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ABSTRACT. A differential-geometric approach for proving the existence and uniqueness of
solutions of implicit differential-algebraic equations is presented. It provides for a significant

improvement of an earlier theory developed by the authors as well as for a completely intrinsic
definition of the index of such problems. The differential-algebraic equation is transformed
into an explicit ordinary differential equation by a reduction process that can be abstractly

defined for specific submanifolds of tangent bundles here called reducible 7r-submanifolds.

Local existence and uniqueness results for differential-algebraic equations then follow directly

from the final stage of this reduction by means of an application of the standard theory of
ordinary differential equations.

1. Introduction.

An implicit differential equation

(1.1) F(t, x, i) = 0, F : IR x E-1 x R' -- R' ,

with a sufficiently smooth mapping F is usually referred to as a differential-algebraic

1 equation (DAE) when the partial derivative D F(t, x,p) has constant rank p < n on the

(open) domain of F, or. more generally, when the constant rank condition holds in someIopen neighborhood of F- 1 (0) in R x R' x R'.

This work was supported in part by ONR-grant N-0001-1-90-J-1025, NSF-grant CCR-8907654, and

AFOSR-grant 90-0094
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In :11] we presented a general existence and uniqueness theory for such DAEs which

confirms the commonly accepted idea that, in some way, any reasonable DAE can be

reduced - at least locally - to an explicit ODE. Broadly speaking, a sequence of equations

(1.2) Fj(t,xi)=0. Fo =F. F:R x R" --+ R', j , 1,...,

is constructed provided each equation is a DAE: that is, DpFj has constant rank. The

sequence terminates with j = v when DpF, has full rank. Then the equation (1.2) with

j = v is reducible to an explicit ODE and v is called the index of the problem. The

solutions of (1.1) automatically satisfy all equations (1.2) of the sequence and, conversely,

every solution of a particular equation (1.2) with consistent initial data solves (1.1). Here

the consistency condition reflects the well-known fact that, in contrast with ODEs, a DAE

(1.1) does not have locally defined solutions for arbitrary initial data in F-1(0). The

reduction process fails when one of the equations (1.2) is a singular differential equation,

for which the, as yet quite incomplete, existence theory is substantially different from that

for ODEs or DAEs (see [10]).

The concept of an index plays an important role in the study of DAEs. For linear DAEs

(1.3) F(t, x,p) = Ax + Bp - f(t), f : R -R

with constant n x n matrices A and B such that rank B = p < n, the index has been

defined (see [3], [7]) as the index of the matrix pencil (A, B) in the sense of [5]. For

linear systems (1.3) the theory in [11] requires the same hypotheses and leads to the

same value of the index as the classical theory. For the general case (1.1) various authors

(see. e.g.. the monographs [2], [01. and [6], [S] for references) have introduced definitions

which generalize the linear index. These definitions serve well for classifying DAEs and

for characterizing properties of numerical procedures, but, by themselves, they do not

incorporate any existence results for solutions of the equations.

Although th-. reduction process in [11] provides a general setting for a solvability theory

of DAEs, it turns out not to be intrinsic since the sequence {Fj} is not uniquely determined
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by the mapping F. In fact. for the construction of the Fj, various equally reasonable

approaches are feasible and it is by not clear whether the resulting solvability criteria are

equivalent and, in particular, whether the index of the problem is independent of { Fj }. A

principal aim of this paper is the development of a completely intrinsic geometric approach

for the existence and uniqueness of DAEs that extends the analytic treatment of [111.

By adding, as usual, the equation t = 1 we can transform (1.1) into an autonomous

problem. Thus without loss of generality we consider here equations of the form

[(1.4) F~,i ,F : R'xR× - R".

Then, formally, and without any of the technicalities involved, our approach is based on

the following general idea: As in [11] suppose that the zero set M = F-1 (0) is a smooth

submanifold of TR' = R' x R". In practice, this is guaranteed by assuming that F is a

submersion on its zero set. Now (1.4) may be written in the form

(1.5)(,) E

which in turn implies that any solution x = x(t) of (1.4) has to satisfy x(t) E TV = ,(./)

where ,, : T -R - 1R" is the canonical projection onto the first factor. If TV is a submanifold

of R' then (x(t), i(t)) belongs to the tangent bundle TW of IV here identified with a

submanifold of Th". In other words, any solution x :- x(t) of (1.4) has to satisfy not

only (1.5) but also the more restricted inclusion (x(t),i(t)) E ,i = TW n M. The step

from (1.5) to this new restricted problem represents a reduction of (1.4) similar to that

involved in the construction of the equation (1.2) with j = 1. Hence it is appropriate

to call -A1A the first reduction of M. If .M1 and T1" = r,(M1 ) are submanifol Is of TR"

and R .respectively, then the reduction can be continued a step further znd the same

argument yields (x(t),i(t)) E J, 2 - TITV 1 n -111. Hence, under suitable conditions, we

obtain a decreasing sequence AM0 = -1. -111, MZ2,... of manifolds and find that for every

solution x = x(t) of (1.4), (x(t),i(t)) has to belong to the 'core' ,-A Alj of l.

It is reasonable to expect the decreasing sequence of manifolds 1lj to become stationary.

The first v such that .11, = X1,+1 is then called the index of (1.4). This index definition
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was proposed by S. Reich (see [121, [13]) without further results about the existence of the

manifolds or their properties. Clearly the practical value of the approach depends largely

upon satisfactory answers to the following two questions:

1) Are there realistic conditions for ensuring that Mj+1 and Wj+ 1 are submanifolds of

Mj and Wj or, equivalently of TR ' and Rn, respectively?

2) Does the reduction lead to a conclusion about the existence of solutions of (1.4)?

There are significant technical and conceptual difficulties in providing positive answers

to both these questions. As a typical example consider the problem of deciding whether

M,+l = TWj n Mj is a submanifold which may appear to be resolvable by a standard

transversality argument. But one soon finds that dimensional considerations dictated by

the second question rule out at once transversality of Mi and TW, in the natural ambient

manifold TWj-. In fact, prior to anything else, it turns out that the global approach in

our expository sketch must be replaced by a local one. This also makes the 'subimmersion

theorem' available which turns out to play here a critical role.

After some preliminaries in Section 2, a framework for the local approach is established

in Section 3. Then, in Section 4 a reducibility concept is introduced and geometric condi-

tions for reducibility are given which then provide a positive answer to the first question

(or, rather, its analog in the local setting). Next, in Section 5, we settle (the analog of) the

second question by means of a concept of complete reducibility. The entire development

makes no reference to DAEs although occasionally we use a simple DAE to motivate some

of the general definitions. However, Section 6 does present the application of the general

theory to DAEs. In particular, the connection to Reich's index and an existence theory

for (1.4) is obtained as an immediate corollary to the result that, locally, the analog of the

above indicated 'core' of 31 = F - 1 (0) is the image of a section of a suitable tangent bun-

dle, and therefore that, on this core the DAE (1.4) reduces locally to an explicit ODE. For

practical applications and, in particular, for numerical purposes it is desirable to express

the various geometric conditions in analytic terms. This is the topic of Section 7 and the

results given there allow. in Section 8. for a comparison between the geometric theory and

the results of [11].
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Altogether, it appears that the new geometric treatment offers three important advan-

tages. First of all, unlike in [11], constant rank conditions are required only where they are

unquestionably needed; that is, on appropriate submanifolds and not on open subsets of

the ambient space. For instance, it becomes legitimate to call (1.4) a differential-algebraic

equation if the constant rank condition for DpF is satisfied only at points of M = F-'(0).

This was suspected to be true but could not be proved by the methods of [11]. Next, as

discussed in Section 8, a rather complicated condition in [11] involving second derivatives

can now be replaced by a much simpler one involving only first derivatives. In fact, it was

not noticed in [11], and could hardly have been expected there, that the second derivatives

play an entirely passive role. Finally, the geometric treatment achieves its original goal of

supplying an intrinsic definition for the index of DAEs which directly incorporates a local

existence theory for the equations. It appears to be fair to say that as long as singularities

are ruled out, the theory provides a nearly optimal answer to the existence and uniqueness

question for differential-algebraic equations.

2. Preliminaries.

Throughout this presentation we consider only finite dimensional, separable, Hausdorff

manifolds which, for simplicity of exposition, are assumed to be of class C'. But it should

be evident that finite regularity will suffice in general. As usual, it is explicitly allowed

that different connected components of a manifold -11 may have different dimensions and

we denote the maximal dimension of the connected components of Jl by dim.Al. When

all connccted components of 31 have the same dimension we follow [4] and say that M has

pure dimension dim 31.

For any n-dimensional manifold X we denote the tangent bundle by TX and the canon-

ical projection by - : TX - X. Points of TX will be written in the form (x,p) with x E X

and p E TX. In particular. for simplicity, we always write TR n for R' x R". For any

submanifold Y of X and any point x E Y the tangent space TxY is canonically identified

with a subspace of TxX and hence the tangent bundle TY is identified with a submanifold

of TX. Note that this is not a sub-bundle since the base manifolds X and Y of TX and

TY, respectively, are different.



As in the case of manifolds we assume for simplicity that all mappings under consider-

ation will be of class C' although, once again, this condition can be reduced easily. For

convenience, the notation f : Rk -- R' will be used for any mapping f defined on some

open subset U of Rk with values ii R, even if U # IRk. This slight abuse of notation

should not lead to any confusion.

Recall that a mapping f : X -- Y between the manifolds X and Y is a subimmersion

if the rank of the linear map Tf : TX -- T (,)Y is constant in some open neighborhood

of every point x E X. Then the rank r of Tzf has a constant value on each connected

component - of X called the rank of f on -. For simplicity we call f : X --+ Y a local

subimmersion at x E X if there exists an open neighborhood U of z in X such that the

restriction of f to the submanifold U of X is a subimmersion on U.

The following subimmersion theorem plays a key role in several of our arguments; for a

proof see, for instance, [1], [4]:

Theorem 2.1. (subimmersion theorem): Let X be a connected manifold of dimension

m and suppose that the mapping f : X - Y from X into another manifold Y is a

subimmersion of rank r. Then, for any x E X and y = f(x) E Y, the following statements

hold:

(i) The subset f-1 (y) is a closed. (in - r)-dimensional submanifold of X and the tangent

space T.(f - (y)) coincides with kerTzf.

(ii) There exists an open neighborhood V of x in X such that f(V) is an r-dimensional

submanifold of Y. .loreover, if N is any r-dimensional submanifold of X such that x E N

and TN fl ker Txf = {O} then the restriction fIN is a local diffeomorphism of some

neighborhood of x in N onto f(V).

For the application to DAEs the following characterization theorem for certain subim-

mersions will be needed:

Theorem 2.2. For the mapping G : TIR' - q. In < q < 2m. suppose that DG(z.p) has

full rank q at a point (xo.po) E G-'(0) and hence that for some open neighborhood U of

this point in TR ,. the set -11 = U n G - '(0) is a 2rn - q dimensional submanifold of TR ' .
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Then the restriction r At : 1-- R ' of the canonical projection is a local subimmersion

at (xopo) if and only if rank DPG(x,p) = p < m is constant in a neighborhood of (xo,po)

in l. In that case, locally near (xo,po), the rank of-,rI1f equals m + p - q.

Proof. For (x,p) E Al locally near (xo,po) we have

(2.1) T(=,p) -ker DG(x,p) = {(h,k) E TR' : DG(x.p)h+ DpG(x,p)k = O}.

Since ,r : TR ' -- Rm is linear the differential of 7rJm at (x,p) is simply the restriction of

to T(4,p)M; that is, the mapping

(2.2) (h, k) E T( ,p)M P-+ h E Rn.

Because dim T(,,p)M = dim ker DG(x,p) = 2m - q is constant in a neighborhood of

(xo,po), the mappings (2.2) will have constant rank exactly if their null-spaces are of

constant dimension locally near (xo,po). From (2.1) we see that (0, k) E T,,p)M if and

only if DPG(x,p)k = 0; that is, exactly if k E ker DPG(z,p), and ker DPG(x,p) has

constant dimension for (x,p) E M near (xo,po) if and only if DPG(x,p) has constant rank

on Al locally near (xo,po). Moreover, if this rank is equal to p then ker DPG(x,p) has

dimension m - p and hence the mapping (2.2), and equivalently 7riM, has locally near

(xo,po)therank2m-q-(rn-p)=m~p-q. 0

As noted already, the development in the next four sections will be independent of

DAEs. But the following simple DAE shall occasionally be used to motivate some of the

concepts:

X1- COS X'?

(2.3) F(x.z) ( = 1x3 =0. F: TR 3 --+ R 3.

Obviously, DF(x.p) has rank 3 everywhere and hence .11 = F-'(0) is a 3-dimensional

submanifold of TR3 . If x = x(t) is any C'-solution of (2.3) then by differentiating the



algebraic equation xI(t) - cosx 2 (t) = 0 and using the differential equations we see that

this solution must also satisfy the equation X3 (t) + sin X2 (t) = 0. In other words, any such

solution must be contained in the set

(2.4) Y = g-1(0) C R3, g(X) = (x1 - cos z 2 , X3 +sin X 2 )T, X E R3 ,

which, because of rank Dg(x) = 2, x E R 3, is a one-dimensional submanifold of R3 . Thus,

if x = x(t) is a solution of (2.3), then (x(t), i(t)) E TY n F-l'(0) and it is obvious that the

converse is true.

3. 7r-submanifolds.

For the DAE (1.4) suppose, as in the Introduction, that M = F-'(0) is an n-dimensional

submanifold of TR " and hence that (1.4) may be written in the form (1.5); that is,

(3.1) (x,M) E Al.

In fact, a central feature of our approach is the use of (3.1) and the study of its geo-

metric implications. The reduction process sketched in the Introduction replaces (3.1) by

a sequence of problems of the same form but with different submanifolds M. Thus, for

the development of this process we need to characterize the submanifolds M that will be

allowed to arise in (3.1).

Clearly, for a given problem (3.1) with an arbitrarily given submanifold M of TR " there

may be no solution at all. For instance, in the case n = 2 this is certainly true for the

one-dimensional submanifold J11 = {(x,p) E TR2 ; x2 = X1, PI = 1, P2 = x1 }. Moreover,

when .M1 has dimension larger than n then there are usually many solutions through a

given point.

In connection with (3.1) our guiding situation will be the choice M = P(Y) where

Y -" TY is a section of the tangent bundle TY of some connected submanifold Y of

R". Then the resulting problem (3.1) is locally equivalent to an explicit ODE and hence

is locally solvable. This occurred for the example (2.3) where on the tangent bundle of the
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submanifold Y of R3 given by (2.4) the canonical projection : TYn F-1 (O) - Y has the

global inverse

:Y -TY, ,(x)=(x,p), p=(X3,l,-cosX2)T,

whence - in this case globally - -If = TY n F-l'(0) coincides with p(Y) and the DAE (2.3)

is equivalent to the ODE .i = (X3 , 1, - cos X2 )T with initial data on Y.

This guiding case suggests that, in general, we should require that 11 is embedded in

the tangent bundle TY of some submanifold Y of R" of the same dimension as M. Of

course, as noted before, this dimensional restriction will have to be formulated locally.

As indicated in the Introduction, the class of equations of the general form (1.4) also

includes the singular differential equations for which the existence theory is substantially

different from that of ODEs and DAEs. This has to be reflected in the allowable choice of

the manifolds in the problem (3.1). In the existence theory of [11] these singular equations

where essentially excluded by the assumption that rank D F(x,p) = p < n in some open

set in the domain of F. This condition certainly holds for our example (2.3). As men-

tioned before it will suffice to introduce such a constant rank condition for DPF only on

neighborhoods of points of M. As Theorem 2.2 shows this is essentially equivalent with

the assumption that locally the restriction of the canonical projection -r to the manifold is

a subimmersion.

In line with these introductory remarks we now introduce the following class of sub-

manifolds Al that shall be allowed in problems of the form (3.1):

Definition 3.1. Let X be an n-dimensional manifold. A submanifold Al of TX is a

n-submanifold (of TX) if for each connected component E of -1 the following conditions

hold:

(i) For any (xp) E E there exists an open neighborhood U in - of (x.p) and a submanifold

Y of X such that dim Y = dim- and U C TI.

(ii) The mapping - : - X is a subimmersion in some neighborhood of any point

(X.p) E

2Since - is connectcd this is equivalent to assuming that is a subimmersion on S.
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If Y is a connected submanifold of X and •Y - TY a section of TY then . =

,(Y) turns out to be a :r-submanifold of TX. If X has pure dimension n, every nure n-

dimensional submanifold of TX satisfies the condition (i) of the definition with Y = X but

not necessarily the condition (ii). However, in our simple example (2.3) the 3-dimensional

submanifold M, - F - 1 (0) of ]R3 is a -- submanifold of TR 3 . In fact, we have everywhere

rank DPF(x.p) = 2 which by Theorem 2.2 implies that WriM is a subimmersion on all of M.

This example shows that there exist -- submanifolds that are not the image of a section.

One of our principal aims will be to prove that under certain assumptions a general 7r-

submanifold contains another 'maximal' r,-submanifold which, at least locally, is the image

of a section : : Y --* TY for some submanifold Y of X. This maximal ir-submanifold will

be obtained by the recursive reduction procedure to be described below. In preparation

we introduce some needed terminology derived from Definition 3.1.

Let E be any connected component of the ,-submanifold M of TX and (x,p) E a any

given point. Then, by Definition 3.1 (ii), the rank of -,-'-" is constant on some neighborhood

of (x,p) and therefore on all of E due to the connectedness of E. Moreover, by the

subimmersion theorem (Theorem 2.1) there exists an open neighborhood V of (z,p) in

- (and therefore also in M) such that TV = (V) is a submanifold of X of dimension equal

to the rank r of 5r1= on -. Obviously, the rank r cannot exceed the dimension of E.

Definition 3.2. Let E be any connected component of the 7r-submanifol I M of TX. For

any (x,p) E E the rank of 7rl_ at (x,p) is the order of that point in M and is denoted

by ordA,(x,p). The order of all points of E- is the same and we write ordM-. If V is an

open neighborhood in E of (x,p) E - such that TV = 7r(V) is a submanifold of X with

dim IV = dim - then TV is called a local projection ofE (or AI) at (x,p).

The observations preceeding the definition show that local projections exist at each

point of l. The following remark provides a useful technical tool for later use:

Remark 3.1. Let E be a connected component of a 7r-submallifold Al of TX and at a

point (x 0 ,po) E " choose - in accordance with Definition 3.1 (i) - an open neighborhood

U in -and a submanifold Y of X such that dir Y = dimE and U C TY. Then TY is a
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submanifold of TX and therefore U is a submanifold of TY. Now Definition 3.1 (ii) requires

that -. = : Z --- X, and therefore also -,, ju : U -- X. is a subimmersion in some neighborhood

of (xo,po). This holds if and only if -,, ju : U -- Y is a subimmersion in a neighborhood

of (xo,po). In other words, it does not matter whether U is viewed as a submanifold of
TX or of TY since for (x,p) E U near (x0 ,p 0 ) we have T(Z,p)(7rju) = (T(Z,p)7r)IT,,P u and

T(,,p)U is contained in both T(.,p)(TX) and T(:,p)(TY). This argument also proves that

the order of (x 0 ,p0 ) equals the rank of flu : U -- Y.

The next theorem provides a rather simple condition for a ,r-submanifold to be - locally

- the image of a section.

Theorem 3.1. Let M be a r-submanifold such that

(3.2) dim E = ordM-,

for each connected component E of Al. Then for any (Xo,po) E M there exists a local

projection TV = 7r(V) of M at (xo,po) and a section V : W --. TW such that V = V(W).

Proof. Let E be a connected component of Al and (xo,po) E E a given point. By Remark

3.1 and the hypothesis (3.2) it follows that ,. Iu : U --* Y has full rank m = dim E at (xo,po)

and hence that , lu is a diffeomorphism of some open neighborhood V C U of (xo,po) onto

the open subset TV = r,(V) of Y. Let T :V -+ V be the inverse diffeomorphism, then it

follows that (x,p) E V if and only if x = 7(x,p) E TV and (x,p) = O(x).

Now note that V is a submanifold of TIV. Indeed, W is open in Y whence TV =

(fy) (TV) -,r- 1 (TV)nTY. Moreover V C TY and V C ,r-'(W) - 1r-'(ir(V)) together

imply that V C TTV. Hence, since both V and TIV are submanifolds of TY, we see that

V is a submanifold of TIV. Thus, instead of viewing (; as a mapping with values in V. we

may consider it to be a mapping with values in TTV. Finally, ; is a section of TTV since

r o V(z) = x holds for all x E TV by definition of . 0

Clearly, the assumption that .1l is a --submanifold is crucial to the proof. Naturally, for

a general 7r-submanifold JlI the condition (3.2) may not hold for all connected components

I U1



_. Our reduction process will ensure that under appropriate assumptions this condition

will hold for some submanifold of 31.

4. Reducible rr-submanifolds.

As before we formulate the implicit DAE (1.4) as a problem of the form (3.1) where

now M is a given 7r-submanifold of TX. Let x = x(t) be a local solution of (3.1) through a

point (x(O),p(O)) = (xo,po) E _1. Because M is a ,r-submanifold there is a neighborhood

V of (xo,po) in M such that IV = 7r(V) is a local projection at that point. Hence, for all

sufficiently small t we have (x(t), ai(t)) E V which implies that x(t) E W and, since W is a

submanifold of X, that (x(t), i(t)) E TW. In particular, we must have (xo,po) E TTW M

which, evidently, represents a necessary condition for the existence of a local solution

through that point. This situation is reflected in the following terminology:

Definition 4.1. For the manifold X let M be any r-submanifold of TX. A point (x,p) E

M is a point of reducibility of A1, if for some local projection W = 7r(V) of M at (x,p) we

have p E TTV and hence (x,p) E TW n M. The subset of all points of reducibility of M

is the reduction of M and is denoted by M'.

Obviously, if the condition p E T(=,p)I'V holds for some local projection W of M at (x,p)

then it has do so for all others as well. Hence the concept of a point of reducibility is

independent of the particular choice of the local projection W = 7r(V) of 11 at (x,p).

In the following we shall be concerned only with the reduction M' of KI and the structure

of M away from M' will be irrelevant. In particular, the hypothesis that the rank of 7i, ,

is locally constant will never be called upon at any point of M\M'. Nevertheless, local

I constancy of the rank of -..,, near every point of .A! is a requirement that cannot be

weakened, for it is needed in the first place to check whether any given point of M is or is

not a point of -1'!

As an example of a reduction consider the 3-dimensional tr-submanifold M = F - 1( 0 )

of TR' for the simple DAE (2.3). Obviously, its projection

TV = () = { : - cOS X2 = 0}

12



is a 2-dimensional submanifold of R' with tangent bundle

TW={(x,p) ETR3: xI-cosx 2 =0, p1 +p 2 sinx2 =0}.

Thus the global projection of Ml is here a manifold and the reduction A' of Al coincides

with TIV l Al and is globally characterized by the system of equations

XI - cosX 2 = 0, P1 +P2 sinX 2 = 0, P1 = X3, P2 = 1.

By substituting the third and fourth equation into the second equation it follows that

M' = FF-1 (0) where

(X1 -COS X2
X3 + sinlX 2

F 1: TR
3 -' R4 , F,(x,p) = .

P1-X3)

P2 -1

Obviously we have rank DF(x,p) = 4 and rank DpF 1(x,p) = 2 everywhere. Thus M' is

a 2-dimensional submanifold of TR3 and, since Definition 3.1 (i) holds with Y = W and

Theorem 2.2 applies, we see that Af' is again a -:-submanifold.

In general, the situation is not so simple and some additional conditions are needed to

ensure that the reduction is again a ,-submanifold. We begin with a basic topological

property of Al'.

Theorem 4.1. The reduction Al' of a r-submanifold ll is a closed subset of MA.

Proof. We prove that 1\M' is open in Al which is obvious if Al' = .1. Let (xo,po) E

MAi' and E the connected component of Al containing that point. By assumption there

exists an open neighborhood V of (xo,po) in E such that IV = ,(V) is a local projection

and hence TV is a submanifold of X of dimension p = ordMAE. Upon shrinking, if needed,

V and hence also TV we may assume that there is a chart [Q, '] of X with domain Q D TV

for which ,(Q2) and mj,(IV) are open subsets of R' and RP, respectively. Hence, by means of
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the corresponding bundle chart, TO2 can be viewed as Q x RI and TIV as IV x RO. Under

this transformation V becomes a submanifold of Q x R' which is projected onto W and

the condition po T, TV corresponding to (xo,po) 4 M' is now Po RO. As a result we

have p RO and hence (x,p) TTV for all (x,p) E V sufficiently close to (xo,po). This is

equivalent with (x,p) Il' and the result follows. 0

The following result motivates a condition under which the reduction M' of a 7r-

submanifold does retain a differentiable structure:

Proposition 4.1. Let M be a 7r-submanifold and (x,p) a point in the reduction M' of

Al. Then for any local projection W of 11 at (x,p) we have

(4.1) dim[T(r,p)TW n T(,pM] _ ordM(x,p).

Proof. Let EE be the connected component of M! containing a given point (xo,po) E M'

and V an open neighborhood of the point in - such that W = 7r(V) is a local projection

of E- at that point. By Definition 3.1 (i) there exists a neighborhood U of (xo,po) in -

and a submanifold Y of X with dim Y = dim E such that U C TY. Without loss of

generality, we may assume that V C U whence TV C r(U) C Y. Since W and Y are both

submanifolds of X we see that W is a submanifold of Y and hence that T W is a subspace

of T Y for any x E TV. This shows that TTV is a subset of the bundleI
(4.2) = U [{x} x TZY].

In fact. E is just the pull-back bundle of TY under the canonical embedding W C Y.

Moreover E is a submanifold of TX. Indeed, let (y, q) E E; that is, y E TV and q E TYY.

Since TV and Y are submanifolds of X it follows that, locally near y, we have W = g-(O)

and Y = h-(O) for some submersions g : X -, R P and h : X -- R -" where p = ordf--M

and m = dim y = dim =. Using a chart (Q. T] of X near y and the corresponding bundle

chart [T2, T'I] of TX near (y, q) we may assume X = R'. Thus in some neighborhood of
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I(y, q), E coincides with the zero set of the mapping

I (x,p) E TR' i-4 (g(x),Dh(z)p) E

It is easily checked that this mapping is a submersion at (y, q) whence E is a (p + in)-

dimensional submanifold of TRn. Hence, TW is not only a subset but a submanifold of

S. Moreover, from V C U C TY and (x,p) E V it follows that x E W and p E TY. In

other words, we have V C E and thus V is also a submanifold of E. Therefore, (4.1) is a

I direct consequence of dim TW = 2p, dim V = dim-, and dim E = p + dim-':. 0

Since generically two subspaces of dimensions 2p and m, respectively, of a (p + m)-

dimensional space intersect along a p-dimensional subspace, Proposition 4.1 indicates that

equality in (4.1) should be expected in most cases. This partly justifies the following

I concept:

Definition 4.2. Let X be a given manifold. A "r-submanifold Al of TX is reducible if

for every point (x,p) of the reduction M' of M there exists a local projection W of M at

(x,p) such that

(4.3) dimT.,) = ordM(x,p), T(',,) = T(P,,)TIV flT(.)M

and if on some neighborhood U of (x,p) in TV n M

(4.4) rank 7IT(,q+) = constant, V(y,q) E U.

Obviously (4.3) is independent of the local projection IV and this is essentially also true

of (4.4) if we confine attention to sufficiently small neighborhoods of the point.

The term reducible in the above definition is justified by the following result:

Theorem 4.2. Let Al be a reducible -,r-submanifold. Then, the reduction Jl' of 1l is

either empty or a closed submanifold of Al and a r-submanifold of TX. Moreover for any
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(x,p) E -1' the dimension of the connected component of .1' containing (z,p) equals the

order of (x,p) in Jl and for every local projection TV = ,(V) of M at (x,p) we have

(4.5) T(.,p)MI' = T(,,p)(TIV n V) = T,,p)TIV n Tz,p),l.

Proof. The closedness of M' in M was shown in Theorem 4.1. If TV = r(V) is a local

projection of Al at the given point (x,p) E M' then the condition (4.3) expresses the fact

that the submanifolds TW and V of the bundle o in (4.2) intersect transversally at (x,p)

since T(,,p)M = T(,,p)V. This implies that TW n V is a p-dimensional submanifold of

TW and Al and also that the second equality in (4.5) holds. On the other hand, since

W = 7r(V) is a local projection of M not only at (x,p) but also at any other point of V

and since V can be chosen so small that the rank of ltiv is constant on all of V, we see that

M' and TW fl V must coincide. This implies that M' is a submanifold of M and that the

first equality in (4.5) holds. Moreover, the dimension of the connected component of M'

containing (x,p) has to equal dim T(.,p)M' which, by (4.3) and (4.5), is p = ordM(z,p).

Since M' and TTV nV coincide there exists an open connected neighborhood U' of (x,p)

in M' contained in TW. Hence we have U' C F' where E' is the connected component of

M' containing (x,p). Now for Y' = TV it follows from the relation dimE' = p = dimY'

that the pair (U', Y') satisfies the conditions required of the pair (U, Y) in Definition 3.1

(i). Finally, because of (4.5), the relation (4.4) implies that 7rh,, has constant rank near

(x,p) and hence that M' is a r-submanifold. 11

From Theorem 4.2 and its proof, condition (4.3) in Definition 4.2 represents a transver-

sality condition for the intersection TIV n M in an appropriate local setting and the condi-

tion (4.4) ensures that rIp has locally constant rank. As observed earlier, transversality

is not true, in general, in the 'natural' ambient manifold TX.

With this we can reformulate Theorem 3.1 as follows:

Theorem 4.3. Let Al be a reducible r-submanifold of TX for which the reduction M' is

identical with .l. Then for every point (x, p) E MAf there e.ists a local projection IV = r(V)

of M at this point and a section V : TV --+ TIV such that V =(W).
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Proof. The connected component E of A1l containing (x. p) is also the connected component

of M' containing (x, p) whence by Theorem 4.2 the dimension of -- equals the order of (x. p)

in M and hence

dim-E = ordM(x, p) = ordf-.

Thus the dimension of every connected component - of .1 is equal to the order of E in il

and the result follows from Theorem 3.1. 0

We end this section with a result characterizing reducible 7r-submanifolds that coincide

with their reduction.

Proposition 4.2. Let Al be a submanifold of TX and suppose that for every (x,p) E M

there exists an open neighborhood U in the connected component E of Al containing (x, p)

and a submanifold Y of X with dimTY = dimE such that U C TY. Then, M is a

reducible 7r-submanifold with Al' = J11 if and only if T(,p)7r is a linear isomorphism from

T(,,p)M to TY irrespective of the choice of (x,p) E l.

Proof. The necessity is obvious and we prove only the sufficiency. If the isomorphism

condition holds then z : E ---+ Y has maximum rank at (x, p) and hence is a local

diffeomorphism on some neighborhood of that point. In particular, ir__ has maximum

rank at all points of JAI near (x,p) so that condition (ii) of Definition 3.1 holds. Moreover,

a local projection TV = -(V) of Al at (x,p) is an open neighborhood of x in Y whence

TW = r-'(IV) certainly contains (x,p). In other words, every point of M is a point of

reducibility of -l1; that is, .1f' = Al. The conditions (4.3) and (4.4) require here that

dim T(,,p)M = dim Y and that the rank of is constant for all (y,q) in some

neighborhood of (x,p). But these relations have already been proved above and hence the

result follows. 0

5. Completely reducible r,-submanifolds.

As before, let X be an n-dimensional manifold and Al a reducible 7r-submanifold of

TX. Then by Theorem 4.2 the reduction ll' of .11 is either empty or a 7r-submanifold of
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TX. Of course, if M 0 0 we do not know whether M' is again reducible, but if that is the

case, then the reduction M 2 = A of A !1 = M' is again either empty or a 7r-submanifold

of TX. This suggests the following recursive definition:

Definition 5.1. The reducible 7r-submanifold M = Mo of TX is completely reducible if

for every index j > 0 such that Mj : 0 the reduction Alj+l of Mj is either empty or a

reducible 7r-submanifold. For M, = 0 we set Mj+1 = 0. Then the sequence fMj}j> 0 is

well-defined and called the reduction chain of M.

Let M be a completely reducible 7r-submanifold of TX with reduction chain {Mj}j> 0 .

If Mk+l = Mk for some index k > 0 then it is obvious that M = Mk for j > k;

that is, the reduction chain becomes stationary. Since reduction never increases the local

dimension near any point (x,p) it is intuitively evident that every reduction chain should

become stationary. The following result proves this fact and introduces rigorously the

index concept given by S. Reich in [12], [13].

Theorem 5.1. Let M be a completely reducible 7r-submanifold of TX with dim M = m

and reduction chain {Mj} j__o. For any non-empty, connected component -,+1 of Mm+i

defime E,, j = m, m - 1,... , 0, recursively as the connected component of Mj containing

=j+,. Then there exists a smallest integer v, 0 < v < dim- 0 < m, the index of-.,,+, in

M, such that

(5.1) -j - j, . .

In particular, the reduction chain of Al always satisfies

(5.2) Am+ 2 = Alm+I.

Proof. For Mm+, = 0 the first part of the theorem is vacuous and (5.2) is obvious. Suppose

therefore that there exists a non-empty connected component -m+l of Alm+l. Then the

connected components Ej E Mj constructed in the theorem satisfy 0 E,#m+1 C -j+l C -
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for j = 0,... m. Evidently, the reduction -j of Ej equals = = flj+ Ej and, since Ej+1

is a connected component of A'ij+1 , it is also a connected component of = +n -.

Thus we have

(5.3) ---j+ CE 'Mj+In-j cEj, j=0,... ,m.

and, because connected components of closed sets are closed, it follows by Theorem 4.2

that Ej is closed in M for all j. In particular, .=j+i is closed in Ej. Now E-- # 0 ensures

that yj = dimE,7 is defined for j = 0,... , m + 1 and (5.3) implies that

(5.4) 0 < 1L+1 _ IL. : ... <40 < m.

The last inequality follows from the fact that H0 is a connected component of M and hence

has dimension at most m. Hence, by necessity, two of the integers in (5.4) must be equal

and there exists a smallest index v among 0 < v < m for which pL+l = p,. This implies

that -,+, is an open submanifold of E, and, since it is also a nonempty and closed subset

of E, and EL, is connected, that EL, - -*±+. But then (5.3) shows that -,, - -

that is, reduction does not affect E, and, of course, neither will repeated reduction. In

other words, we must have Ej forj = v,v+ ... ,m+1 which is (5.1). Forj = m+I

it follows that for any nonempty connected component Em+i of 111.+1 the reduction -t+ 1

is equal to -,m+i which proves (5.2). 0

Definition 5.2. For the completely reducible -r-submanifold Al with reduction chain

{Mj}j> 0 the core C(M11) of M is the intersection n 1!.- j>o

Hence. for any completely reducible -submanifold -M1 of TX Theorem 5.1 implies that

C(M) = Mm+ l with m = dimil and that C(M) is either empty or a (completely)

reducible ,.-submanifold with C(-11)' = C(M). Thus Theorems 4.2 and 4.3 at once provide

the following result:

Theorem 5.2. Let Al1 be a completely reducible --submanifold. Then, the core C(M)

of M is either empty or a closed submanifold of -11 and. moreover, C( M) is a reducible
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-submanifold equal to its reduction. In particular. for every (x,p) E C(.11) there exists

a local projection IV = (V) of C(M) at (x,p) and a section IV - TW such that

V = V(V).

Theorem 5.1 defines the index of any nonempty connected component E of C(M) and

shows that this index is at most equal to the dimension dim 0 of the connected component

of M containing E. Hence, for any point (x,p) E C(M) the index may be defined as the

index of the connected component of C(M) containing (x,p). Then, again, the index of

(x,p) never exceeds the dimension of the connected component of l containing the point.

At a first sight, Theorem 5.1 may appear to imply that the relation (5.2) could be

improved to Mm+, Mm. This is not the case, for it may happen that the reduction F'.

of some connected component -m of M, is empty. All we can say is that when -Z $ 0
then E m which is weaker.

More generally, note that any open subset of a zr-submanifold Af obviously is a 7r-

submanifold with the same dimension as M.This fact was used implicitly in the proof of

Theorem 5.1. Thus, if a point (x, p) E A[ has an open neighborhood U that is a completely

reducible 7r-submanifold and for which (x,p) belongs to the core C(U) of U, then we may

define a local index of (x,p) as the index of (x,p) in C(U). It is easily checked that

shrinking U has no effect on this definition and that when (x,p) has a local index and Al

is completely reducible, then (x,p) E C(M) and the index and local index of the point

coincide. Thus, the concept of a local index is useful only when not all of Al is completely

reducible. It is equally straightforward to verify that if each point of M is contained in a

completely reducible neighborhood, then M is completely reducible.

6. Application to Differential-Algebraic Equations.

As an application of our theory we consider now an implicit differential equation

(6.1) F(x(t), (t)) = 0,

where i again stands for dx/dt. Here F: R" x R' - R' is assumed to be a C'-mapping

and we recall our agreement that F may only be defined on an open subset of R" x R".
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A C'-solution of (6.1) is a C' function

(6.2) x : J - ]R', J C . open interval,

such that (6.1) holds for all t E J.

As indicated at the end of the Introduction the geometrical theory allows us to weaken

the definition of an implicit differential-algebraic equation:

Definition 6.1. The implicit differential equation (6.1) is a nonsingular differential -

algebraic equation (DAE) if Mf = F-'(O) is a completely reducible 7r-submanifold of

R" x R' M TR".

Then we obtain the following basic existence and uniqueness result:

Theorem 6.1. Let (6.1) be a nonsingular DAE and denote the core of Al = F-'(0) by

C(Al).

(i) Any C'-solution (6.2) of (6.1) satisfies (x(t),i(t)) E C(M) for all t E J.

(ii) Conversely, for any (xo,po) E C(Ml) there exists a local projection W = ('(V) of C(AI)

at (xo,po) and a section c : V -+ TIV such that for any C' function (6.2) we have

(6.3) (x(t),,i(t)) E V 4= {x(t) E Wand (x(t),.'i(t)) = V(x(t))}.

Hence, locally near any (xo,po) E C(AM), (6.1) is equivalent to an explicit ODE on TV.

In particular, for any to E R there exists an open interval J containing to and a unique

C'-solution (6.2) of (6.1) such that (x(to),.i(to)) = (xo,po). Moreover, x is of class C'.

Proof. For the proof of (i) let x be any C'-solution (6.2) of (6.1) and for any fixed to E J set

(x(to),±(to)) = (xo,po). Then there exists a local projection W = 7r(V) of M at (xo,po)

and obviously, for all t E J near to we have x(t) E TV and therefore (x(t),i(t)) E TW;

that is. (z(t), i(t)) E TTV n Al. But TIV Mn1 coincides with the reduction MI of M near

(xo,po) so that (x(t),4(t)) E ,I for t near to and hence for all t E J since to was arbitrary.

Let Mj, J = 0, 1,... denote the reduction chain of Al = Mo. By proceeding inductively,
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we then find that (x(t), i(t)) E ,1 for j = 0, 1,... and all t E J. Thus, in particular,

(x(t), i(t)) E C(M) since, by definition C(M) = n Mi . This proves (i).j>0

For the proof of the first part of (ii), recall that by Theorem 5.2 there exists a local

projection W = 7r(V) of C(M) at (xo,po) and a section V : W -. TW such that

(x,p) E V * {x E TV and (x,p) = V(x)}.

This proves (6.3). Moreover, since V is a section of TV there exists an open interval J and a

unique C' function x: J -- W, of class C', for which x(to) = xo and (x(t), ±(t)) = V(x(t))

for all t E J. Here i(t) denotes Ttx • 1, but, because W is a submanifold of R', this is

just the usual derivative (dx/dt)(t). Hence we have (x(t), i(t)) E V C C(M) C M, so that

F(x(t), i(t)) = 0 for all t E J. In other words, x is a C'-solution of (6.1) of class C'. The

uniqueness follows from part (i) and (6.3), and the uniqueness of the constructed solution

x as an integral curve of V since, necessarily, (6.3) must hold for t in some open subinterval

of J around to. 0

By using arguments closely related to those in the proof of Theorem 3.1 of [11], we can

formulate also global results for the solutions of (6.1):

Theorem 6.2. Let (6.1) be a nonsingular DAE. Then any C'-solution3 (6.2) of(6.1) can

be extended to a Cl-solution of (6.1) on an interval (a,b) that is maximal under set

inclusion. Moreover at the endpoints this solution has the properties:

(i) If b < oo (or a > -oo) and 3(t) is bounded for t E (a, b) near b (or a), then lim x(t) = Xo
t-b.

(or lim x(t) = xo) exists.
t- a +

(ii) If b < oo (or a > -oo) and lim x(t) = xo (or lim x(t) = xo) exists, then lim Ji(t)I =
t-b_ t-a+ t-b_

00 (or lim I±(t)l = o).
t-a+

As a result, if b < oo (or a > -oo), then (t) is unbounded for t E (a, b) near b (or a).

Since the proof follows very closely that of Theorem 3.1 in (11] we give here only a brief

sketch. By Theorem 6.1 (ii) any two solutions of (6.1) defined in open intervals J, and

'Note that by Theorem 6.1 any Cl-solution (6.2) of (6.1) is necessarily of class COO.
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J 2 , respectively, with (xi (to), ." 1 (to)) = (X 2 (to),±i2 (tO)) for some to E J, nJ 2 must coincide

in J, n J-2. Hence they continue each other in J, U J2 as a solution of (6.1). In turn,

this argument yields, for instance by Zorn's lemma, the existence of a maximal interval of

definition (a, b) for any C'-solution x of (6.1).

Now part (i) of the statement follows readily with the help of the integral mean value

theorem x(t) - x(s) = f" i(r)dr. For part (ii) we argue by contradiction. Suppose

that b < oo and that there is a sequence tk E (a, b), lim tk = 6 such that i(tk) is
k-oo

bounded. By extracting a subsequence we find a P0 E R' such that lim i(tk) = PO
k-o

whence lim (X(tk), i(tk)) = (xo,po). Note that (xo,po) E C(M) since, by Theorem 5.2,
k-oo

C(M) is closed in M = F-1(0) and M is closed in 1R. Moreover, the same theorem

ensures that C(M) coincides with the graph of a section V : W ---+ TIV in a neighborhood

of (xo,po) where W = ,r(V) is a local projection of C(M) at (xo,po). Thus it follows that

for p E R', sufficiently close to p0, we have

(6.4) (xo,p) E C(M) 4 p = Po

Consider now any other sequence Sk E (a, b) such that lim sk = b. By extracting a
k-oo

subsequence we may assume either that lim [P(sk)l = co or that lim i:(sk) = Po E R n .
kco k-oo

In the first case, as well as in the second case for Jo p0, the same arguments as in the

proof of Theorem 3.1 of [11] can be used, together with the closedness of C(M) to show

that for every sufficiently small & > 0 there exists a P6 E R n such that (xo,p 6 ) E C(M)

and JP0 - P61 = 6. But this contradicts (6.4) and thus we necessarily have lim i(t) = p0.
t b-

Altogether we find that lim (x(t), 1:(t)) = (xo,po). Moreover, using once again the fact
t b-

that C(M\) is the graph of the section , : V -, TIV near (xo,po), we see that (x(t),4(t))

belongs to V for all t E (a. b) sufficiently close to b. Hence x coincides with the unique

solution i of the initial value problem

( (l.z'())= (.'(t), (i:(b),x(b)) = (xo,Po).

But then i extends x beyond b as a solution of (6.1), in contradiction with the maximality
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of (a, b). The case when t - a+ in (ii) of tho theorem can be handled in the exact same

way. 0

Let x denote a Cl-solution (6.2) of a nonsingular DAE (6.1). By Theorem 6.1 (i) we

then have (x(t),.i(t)) E C(.1) for all t E J where Al - F-'(0) and all points (x(t),i(t))

for t E J must belong to the same connected component -z of C(.A). Theorem 5.1 defines

the index of any such component HE and it is natural to call it the index of the solution

x. Thus, for the DAE (6.1) the index of a solution x is simply the number of successive

reductions of M = F-'(0) needed to obtain x (locally) as a solution of an explicit ODE.

Note that this index is of a solution is not a local concept at a point of x but, in fact, is

independent of the point on the trajectory.

Nonautonomous problems of the form F(t, x(t), ±(t)) = 0 can easily be included in this

theory. In fact, after using again the trick of adding the scalar equation t = 1, we may

apply the results to the autonomous equation 'F(X(r),±(r)) = 0 with

J7: Rn+1 x -R
+ 1 - Iin + l , jr( iP) = (s - 1,F(t,x,p)), i = (t.x), j = (s,p).

We conclude this section with the simple example of a planar pendulum. Of course,

our interest does not center on the particular application but, instead, on illuminating the

details of the reduction process. This example was chosen for its simple form which permits

an explicit manipulation of all equations arising in the reduction process and allows for a

direct identification of the entire chain. Moreover, the reduction chain turns out to end a

forteriori with a system equivalent to the clas :al 'pendulum equation' which therefore is

recovered here without any guess of the proper variables.

Suppose a mass rn is attached at the end of a rigid massless wire of length £ hanging

from the origin.If A is the tension of the wire and g the gravity constant then the problem

may be modelled by the second order DAE

X, + x2 =

(6.5) d= I -(A/m)Xl,

_= -(A/m)X 2 - g,
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which with X3 = Xl, x 4 = i2, and x5 = A/rn transforms into the form (6.1) where

2+~ -e2
il - X3

(6.6) F: TR 5 --+ R5 , F(x,.i)- 2 - X 4

i3 + XIXS

i4 + =2X5 + g

Clearly rank DF(x,p) = 5 and rank DPF(x,p) = 4 on M = F-'(0) and hence Al is a

pure 5-dimensional submanifold and, by Theorem 2.2, also a ir-submanifold of TR5 .

The projection of I is W = 7r(M) = {x E R5 : x2 + x2 - e2= 0} and hence is a

4-dimensional submanifold of R5 with tangent bundle

TW= (x,p)E TR5 : X2 + X2 - 2 = 0, XipI + X2p2 =0}.

Since the global projection of M is a manifold all local arguments are here of a global

nature and the reduction Mi of M coincides with TW n A and is characterized by the

equations x2 + x2 _ e2 = 0, XlPI + X2P2 = 0 coupled with the system

P1 - X3 = O,

P2 - X4 = 0,
(6.7)

P3 + XlX5 = 0,

P4 + X2X5 + g =0.

With the first and second equations of (6.7), XlIP + x2p2 = 0 becomes XIX3 + X2X4 = 0

and hence we find that A1 = F - (0) where

XX3 - X2X4

PI - X3 6

F, (x, p) = F: TR5  R6.
P2 - X4

P3 + XlX5

P 4 + X2X5 + g
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I
Here DF(X,p) has full rank 6 at every point of F1(0) and hence M is a pure 4-
dimensional submanifold of TR'. Moreover, Definition 3.1 (i) holds with Y = W and

by Theorem 2.2 it follows that If1 is a ,-submanifold of TR5 . The projection of MI is the

pure 3-dimensional submanifold

IVi = 7r(M) = {x E R: + 2 =OxX3 + X 2X4 = 0}

I of R5 which has the tangent bundle

STWi= {(x,P) E TR5 : X2 + X -e 2 = 0, X 1X3 + X2 X4 = 0,

XlPl + 2P2 = 0, X3Pl + X4P2 + X1P3 + X2P4 = 0}.

Hence we see that (x,p) E MLI12 = TI 1 n M1 exactly if (x,p) satisfies the system of

differential equations (6.7) now coupled with the equations

X, + X2 e2 = 0,

X1X3 + X2X4 = 0,
(6.8)

X1P1 + X2P2 = 0,

ft =3P1 + X4P2 + XlP3 + X2P4 = O,

and again AM2 turns out to be the reduction of All.

By using (6.7) we can express PI,P2, P3,P4 in all four equations (6.8) in terms of x. Then

the third equation is the same as the second one and can be dropped. Thus we see that

I A 2 = F-(0) with

:123 + 2:22:4

g 2: : - 2 + e2x

F2(X,p)= PI - 3 ,F2 TR R7,

P2 - X4

P3 + XI X5

P 4 + X25 + g
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and a trivial verification shows that DF2(xp) has full rank 7 on F,-'(0) while DpF2 (X,p)

has constant rank 4 everywhere. Therefore, in the same manner as before we conclude

that AM2 is a pure 3-dimensional r-submanifold of TR 5.

A further step uses the projection TV2 = 7r(M 2 ) of M 2 ; that is.

W2 = {x E R': x2 + x2. _ 2 = 0, XIx 3 + X2X4 = 0, gX2 -_ X- X + e2 x5 = 0},

which is a pure 2-dimensional submanifold of R" with the tangent bundle

TW2 ={(x,p) E TR' : X2 + X2 - 2 = 0, x 3 + x2x 4 = 0,

g 2 - x 3 - X4  X 5 = 0 , X1p + X2 p2  = O,

X3Pl + X 4P2 + XlP3 + x2P4 = 0, gh2 - 2x 3 P 3 - 2x4P4 + 2p 0}.

Hence it follows that (x,p) E Al 3 = TW3 = TTV 2  M 2 if and only if (x,p) satisfies the

system (6.7) coupled with the equations

I + X - = 0,

X 1 X 3 + X 2 X 4 = 0,

9X2 - X 4 - X4 + 2X5 = 0,
(6.9)

I rXp 1 + X2p 2 = O,

X 3Pl ± X 4 P2 + XjP3 + X2p 4 = 0,

gP2 - 2X3P3 - 2x 4p 4 + 2p5 = 0,

and that .13 is the reduction of -l 2 .

Once again, we use (6.7) to express P1,P2,P3,P4 in all equations (6.9) in terms of x.

Then the fourth equation is the same as the second one and can be eliminated. Moreover,

with the help of the first equation the fifth equation turns out to be identical with the

third one and can also be dropped. Finally, by means of the second equation the sixth

27



equation reduces to 3gx 4 + f 2p5 = 0. Hence. altogether, it follows that 13 = Fr' (0) with

X 1 X 3 + X 2 X 4

g- 2 - -X + X2z5

P1 - X3

(6.10) F3 (x,p) P , F3 :TR5  R8 .
P2 -4

P3 + X1 X5

P4 + x 2X 5 + g
3g

P5 + -' X4

The derivative DF3 (x,p) has rank 8 on M3 = F-'(0) and DpF3 (x,p) has rank 5 every-

where. Thus by the same reasoning as before A1 3 turns out to be a pure 2-dimensional

7r-submanifold of TR s .

Finally we note that the projection of M3 is

W 3 = r(M 3 ) = {x E R 5 : 1 +x2 - 2 = 0,

XlX 3 + X2X4 = 0,gX2 - X 2X2 + j 2X5 = 0}.

and hence that W 3 = TV2 . As a result we have

M3 n TV 3 = M3 n TV2 = (M2 n TW2 ) n TW2 = M 2 n TW 2 = M3 ;

that is, AM3 equals its reduction Al4 and, from this point on, the process becomes stationary.

Altogether we see here that C(M) = J1l 3.

It follows that C(J') = J13 and that each point of C(M) has index 3. By Theorem 6.1,

the DAE reduces locally to a first order ODE on r,(C(M)) = 7r(M 3) = V3 = VV2 . In this

simple case, this ODE can be found explicitly. In fact, for instance, in the neighborhood

of the equilibrium position x1 = 0. x,_ = -C, we can solve F3 (x,p) = 0 by expressing

pi,... ,p5 and X2,X 4 ,X5 in terms of x, and X3. This shows that (x,p) E C(M) = M 3 if
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and only if

X2 = _( 2 _ X2) 112

(6.11) = 
2 - 1/ 2

X5 = (g/e)(y2 - 2)12+ ( 2 - ,

and

PI = X3,

P2 = x 3(e - 1

I (6.12) = -(g/e 2)x 1 (e 2  - xx(e 2 _ X2)-'

P4 = -(g/e 2 )(e2 - x2) - X2 (W - X2)-112,

p5 = -(3g/ 2)xx 3(t2 - I

I Now note that for x E W2 the right-hand side of (6.12) automatically belongs to T.W 2 .

Hence by replacing p by i we obtain explicitly the following ODE on W2:

Z2 = xlx3 (e2 - x2) - 1/ 2 ,

(6.13) = -(g/e 2 ) x1(e2 _ X 1 1 - XX 2 ( 2 _ 2) - 1 ,

i4 = -(g/e 2)(E2 _z) - X2(e 2 _ X2) - 1/ 2 ,

is = -(3g/e 2 )xIX3(e 2 _ X2)-1/2.

Interestingly, (6.13) reduces to a system consisting only of the first and third equations.

In fact, for given initial data x0 and x0, x, and x3 are uniquely determined by these two

equations and then x2 , x 4 , X5 are explicitly derived from (6.11). In turn, this 2 x 2 system

is equivalent to the single scalar second order equation

I, = -(g / 2 )X1 (e2 - X2)112 X(f 2 _-

which, with x, = tsinO, becomes

I = -(gC) sine;

that is, the classical 'pendulum equation'.
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7. Analytic Characterizations.

For the pendulum example all considerations were of a global nature and all equations

characterizing the manifolds of the reduction chain could be manipulated explicitly. But

this is hardly a typical situation. For most practical applications it will be important to

obtain analytic criteria corresponding to the various geometric conditions contained in the

Definitions 3.1, 4.1, and 4.2.

The first condition of Definition 3.1 requires that locally near the point (x 0 ,p 0 ) under

consideration the manifold Al is embedded in TY where Y is a submanifold of X with the

same dimension m as M. Clearly, this condition can hardly be translated into analytic

terms and must be assumed. This is not a major inconvenience because the reduction

procedure of Sections 4 and 5 automatically preserves this property and provides explicit

information about the choice of Y. Moreover, as we saw in the previous section, at the

beginning of the process Y is typically given by Y = X = R".

All the geometric conditions are local in nature at a point (x 0 ,p 0 ) E Y and are unaltered

by natural tangent bundle isomorphisms; that is, those occuring as tangent maps of local

diffeomorphisms defined in the neighborhood of z 0 in X. Hence, there will be no loss of

generality in assuming that the problem has been represented in the following form:

Local Assumption. The space Y is given by Y = R' (or some open subset of R') and

there exists an open neighborhood U in TY of (xo,po) E TY such that M = U n G- 1 (O)

where G: TY -- Y is a (smooth) submersion on U; that is, DG has full rank m on U.

This assumption simply means that, locally at the given point (xo,po), we have replaced

the manifold AI by its connected component (of dimension m) containing the point and

that we used a natural tangent bundle chart for TY at (xo,po) (in the terminology of [1]).

Note that with Y = R' we have TY = TR m - R' x Rm and that the canonical projection

7r : TY -. Y is the projection onto the first factor.

From Theorem 2.2 and Remark 3.1 we obtain immediately the following result:

Proposition 7.1. Under the Local Assumption. condition (ii) of Definition 3.1 holds if

and only if DPG(x,p) has constant rank p < m for all (x,p) E M in some neighborhood
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of(xO,po)and in that case we have ordMg(xo,po) = p.

Before turning to a characterization of reducibility in Definition 4.2, we need analytic

representations of local projections in the setting of our Local Assumption. For this suppose

that M is a ir-submanifold and hence, in accordance with Proposition 7.1, that DpG(x,p)

has constant rank p locally near (xo,po).

By Definition 3.2 a local projection W of Al near (xo,po) is the projection 7r(V) of a

sufficiently small open neighborhood V of (xo,po) in M such that W is a submanifold of

Y = R' of the same dimension p as the order of (xo,po) in M. Thus, locally near x0 ,

the manifold W can be represented in the form l.1 = g-(0) where g : Rm - R m- P is

a submersion on some neighborhood of 'o; that is Dg has full rank m - p. The tangent

bundle TW C TR m is then characterized by

(7.1) TIV = {(x,u) E TR" : g(x) =0, Dg(x)u =0}.

Hence any point (x,p) E Ti f V satisfies g(x) = 0, Dg(x)p = 0, and G(x,p) = 0. But

the latter equation states that (x,p) E V and hence implies that x E W which is g(x) = 0.

Therefore we have

(7.2) TW n V = {(x,p) E TR m : Dg(z)p = 0, G(x,p) = 0}.

Now the question arises how g can be obtained from G. Clearly dim kerDpG(xo,po) =

m - p and hence there exists a linear map

(7.3) A E C(RrnR"-P), kerA nkerDpG(xo,po) = {0}

with full rank m - p. Using A we construct the mapping

(7.4) G: TR R- x R - P, G(xp) = (G(xp),A(p - po)),

for which evidently G(xo,po) = 0 and

(D.G(xo,po) DpG(xo,po))

(7.5) DG(xo,po) = AO = ( E C(TRm .R m x R'-'),
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has full rank 2m - p. Hence, G-'(0) (restricted to some neighborhood of (xo,po)) is a

p-dimensional submanifold N of M which at that point has the tangent space T(zo,po)N =

ker A0 . As in the proof of Theorem 2.2 note that the differential of , I% at (xo,po) is simply

the restriction of ir to T(.o,po)M. Hence we have

T(.,,p.)N n ker 7, iT.,o),1f = ker A0 n [{0} x ker DpG(zo,po)].

In other words, any element (h, k) of the space on the left has to satisfy the relations

A0 (h,k) = 0, h = 0, and DpG(xo,po)k = 0 which by (7.3) imply that k = 0. Thus by

the second part of Theorem 2.1 it follows that -IN is a local diffeomorphism of some open

neighborhood of (x 0 ,p0 ) in M to W.

For the construction of a local coordinate system on N let Qo E £(R' ) be a projection

onto some complement Z0 of the range of D G(xo,po) so that dim ZO = m - p and

(7.6) Z'= kerQoD.G(xo,po).

has at least dimension p. From QoDG(xo,po) = QoD.G(xo,po) it follows that (h,k) E

kerA0 implies h E Z'. Conversely, for h E Z' we have DG(xo,po)h E rge D,(x 0 ,Po)

so that DG(xo,po)(h,k) = 0 for some k E R' and, since A is an isomorphism of

kerDpG(xo,po) onto R m- P there exists a k' E kerDpG(xo,po) for which Ak' = -Ak.

But then we have AO(h, k + k') = 0 which shows that the projection ,r maps kerA0 onto

Z' and hence that. dim Z' < p. It follows that dim Z' = p.

For any complement Z" of Z' in R ' we now have dim Z" = m - p and

(7.7) QoDzG(xo,po)lz,, E Isom (Z",Zo).

In accordance with the decomposition Rt' = Z' & Z" we shall henceforth write x = z' + z"

for any x E R' n and, in particular, set x0 = +0 zi.

It is easily checked that A0 is an isomorphism of Z" x R' to R" x R'- P. Hence the

implicit function theorem applies to the equation G(z' + z",p) = 0, and we obtain for N
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the local coordinate representation

(7.8) (x,p) E N p* ZI = p =

where V and 0 are smooth functions in some neighborhood of z' such that z" =

p0 = ,(z,). Evidently

(7.9) g R" = Z' E Z" -. Z" - R m - , g(x) = Z" - v(z').

satisfies D.,,g(xo) = Iz" and therefore is a submersion at xO. From (7.8), and after

shrinking 1V if necessary, it follows that

x E TV #> z" =(z')

which implies that W = g -(0).

For later purposes, we require the derivatives Dg(xo) and D 2 g(xo)(po, .) when (xo,po) E

TW n M. Because of (7.9) it suffices to calculate DV(z ) and D 2(p(z ) which can be done

by implicit differentiation of G(z' + o(z'), O(z')) = 0. By a straightforward calculation

using (7.6) we obtain

(7.10) DV(z') = 0, Di,(z') = 0,

and therefore

(7.11) Dg(xo)h = h", h = h' + h" E Z'e Z" = R

From this, in turn, an equally simple calculation provides

D2 g(xo)(h.k) = [QoD!G(xo,po)jz,,]'QoD2G(xo,po)(h'. k'),

h = h' + h", k = k' + k" E Z' D Z" = Rm .
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Now for (xo,po) E TIVfnM it follows from (7.1) that Dg(xo)po = 0 which by (7.11) implies

that Po = p' and thus with k = Po above

D 2g(xo)(po,h) = [QoD.G(xo,po)Iz,,]-'QoD2G(xo,po )(po, h'),
(7.12)

h = h' + h" E Z' ( Z" = R.

With these results we obtain now the following characterization of the conditions in

Definition 4.2.

Proposition 7.2. Suppose that at (xo,po) E TW n M with W = r(V), the Local As-

sumption holds. For any (z,p) in V let Q(x,p) be the projection of Rm onto an arbitrary

complement Z(Z,p) of the range of DpG(x,p) and write Zo = Z(_opo) and Qo = Q(zo,po).

Then the conditions (4.3) and (4.4) of Definition 4.2 hold if and only if the mapping

(7.13) Zo E C(TR', Z x R)
D.G(xo,po) DPG(xo,po) /

has full rank 2m - p and, after shrinking V if necessary, for all (X,p) E TW n M the

relation

dim [kerQ(x,p)DG(x,p) n kerDpG(x,p)] =
(7.14) dim [kerQoD.G(xo,po) n ker DpG(xo,po)],

holds.
4

Proof. Since g is a submersion at x0 it follows that the mapping

(x, u) E TR" - (g(x), Dg(x)u) E R ' - P x R m - P

is a submersion at (xo, u) irrespective of u. Hence. because of (7.1) and (xo,po) E TIV, we

find that

T( 0 ,po )TIY = {(h, k) E TR m : Dg(xo)h = 0. D 2g(Xo)(po, h) + Dg(xo)k = 0),

4 Obviously (7.14) is independent of the specific choice of the projections Q(z, p).
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and therefore (h, k) E T(o,po)TIV n T(,o,po)M exactly if

Dg(xo)h = 0,

D 2g(xo)(po,h) + Dg(zo)k = 0,

DG(xo,po)h + DPG(zo,po)k = 0.

By (7.11) the first relation states that h E Z' = kerQoD.,G(xo,po) which is also a conse-

quence of the third relation. In other words, the first relation is redundant and the above

set of conditions reduces to (h, k) E kerL(xo,po) where

(7.15) L(x,p) = ( D 2g(x)(p, ) Dg(x)

DG(x,p) DPG(z,p) J
Thus the condition (4.3) is equivalent with dimkerL(xo,po) = p. From (7.11) and

(7.12) together with (7.7) we find that (h, k) E kerL(xo,po) exactly if

QoD 2 G(xo,po)(po, h') + QoD.G(xo,po)k" = 0,

DG(xo,po)h + DPG(xo,po)k = 0.

By multiplying the second equation with Q0 we see that QoD.G(xo,po)h = 0 and hence

that h = h' E Z1. Thus, in the first equation h' may be replaced by h. Since k" may,

of course, be replaced by k it follows that kerL(xo,po) is the null-space of the mapping

(7.13) and that dim ker L(xo,po) = p if and only if the rank of (7.13) (and also of L(xo,po))

equals 2m - p and hence is full.

Suppose now that the condition (4.3) holds and therefore, as we just saw, that L(x,p)

has rank 2m-p for all (x,p) E TR ' near (xo,po). In order to show that (7.14) is equivalent

to (4.4), note that L(x,p) is the derivative of the mapping (x,p) -4 (Dg(x)p, G(x,p)) whose

local zero set near (x 0 , p0 ) is precisely TIVnV. This means that, locally near (xo,po), TWn

V is a p-dimensional submanifold of TR m whose tangent space at (x, p) is ker L(x. p). The

condition (4.4) now states that the rank of the linear mapping riT ( TWnV) is constant

for all (x,p) E TTV n V near (x0 ,P0 ). Equivalently, this means that the mapping

(7.16) (h, k) E ker L(x.p) h
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has constant rank for (x.p) E TIVfl V near (xo,po). Since kerL(x.p) has dimension p it

follows that (4.4) holds exactly if the dimension of the null-space of (7.16) is constant for

all (x,p) E TW n V near (xo,po). This null-space consists of those pairs (0, k) E TR" for

which

Dg(x)k = 0, DPG(x,p)k = 0.

But Dg(x)k = 0 means that k E T,1V = r(T(,p)M). Then there exists some f E Rm

such that DG(x,p)k + DPG(x,p)e = 0 and by multiplying with Q(x,p) we see that

Q(x,p)D.G(x,p)k = 0. Thus, kerDg(x) = kerQ(x,p)D G(x,p) and, since the null-space

of (7.16) is {0} x [ker Dg(x)nker DpG(x,p)], its dimension will be constant exactly if (7.14)

holds. 0

Propositions 7.1 and 7.2 show how reducibility of a 7r-submanifold M can be checked

in the neighborhood of a given point (xo,po) after a natural tangent bundle chart has

been chosen to reduce the problem to that characterized by the Local Assumption. When

(xo,po) belongs to the reduction M' of M and has order p in M, then an analytic charac-

terization of M' near (xo,po) is given by

Dg(x)p= 0 (E Rm-P)

(7.17)
G(x,p) =0 ( R m ),

where we constructed g : R' - R'-P as a submersion at x 0 for which the zero set g-1(0)

coincides locally near x0 with a local projection IV of M at (xo,po). Then dim W = p

and M' is localy near (xo,po) a p-dimensional submanifold of TW which therefore can be

represented as H-1(0) with some submersion H : TW --+ RP at (xo,po).

Once H is known we can use a natural tangent bundle chart on TV to introduce the

representations W = R P, TW = TR P which means that, once again the Local Assumption

holds but with M replaced by M 1 = M' and G replaced by the representation G1 of H in

the bundle chart. Thus Propositions 7.1 and 7.2 can be applied again. A natural tangent

bundle chart for TW is easily constructed once g has been determined from G as discussed

above. This leaves us with the question of finding H in terms of the data available from
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the Local Assumption: that is, in terms of the mapping G characterizing M near (zo,po).

For this it may be noted that although the system (7.17) characterizes J1M1 near (xo,po)

and Dg(x)p = 0 holds whenever (x,p) E TW, we cannot choose H = G for then H maps

into m and not into RP.

We begin by representing the manifold M locally near (xo,Po) as the zero set of another

submersion C from which H can then be obtained. Let B E C(Rm-P, R 't) be chosen such

that

(7.18) rge B n rge DpG(xo,po) = {0}.

Such a mapping B is necessarily one-to-one. Moreover, set

(7.19) V' = kerDpG(xo,po), dimV' = m-p,

and let V" be any complement of V' in R' . We shall henceforth write p E R' in the

form p = p' + p" in accordance with the decomposition R'IT = V' ( V". There should be

no confusion with the corresponding notation used earlier relative to the decomposition

R' = Z' e Z" since the two decompositions will not appear at the same time.

By the choice of V" the mapping

(k",e) E V" x R' - P F-4 DPG(zo,po)k" + Bt E R ' ,

is one-to-one and hence a linear isomorphism. It thus follows from the implicit function

theorem that near (xo,po, 0) the zero set of the mapping

(x,p,q) E TR x R- P -- G(x,p) + Bq E R' ,

is a (2m - p)-dimensional submanifold .Al of TR" x R" -P characterized by

(7.20) (x,p,q) E Al 4* {p" = ,(x.p'), q =p(x,p')},
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where A and ju are smooth functions near (xop'o) such that A(xo,p ) p", y(xop') = 0.

For (x,p) E TR m near (xo,po) let

(7.21) H(x,p) = p" - A(x,p') E V" - R P,

and

(7.22) G(x,p) = (g(x),H (x,p)) E RM - P × V" - Rm .

Since Dp,,H(xo,po) = Iv,, we see that DpH(xo,po) is surjective and hence, because g is

a submersion at x0 , that 6 is a submersion at (xo,po). Now, observe that for (x,p) E M

near (xo,po) we have G(x,p) = 0 whence (x,p,O) E M. In particular, (7.20) implies

p" = A(x,p); that is, Hr(,p) = 0. On the other hand, from G(x,p) = 0 we also obtain

g(x) = 0 and therefore G(x,p) = 0. Thus, locally near (xo,po), we have

(x,p) E M =, (x,p) E -'(0).

But since d is a submersion at (xo,po) its zero set near (xo,po) is a submanifold of

TR m with the same dimension m as A1 so that Al and G-(0) coincide in the vicinity of

(xo,po). This means that, in all previous considerations we may use d instead of G when

desirable. More specifically, the conditions expressed in Propositions 7.1 and 7.2 in terms

of G are equivalent to the corresponding conditions expressed in terms of G (because with

both choices these conditions translate geometric, hence intrinsic, properties). Therefore

if (xo,po) E TW n Al and the mapping (7.13) has full rank 2m - p (as it must if M is

reducible), then the mapping obtained by replacing G by d in (7.13) has full rank 2m - p

as well. As was seen in the proof of Proposition 7.2, the full rank condition for the mapping

(7.13) is equivalent to

rank D2 g(xo)(Po Lg(o) 2m - p,
DG(xo,po) DpG(X0 ,p o)
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and hence to

(7.23) rank (D 2g(X0 )(pO'') Dg(x) 2m - p.
DrG(xo,po) DpG(xo,po))

Hence for v" E V" and with (7.22) and (7.23) we see that there exists some (h, k) E

R' x R' such that
D 2g(zo)(po, h) + Dg(xo)k = 0,

Dg(xo)h = 0,

DrH(xo,po)h + D f-(xo,po)k = v".

Here the first two conditions mean that (h, k) E T(.,,p,)(TW), and, since v" is arbitrary, it

follows that DI(xo,po)T(0.,o)Tw maps onto V"; that is, that -iTW is a local submersion

at (xo,po) in TWnM. This shows that H = H:ITw can be chosen to characterize TIVfnM

and hence M' as H-1(0) in a neighborhood of (xo,po) and, as desired, by (7.21) H maps

into RP.

8. Relationship with the Earlier Theory.

We use again the setting of the previous section and discuss now the special case when

the point (xo,po) has local index 1 and relate the results to our earlier theory developed

in [11]. This will show that in this case the two approaches essentially coincide and that

some apparent discrepancies can be fully explained.

As defined in Section 5, the point (xo,po) E A. has local index 1 if there exists an open

neighborhood U of (xo,po) in M such that (i) U is a completely reducible 7r-submanifold,

(ii) (xo,po) belongs to the core C(U) of U, and (iii) the connected component of C(U)

containing (xo,po) is a connected component of the reduction U1 = U' of U but not of U

itself (for otherwise the index would be 0). In particular, this means that U1 is reducible

and the reduction U' of U1 equals U1.

Under the conditions of Propositions 7.1 and 7.2 and, in particular, if (xo,po) E TW n

Al, then there exists an open neighborhood U of (xo,po) in .l which is a reducible 7r-

submanifold and (xo,po) E U1. By shrinking U and therefore also U1 we may assume

that U, C TIV where IV is the local projection of Al near (xo,po) used before. Hence,
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a necessary and sufficient condition for UI to be reducible with [I" = U1 is given by

Proposition 4.2 with .U replaced by U1 and Y by 1V. More specifically, since ir is here

I linear, Proposition 4.2 requires that - be a linear isomorphism from T(-z,po)Ui to T 0,IV.

Note that it is actually required that the condition holds for every (x. p) E U1 . But because

U1 can be shrunk to arbitrarily small size, it suffices indeed to require the condition only

at (xo,po) since it then holds automatically at all nearby points. In summary, under the

I conditions of Propositions 7.1 and 7.2 we have

1 (8.1) (xo,po) E TIV M has local index 1 kerrlT(P o)(TW1nM) = fol.

This provides us with the following characterization:

Theorem 8.1. Under the Local Assumption the point (xo,po) E Al has local index 1 if

and only if

(i) rank DpG(x,p) = p is constant for all (x,p) near (xo,po) in l.

(ii) D.G(xo,Po)po E rge DPG(xo,po).

(iii) For any k E lR' the implication

I D G(xo,po)k E rge DPF(xo.po)
(8.2) k--.I DPG(.o,po)k = 0 k

holds.

Proof. The necessity of (i) and (ii) is obvious since (i) is required by Proposition 7.1 and

(ii) merely expresses the assumption that (xo,po) E TIV l l. Now note that (8.2) is an

equivalent formulation of the condition on the right of (S.1) since in the proof of Proposition

7.2 the null-space of -,-0T(.p0,p(TT'n) was seen to be equal to

{0 } x [kerQoD 1G(xo,po)nlkerDpG(xo,po)]

where Q0 is a projection onto a complement of rge DG(xo,po). Hence the necessity of

(iii) follows from the equivalence (8.1).
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71For the proof of the surficiency we have to show that all the conditions of Propositions

7.1 and 7.2 are satisfied. Then (S.2) will ensure that the condition on the right side of

I (8.1) holds.

Clearly the conditions of Proposition 7.1 hold and so does the condition (xo,po) E

TIV l A1 of Proposition 7.2 which is our condition (ii). We now show that the mapping

(7.13) has the full rank 2m - p. For this let ZO and Q0 be as given in Proposition 7.2

I and (u,v) E Z0 x Rmn . Since G is a submersion at (ro,po) there exists some (h,k) E TRm

such that D G(xo,po)h + DpG(xo,po)k = v and k may be replaced by k + e with any

C E kerDPF(xo,po) without affecting this relation. By (8.2) we have kerQoD G(xo,po) n

kerDpG(xo,po) = {0}; that is, QoD.G(xn,po) is one-to-one on kerDPG(xo,po) and hence

a linear isomorphism of kerDPG(xo,po) onto Zo. Thus, e E kerDPG(xo,po) can be found
~so that

QoD G(xo,po) = u - QoD G(xo,po)(po, h) - QoDG(xo,po)k.

which proves the claim.

Finally, we show that (7.14) holds. As noted above the right-hand side of (7.14) is zero

I and it suffices to prove that for (xp) E TIV n -l1 near (xo,po) we have. with the same

notation as in Proposition 7.2,

I (8.3) kerQ(x.p)D.G(x,p) n kerDPG(x.p) = {0}.

We observed that (7.14) is independent of the specific choice of the projections Q(zp).

In particular. we may choose Q(x.p) to depend continuously on (x.p) E l. In fact, let

{e,... .e'} be an orthonormal basis of rge DpG(xo,po), relative. say. to the canonical

inner product of Rm , and choose w1 . . . . . wp E -R' such that 0, DpG(xo,po)wi for

L.= 1 . p. By continuity. the vectors ci(x.p) = D G(x. p)wi, i = 1 ..... p remain linearly

independent for (x.p) E -11 near (xo,po) and hence by (i) they span a space of dimension

fp = dim rge DG(x.p). Therefore. we have rge D, G(x.p) = span {c(x.p).... ep(x.p)}

and by applying the Gram-Schmidt process to the vectors ei(x.p) we obtain an orthonormal

basis of rge DpG(x,p).3 As a sum of dyadic products of the vectors of this basis. the

'Recall that the Gram-Schmidt process involves only continuous operations.

I ,Ii
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orthogonal projection P(x.p) of rge D G(x.p) depends continuously on (x.p) E A near

(xo,po), and hence the same is true of Q(x.p) = I - P(xp).

It only remains to show that (S.3) holds for all (x. p) E TIV n TV near (xo,po). Suppose

in the contrary that there exist sequences (xj.pj) E TW n .1l and k, E R' such that,

for all j > 0, (xj,pj) -- (xo,po) and kj is a unit vector under some norm, for which

Q(Xj,pj)D,=G(xj,pj)kj DpG(xj,pj)kj = 0. By extracting a subsequence we may assume

that kj -+ k where k E R' again is a unit vector. By continuity it then follows that

k E kerQ(xo,po)D.G(xo,po) n kerDPG(xo,po) which is a contradiction. 0

Theorem 8.1 can be compared with a related result in [11] where a different approach

is taken and a different definition for the index is given. It turns out that the result in

[11] corresponding to Theorem 8.1 - when phrased in our present notation - requires the

conditions:

Condition (i)'. rank DpG(xp) - p is constant for all (x,p) near (xo,po) in TRm .

Condition (ii)'. DG(xo,po)po E rge DPG(xo,po).

Condition (iii)'. If for any vectors k E R' and qo E R' such that D F(xo,po)po +

DpF(xo,po)qo = 0 the relations

DX.pG(xo,po)(po, k) + D2G(xo,po)(qo, k) + D.G(xo,po)k E rge D G(xo,po)

DpG(xo,po)k = 0

hold. then k = 0.

In condition (iii)' it may be noted here that the requirement for the vector q0 is consistent

with (ii)' and that D. PG(xo.po)(po, k) stands for D G(xo,po)((po, 0), (0. k)).

It immediately appears that condition (i) of Theorem 8.1 is weaker than (i)' since con-

stancy of the rank of D G(.r.p) is required only in a neighborhood of (xo,po) in M. The

approach taken in [11] does not go through under this weaker assumption. Conditions (ii)

and (ii)" are the same for both results but an obvious discrepancy exists among the condi-

tions (iii) and (iii)' since the second derivative of G plays no role in Theorem 8.1. However,
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the discrepancy is removable. In fact. suppose that for (.ro.po) E I the conditions (i'.

(ii)'. and (iii)' hold. Then for any k E kerDF(xo,po) we have

D-1 G(xo.po)(po,k)+D2G(xo,po)(qo,k) E r-eDG(xo.po),

and hence the condition (iii)' coincides with condition (iii) of Theorem 8.1.

In order to see this observe that

DPG(xo. po)(po, k) + DPG(xo,po)(qo, k)

(8.4) =D2 G(xo,po)((po,O),(O,k)) + DG(xo,po)((O. qo),(O.k))

=D 2 G(xo,po)((po, qo), (0. k)) = D[DpG(x.p)k](po, qo)j1(.p)=(xO0 ,po)
d

=dt [DpG(xo + tpopo + tqo)khih=.0 .

By a method identical to the one used in the proof of Theorem 8.1 it was shown in [111

that the condition (i)' implies that for aUl (x.p) E TR '. sufficiently close to (xo,po) a

projection Q(x.p) onto a complement of rge DpG(x,p) can be chosen which depends not

only continuously but smoothly upon (x.p). Thus. with

(8.5) q(t) = Q(xo + tpo,po + tq), ;(t) = DpG(xo + tpo,po + tqo)k.

it follows that q(t),(t) - 0 for all sufficiently small Iti and by differentiating this identity

at t = 0 we obtain

t(0i (0) + q(O)-o) 
= 0.

Since for k E kerDPG(xo,,,po), -(0) = 0. this relation reduces to q(O)(d ,/dt)(O) = 0 and

because q O) = Q(xo.po) projects onto a complement of rge D G(xo.po) this reads

-(0) C r-e D,,G(.ro.po),

and the conclusion follows from (S.4) and (S.3).
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For problems with arbitrary index,. there is also some similarity between the methods

of this paper and those o-. '111. Indeed. for (.ro,po) in the core C(.1) of Af it follows

from the analytic results of' Section G that the structure of C(M) near (x0 ,p0 ) can be

determiined from a sequence of mappings Go, .  G, where v is the index of (xo,po) and

G,- 1(0) represents C(_1l) near (xo, po) in a local chart. This is reminiscent of what was

done in [11] where also a sequence of mappings F0 ,. , is defined inductively. But an

important difference is that the G, are defined over, and map into, spaces with smaller

and smaller dimension while no reduction of dimension occurs with the Fj in [111.
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