2 8 16 24 32 3844 50 55

R2.S:
1 2 3 4 5 6 78

1 12 24 36 45 54 63 72 80
2 122436455463 7280

R2J:
1 2 3 4 5 6 78

1 8 16 24 32 3844 50 55
2 8 16 24 32 3844 50 -3

R3.S:
1 2 3 4 5 6 78

1 10 20 30 38 46 54 62 70
2 10 20 30 38 46 54 62 70

R3J:
1 2 3 4 5 6 78

1 7 14 20 26 3034 38 42
2 7 14 20 26 3034 38 42
R4.S:

1 2 3 4 5 6 78
1 12 24 36 45 54 63 7280
2 12 24 36 45 54 63 72 80

R4J:
1 2 3 4 5 6 78

1 8 16 24 32 3844 50 55
2 8 16 24 32 3844 5055
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Appendix E

Construction of A Seed Schedule

This appendix shows how a seed schedule is constructed through incremental application of linear programming

to initialize the start time and resource allocations of every project activity:

let { Ai ) be an enumeration of all activities to be executed.
assume that no activity can be suspended once it starts.

let Ao be a starting dummy activity and AN a final dummy activity.
assume that the length of a dummy activity is zero.

let PR= [(Ak A,)) be the set of all pairs s.L
A, is allowed to start only after Ak has completed.

V activities A.
let s denote the start !me of activity j,

d-denote&te ation of activity j -this duration is
broken duwn to a sequence of m intervals of unit length
numbered from 1 to m.

let hjr:N -+ N denote the quantity of resource r that Aj requires
during its n-th interval 1 < n < d i

hi,.(n)=

O Vn< 0
q V1 <n5di
0 Vn >d i

let fr:N -+ N specify the quantity of r available during an interval,
D(f) indexes the interval and R(f) specifies
the available quantity s.t

fr(n)=

0 Vn <0
q V 1 n < max-allowable-duration
0 Vn > max-allowable-duration

let gr:N -- N specify the quantity of r required by the entire
project during an interval, the domain indexes the interval and
the range specifies the quantity. g can be computed through the
following formula:

gr(i) = IVs acfiviiy-indices hj(i-sj)
The problem of scheduling for the above set of definitions is to compute the set {si} for all activities Ai s.t. the

following sets of constraints are satisfied:
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si+d i < s V (Ai Aj) E PR
g,(i) < fr(i) V intervals i + x s.t.

x is the level by which frO) is incremented

and the goal will be to minimize the following function:
Min(v(s(so+do)) + w(x))
where v denotes the penalty of a long duration and

w denotes the penalty of a large increase in availability

The linear programming subroutine will return a value ui for every constraint i. ui would denote the importance
of constraint i in forming the solution. For instance, if ui is 27 for the second type of constraints, then by adding
I to x, i will contribute to a 27 unit drop in the quantity we are trying to minimize. If a constraint does not
contribute to the solution, i.e. has a small ui, then we could rewrite it using hr of another resource. If there is path
from the beginning to end that none of the activities on it use r and that path is not critical, then the u value of
every activity on that path will be very small. This would allow us to rewrite those constraints in terms of the
next most important resource.

If a linear programming search fails to produce a {si) which satisfies every specified constraint, then
3 i s.t. f,(i) < gr(i )

The number of such i's is a function of fr. If fr is increased evenly to a certain level, all such i's will be
eliminated. By increasing f, evenly, we also encourage the linear programming function to smooth the function

er(i) = g(i) - fr(')

The second type of constraints play a dominant factor in complicating the linear programming problem. For
instance, if the duration of project is 1 year and the unit interval length is 15 days, then 104 inequalities will
result. Although theoretically each inequality could incorporate all of the project activities, in practice the
number of activities that participate in the inequality is much smaller. This is due to three factors:

1. few activities last during the entire project

2. few activities need r during their entire duration

3. few activities can execute in parallel i.e. be on the same inequality

The following algorithm (P is the final product) will show how the optimal level by which the availability of r

(Q has to be increased or decreased:
function availability-fix(P)
repeat
let cl = p-supply-cost(P)
let fa(i)=f7Q)+ V allowed-duration(P)

unitinterval

let c2=p-supply-cost(P)
let flat-increase=supply-cost(next-unit-interval)

until cl < c2+flat
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Appendix F

Global Benefit of A Scheduling Commitment

Let A (active set) denote the set of products that the propagation reaches after each propagation, D (deleted set)

denote the set of products that are deleted from A but maintained as inactive, marked(p) be a predicate defined

on the elements of A which is TRUE if p is the product of another element in A and FALSE otherwise, TP denote

all possible alternative sets of product feature requirements of a product p that can be met by a set of

reservations, responsible-for(p) be a function which returns the name of the agent who is responsible for p,

authorized(a,p) be a predicate which is TRUE if and only if a is responsible for p, RP be the set of all resources

required by p, and q E product-transitive-closure+(r) iff (q E product-transitive-closure(r) A q * r). The

following algorithm measures global benefit of a scheduling commitment with respect to a product p if all other
scheduling commitments are fixed:
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D=O
A= (p)
marked(p) = FALSE

LI:
(add the immediate products that are not already in A to A)
Vr E A s.t. - marked(r)

Vq rE Rq s.t. q g(AuD)
A=Au{q}

(mark all non-primitive products)
Vq E A s.t. - marked(q)

if 3r E A s.t. q E product-transitive-closure(r) then marked(q)=TRUE
(if R. contains a resource other than q]
VqE A s.t. -,marked(q) Vx qE R.

if 3y (yE A A x E product-transitive-closure+(y))
(x is only an immediate product of the resources in A)
then

if (yB(x) Vz s.t. ZE RX A ze A)=I then
(there is no benefit lost)
A=A- Ix)
D D u (x)
if Vw (qE R, A we D) -4 w=x then A=A-fq)

else if
(Vz E A (z E V z=--x) A authorized(responsible-for(x),x)) v

((1 - "B(x,C,) Vz s.t. zE R, A zE A) < E) then
fagent responsible for x has ruling authority or the lost benefit is insignificant)
return(B(x,Ca) a E T s.t. Vb E T, B(x,4<B(x,))

else
(propagate the feature requirements)
construct TX
VZE R,
ifzrA A -marked(z) A VW (ZERw A weD) -- w=x
then
A=A-zJ (drop z from A)
D=Du (z)

endif
marked(x) = FALSE

endif
endif

goto L1

. . . . . .. .. .. . . . . . . . m m n m n I |
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