
"_USAISEC
US Army Information Systems Engineering Command

*Fort Huachuca, AZ 85613-5000

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION.

COMMUNICATIONS, AND COMPUTER SCIENCES

AD-A23 7 006

ARMY NONPRO(4RAMMER SYSTEM FOR
WORKING ENCYCLOPEDIA REQUESTS

PHASE II FINAL REPORT
(ASQBG-I-90-005)

DECEMBER 1989

AIRMICS
115 O'Keefe Bldg
Georgia Institute of Technology
Atlanta, GA 30332-0800 14

17, 094 91-02404

UNCLASSIFIED
S'!rIT C ASSzIFICATf!O" oF TIIIS pACr

REPORT DOCUMENTATION PAGE - FuDt.Jn3,18
Ia. REPORT SECURITY CLASSIFICATION 1.RSRCIEMRIG

UNCLASSIFIED NN
2a. SECURITY CLASSIFICATION AUTHORITY3.DSRBTO/ VIAUYOFEPT

N/A
2b. DECLASSIFICATION / DOUWNGRADING SCHEDULEN/

N/A
4. PERFORMING ORGANIZATION REPORT N UMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQBG-1-90-005 N/A
6a. NAME OF PERFORMING ORGANIZATION 6 b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (it applicable)

AIRM ICS I ASQBG - IN/A
6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, Slate, and Zip Code)

115 O'Keefe Bldg.,
Georgia Institute of Technology N/A
Atlanta. GA 31012-0S00

Sa. NAME OP FUJNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUJMBER
ORGANIZATION (if applicable)

AIRMICS ASQBG - IN/A
Sc. ADDRESS (City, State. and ZIP Code) 10 S-)tRCF FRfl'f .1\7P

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT

Georgia Institute of Technology ELEMENT NO. NO. NO. _1 ACCESSION NO.

Atlanta, GA 30332-0800 62783A DYIO 04-0
11 . TITLE (include Security Classification)

Army's Nonprogrammer System for WorkinQ Encycloredia Requests (ANSWER) Phase 11 Final Renort (UNCLASSIFIED)
12. PERSONAL AUTHOR(S)

Dr. Karen Ryan, Cho-Li Hou. Datta Shetti

13a TYPE OP REPORT 13b TIME COVERED 14. DATE OF REPORT (Year. Month, Day) 15. PAGE COUNT

FRM06/16/89 TO 12/15.89 December 15, 1989 52

16 SUPPLEMENTARY NOTATION

17. COSATI CODES I6S 51.iiJ l It Ii t, -. rnue on reverse if necessary and identify by block number)

FIEID GROUP SUI-GROIt Data Enz: ,. ';-LJ.. Very Large Database, Distributed Query Processing,

19 ABSTRACT (Continue on reverse it necessary and identity t,. r-. &

This report describes research efforts iiitt~i a~ze- of distributed heterogeneous databases through an
encyclopedia facility. Specifically, several d~.: rmnaiment tools that have been prototyped to date are de-
scribed to include database revistration. sctt".i i cIration. browsing, an Al based standard data element nam-
ing tool, and an Information Resource Dic:,. - >siem (IRDS) repository. This toolset has been integrated
under the X-windows interface managemrr: -t '. Pans for future efforts to include additional Al tech-
niques for data management. se curltv, di,, cr% formulation, and distributed query processing are also
discussed.

20 ISlIBliUTiON AVAILABILITY OF ABSTRACT :I ABST RACT SECURITY CLASSIFICATION

El NCLASSiFIED IUNLIMITED [3 AME AS RPT [] I NCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 2bTELEPUONE (include Area Code) 22c OFFICE SYMBOL

CPT Joseph J. Nealon (404i 894-31 10 ASOBG -I

DD FORMI 1473. 84 MAR 853 A I'll e.. used unit) exhsausted SFIIYC SIIAI' FTI AE

A !--e -is are obsolete UNCLASSIFIED

This research was performed by Honeywell Federal Systems, contract number
DAKF11-88-C-0024, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of the U.S.
Army Information Systems Engineering Command (USAISEC). The report represents a 6
month effort, the second phase of a four phase effort. Requests to view a demonstration
of the prototype may be made by contacting CPT Joe Nealon at 404/894-3110. This
research report is not to be construed as an official Army position, unless so designated
by other authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn Racine, Chief j John R. Mitchell
Computer and Information Director
Systems Division AIRMICS

r 1'

-\I

L A0 U£ *U £0 U A% 0 a A 0 A 0 a A 0 Ho8~e

ANSWER
Phase II

Final Report

1~A

Contract No.
DAKFI1-99-C.0024

Dec-ember 15, 1989

.Seonsnd System Developvent Center
1000 Boone Avenue North - Golden Valley - Minnesota - 55427 a £ a a a a a

• a A a A " " A a Honeywell

ANSWE
Phase II Final Report

Contract No. DAKFI 1-99-C-0024

Prepared for

AIRMICS
Under Subcontract to

Honeywell Federal Systems Inc.

Honeywell Inc.
Sensor and System Development Center

1000 Boone Avenue North
Golden Valley, Minnesota 55427

December 15, 1989

G0381 U 4 * U & * U

|ii

Table of Contents

Section Page

1 Introduction 1-1

1.1 User Interface 1-3
1.2 Database Registration Automation 1-3
1.3 Al Technique Implementation 1-3
1.4 Browsing 1-3

2 User Interface Manager 2-1

2.1 Architecture Overview 2-1
2.2 Scripts 2-5
2.3 Script Manager 2-6
2.4 Interaction Objects 2-6
2.5 Communication Subsystem Architecture 2-9

3 Database Registration Automation 3-1

3.1 Schema Integrator Script 3-1
3.2 Schema Integrator Interaction Objects 3-5

4 Browser 4-1

5 Data Element Creation Tool 5-1

5.1 DECT Architecture 5-1
5.2 DECT Processing 5-2
5.3 Definition Generation 5-4
5.4 DECT Integration with the User Interface Manager 5-6
5.5 DECT Support of AR 25-9 5-6

6 Scenario for Phase II Tool Use 6-1

7 Installation Requirements and Testing Scenario 7-1

8 Phase ll and IV Plans 8-1

8.1 Phase III 8-1
8.1.1 Task 3.1-implement Enhancements 8-1
8.1.2 Task 3.2--Query Formulation Implementation 8-1
8.1.3 Task 3.3-Al Techniques Implementation 8-1

G89381

Iv

Table of Contents

Section Page

8.1.4 Task 3.4-Security Study 8-2
8.1.5 Task 3.5-Demonstration and Training 8-2
8.1.6 Task 3. 6-Distributed Query Processing 8-2
8.1.7 Phase Ill Deliverables 8-2

8.2 Phase IV 8-3
8.2.1 Task 4.1-Distributed Query Processing 8-3
8.2.2 Task 4.2-Demonstration and Training 8-3
8.2.3 Phase IV Deliverables 8-3

G89381

V

Figures

Number Page

1-1 ANSWER Architecture 1-1

1-2 ANSWER Architecture: Phase I Deliverables 1-2

1-3 ANSWER Architecture: Phase U1 Deliverables 1-2

2-1 IData Element Creation Tool Script Fragment 2-2

2-2 User Interface Manager Architecture 2-3

2-3 Initial Display 2-4

2-4 Relationship Between Subfunctions of the Tool and
States of the Script Describing the Tool 2-5

2-5 Blocking Reiource Interaction 2-7

2-6 Nonblocking Resource Interaction 2-8

2-7 Browser Buffer Structure 2-10

3-1 Schema Integrator Architecture 3-2

3-2 Schema Integrator Script 3-3

3-3 ECAttributesSelection Script 3-4

4-1 Phase I Browser Interface 4-2

4-2 Browser 4-3

5-1 Prime Word Hierarchy 5-2

5-2 Class Word Hierarchy 5-3

5-3 Data Element Creation Tool Script Fragment 5-7

6-1 Data Life Cycle 6-2

6-3 Views of Data 6-3

G89000

1-I

Section 1
Introduction

This report covers the Phase II activities of the ANSWER program from June 16 to
December 15, 1989.

Not another database management system (DBMS), repository or query language, ANSWER
is a set of tools to support integrated data management specialized to the Army's needs. In
the long term, ANSWER will provide support for building integrated views and definitions of
data, graphical tools to manipulate data and query formulation facilities that can be used
with existing distributed query processing environments.

In Phase I of the ANSWER program we developed a prototype schema integrator and
graphical browser, and an implementation of a data definition repository. The schema
integrator reads and writes entity-category-relationship schemas from an IRDS repository.
In addition, the schema integrator creates a single integrated schema from two or more
individual schemas. The integrated schema can be used as the basic description of data
available at a single site in support of distributed query processing at that site. The IRDS
repository is an ANSI and FIPS standard for data definition repositories. All ANSWER tools
will eventually share information through the IRDS repository. The browser developed in
Phase I presents a graphical display of schemas and related data definition information,
following AR 25-9. The browser in Phase I was not integrated with IRDS. All the schema
information in the Phase I browser prototype was represented in data structures local to
the browser.

The overall ANSWER architecture as envisioned at the end of the program is shown in
Figure 1-1. The deliverables from Phase I are highlighted in Figure 1-2.

User Interface Manager

Schema QueryBrowser
Integrator DECT Query

ADD IRDS Distributed Query Processor

D Database Database Database

G9381-3476

Figure 1.1. ANSWER Architecture

G89381

1-2

DaaaeDatabase Database Database

G9381 -3477

Figure 1.2 AAM WER Arciecturv Phase IDeliverables

Phase 11 was a six month effort whose major goals were to produce a uniform interface and
execution environment for all the ANSWER tools a.nd to make modifications to the schema
integrator and browser as required. The Phase HI deliverables are highlighted in Figure 1-3.

User Interface Manager

Schema DECT BrowserQur
IntegatorFormulation

DaaaeDatabase Database Database

G9381-3478

Figure 1. ANSWERArchitecturc Phase HIDeliverables

G89381

1-3

The schema integrator interface was significantly modified in Phase 11. Additional functions
were added to the browser capability and the browser was modified to access IRDS
structures for schema information. An additional tool prototype, a data element creation
tool (DECT) was built during Phase U. The DECT, based on a prototype done by MITRE,
guides a user through the creation of a data element name in accordance with AR 25-9. We
reimplemented the basic MITRE functionality on a different platform and developed
additional functionality to demonstrate the feasibility of simple synonymy detection for
data element names.

The specific Phase II tasks are described below.

1.1 User Interface

We have implemented an X-Windows-based user interface that allows the user to invoke the
ANSWER tools, including the schema integrator tool, the browser, IRDS and the data
element creation tool through a uniform interface. The interface allows a series of tools to
be suspended and resumed with other tools being invoked in the interim through a
seamless interface.

1.2 Database Registration Automation

In this task we made modifications to the schema integrator user interface. The Phase I
interface was a menu-driven interface. The Phase 1U interface is a graphically oriented
..1terface.

1.3 AI Technique Implementation

In this task we have developed a prototype data element creation tool (DECT) that provides
automated support for creating data element names in conformance with AR 25-9.

1.4 Browsing

We added several additional functions to the browser interface. It is now possible to
graphically add new nodes to an existing graph and edit some aspects of the node
description for existing graph structures. The browser functions are used to support the
creation of new schemas through a graphical interface.

This report discusses the results of each of the four tasks.

G89381

2-1

Section 2
User Interface Manager

The ANSWER user interface system is designed to be an extensible interface support
graphical and text interaction with tools registered in the ANSWER system. In this section
we present an overview of the user interface manager followed by a more detailed
discussion of each component.

In constructing a user interface manager we had two major goals:

" Consistent information presentation and tool invocation facilities '-)r end
users,

" Convenient modular architecture for ANSWER tools that allows tools to be
added or removed from the system.

The X-Windows environment used as the basis for the user interface manager will support
tools running on a distributed hardware platform. This means not all tools need to reside
on the same workstation. A network of tools can be supported that are integrated through a
consistent user interface and integrated through a common data dictionary (implemented
in IRDS).

2.1 Architecture Overview

The basic architecture for the user interface manager assumes that tools are described as
scripts with associated interaction objects. Each script defines states of the tool that have
specific I/O requirements or control requirements to which the user interface manager
needs access. A script represents an abstraction of the tool that can be used by the
interface manager to control:

" Presentation of tool output information to the end user,

" Collection of user input information,

" Presentation to the user of control options at various points in the tool's
execution.

An example of a script for part of the data element creation tool is shown in Figure 2-1.

The tools input and output requiremeiits are encoded as interaction objects. Each object
defines the type of information being manipulated at a state and the user interface
requirements for that information. Examples of interaction objects include:

" Transient menus,
" Persistent menus,

G89381

2,2

ciE
LI.

AI

w1
0 1

-

CC4

00

I-I
0d

V838

2-3

* Graph nodes with appropriate functions,
* Radio buttons (for indicating choices in a list),
e Dialog boxes which present status messages to the user.

Transient menus present menu choices to the end user but do not remain on the screen
once the choice has been selected. Transient menus are used for I/O where the I/O is
meaningful only at individual states of a script Persistent menus remain on the screen once
a choice has been made. Persistent menus are used for situations where choices are
meaningful throughout a number of states. Graph nodes are used extensively in the
presentation of database schemas and Army Data Dictionary information. The graph nodes
must support edit operations as well as display operations that may be used by tools
manipulating schemas or Army Data Dictionary information.

The basic architecture for the user interface manager is shown in Figure 2-2.

The script manager tracks the current states of individual scripts. Only one script may be
active at a time. All other scripts are either inactive or suspended. The scripts may be
invoked using a single thread of control. This means that once a script has been invoked, it
may be suspended and other scripts may be called but the resumption of any script must
follow a stack protocol (i.e., last suspended, first resumed). The reason for this is the
application area does not indicate a high degree of concurrency. In addition, portability to
other software platforms would be compromised if the user interface manager were
implemented using a multiple control thread strategy. In particular, the current version of
LISP being used has some support for multiprocessing, but that support is not common
across all environments.

The single thread of control strategy used by our user interface manager is the same
strategy used by numerous PC- and Maclntosh-based interfaces. As each tool is invoked, it
must be "closed" before processing can continue with a different tooL

+ ~. 0.+

F Script Manager

G9381-3480

Figure 2-2. User Interface Manager Architecture

G89381

2-4

The script manager invokes interaction objects as indicated by states in the currently
active script. The interaction objects read and write information to the user interface layer.
The user interface layer consists of a display and associated control information for the
windows, which remain on the screen throughout all possible script invocations. The user
interface consists of:

" Two graphics windows.

" A set of global command buttons available during any tool invocation and a
text interaction window.

" All other interaction objects display information within this user interface
environment. The initial display of the user interface is shown in Figure 2-3.

The graphics windows and the global command buttons are resources shared by all tools
being managed by the user interface manager. The text interaction window and other
windows that appear during the course of an individual tool's execution are local to the
tool.

So0.h Move >> Sau]y R Find No e I.4d I so <M I rah - =lal

fg.re 2.t Initial Display

G89381

2-5

Each major component of the user interface manager will now be discussed in more detail.

2.2 Scripts

A script is the mechanism for describing the functionality of a tool managed by the user
interface manager. The user interface manager uses script information to monitor the
current state of a tool and as a guide to presenting options to the user as to which tools
may be invoked at a given state.

A script describes the functionality of a tool at a level of abstraction that is dictated by the
I/O requirement of the tool. A script is divided into individual states where each state
includes the following information:

" Initialization information,

* Functions to be computed by that state,

" Interaction objects used by the state,

* Pointers to states reachable from the current state and state transition
requirements.

A script controls tool execution by passing information from the user input to the tool
associated with the script. The tool executes computation associated with the user input
and typically produces some output to be passed back to the user. The script manager
updates the active state as the tool computation proceeds. In our implementation, the start
of each state corresponds to presenting some output information to the user. Each state
ends with a request for new input from the user. Figure 2-4 shows the relationship between
subfunctions of the tool and states of the script describing the tool.

States are structured this way because input points are the major points where users can
switch between tool invocations. Again, this is similar to the strategy used by Macintosh
style interfaces, which wait for mouse clicks or key strokes before transitioning to the next
state or tool.

(U s e r S e e c t T o o l) S u b tu n c o n f1 ,1 O t u S u b un c ti 1 2 , O t u S u b u n c o n f n O u p u
Output J Input , Output Input Output Inpt Input Out at

State S o]
S nedc

S tate $1 21 S 2e •S a e a

G9381-3482

Figure 24. Relationship Between Subfunctions of the Tool
and States of the Script Describing the Tool

G89381

2-6

A complete description of scripts for all the tools used in Phase II can be found in
Appendix A.

The use of scripts as a tool abstraction mechanism allows the ANSWER system to gracefully
add or remove tools from the tool set. As new tools are added, new scripts will be added.
New tools create new possibilities for tool interaction not anticipated when existing tools
were implemented. Since the tools are represented by scripts, modifications to the scripts
will allow the user to suspend existing tools and invoke new tools at points that may not
have originally supported suspend operations. Modifications to existing scripts for existing
tools will allow the coherent use of additional tools not anticipated in the original tool
design.

2.3 Script Manager

A script manager, which monitors the current state of tools and coordinates the execution
of interaction objects used by each state uses the scripts as data structures. The script
manager Is an event-driven system. It continuously monitors the user interface
environment. At each wait-for-input an event is trapped. The event type will either be an
event to be handled by the user interface manager directly or it will be an event to be
handled locally by an interaction object within an individual script.

The types of events which may occur are:

" Global events,
" Script-specific events.

Events require the following information:

" Window (location where the event occurred),
• Type (global or local to a script),
" Button type and button state (middle, left, right, ...).

Event processing is managed through a semaphore that indicates whether an event is
currently being handled or whether other processing is enabled. When an event occurs, the
semaphore blocks all other processing until the event has been completely handled. When
the event handling finishes, other processing may resume again.

2.4 Interaction Objects

Interaction objects encode the information about the types and interface mode of user
input and output. Interaction objects describe the type of data being presented or collected
from the user and the form in which that information is collected or presented to the user.

Interaction objects are subdivided into two different resource types:

G89381

2-7

Blocking resources require the user to respond before the current state in a script can be
exited. An example of a user interaction implemented using a blocking resource is an
interaction box requesting that the user confirm a choice before allowing processing to
proceed as shown in Figure 2-5.

SeAwt Tool Show Gra Move >> Scroll Redra Fid Node lid Sroll << Move Show G.r, r it

0 Wit Sdcuna Mgn oc

mcbmat Some EC aWm'bue Painr1

1Conume DoneI

Figure 2-5. Blocking Resource Interaction

Blocking resources are used when there is critical information in the current state that
cannot be saved if the script manager transitions to a new script. Blocking resources
disable the choice of any global event types.

Nonblocking resources do not require that the user provide some input in response to the
nonblocking interaction object before the transition to the next state. Nonblocking
resources are used for options of user input that remain valid over a large number of states.
An example of a nonblocking resource is an interaction that requests the user to confirm
that a standard data element associated with an integrated schema attribute should be
changed or remain the same, as shown in Figure 2-6.

G89381

2-8

Sae- Toal ShowGa More>> Scrl Redraw Fund Node Sall << Move S9m Grap Eit

. T

~,m~m--

II kidt Shmnahimu

Do yu wt t ch Data doomma amdam
wMMAEFUE OWPERSONNEL

Date a m DISBURSEMENT-AMOUNT-DOLLAR

Figure 26. Nonblocking Resource Interacton

It is important in interactions such as this one to allow the user to invoke another tool, for
example the data element creation tooL If the user decides that the standard data element
needs to be changed, the data element creation tool can be invoked to support the user in
defining a new standard data element. This requires the user interface to suspend
execution of the schema integrator script and to begin invocation of the data element
creation tool script. Once the data element creation tool finishes execution, the schema
integrator script can be resumed at the current state

Interaction objects require the following information to be defined:

" Return value/call method,
" Window resource,
" Event handler specializations.

Interaction objects allow much of the Interface resources to be shared between existing
tools. The same type of interaction object, a dialog box for example, need be defined oily
once. Multiple instances of the object may be created to be used by different tools. The use
of interaction objects also allows a tool's computation to be separate from the interface

G89381

2-9

requirements of the tool. Changes can be made to the interface form or style without
affecting changes to the actual tool code.

2.5 Communication Subsystem Architecture

The tools whose interfaces are managed by the user interface manager must communicate
with that manager by sending packets of information to the manager to be structured and
manipulated by interaction objects. There are two major issues involved in the
communication between tools and the user interface manager:

" The protocol to be used for interprocess communication,

" The internal structure of the data buffers being sent between the tools and the
interface.

The IPC protocol is required because some of the tools in the ANSWER tool set run in C
while the user interface manager and other tools run in LISP. The user interface manager
commui'cates with the C tools through UNIX sockets. The sockets are statically allocated
at the time that the ANSWER system is initially started up. The schema integrator and
various IRDS data access routines make up the C-based tools that require the use of
sockets. The complete list of tools running as separate processes in C is:

" IRDS-info--Retrieves information about dictionary names, schema names and
schema history information from IRDS at the request of the user interface
manager,

" Browser-info--Schemas are extracted from IRDS at the request of the browser;

" Schema-creation-The user interface manager sends information about
interactively created schemas to IRDS for storage in IRDS;

" Schema-integration-A variety of requests for reading and writing information
to and from IRDS in support of the execution of the schema integrator tool;

" IRDS--Gets concurrency status and establishes a socket connection for direct
IRDS access.

The internal representation of data in the tools is not the same as the representation of that
data as required by the user interface manager. Each communication between a C process
and the mser interface manager requires a buffer with information structured for that
communication type. For example, schema information that will be sent from IRDS to the
user interface manager for user by the browsing functions will have a buffer structured as
shown in Figure 2-7.

Each communication buffer includes a number at the beginning of the message indicating
the total number of buffers and an EOT at the end of the buffer indicating the end of the

G89381

2-10

buffer. The structure of the buffer depends on the type of communication. For the example
in Figure 2-7, the buffer structure is organized into information about entities and categories
(the OFLIST), information about attributes (the AFLIST), and information about
relationships (the RFUST). This particular structure reflects the order in which the
information is retrieved from IRDS. A complete description of the structure of all
communication buffers is given in Appendix B.

The communication architecture requires only standard UNIX as a software environment. It
is the critical underpinning allowing some tools to be running in C and some tools to be
running in USP. It is also the critical component that allows for concurrent execution of
multiple tools.

TOTAL # OF _BUFFER ((BROWSERSCHEMAINFO <Schema_name>
(OFLIST (<ename> <cobjectype> <urd>)...)
(AFLIST (<ename> < attrname> <attrjtype> <key> <sde>)
(RFLIST (<mame> <ename1> <ename2> <objlmaxcard>

<obi2_maxcard> <obj1_mincard> <obj2_rmincard>
<rolel> <role2> <typel> <type2>}...)

)EOT) G9381-3483

Flgure 2.7. Browser Bufer Structure

G89381

3-1

Section 3
Database Registration Automation

The database registration task has focussed on additional development of the schema
integrator prototype originally developed in Phase I. The schema integrator automates the
production of integrated schemas from unintegrated individual schemas. The schema
integrator automatically reads schemas from IRDS and interacts with a user to collect
information about equivalence relationships between individual entities and attributes.
Based on the information collected interactively, the schema integrator synthesizes a
complete integrated description of the input schemas. The integrated schema may include
additional entities not present in the original schema as a result of the generalizations
discovered during the integration process.

The schema integrator will support the creation of integrated views of data contained in
databases and flat files maintained at installations throughout the Army. The schema
integrator will make it possible to:

" Add new types of information without disrupting data integrity or existing
application functionality;,

* Integrate "legacy" systems with new systems;

* Support the retirement or redevelopment of "legacy" systems;

" Create integrated views of data that will support distributed query access.

The results in Phase I provided basic schema integrator functionality in a prototype that
used a menu-driven interface based on the CURSES window environment. The major goal in
Phase II was to revise the schema integrator architecture and provide a graphical interface
for the schema integrator consistent with the user Interface manager architecture in an X-
Windows environment. This section of the final report discusses the development of the
graphical user interface for the schema integrator and its integration with the user interface
manager.

3.1 Schema Integrator Script

To integrate the schema integrator under the user interface manager, it was necessary to
define interaction objects and a script for the schema integrator. The script will be
discussed in this section. The interaction objects are discussed in Subsection 3.2. The
major steps of schema integrator processing are shown in Figure 3-1.

The schema integrator collects assertions from a user about the equivalence of attributes
and uses that information to guide the collection of information about the equivalence of
entities, relationships and categories. The possible assertions include equality, inequality,
subset, superset, disjoint and integrable, disjoint and not integrable. Once all local

G89381

3-2

t Cc 0

F
40

cm 'E

_ Orao

00

< 938

3-3

assertions have been collected, the schema integrator derives additional assertions, which
are logically implied by the original assertion set, and checks for consistency of the
assertion set. For example, it is not possible for two objects A and B to be both equal and
disjoint at the same time.

Once all assertions have been collected, derived and checked for consistency, the schema
integrator identifies distinct equivalence classes for integration. Each cluster is integrated
independently. Once each cluster has been independently integrated the lattice merging
function takes each cluster and generates a lattice based on subset-superset relationships
between objects. Only one of a pair of objects asserted to be equal will occur in the final
lattice. This completes the integration process. The user is free to view the results and
commit them to storage in IRDS if the results are satisfactory.

The schema integrator script follows the breakdown of processing represented in Figure 3-
1. The script is represented at a much finer level of detail to track individual user
interactions and support suspension and resumption of the schema integrator at various
points in the processing.

The schema integrator script is broken into a number of subscripts following the structure
of choices implied by the original menu-based interaction. The top-level schema integrator
script is shown in Figure 3-2.

Each node in the script is actually the name of a subscript. Several nodes in this figure have
more than one possible entrance or exit. For example, the node RelAttrSelection may be
invoked from either the TopLevelMenu state directly or it may be invoked after the
completion of the ECAssertion state. The final state in this script, CommitOrExit may be
exited by either taking the commit arc to a final state or taking an arc back to the
TopLevelMenu state.

Each one of the nodes in Figure 3-2 actually names a subscript with more nodes. For
example the subscript associated with ECAttributeSelection is shown in Figure 3-3.

I Slec S1IJICL~trbL e~elec io H EC Assertion

• H RELAttR Relation
10 Selection Assertion

Exit re ril~i

CommitEi

G9381-3486

Figure 3-. Schema Integrator Script

G89381

3-4

Select 2 Sch III,)11 ECAttrSelection

I Select ECAtr2 -
,_______RelAttr Assertion Subscript

I Select ECAttr2 ECAttr Assertion Subscriptlb

rCn SDE EquivalenceJ

ri r

L G9381-3487

Fgure 3.. ECAttributeSelecdon Script

There are two possible exists from ECAttributeSelection: one to SelectECAttributel and one
to the RelAttrSelection subscript. Each exit from the state is associated with an event, in
particular a mouse click on a button specified in the state. The SelectECAttributel
unconditionally transactions to SelectECAttribute2 and to the state ConfirmEquivalence.
The state ConfirmEquivalence has two possible exits; one to ECAttrSelectCompleted and
one to a different tool, the DECT tool, which creates new standard data elements.

The method of representing a tool's processing as a script allows the insertion of
suspension points such as in this example at any point in the development of the script that
explicitly offers the choice of invoking a specified tool. As new tools are developed, new
suspensions points may be introduced into an existing script to allow controlled use of
multiple tools in the same environment. In this case, If the user selects the DECT option in
the script, the schema integrator processing will be suspended and the DECT will be
invoked. The user may then use the DECT to create a new standard data element to
associate with the schema currently being examined by the schema integrator.

The script allows the tool interactions to be easily configured and reconfigured as new tools
are developed or old tools are removed from the ANSWER tool set. This is a crucial element
of the ANSWER tool environment support for data administration and query support.

This explicit inclusion of points where other tools can be invoked should not be confused
with the facility to invoke other tools at any point where the current interaction object is a
non-blocking resource. At such points the user may also elect to suspend processing and
invoke another tooL

G89381

3-5

3.2 Schema Integrator Interaction Objects

The schema integrator uses both blocking and nonblocking resources. Blocking resources
do not allow any other processing to occur until the current interaction is completed. Non-
blocking resources allow other interactions even if the interaction for the nonblocking
interaction object has not yet been completed.

In the example script fragment in Figure 3-1, both blocking and non-blocking resources are
used. Blocking resources are used for dialog boxes at ECAAttrSelection . Nonblocking
resources are used for interaction objects at the ECAttrSelection state, and the
ConfirmEquivalenceSDE state. and the states SelectECAtrribute I and SelectECAtribute2.

At the SelectECAttributel and SelectECAttribute2 states, the fact that the interaction is
nonblocking allows the user to browse through the schemas before selecting attributes to
be equivalenced. This is an important facility since the user may view arbitrary parts of the
schemas before determining the correct relationship between two attributes.

At the state ConfirmEquivalence/SDE, the user may determine from examination that the
attributes being displayed do not have the correct standard data element associated with
them. It is possible that a standard data element created in the context of an individual
schema may no longer be the appropriate standard data element for the new integrated
schema. The data administrator may want to change the standard data element by
changing the modifiers of the prime word or the modifier of the class word to more
accurately reflect the new semantics of the standard data element in an integrated context.
The ANSWER tool set will allow the user to invoke the DECT tool or other tools as
appropriate to make the best determination on the correctness of the attribute equivalence
assertion and the associated standard data elements.

G89381

4-1

Section 4
Browser

The Phase I browser functionality has been used as the basis of the development of the
User Interface Manager. The Phase I browser functionality has also been expanded in Phase
I to provide support for.

* Adding nodes,
* Deleting nodes,
• Editing node definitions,
• Integration of browser with IRDS.
" Integration of the browser with the user interface manager.

The Phase I browser functionality included the ability to display and manipulate graph
structure as well as managing text and mouse interaction facilities in a single environment.
The initial browser user interface from Phase I is shown in Figure 4-1.

The Phase If browser has maintained the same basic user interface with (1) two fixed
location graphics windows, (2) the ability to scroll, index nodes by name, and create new
links between nodes. All of the commands that were originally part of the browser
functionality have been included as global commands in the new user interface manager.

Additional facilities that have been added to the browser are actually represented as global
commands available through the user interface. Each command may be individually
suppressed depending on the current state of the user interface manager. For example, in
some cases the user should not be allowed to edit nodes in a schema. That operation,
which will typically be globally available, will be suppressed at that time. For example,
editing a node in a schema currently being used as input for schema integration while
schema integration is active cannot be allowed.

The editing and add node operations, which are new in Phase H allow the user to manually
create a new schema if desired or to edit characteristics of existing nodes in a schema. For
example, the definition of an attribute or the data type of an attribute may be changed by
the edit node facility.

The browser is also fully integrated with IRDS in Phase U. This means that the user may
request schemas to be read in from IRDS into local memory for manipulation by the
browsing commands. The user may also create new schemas and commit those schemas to
IRDS for storage.

The interface for the browser in Phase If is the same as the interface for the user interface
manager, as shown in Figure 4-2.

The functionality of the browser is essentially a subset of the functions supported by the
user interface manager. The browser functions are not selected by first choosing a tool

G89381

4-2

using the select tool command. instead the browser functions are available as the buttons
across the top of the screen for moving, finding, and scrolling, as well as functions available
by selecting a node in the graphical display with a mouse click.

cl &2M-0nz

t *t thW Of QA , r U A 1= &0 U": W fb .tusb? ."~ LTM09 P h. t.y~UJ .P.& MI P..qrONs
tn* a. "1U . J ~ 2"0 .106 * p
AU15?.. CW3.d 1IDU uelIAIqa h.S.SoJaU

1,C"". .M- the pledu of. thOO ".g Lk.U 1OOW1" d It h r Si r, Fn Nd d

Figure 4-1. Phase Ilirowser Interface

G89381

4-3

MINE M Grap Move: ,> So Rafraw Find Node Hed- Scroll << Move Show Graph Thdil

Figure 4-2. Browser Interface

G89381

5-1

Section 5
Data Element Creation Tool

Data element names must be syntactically and semantically correct to be useful for data
administration. Syntactic correctness for data element names in ANSWER is specified
according to AR 25-9. Semantic correctness will be ultimately insured through the Army's
approval process of individual data elements. Initial checks for semantic correctness can be
done prior to the final official approval by users preparing data element names for
approval.

The data element creation tool (DECT) provides interactive assistance to a user to create
standard data element names in accordance with AR 25-9. The tool is an aid to automatic
enforcement of AR 25-9 by only allowing data element names to be created which follow the
approved syntax specified by AR 25-9.

DEC7 also provides assistance by leading the user through a series of questions as a data
element name is created to insure that the intended semantic distinctions are being
captured by the new data element name. The questions allow the user to implicitly or
explicitly traverse a structure that represents a semantic model of the prime words and
class words as used in AR 25-9.

DECT also provides additional aid to the user by identifying data element names similar to
the new name being created. The user may choose to use a similar existing name in place of
a newly created name if the similar name accurately describes the data element in question.
For example, if the new standard data element name developed by the user were "materiel
purchase date," an existing standard data element name of "acquisition purchase" might be
a more appropriate choice. The DECT would aid the user in identifying the existence of the
name "acquisition purchase" by limiting the amount of search the user would need to
perform.

The remainder of Section 5 discusses the architecture of the DECT and the integration of
the DECT with the user interface manager.

5.1 DECT Architecture

The DECT maintains separate models of the prime words and class words used to guide the
question answering process for creating a standard data element and for classifying a
standard data elements to identify synonymous elements. Enhanced with additional nodes
to improve the semantic discrimination capability, the models are structured following the
Army Data Architecture. For example, in the Class Word model, the class word 'length' is
related to the class word 'area' since they both measure spatial extent. Additional nodes
can be added to the hierarchies to improve the discriminating capability of the models.

Each model is structured as a hierarchy with the following information contained in each
node:

G89381

5-2

* A short description of the node's contents,

" A long definition following official Army definitions where available,

" An optional list of contrasts with other nodes at the same level (e.g.,
distinguishing characteristics of the subject areas Materiel and Acquisition),

" A list of data elements which have been classified under the node.

The model has been constructed for use with the prototype. Enhancements to the model
will directly affect the effectiveness of the model in distinguishing semantic characteristics
of various standard data element names. Over time, the model could be refined to specific
requirements reflecting the context of use of the DECT. 'or example, to distinguish
standard data element names, a data administrator at the installation level may have
different needs than the needs of a data administrator at the ODISC4 level.

Portions of each model are shown in Figure 5-1 and Figure 5-2.

Definitions of individual words are maintained through pointers to nodes in the hierarchy.
Some words will relate to more than one area of a hierarchy. For example, the prime word
'materiel' will be associated with the area of the prime word hierarchy dealing with material
and with the area dealing with 'acquisition' since the definition of 'acquisition' as a subject
area includes the acquisition of materiel. The definitions of prime words, expressed in
terms of the relationship of the prime word to this hierarchy, will aid the user in identifying
the best possible choice of a prime word.

5.2 DECr Processing

The DECT will aid the user in creating a new standard data element, generating a definition
for that data element, and checking to see If any synonymous data elements have already
been generated.

Subject Area: Acquisition

Info Material Personnel Materiel Facilities Industrial
Class: Improvement Accessories Acquisition Acquisition Capability

Associated Prime Words/Architectural Modifiers: Acquisition, Industrial
G9381-3490

Figure 5-1. Prime Word Hierarchy

G89381

5-3

:Date
:Time

:Year

DATA
text -- E D

:Size Etn

:weight
G9381-3489 :mass

Figure 5.2 a=as Word Hierarchy

The four components of the data element (DE) name are entered through menu-based
interactions (this is similar to the protocol used in the MITRE software). The system asks
the user questions about the DE to help classify it in each of two semantically-based
indexes, one for class words and the other for prime words. This is how the system
organizes its knowledge about data elements and keeps track of semantically similar data
elements. When necessary, the system suggests an alternative prime word or class word
that it judges more appropriate based on the user's answers to the system's questions. The
user can rename the DE, if desired. The system suggests potentially similar DEs (using the
semantic indexes). The user can select one of these previously defined DEs or stay with the
new one. The DE definition is generated based on the answers to questions and context-
sensitive synonyms.

Prime and class words point to nodes in their respective indexes. Words such as "materiel"
are easily misused since there is more than one subject area that deals with materiel (e.g.,
Acquisition and Materiel). These words will have multiple pointers, referencing nodes in
different parts of the hierarchy. Such words will cause the system to begin asking the user
questions that will determine the proper classification of the DE in the indexes, identifying
which use of the word was intended. The possible answers to these questions will be

G89381

5-4

supplied in menus built from the short descriptions. At any point the user can ask to see
the long description of any node that is currently an option. The user can also ask to see all
the nodes at the current decision point, to move up one level in the hierarchy, or to supply
a different prime or class word.

Once the user has settled on an index node as the proper classification, the system will use
that node in the following ways: it will suggest a more appropriate prime or class word if
one exists as determined by the node and its ancestor nodes; it will use the DEs stored in
the chosen node and closely related nodes as possibly synonymous DEs to present to the
user. It will use the node in choosing synonyms for use in the data element definition.

5.3 Definition Generation

The DECT generates definitions for standard data elements once they have been created.
Generating appropriate definitions requires an algorithm to generate appropriate syntax for
definitions and a considerable amount of information about the semantics of the words
being used in the definition to avoid odd or bizarre sounding definitions. For example, it is
sufficient syntactically to say that the definition must consist of some descriptive noun
phrase followed by a prepositional phrase of the form <<OF/FOR a Prime Word (or Prime
Word synonym). Consider for example, definitions generated by the MITRE prototype for
definition generation:

* SDE military-personnel-authorized-leave-category,
DEF: permitted absence class of a military person,

* SDF" military personnel-proficiency-pay-category,
DEF: ability wage class of a military person,

* SDE military-personnel-service-category,
DEF: duty class of a military person.

* SDEa military-personnel-separation-category,
DEF: withdrawal class of a military person.

The definitions all follow the general form of << (synonym for class word modifier)
(synonym for class word) OF A (synonym for architectural modifier) (synonym for prime
word)>>. For example: <permitted absence> is a synonym for the class word modifiers
<authorized leave>; <class> is a synonym for <category>; <military> is the architectural
modifier; <person>is a synonym for the prime word <personnel>.

This approach to definition generation will always generate a syntactically well formed
string (i.e., a noun phrase followed by a prepositional phrase) but the simple one for one
substitution of synonyms for modifiers, prime words and class words will result in
semantically odd definitions in many cases. For example, the following definitions are also
generated by the MITRE prototype:

G89381

5-5

* SDE personnel-birth-location,
DEF: delivery site of a person,

e SDE: personnel-patient-code,
DEF: patient symbols of a person.

In the first definition the use of the term <site> is pragmatically odd when speaking of an
individual's birthplace. In the second example, the definition does not convey any
additional meaning to the standard data element. In that case, the definition should convey
something about the intended range of code values.

The approach used for definition generation in DECT attempts to ameliorate some of these
problems by employing a more highly structured representation of the synonyms for
modifiers. As with the class word and prime word hierarchies this represents a first cut and
can be enhanced as the tool is used more. The DECT uses a modifier dictionary to guide the
definition generation process.

The modifier dictionary contains the context sensitive synonyms for DE modifiers. By
context sensitive we mean that a different synonym can be used for a modifier depending
on the surrounding words and on the Prime Word and Class Word Index nodes. For
example, in the data element PERSONNELSECURITY-CLEARANCE-CHECK-CATEGORY we
might want VERIFICATION as a synonym of CHECK. This same synonym would be
inappropriate for the data element DISBURSEMENT-CHECK-NUMBER. Context sensitive
synonyms allow this distinction to be made by stating that VERIFICATION should be used
when SECURITY-CLEARANCE precedes CHECK, and that some other synonym (or perhaps
CHECK itself) should be used when the prime and class words are DISBURSEMENT and
NUMBER, respectively.

Consider some additional examples of standard data elements where it would be important

to be able to store context sensitive synonyms for modifiers:

" personnekocial-SECURfrY-number-code.

Note: Security here should be treated as part of the single word social security
number and that word should have synonyms and not security by itself.

" facility-SECURITY-unit.

Note: Here the best synonym for security might be something like guard or
defense or police.

" personnel-loan-SECJRITY-code.

Note: Here the best synonym for security might be something like collateral.

It is clear from the examples, that a context-sensitive definition is important.

G89381

5-6

5.4 DECr Integration with the User Interface Manager

The DECT is integrated with the user interface manager. The user can invoke the DECT at
any point allowed by the user interface manager. To be integrated with the user interface
manager, the DECT has its own script that describes the possible states of the DECT. Figure
5-3 shows a portion of the script for the DECT.

The fragment of script shown for the DECT controls the initial selection of prime words and
qualifiers for those prime words. Each state in the DECT script specifies computation to be
performed at that state and events that must occur to transition to a new state. Not all
transitions are governed by external events. Some states support unconditional transition
from one state to the next.

The first state, WAIT-FOR-PW, controls the display of prime words and prime word
definitions and the selection of a prime word for the data element name being created. Two
different functions are called from this state, one to create and display the menu and one to
return control to the event handler to wait for a mouse click. There are three possible exits
from this state, based on three events: CANCEL, MIDDLE-BUITON, and LEFT-BUlTON. The
events are all mouse button selections. CANCEL will allow transition to an END state.
MIDDLE-BUTTON will allow transition to a state; SHOW-PW-DEFINITIONI. That state
displays the definition of a prime word in isolation. The only transition from that state is
back to the originating state, WAIT-FOR-PW. LEFT-BUTTON is the event for the third
possible transition from WAIT-FOR-PW to the state PW-QUAL-MENU. The state PW-QUAL-
MENU supports display of the qualifiers for the prime word that has been selected. It also
stored the results of the prime word selection by calling the function (pw-selected
<pw> de>) with the parameters <pw> and <de> appropriately bound based on the previous
state. It supports an unconditional transition to the state WAIT-FOR-PW-QUAL, which again
has transitions governed by mouse click events.

5.5 DECT Support of AR 25-9

The DECT can be used to support the enforcement of data element naming standards as
outlined in AR 25-9. The tool can be used at the installation level to create new candidate
standard elements, and used at higher levels to verify the candidate or reject it as a
standard element. At the installation level, a data administrator may use the tool to create a
syntactically well formed name that is not ambiguous or synonymous with any other data
element names known at that installation. Higher levels of authority may use a version of
the DECT as an aid to verifying the absence of synonymous elements and to determine that
the candidate standard element is not ambiguous. The DECT is an important tool to
support AR 25-9.

G89381

5-7

w -n
0 -l

6.
;oI

uj cra

22a
CL ap
& -a
0 0 'E
LL 0 C.

aa

-g
2 70

a.38

6-1

Section 6
Scenario for Phase 11 Tool Use

Data has a distinct life cycle from creation and implementation through possible integration
and standardization. A rough representation of the life cycle of data is shown in Figure 6-1.

This life cycle follows the system development life cycle as described in DODD 7920.1 and
presented in AR 25-9, with the exception that the design phase may be paralleled by an
integration phase. Depending on the state of the data (I.e., already present in an existing
system or about to be introduced in a new system) the life cycle may follow one or both of
the design and integration paths. In fact, in an environment where data from existing
systems is being integrated with other existing systems and new systems, the life cycle may
iterate between the design and integration phase a number of times.

As discussed in AR 25-9, the life cycle for standard data element development parallels the
system design life cycle. If the data life'cycle presented in Figure 6-1 is matched against the
standard data element development life cycle following AR 25-9 the result is as shown in
Figure 6-2.

In this case, the element requirements definition phase of standard data element
development overlaps with both the design and integration of data. The ANSWER tools are
designed to support both the schema design and integration phases and the standard data
element requirements definition phases.

Need Justification

Concept Development

Design (and Integration)

Development

Deployment

Operations

G9381 -3518

Rigure &.. Data Life Cycle

There are a number of individuals who must be involved in developing and maintaining
integrated views of information and data element standards. These include:

e Requirements developers,
* Organizational data administrators,

Database administrators,

G89381

6-2

" Information class proponents,
* Army data encyclopedia administrator,
* Army data manager,
* End users.

Need Justification Element

Concept Development Requirements

Design (and Integration) Definition

Development Candidate Element
Review and Approval

Deployment Approved Standard
Element Integration

Operations Standard Element
Assessment and Review

G9381-3519

Figure 6-2 Standard Data Element Life Cycle Matched with Data Life C ce

Each of these classes of individuals may use some of the ANSWER tools at various points in
the life cycle of data.

At the point of schema design and integration, requirements developers, organization data
administrators and database administrators must work together to produce a schema
design which correctly reflects identified needs and in which appropriate data elements
have been assigned standard data element names.

The schema integrator and browser support the process of initial schema design and
schema integration. A schema may be manually created through the the ANSWER tool set
graphical interface and committed to IRDS. Existing schenas stored in IRDS may be read
into the ANSWER tool environment and the database administrator may use the schema
integrator to develop an integrated view of the existing schemas. The integrated view can
serve as the basis of distributed query processing against those existing systems.

As integrated schemas are developed, requirements developers must identify any data
elements which need to be standardized. As discussed in AR 25-9, the requirements
developers must work together with the organization data administrator to review the
inventory of existing Army standard elements. The ANSWER tool set can support this
process with the browsing and graphical schema display facilities. The set of existing
standard elements can be displayed with the browser and any existing mappings to
schemas stored in IRDS may also be graphically examined. This information will provide
assistance to the requirements developer in preparing documentation for a new candidate
element. The data element creation tool may be used by the requirements developer to
create a candidate element consistent with AR 25-9.

G89381

6-3

The organization data administrator may review the submitted candidate as discussed in
AR 25-9. The review process can be supported by the DECT. The organizational data
administrator may use the synonymy detection facilities of the DECT to identify any existing
elements similar to the candidate data element. The data administrator may also use the
browsing facilities to investigate existing data elements for similarity with the candidate
element.

Information class proponents, the Army data encyclopedia administrator, and the Army
data manager may similarly use the browsing and data element creation tools of ANSWER
to support the candidate element review process. It should be noted here that the specific
information on schemas and standard data element instances will vary through
organization levels. The specific standard data element instances available to a
requirements developer for inspection will probably be much more restricted than the set
of instances available to an information class proponent, as shown in Figure 6-3. The same
tools may be used to aid the review process at each level in the organization. Only the
contents of the Army Data Dictionary information accessible by thF, individuals may
change.

Information Class
Proponent View

Army -"

Data
Manager Army

View Data OrganizationalEncyclopedia Data <(Manager Administrator Requirements

View View Developer
SView

Standard Data
Elements

G9437-3472A

Figure 63. Vews of Data Elements

The end user will benefit in part from the availability of the browsing facilities provided in
ANSWER Phase I. The end user will be able to use the deliverables of ANSWER Phase Ill and
IV much more directly. The tasks that will be supported in Phase Il and IV correspond to
Phase 5, operations, in the data life cycle. These tasks include formulating-

* Distributed queries in terms of Army Data Dictionary concepts,

e Distributed query processing of queries in terms of Army Data Dictionary
concepts.

G89381

6-4

The basic tasks supported by the ANSWER tool set across the life cycle of the data and
repeated by various individuals using different instances of data includes:

" Developing and maintaining integrated views of data to support distributed
access and design of integrated distributed systems from existing systems;

" Developing and managing the creation of standard data element names for
selected data elements;

" Supporting browsing of Army data through the use of Army Data Dictionary
concept:, to aid in identifying requirements.

G89381

7-1

Section 7
Installation Requirements and Testing Scenario

The ANSWER tool set may be installed for testing at individual sites. The tools should be
treated as alpha test tools. The site using the tools should be interested in developing real
test cases for the schema integrator and the data element creation tool and would work
together with the ANSWER team to test the software on realistic Army problems. The
ANSWER team will take the results of the testing and modify the software as required to
meet the functional needs of the site.

Specific enhancements and customization will be required for testing the data element
creation tool in the area of the class word hierarchy and the prime word hierarchy. The
hierarchies must be customized to the individual site.

The schema integrator requires schemas expressed in terms of the Entity-Relationship
formalism. The schemas may be stored and accessed from IRDS or they may be created
through the ANSWER graphical user interface.

Schemas and Army Data Dictionary elements to be used must be stored in IRDS. The
installation and testing would follow a twelve month schedule including the following tasks:

* January 1990-Identify target applications and schemas to be used for
testing, develop test requirements and success measurements.

* February 1990-Software installatin at site. Site personnel populate IRDS with
specific schemas and ADD elements: initial training on tool use; ANSWER team
performs initial testing in cooperation with site personnel.

* March 1990-Test results evaluated by ANSWER team and Army, necessary
modifications to software identified; additional tests identified to be
performed by site personnel; ANSWER team begins software modifications.

* April to June 1990-ANSWER team modifies software; ANSWER team and site
personnel evaluate results of additional tests.

June to October 1990-ANSWER team identifies performance issues and
optimizes code to meet performance requirements.

November to December 1990-ANSWER team and site personnel develop

demonstrations for other Army personnel.

The hardware and software requirements for installation of Phase II software include:

* A Sun 3/60 with 16 megabytes of RAM
* A 352-megabyte hard disk with an 80-megabyte swap space,

G89381

7-2

" A UNIX 3.5 (A port of Phase II software to 4.0.2 could also be done if
necessary),

" An Oracle RDBMS, SQL*Plus and Pro(,

" An Allegro Common LISP, Common Windows, Allegro Composer.

It is important to note that individual tools could eventually be fielded independently of the
entire ANSWER system. Each tool individually would require considerably less hardware
resources.

G89381

8-1

Section 8
Phase 111 and IV Plans

The tooi set developed in Phase I addresses issues involved in the development of new
schemas and the integration of existing schemas and the creation of standard data
elements. Phase III and IV of the ANSWER program are planned to address the query
formulation and query processing issues. The current task for Phase Il and Phase IV are as
follows.

8.1 Phase lI-Duration: December 16, 1989 to December 15, 1990

This phase now includes work from the original Phase II and work from the original Phase
Ill. These tasks are assigned a new task number with the original task number presented in
parentheses. Some of the original tasks overlap between the new Phase IT and Phase I. For
example, the browsing task appears in both the new Phase II and the new Phase Ill. This is
because browsing was originally planned as a 12-month effort and has now been broken
into an initial effort to be completed in six months with the remainder of the effort to be
done sometime during the subsequent 12-month period.

8.1.1 Task 3.1-Implement Enhancements

This task was originally defined to be a small effort to implement browser enhancements
identified in Phase Ii. We completed the browser enhancements early, as part of Phase 11.
Because of that we will be able to perform some additional work under this task. In this task
we will implement enhancements to the user interface manager developed in Phase U. We
will also investigate issues associated with implementing the user interface and schema
integrator on a large realistic model.

8.1.2 Task 3.2-Query Formulation Implementation

This task is the major focus of Phase M. In this task we will analyze approaches for query
formulation, make recommendations for implementation and review this with the Army
representatives to select and implement a prototype of an appropriate approach.

8.1.3 Task 3.3--Al Techniques Implementation

This task is a continuation of the new Phase If task for identifying additional tools for
database registration. In this task we will continue to develop the data element creation tool
(DECT).

G89381

8-2

&1.4 Task 3.4-Security Study

In this task we will develop an overall approach for security enforcement in ANSWER, and
make recommendations for implementation and exploration of key concepts.

&1.5 Task--3.5Demonstration and Training

In this task we will design and implement scenarios to display the improved browsing
prototype, new database registration tools developed under Task 3.3 and the use of the
query formulation aids. We will train Army personnel in the use of these tools.

&1.6 Task 3.6-Distributed Query Processing

In this task we will identify existing commercially available distributed query processing
capabilities and design the integration of ANSWER tools with the distributed query
processing capability.

&1. 7 Phase lIl Deliverables

The following deliverables will be completed as part of Phase M:

" Browser enhancements identified as part of Phase II.

* Selected query formulation techniques and additional database registration
tools identified in Phase U.

" Interim and final demonstrations of software deliverables to AIRMICS.

* Up to three demonstrations of software deliverables to groups selected in
cooperation with AIRMICS.

" Training (2 to 3 days) in the use of software deliverables to groups identified
by AIRMICS.

* Interim oral review.

* Final report summarizing results of software development efforts, security
study, and distributed query processing study.

" Final oral review.

G89381

8-3

8.2 Phase IV-Duratlon: December 16, 1990 to May 16, 1991

Phase IV represents the remaining six months of the original Phase M. The major task in
Phase IV is the implementation and Integration of the ANSWER tools with existing Army
distributed query processing facilities. The scope of these tasks will be discussed with the
ARMY in 1990.

82.1 Task 4.1-Distributed Query Processing

This task will implement the integration of ANSWER tools with a distributed query
processing facility.

8.2.2 Task 4-2-Demonstration and Training

Install the ANSWER system on hardware at an ARMY installation. Conduct training sessions
in the installation, use and maintenance of the ANSWER system.

8.2.3 Phase IV Deliverables

The deliverables for Phase IV include:

e The ANSWER tool set integrated with a distributed query processor running at
an ARMY location on ARMY hardware.

e Interim and final demonstrations to AIRMICS of contract progress

* One to two demonstrations of Phase IV software to groups identified by
AIRMICS

* A final report summarizing the results of Phase IV.

G89381

