To appear in the Proceedings of the 10th AmI-Sy.mposium on the Principles
of Distributed Computing, Montreal, Canada, August, 1991.

—A236 249
DH\\\\‘\\\\\\\\\\\\\\\\\]

JUNO 41991 £

Efficient Parallel Algorithms on
Restartable Fail-stop Processors

Paris C. Kanellakis* Alex A. Shvartsman!

Abstract

We study efficient deterministic executions of parallel algorithins on restartable fail-stop CRCW PRAMs. We allow
the PRAM processors to be subject to arbitrary stop failures and restarts, that are determined by an on-line
adversary, and that result in loss of private memory but do not affect shared memory. For this model, we define and
justify the complexity measures of: completed work, where processors are charged for completed fixed-size update
cycles, and overhead ratio, which amortizes the work over necessary work and failures. This framework is a nontrivial
extension of the fail-stop no-restart model of [KS 89).

We present a simulation strategy for any N processor PRAM on a restartable fail-stop P processor CRCW
PRAM such that: it guarantees a terminating execution of each simulated N processor step, with O(log? N) overhead
ratio, and O(min{N 4 Plog> N + Mlog N, N - P°®}) (sub-quadratic) completed work, where M is the number of
failures during this step’s simulation. This strategy is work-optimal when the number of simulating processors is
P < N/log? N and the total number of failures per each simulated N processor step is O(N/log N). These results
are based on a new algorithm for the Write-All problem “P processors write 1’s in an array of size N”, together
with a modification of the main algorithm of [KS 89] and with the techniques in [KPS 90, Shv 89].

We observe that, on P = N restartable fail-stop processors, the Wrile-All problem requires (N log N) com-
pleted work, and this lower bound holds even under the additional assumption that processors can read and locally
process the entire shared memory at unit cost. Under this unrealistic assumption we have a matching upper bound.
The lower bound also applies to the expected completed work of randomized algorithms that are subject to on-line
adversaries. Finally, we desribe a simple on-line adversary that causes inefliciency in many randomized algorithms.

1 Introduction alistic features. The PRAM requires: (1) global syn-
chronization, (2) simultaneous access across a significant
bandwidth to a shared resource {memory), and (3) that
processors, memory and their interconnection must be
perfectly reliable. The gap between the abstract mod-
els of parallel computation and realizable parallel com-
puters is being bridged by current research. For ex-
ample, memory access simulation in other architectures
is the subject of a large body of literature surveyed in
[Val 90a}, for somne recent work see [HP 89, Ran 87,

Context of this work:

The model of parallel computation known as the Par-
allel Random Access Machine or PRAM [FW 78] has
attracted much attention in recent years. Many effi-
cient and oplimal algorithms have been designed for it,
see the surveys [EG 88, KR 90]. The PRANM is a conve-
nient abstraction that combines the power of parallelism

with the simplicity of a RAM, but it has several unre-

*Computer Science Dept., Brown University, PO Bor 1910,
Providence, RI 02912, USA. pck@cs.brown.edu. The research of
this author was supported by NSF grant IRI-8617344 and ONR
grant NOOO14-91-J-1613.

Y Computer Science Dept., Brown University, PO Boz 1910,
Prowidence, BRI 02912, USA, and Digital Fquipment Corpora-
tion, LKG2-2/T2, 550 King Strect, Littleton, MA 01460, USA.

aas@cs.brown.edu.

DB.:—:E"JTIO“‘ ‘-. P _.iI A

H
Approved tor puriic reisase }
Disinrunea Unumited ¢

-

008

Upf 89]. Asynchronous PRAMs are examined in {CZ 89,
C7Z 90, Gib 89, MSP 90, Nis 90]; this research on syn-
chronization is related to the study of parallel reliable
compulations, which is the subject of this paper.

Here, we continue and extend the study of fault tol-
crance that was initiated in [KS 89] and show that arbi-
trary PRAM algorithms can be efficiently and deter-
ministically executed on restartable fail-stop PRANMs
(whose processors are subject to arbitrary dynamic pat-
terns of failures and restarts). As it was shown in
[KS 89], it is possible to combine efliciency and fault-
tolerance in many key PRAM algorithms in the presence
of arbitrary dynamic fail-stop processor errors (when
processors fail by stopping and do not perforin any fur-

91-0
U ll,ﬂll IJIJI;'J' ill!)lllhll’

ther actions).

It was determined that efficient and fault-tolerant so-
lutions for a certain basic problem are fundamental in
making efficient parallel algorithms fault-tolerant. This
problem is the Write-All problem:

Given a P-processor PRAM and
a 0-valued array of N elements,
write value I into all array localions.

This problem was formulated to capture the essence of
the computational progress that can be naturally ac-
complished in unit time by a PRAM (when P = N).
Thus, in the absence of failures, this problem is solved
by a trivial and optimal parallel assignment. However,
fault-tolerant solutions that must be efficient for worst
case adaptive adversaries are non-obvious.

The iterated Write-All paradigm was employed (in-
dependently) in [KPS 90] and [Shv 89] to extend the
results of [KS 89] to arbitrary PRAM algorithms (sub-
ject to fail-stop errors without restarts). In addition to
the general simulation technique, [KPS 90] analyzed the
expected behavior of several solutions to Write-All us-
ing a particular random failure model. [Shv 89] presents
a deterministic optimal work execution of PRAM algo-
rithms subject to worst case failures given parallel slack-
ness (as in [Val 90b]).

A simple randomized algorithm that serves as a basis
for simulating arbitrary PRAM algorithms on an asyn-
chronous PRAM is presented in [MSP 90]. Note that
this asycnhronous simulation has very good expected
performance for the problem of this paper when the ad-
versary is ofl-line. Recently, [KPRS 90} further refined
the results of [KPS 90] to produce an approach that
leads to constant expected slowdown of PRAM algo-
rithms when the power of the adversary is restricted.
[KPRS 90} has also improved the fail-stop deterministic
lower and upper hounds of [KS 89] (by loglog N fac-
tors).

The general problem of assigning active processors to
tasks has similarities to the problems of resource allo-
cation in a distributed setting. Distributed controllers
have been developed for resource allocation such as the
algorithms of [LGFG 86] (in a probabilistic setting), and
[AAPS 87] (in a deterministic setting). Fault-tolerance
of particular network architectures is also stndied in
[(DPPU 86]. However, the underlying distributed com-
putation models, the algorithms and their analysis are
quite different from the parallel setting studied here.

Finally, the work presented here deals with dynamic
patterns of faults — for recent advances on coping with
static fault patterns see [K* 90]. We consider fault
granularity at the processor level — for recent work on
gate granularities see [AU 90, Pip 85, Rud 85].

Contributions:

We allow PRAM processors to be subject to on-line (dy-
namic) failures and restarts. Qur failure/restart errors
are not the same as the errors of omission because pro-
cessors lose their state after a failure, while errors of
omission cause a processor to skip a number of steps
without losing its context.

We concentrate on the worst case analysis of the com-
pleted work of deterministic algorithms that are sub-
ject to arbitrary adversaries, and on the overhead ratio,
which amortizes the work over the necessary work and
failures/restarts.

In our model processors fail and then restart in a
way that makes it possible to develop terminaling al-
gorithms, while relaxing the requirement that one pro-
cessor must never fail. We account for the work per-
formed by the processors in a way that discounts trivial
adversaries that would otherwise force gquadratic work
Write-All solutions. To guarantee algorithm termina-
tion and sensible accounting of resources, we introduce
an update cycle, that generalizes the standard PRAM
read/compute/write cycle. In Section 2, we first de-
fine the model and associated complexity measures, and
then discuss the reasons for the choices made. The dis-
cussion motivates the use of update cycles, the only non-
obvious technical choice made.

The trivial quadratic lower bound cited above is based
on a thrashing adversary. It depends on the adver-
sary exploiting the separation of read and write in-
structions in PRAMs. When reads and writes are
accounted together in update cycles it no longer ap-
plies. Instead, we show that the Write-All problem of
size N requires (N log N) work. This lower bound
holds, even if processors could read and locally pro-
cess all the shared memory at unit cost. Qur simple
lower bound is of interest, because it is matched by an
O(N log N) upper bound under these assumptions. (Re-
mark: An Q(N log N) lower bound was recently shown
in [KPRS 90] using a different technique and different
assumptions for a fail-stop no-restart model.) The up-
per bound proof arguments lead to a modilication of
the basic algorithm of [KS 89], so that it is efficient and
correct in both the original setting, and with the fail-
ure and restart errors. We describe these arguments in
Section 3.

In Section 4 we present the main result and support-
ing algorithms. This is a simulation strategy for any
N processor PRAM on a restartable fail-stop P proces-
sor CRCW PRAM such that: it guarantees a terminat-
ing execution of each simulated N processor step, with
O(log? N) overhead ratio, and (sub-quadratic) coni-
pleted work O(min{N + Plog? N + M log N, N - P*€}),
where M is the number of failures during this step’s
simulation.

This strategy is work-optimal when the number of
simulating processors is P < N/log? N and the total
number of failures per each simulated N processor step
is O(N/log N). The optimality result is preserved, of
course, in the absence of failures. Our approach is based
on: {a) a new algorithm for Write-All whose completed
work is O(N - P83 3+%) for P < N and any 6§ > 0,
and which can handle any pattern of failures/restarts,
(b) a modification of an algorithm from [KS 89], and
(c) the techniques developed in [KPS 90, Shv 89].

The lower bounds apply to the worst case work of de-
terministic algorithms as well as to the expected work of
randomized and deterministic algorithms. Interestingly,
randomization does not seem to help, given on-line,
i.e, non-prespecified, patterns of failures. For example,
it is easy to construct on-line failure and restart (no-
restart) patterns that lead to exponential (quadratic)
in N expected performance for the algorithms presented
in [MSP 90]. These stalking adversaries are described in
Section H, where we also corclude with some open prob-
lems.

2 Definitions

2.1 Restartable fail-stop CRCW PRAM

We use the commoN CRCW PRAM model, where all
concurrently writing processors write the same value.
Processors are subject to stop failures and restarls as
in [SS 83]. Our algorithms are described in a model
independent fashion using high level notation with the
obvious forall/parbegin/parend parallel construct.

The basis of the model is the PRAM of [FW 78}:

1. There are P initial synchronous processors. Fach
processor has a unique permanent identifier (PID)
in the range 0,..., P—1, and each processor always
knows its PID, and the number of processors I

2. The global memory accessible to all processors
i3 denoted as shared, in addition each proces-
sor has a constant size local memory denoted as
private. All memory cells are capable of storing
O(logmax{N, P}) bits on inputs of size N.

3. The input is stored in N cells in shared memory,
and the rest. of the shared memory is cleared (ie.,
contains zeroes). The processors have access to the
input and its size V.

In all our algorithms:

e The PRAM processors execute sequences of in-
structions that are grouped in update cycles. Each

update cycle consists of reading a small fixed num-
ber of shared memory cells (e.g., < 4), performing
some fixed time computation, and writing a small
fixed number of shared memory cells (e.g., < 2).

The parameters of the update cycle, i.e., the number
of read and write instructions, are fixed, but depend
on the instruction set of the PRAM; see [FW 78] for a
PRAM instruction set. The values quoted (4 and 2) are
sufficient for our exposition.

We use the fail-stop with restart failure model, where
time instances are the PRAM synchronous clock-ticks:

1. A failure pattern F (i.e., failures and restarts) is de-
termined by an on-line adversary, that knows ev-
erything about the algorithm and is unknown to
the algorithm.

2. Any processor may fail at any timme during any up-
date cycle, or having failed it may restart at any
time, provided that:

(1) at any time during the computation at least one
processor is executing an update cycle that success-
fully completes, and

(i1) failures can occur before or after a write of a
single bit but not during the write, i.e., bit writes
are alomic.

3. Failures do not affect the shared memory, but the
failed processors lose their private memory. Pro-
cessors are restarted at their initial state with their
PID as their only knowledge.

Note that failures here are different from the errors of
omission, where processors preserve their local context.
The failure and restart patterns are syntactically defined
as follows:

Definition 2.1 A fatlure paltern F is a set of triples
<lag, PID, t > where tag is either failureindicating pro-
cessor failure, or restart indicating a processor restart,
PID is the processor identifier, and ¢ is the time indicat-
ing when the processor stops or restarts. The size of the
failure pattern F is defined as the cardinality |FF|. O

For simplicity of presentation, we assume that the
PRAM shared memory writes of O(logmax{N, I’}) bit
words are atomic. Algorithms using this assumption can
be easily converted to use only single bit atomic writes
as in [KS 89].

We investigate two natural complexity measires,
completed work and overhead ratio. The completed
work measure generalizes the standard Parallel-fime x
Processors product and the available processor steps of
[KS 89]. The overhead ratio is an amortized measure.

LU

————

Definition 2.2 Consider an algorithm with P initial
processors that terminates in parallel-time 7 after com-
pleting its task on some input data I and in the presence
of a failure pattern F. If Pi(I, F) < P is the number of
processors completing an update cycle at time i, and ¢
is the time required to complete one update cycle, then
we define S(I, F, P) as:

SU,F,P)=cy_P(I,F). ©

izl

Definition 2.3 A P-processor PRAM algorithm on
any input data I of size |I| = N and in the presence of
any pattern F of failures and restarts of size |F'| < M:

(i) uses completed work:
S=Svmp= 1}1;;3({5(1, F, P},

(ii) has overhead ratio:

c=o . x{S(I,F,P)}
=onN =maxy —————1 (-
S R W AT

Remark 1 Update cycles are units of accounting. They
do not constrain the instruction set of the PRAM and
failures can occur between the instructions of an update
cycle. However, note that in S(I, F, P) the processors
are not charged for the read and write instructions of
update cycles that are not completed.

Remark 2 Consider a definition of work S'(I, F, P)
that also counts incomplete update cycles. Clearly
S"(I,F,P) < S(I,F,P) + c¢|F|. Thus, using S’ docs
asymptotically affect the measure of work (when |F}| is
very large), but it does not asymptotically affect o.

Remark 3 One might also generalize the overhead ra-
tio as Tb; :’)F;'_PF , where T'(}I]) is the time complexity
of the best sequential solution known to date for the
particular problem at hand. For the purposes of this
exposition, it is sufficient to express ¢ in terms of the
ratio %-H'"'Tpll This is because for Write-All (by itsclf

and as used in the simulation) T'(|[1]) = ©(|«+]).

2.2 Discussion of the technical choices
Work vs. overhead ratio:

When dealing with arbitrary processor failures and
restarts, the completed work measure S depends on the
size N of the input I, the number of processors P, and
the size of failure pattern F. The ultimate performance
goal for a parallel fault-tolerant algorithin is to be able
to perform the required computation at a work cost as

close as possible to the work performed by the best se-
quential algorithm known. Unfortunately, this goal is
not attainable when an adversary succeeds in causing
too many processor failures during a computation.

Example 2.1 Consider a Write-All solution, where it
takes a processor one instruction to recover from a fail-
ure. If an adversary in a failure pattern F with the
number of failures and restarts |F| = Q(N!*+¢) fore > 0,
then the completed work will be Q(N1*¢), and thus al-
ready non-optimal and potentially large, regardless of
how efficient the algorithm is otherwise. Yet the algo-
rithm may be extremely eflicient, since it takes only one
instruction to handle a failure. O

This illustrates the need for a measure of efliciency
that is sensitive to both the size of the input N, and
the number of failures and restarts M = |F|. When
M = O(P) as in the case of the stop failures without
restarts in [KS 89], S properly describes the algorithm
efficiency, and o = O(s—”'ﬁ“iﬂﬁ) However, when F can be
large relative to N and P (as is the case when restarts
are allowed) o better reflects the efliciency of a fault-
tolerant algorithm.

Recall from Remark 2, that o is insensitive to the
choice of S or §’, and to using update cycles, as a mea-
sure of work. However, update cycles are necessary for
the following two reasons.

Update cycles and termination:

Our failure model requires that at any time, at least one
processor is executing an update cycle that completes.
(This condition subsumes the condition of {KS 89] that
one processor does not fail during the computation).
This requirement is formulated in terms of update cycles
and assures that some progress is made. Without it,
the algorithims may not terminate, and when they do
terminate the work may not be bounded by a function
of N and P. Since the processors lose their context
after a failure, they have to read something to regain
it. Without at least one active update cycle completing,
the adversary can force the PRAM to thrash by allowing
only these reads to be performed. Similar concerns are

discussed in [SS 83].

Update cycles as a unit of accounting:

In our definition of completed work we only count com-
pleted update cycles. Even if the progress and termina-
tion of a computation is assured (by always completely
executing at least one update cycle), but the proces-
sors are charged for incomplete update cycles, the work
S’ of any algorithm that simulates a single N proces-
sor PRAM step is at least §2(P - N). The reason for

this quadratic behavior in §' is the following simple and
rather uninteresting thrashing adversary.

Example 2.2 Let ALG be any algorithm that solves
the Write-All problem under the arbitrary failure and
restart model. Consider the standard PRAM read, com-
pute, write cycles (if processors begin writing without
reading, a simple modification of the following argu-
ment leads to the same result). A thrashing adversary
allows all processors to perform the read and compute
instructions, then it fails all but one processor for the
write operation. The adversary then restarts all failed
processors. Since one write operation is performed per
read, compute, write cycle, N cycles will be required
to initialize N array elements. Each of the P proces-

sors performs ©(N) instructions which results in work
of ©(P-N). O

By charging the processors only for the completed
fixed size update cycles, and not for partially completed
cycles, we do not charge for thrashing adversaries. It is
interesting that this change in cost measure allows sub-
quadratic solutions.

2.3 An architecture for a restartable
fail-stop multiprocessor

The main goal of this work is to study algorithic tech-
niques that enable efficient parallel computation on mul-
tiprocessor systems whose processors are subject to fail-
stop errors and restarts. llere we suggest one way of
realizing our abstract model of computation.

Engineering and technological approaches exist that
allow implementing electronic components and systems
that operate correctly when subjected to certain failures
(for examples, see [IEEE 90, Cri 91]). The technologies
we cite below are instrumnental in providing the basic
hardware fault-tolerance, thus providing a foundation
on which the algorithinic and software fault-tolerance
can be built.

Semiconductor memories are the essential compo-
nents of processors and of shared memory parallel sys-
tems. These mermory are being routinely manufactured
with built-in fault tolerance using replication and coding
techniques without appreciably degrading performance
(sce the survey [SM 84]).

Interconnection networks are typically used in a mul-
tiptocessor system to provide communication arnong
processors, memory modules and other devices, e.g.,
as in the Ultracomputer [Sch 80]. The fauit-tolerance
of interconnection networks has been the subject of
much work in its own turn. The networks are made
more reliable by employing redundancy (see the survey
[AAS 87]). A combiming interconnection network that is

c N MEM,
PID, o

BT MEM,

—1 W :

N o .

1 R .
> N
PIDe G K MEMJ

Figure 1: A robust fail-stop multiprocessor.

perfectly suited for implementing synchronous concur-
rent reads and writes is formally treated in [KRS 88).

Finally fail-stop processors are formally treated and
justified in {SS 83].

The abstract model that we are studying can be real-
ized (Figure 1) in the following architecture, using the
components we have just overviewed:

1. There are P fail-stop processors, each with a unique
address and some amount of local memory. Proces-
sors are unreliable.

2. There are @ addressable shared memory cells. The
input of size N < @ is stored in shared memory.
This memory is assumed to be reliable.

3. Interconnection of processors and memory is pro-
vided by a synchronous combining interconnection
network. This network is assumed to be reliable.

With this architecture, our algorithmic techniques be-
coine completely applicable, i.e., the algorithms and
simulations we develop will work correctly, and within
the complexity bounds (under the unit cost memory ac-
cess assumption) for all patterns of processor failures
and restarts. This is true for as long as the shared mem-
ory and the interconnection network are subject to the
failures within their respective design parameters.

3 Lower bounds

As we have shown in Example 2.2, without the update
cycle accounting there is a thrashing adversary that ex-
hibits a quadratic lower bound for the Write-All prob-
lem. With the update cycle accounting, we prove a
(N log N) lower bound theorem.

Theorem 3.1 Given any N-processor CRCW PRAM
algorithm that solves the Write-All problem of size N,
then the adversary, that can cause arbitrary processor
failures and restarts, can force the algorithm to perforin
Q(N log N) completed work steps.

Proof: Let Z be any algorithm for the Write-All prob-
lem subject to arbitrary failure/restarts using update
cycles. Consider each PRAM cycle. The adversary uses
the following iterative strategy:

All N processors are revived. For the upcoming cycle,
the adversary determines the processors assignment to
array elements. Let U > 1 be the number of unvisited
array elements. By the pigeonhole principle, for any
processor assignment to the U elements, there is a set
of |4 unvisited elements with no more than [§] pro-
cessors assigned to them. The adversary chooses half of
the remaining previously unvisited array locations that
would have had no more than [%’-] processors assigned
to them, and it fails these processors, allowing all oth-
ers to proceed. Therefore at least [%J processors will
complete this step having visited no more than half of
the remaining unvisited array locations.

This strategy can be continued for at least log N it-

erations. The work S performed by the algorithm will
be $> |¥]logN = Q(NlogN). O

This lower bound is the tightest possible bound under
the assumption that the processors can read and locally
process the entire shared memory at unit cost. Such an
assumnption is very strong. However we take advantage
of the constructive proof strategy in the next section.

Theorem 3.2 If the fail-stop processors can read and
locally process the entire shared memory at unit cost,
then a solution for the Write-All problem can be con-
structed such that its completed work, when using N
processors on the input of size N is S = O(N log N).

Proof: We complement the previous lower bound with
the following oblivious strategy: at each step that a
processor PID is active, it reads the N elements of the
array z[1..N] to be visited. Say U of these elements
are still not visited. 'The processor numbers these U
elements from 1 to U based on their position in the
array, and assigns itself to the ith unvisited element such
that i = [PID - %]. This achieves load balancing with
no more than [%] processors assigned to each unvisited
element.

We list the elements of the Wrile-All array according
to the time at which the elements are visited in ascend-
ing order. We break this list into adjacent segments
numbered sequentially starting with 1, such that seg-
ment j contains V; = [J—(]LH—)} elements, for j =1,...,m
and for some m < v/N. When processors were assigned
to the elements of the jth segment, there were no less
than I/; = N — Ef;ll Vi N—(N- Jﬂ) = g unvisited
elements. Therefore no more than [-,’}”-] processors were
assigned to each element.

The work performed by such an algorithn is:

6

S < L Vil§1 = 0L, s T /D
=O(NLT2, 541) =O(NlogN) . D

4 Computation on restartable
fail-stop processors

We first state the main result and then build the frame-
work for proving it.

Theorem 4.1 Any N-processor PRAM algorithni can
be executed on a fail-stop P-processor CRCW PRAM,
with P < N. Each N-processor PRAM step is executed
in the presence of any pattern F of failures and restaris
of size M with:

(i) the completed work:
S =0(min{N + Plog? N + Mlog N, N .P°%}),

(ii) the overhead ratio:
o = O(log? N).

EREW,CREW, and weaK and coMMoN CRCW PRAM
algorithms are simulated on fail-stop coMmMoN CRCW
PRAMs; ARBITRARY and STRONG CRCW PRAMs are
simulated on fail-stop CRCW PRAMs of the same type.
a

Remark 4 PrioriTy CRCW PRAMs cannot be di-
rectly simulated using the same framework, for one of
the algorithms used (namely algorithm X in Section 4.2)
does not possess the processor allocation monotonicity
property that assures that higher numbered processors
simulate the steps of the higher numbered original pro-
€essors.

We obtain this result by: (a) modifying an algorithm
from [KS 89] to enable its use with restarts, (b) pre-
senting a new algorithm that has a good overhead ratio
efficiency and that terminates with sub-quadratic com-
pleted work, (¢} merging the two algorithms, and using
the techniques of [KPS 90 or {Shv 89] to produce effi-
cient executions of arbitrary PRAM programs on faulty
CRCW PRAMs.

We assume that N is a power of 2. Nonpowers of 2
can be handled using conventional padding techniques.
All logarithms are base 2. Now the details.

4.1 Algorithm V: a modification of IV

of [KS 89]

Algoritm W of [KS 89] is an efficient fail-stop (no
restart) Write- All solution. The algorithm uses full bi-
nary trecs as its basic data structures. The trees are im-
plicitly coded as heaps and are stored in linear arrays.

The algorithm uses an iterative approach in which all
active processors synchronously execute the following
four phases:

1. In the first phase the processors are counted and
enumerated using a static bottom-up, logarithmic
time traversal of the processor counting tree data
structure.

2. In the second phase the processors are allocated to
the unvisited array locations according to a divide-
and-conquer strategy using a dynamic top-down
traversal of a progress tree data structure.

3. The third phase is where the actual work (array
assignments) is done.

4. In the fourth phase the progress is evaluated by a
dynamic bottom-up traversal of the progress tree.

This algorithm has efficient completed work when
subjected to arbitrary failure patterns without restarts.
It can be extended to handle processor restarts by in-
troducing an iteration counter, aud having the revived
processors wait for the start of a new iteration. IHow-
ever this algorithm may not terminate if the adversary
does not allow any of the processors that were alive at
the beginning of an iteration to complete that iteration.
Even if the extended algorithm were to terminate, its

completed work is not bounded by a function of N and
P.

In addition, the proof framework of [KS 89] does not
easily extend to include processor restarts, because the
processor enumeration and allocation phases become in-
efficient and possibly incorrect, since no accurate esti-
mates of active processors can be obtained when the
adversary can revive any of the failed processors at any
time.

On the other hand, the second phase of algorithm W
can implement the processor assignment based on the
proof of Theorem 3.2 in O(log N) time by using the
permanent processor PID in the top-down divide-and-
conquer allocation. This also suggests that the processor
enumeralion phase of algorithm W does nol improve ils
efficiency when processors can be restarled.

Therefore we present a modified version of algorithmn
W, that we call V.

V uses the data structures of the optimiznd algorithn
WV of [KS 89), i.e., full binary trees with r— leaves, for
progress m;tlm'ttlon and processor allocahon There are
log N array elements associated with each leaf. When
using P processor such that P > ID:N on such data
structures, it is sufficient for each processor to take its
PID modulo E%W to assure that there is a uniform ini-

tial assignment of at least | P/

N
logNJ and no more than

N s
[I/mgN'l processors to a work element.

-}

Algorithm V is an iterative algorithm through the
following three phases (we “prime” the phases to dis-
tinguish them from the phases of algorithm W):

1’ Allocate processors using PIDs in a dynamic top-
down traversal of the progress tree to assure load

balancing (O(log N) time).

2' ‘The processors now perform work at the leaves they
reached in Phase 1’ (there are log N array elements
per leaf).

3’ The processors begin at the leaves of the progress
tree where they ended Phase 2' and update the
progress tree dynamically, bottom up (O(log N)
time).

The following implementation detail is important in
realizing processor re-synchronization after a failure and
a restart. An iteration wrap-around counter is utilized,
so that if a processor fails, and then is restarted, it waits
for the counter wrap-around to rejoin the computation.
The point at which the counter wraps around depends
on the length of the program code, but it is fixed at
“compile time”. If after a restart, a processor detects
that the counter did not change for one cycle, it asserts
that no processors were active at the point of the restart,
and it can start a new iteration by itself — this is possible
since the processors are synchronous.

Analysis of algorithm V:

We now analyze the performance of this algorithm first
in the fail-stop, and then in the fail-stop and restart
setting.

Lemma 4.2 The completed work of V using P < N
processors that are subject to fail-stop errors without
restarts is S = O(N + Plog? N).

Proof: We distinguish two cases below. In each of the
cases, it takes O(log]o—:;—vﬁ) = O(log N) time to perform
processor allocation, and O(log N} time to perform the
work at the leaves. Thus each iteration of the algorithm
takes O(log N) time. We use Theorem 3.2, where in-
stead of reading and locally processing the entire mem-
ory at unit cost, we use an O(log N) timne iteration for
processor allocation.

Case 1: 1 < P < ="%. In this case, at most 1 processor
is initially allocateg to each leaf. Similarly to Theorem
3.2, when the first T"'T\f — P leaves are visited, there
are no more than 1 processor allocated to each leaf,
by the balanced allocation phase. When the remain-
ing P or less leaves are visited, the work is O(’log P’)
by Theorem 3.2 (not counting processor allocation).
Each leaf visit takes O(log N) work steps, therefore the

01 forall processors PID=0..P — 1 parbegin

02 Perform initial processor assignment to the leaves of the progress tree
03 while there is still work left in the tree do

04 if current subtree is done then move one level up

05 elseif this is a leaf then perform the work at the leaf

06 elseif this is an interior tree node then

07 if both subtrees are done then update the tree node

08 elseif only one is done then go to the one that is not done
09 else move to the left/right subtree according to PID bit values
10 fi

11 fi

12 od

13 parend

Figure 2: A high level view of the algorithm X.

completed work S = 0((E§,Tv' — P+ Plog P)logN) =
O(N + Plog Plog N) = O(N + Plog® N).
Case 2: % < P < N. In this case, no more than

fp/ B:;!/‘v‘] processors are initially allocated to each leaf.
Any two processors that are initially allocated to the
same leaf, should they both survive, will behave identi-
cally throughout the computation. Therefore we can use
Theorem 3.2 with the [P/ %ﬁ] processor allocation as
a multiplicative factor. From this the completed work S
is [P/ oo 10(1ong 108 ooy)O(log N) = O(Plog® N).

The results of the two cases are combined to yield
S=0O(N + Plog’N). O

The following theorem expresses the completed work
of the algorithm:

Theorem 4.3 The completed work of V using P < N
processors subject to arbitrary failure and restart pat-
tern F of size M is: S = O(N + Plog N + M log N).

Proof: The proof of Lemma 4.2 does not rely on the
fact that in the absence of restart, the number of ac-
tive processors is non-increasing. However the lemma
does not account for the work that might be spent by
the processors that are active during a part of an it-
eration without contributing to the progress of the al-
gorithm due to failures. To account for all work, we
are going to charge to the array being processed the
work that contributes to progress, and any work that
was “wasted” due to failures will be charged to the fail-
ures and restarts. Lemma 4.2 accounts for the work
charged to the array. Otherwise, we observe that a pro-
cessor can “waste” no more than O(log N) time steps
without contributing to the progress due to a failure
and/or a restart. Therefore this amount of “wasted”
work is bounded by O(M log N). This proves the theo-
rem. (Note that the completed work S of V is small for

small |F|, but it is not bounded by a function of P and
N for alarge |F]). O

4.2 Algorithm X and its analysis

We present a new algorithm X for the Write-All prob-
lem. We show that its completed work complexity is
S = O(N - P°5) for any failure/restart pattern using
P < N processors. The important property of X is that
it has a bounded sub-quadratic completed work regard-
less of the failure pattern, and if a very large number
of failures occures, say |F| = Q(N - P%®), then the al-
gorithm’s overhead ratio ¢ becomes optimal: it takes a
fixed number of computing steps per failure/recovery.

The algorithin utilizes a progress tree of size N as
algorithm V', but it is traversed by the processors in-
dependently, and not in synchronized phases. This re-
flects the local nature of the processor assignment in
algorithm X as opposed to the global assignments used
in algorithms V and W. Each processor, acting inde-
pendently, searches for work in the smallest immediate
subtree that has work that needs to be done, it then
perforins the neccessary work, and moves out of that
subtree when no more work remains. Details follow.

Input: Shared array z{l.N];z[{] = 0for 1 <i< N.
Output: Shared array z[1.N];z[f]=1for 1 <i< N.

Data-structures: The algorithm uses a full binary tree
of size 2N — 1, stored as a heap d[1...2N-1] in shared
memory. An internal tree node dfi) (= 1,...,N —
1) has the left child d[2i] and the right child d[27 + 1].
The tree is used for progress evaluation and processor
allocation. The values stored in the lieap are initially 0.

The N elements of the input array z[1...N] is as-
socialed with the leaves of the tree. Element z[i] is

associated with d[i + N — 1], where 1 < i < N. The al-
gorithm also utilizes an array w[0..P — 1] that is used to
store individual processor locations within the progress
tree d.

Each processor uses some constant amount of pri-
vate memory to perform simple arithmetic computa-
tions. An important private constant is PID, containing
the initial processor identifier.

Thus, the overall memory used is O(N + P) and the
data-structures are simple.

Control-flow: The algorithm consists of a single ini-
tialization and of the parallel loop. The high level view
of the algorithm is in Figure 2 (all line numbers refer to
the figure), a more detailed code is in the appendix.

This algorithin is performed by all processors that
are active. The initialization (line 02) assignes the P
processors to the leaves of the progress tree so that the
processors are assigned to the first P leaves by storing
the initial leaf assignment in w[PID]. The loop (lines
03-12) consists of a multi-way decision (lines 04-11) to:
(Jine 04) move up the tree if the current node is marked
done, (line 05) perform the work if at a leaf, (line 07)
update the interior tree node if both of its subtrees are
done by changing its value from 0 to 1, (line 08) move
down to the left/right subtrees based on either the one
of the subtrees being not done.

For the final case (line 09), the processors move down
when neither child is done based on the processor iden-
tifier. This last case is where the non-trivial (italicized)
decision is made. The PID of the processor is used at
depth & of the tree node based on the value of the h'h
most significant bit of the binary representation of the
PID: bit 0 will send the processor to the left, and bit 1
to the right.

Remark 5 It is possible to perform local optimization
of the slgorithm by: (i) evenly spacing the P processors
N/P leaves apart by when P < N, and by (ii) using
the integer values at the progress tree nodes to repre-
sent the known number of descendent leaves visited by
the algorithm. Our worst case analysis does not benefit
from these modifications.

Example 4.1 Consider algorithm X for N = P = 8.
The progress tree d of size 2N — 1 = 15 is used to
represent the full binary progress tree with eight leaves.
The 8 processors have PIDs in the range 0 through 7.
Their initial positions are indicated in Figure 3 under
the leaves of the tree.

The diagram in Figure 3 illustrates the state of a
computation where the processors were subject to some
failures and restarts. Heavy dots indicate nodes whose
subtrees are finished. The paths being traversed by the

9

[INt} Al4](6]

01 2 3 4 5 6 [7

Figure 3: Processor traversal of the progress tree.

processors are indicated by the arrows. Active proces-
sor locations (at the time when the snapshot was taken)
are indicated by their PIDs in brackets. In this config-
uration, should the active processors complete the next
cycle, they will move in the directions indicated by the
arrows: processors 0 and 1 will descend to the left and
right respectively, processor 4 will move to the unvisited
leaf to its right, and processors 6 and 7 will move up. O

Regardless of the decision made by a processor within
the loop body, each iteration of the body consists of no
more than four shared memory reads, a fixed time com-
putation using private memory, and one shared mem-
ory write (see the appendix for the detailed algorithm).
Therefore the body can be implemented as an update
cycle.

Analysis of algorithm X:

We begin by showing correctness and termination of
algorithm X in the following simple lemma.

Lemma 4.4 Algorithm X with N processors is a cor-
rect Q(log N) and O(N) time fault-tolerant solution for
the Write-All problem of size N. O

Now a lemma relating completed work when overlap-
ping of processors occurs, and the main work lemma. In
the rest of this section, the expression “Sy p” denotes
the comnpleted work on inputs of size N using I’ initial
processors and for any failure pattern.

Lemma 4.5 For algorithin X, il N is the size of the
mput, and N < P, € P,, then the work using P
processors and the work using I, processors relate as

Sn.p, < [%]SN.M :

Proof sketch: This follows from the Definition 2.2 of S
and the observation that if P > N, then exactly log N
bits of the PlDs are significant during the execution of
algorithm .X'. We observe that any two processors whose
PIDs are equal modulo N, will expend no more than a
single processor in the worst case at twice the cost. O

Lemma 4.6 The work complexity S of algorithm X
with N initial processors for the Write-All problem of
size N and for any pattern of failures and restarts is

S = O(N'°833+%) for any 6 > 0.

Proof: We will show that for any positive § there is
a constant ¢, such that S < ¢N'@83+5 We proceed
by induction on the height of the progress tree. For the
base case: we have a tree of height 0 that corresponds to
an input array of size 1, and exactly 1 processor. Since
at least this processor will be active, this single leaf
will be visited in a constant number of steps. Let the
work expended be ¢’ for some constant ¢’ that depends
only on the lexical structure of the algorithim. Therefore
Si1=¢ <c-1°83% forall ¢ > ¢/, and any § > 0.

For the inductive hypothesis: we assume that for the
tree heights less than log N, and for any § > 0, the
required constant c exists. We then prove that this is
true for the tree of height log N.

Consider the two subtrees of the root (Figure 4). The
two corresponding subtrees are of the heights log N —
1. By the definition of algorithm X, no processor will
leave a subtree until the subtree is finished. We have to
consider the following two sub-cases: (1) both subtrees
are finished simultaneously, and (2) one of the subtrees
is finished before the other.

Case 1: If both subtrees are finished simultaneously,
thgen the algorithm will then terminate after some small
constant number of steps ¢/ when a processor moves
to the root and determines that both of the subtrees
are finished. By the inductive hypothesis, there exists
a ¢ such that both the work Sp expended in the left
subtree of, and the work Sgr in the right subtree are
bounded by Sy ~ < (X)o83+% The work needed for
the algorithm to terminate is at most ¢’N, and so the
total work is:

S<SL+Sp+cNK<L 25%'¥ +c'N
< 26(%)|og3+6 4+¢'N = Csj%gN|083+6 +¢'N.

When c¢ is chosen sufficiently larger than ¢/, e.g., ¢ >
3
3¢/, then S < cN'98 3.

Case 2: Assume w.l.o.g. that the left subtree is finished
first with Sp = ng% < c(%)"’g"’” by the inductive
hypothesis. ‘The processors from the left subtree will
start moving via the root to the right subtree. The
path traversed by any processor as it moves to the right
subtree after the left subtree is finished is bounded by
¢’ log N for a predefined constant ¢’ (the longest path
from a leaf to another leaf). No more than the original
% processors of the left subtree will move, and so the
work of moving the processors is bounded by c'%’- log N.

By Lemma 4.5 and by the inductive hypothesis, the

work Sp to complete the right subtree using N proces-
sors is bounded by Sy v <25y n < 2c()08 3+4 AL

10

N/2

N/2

Figure 4: Inductive step for Lemma 4.6.

ter this, each processor will spend some constant num-
ber of steps moving to the root and terminating the al-
gorithm. This work is bounded by ¢”” N for some small
constant ¢’’. The total work S is:

S<Sp+cHlogN +Sp+c"N
S c(l_;/_)loga+6 + CI% logN + 26(%—)‘033+6 + N
< chNIOK:H'& +C'%+C"N
When ¢ is made sufficiently large based on é with
Y] "
respect to the fixed ¢/ and ¢, e.g., ¢ > uz%f—fz, then:
S < CNI053+6.
Since a constant ¢ depends only on the lexical struc-
ture of the algorithm and §, it can always be chosen
sufficiently large to satisfy the base case and both the

cases (1) and (2) of the inductive step. This completes
the proof of the second case and of the lemma. O

Now we generalize this result for P < N:

Theorem 4.7 There is an algorithm that solves the
Write-All problem with completed work S = O(N -
P'°3%+6) for any § > 0, where N is the input array
size, and P < N is the initial number of processors.

Proof sketch: We position the PP processors at the first

P elements of the input array. It is easy to show that
S = O(¥Sp.p) = O(f Plo83+8) = O(N - P8 3+%) D

For example, when § is about 0.01, S = O(N - P%¢).
We next show a particular perforinance of algorithm X
such that its completed work is asymptotically close to
its upper bound.

Theorem 4.8 There exists a pattern of fail-stop/restart
errors that cause the algorithm X to perforn S =
Q(N'°83) work on the input of size N using P = N
processors.

Proof sketch: We compute the exact work performed
by the algorithm when the adversary adheres to the
following strategy: the processor with PID 0 will be al-
lowed to sequentially traverse the progress tree in post-
order starting at the leftmost leafl and finishing at the

rightmost leaf. The processors that find themselves at
the same leaf as the processor 0 are (re)started, while
the rest are faitled. All processors with PIDs smaller
than the index of the last leaf visited by processor 0 are
allowed to traverse the progress tree until they reach a
leaf. When processors reach a leaf, the failure/restart
procedure is repeated. O

4.3 Combining the building blocks

An approach for executing arbitrary PRAM programs
on fail-stop CRCW PRAMs (without restart) was pre-
sented independently in [KPS 90] and [Shv 89]. The
execution is based on simulating individual PRAM com-
putation steps using the Write-All paradigm, and it was
shown that the complexity of solving a N-size instance
of the Write-All problem using P fail-stop processors,
and the complexity of executing a single N-processor
PRAM step on a fail-stop P-processor PRAM are equal.
Here we describe how algorithms V and X are combined
with the framework of [KPS 90] or [Shv 89)] to yield ef-
ficient executions of PRAM programs on PRAMs that
are subject to stop-failures and restarts as stated in The-
orem 4.1.

We first observe that the executions of algorithms V
and X can be interleaved to yield an algorithm that
achieves the following performance:

Theorem 4.9 There exists a Write-All solution us-
ing P < N processors on instances of size N such
that for any pattern F of failures and restarts with
|F| < M, the completed work is § = O(min{N +
Plog? N+ Mlog N, N.P°%}) and the overhead ratio
is 0 = O(log? N) .

The simulations of the individual PRAM steps are
based on replacing the trivial array assignments in a
Write-All solution with the appropriate components of
the PRAM steps. These steps are decomposed into a
fixed number of assignments corresponding to the stan-
dard fetch/decode/ezecute RAM instruction cycles in
which the data words are moved between the shared
memory and the internal processor registers. The re-
sulting algorithm is then used to interpret the individ-
ual cycles using the available [ail-stop processors and
to ensure that the results of computations are stored in
temporary memory before simulating the synchronous
updates of the shared memory with the new values. For
the details on this technique, the reader is referred to
{KS 89, KPS 90, Shv 89]. Application of these tech-
niques in conjunction with the algorithms V and X yield
eflicient and terminating exccutions of any non-fault-
tolerant PRAM programs in the presence of arbitrary
failure and restart patterns.

i

Theorem 4.1 lollows from Theorem 4.9 and thie results
of [KPS 90] or [Shv 89].

The following corollaries are also interesting:

Corollary 4.10 Under the hypothesis of Theorem 4.1,
and if |[F| < P < N, then S = O(N + Plog? N), and
o = O(log? N).

The fail-stop (without restarts) behavior is subsuined
by Corollary 4.10. Without restarts, [KPRS 90] have an

algorithin with S = O(N+P;;—;‘]‘;S-N—N), anfi [Mar 91] has
shown that the same performance is achieved by algo-
rithin W from [KS 89]. The exact analysis of algorithm

V without restarts is still open.

Corollary 4.11 Under the hypothesis of Theorem 4.1:

1. when |[F|is Q(N log N), then ¢ is O(log N),
2. when |F|is Q(N!®), then o is O(1).

Thus the efficiency of our algorithm improves for large
failure patterns.

These results also suggest that it is harder to deal
efliciently with a few worst case failures than with a
large number of failures.

Another interesting result is that there is a range of
parameters for which the completed work is optimal,
i.e., the work performed in executing a parallel algo-
rithm on a faulty PRAM is asymptotically equal to the
Parallel-timex Processors product for that algorithm:

Corollary 4.12 Any N-processor, r-titne PRAM algo-
rithm, can be executed on a P < N/log? N proces-
sor fail-stop CRCW PRAM, such that when during the
execution of each N-processor step of that algorithm
the total number of processor failures and restarts is

O(N/log N), then the completed work is S = O(7 - N).

It also follows that optimnality is preserved in the ab-
sence of failures or when during the execution of each N
processor step there are O(log N) failures and restarts
per each simulating processor. This is because in ei-
ther of these two cases, the size of the failure/restart
pattern [is bounded by: |F| < O(PlogN) =
Oz log N) = O(N/ log N).

5 Discussion and Open Prob-
lems

We conclude with a briefl discussion of open problems
and the ecflects of on-line adversarics on the expected
performance of randomized algorithms. First the open
problems and future work:

e Lower bounds with and without restarts: We
have shown an Q(N log N) lower bounds for fail-
ures/restarts under the assumption that processors
can read and locally process the entire shared mem-
ory at unit cost. Under this assumption this is the
best possible lower bound.

Under the same assumption, it can be shown that
the lower bound of [KS 89] of (N log N/ loglog N)
is the best possible bound for failures without
restarts.

Under a different assumptions, an Q(NlogN) is
shown for failures without restarts in [KPRS 90].
Can these bounds be further improved using difTer-
ent assumptions?

e Upper bounds with restarts: Progress in this area
ought to be made by finding new algorithms, or
improving the analysis of existing algorithins to
achieve better completed work S and the overhead
ratio o than those of algorithims V and X.

e Upper bounds without restarts: What is the worst
case completed work S, and overhead ratio ¢ of the
algorithm X in the case of fail-stop errors without
restarts?

Algorithm X appears to have a very good perfor-
mance in the fail-stop (without restart) framework
of [KS 89]. For example, the adversary used to
show the lower bound in [KS 89] causes the worst
case work of $ = O(N log® N/ loglog N) for the N-
processor Write-All solution in [KS 89]. The sanie
adversaary causes the known worst case work of X

of S = O(N log N loglog N/ logloglog N).

We conjecture that the fail-stop (no restart) per-
formance of .X has work S = O(N log N loglog N)

using N processors.

e For the update cycles used in this work, what is the
minimum number of reads and writes that are suf-
ficient to assure efficient solutions, and under what
assumptions?

On randomization and lower bounds:

The existing upper bounds for randomired solutions for
Write-All apply to off-line, i.e., non-adaptive adver-
saries. For example, the lower bounds of Section 3 apply
to both the worst case performance of deterministic al-
gorithms and the expected performance of randomized
algorithms (subject to adaptive adversaries).

A randomized asynchronous coupon clipping (ACC)
algorithm for the Write-All problem was analyzed in
[MSP 90]. Assuming off-line adversaries, it was shown in
[MSP 90} that their ACC algorithin performs expected

7 : y— N . : .
O(/\) work using P = TogWloge W Processors on inputs
of size V.

In contrast, we observe that a simple stalking adver-
sary causes the ACC algorithin to perforin (cxpected)
work of Q(N?/polylog N) in the case of fail-stop cr-

rors, and Q((W)W‘}’W”) work in the case of fail-
stop errors with restart even when using P < mﬂw
processors. The stalking adversary strategy counsists
of choosing a single leaf in a binary tree employed by
ACC, and failing all processors that touch that leaf un-
til only one processor reinains in the fail-stop case, or
until all processors simultaneously touch the leaf in the
fail-stop/restart case. This performance is not improve
even when using the completed work accounting. On a
positive note, when the adversary is niade off-line, the
ACC algorithm becomes efficient in the fail-stop/restart
setting.

Acknowledgements:

We thank Jeff Vitter for helpful discussions, and Franco
Preparata for reviewing an earlier draft.

6 References

[AAS 87] G.B. AdamsIlI, D. P. Agrawal, H. J. Seigel,
“A Survey and Comparison of Fault-tolerant Multi-
stage Interconnection Networks”, IEEE Compuler,
Vol.20, No.6, pp. 14-29, 1987.

[AADPS 87] Y. Afek, B. Awerbuch, S. Plotkin, M.
Saks, “Local Management of a Global Resource in a
Communication Network”, Proc. of the 28th IEEL
FOCS, pp. 347-357, 1987.

[AU 90} S. Assaf and E. Upfal, “Fault Tolerant Sorting
Network,” in Proc. of the 31st IEEE FOCS, pp.
275-284, 1990.

{CZ 89] R. Cole and O. Zajicek, “I'he APRAM: In-
corporating Asynchrony into the PRAM Model,”
in Proc. of the 1989 ACM Symp. on Parallel Al-
gorithms and Archilectures, pp. 170-178, 1989.

{CZ 90] R. Cole and O. Zajicek, “The Expected Ad-
vantage of Asynchrony,” in Proc. 2nd ACM Symp.
on Parallel Algorithms and Architectures, pp. 85H-
94, 19990.

[Cri 91] F. Cristian, “Understanding Fault-tolerant
Distributed Systems”, in CACM, Vol.3, No.2, pp.
56-78, 1991.

(DPPU 86] C. Dwork, D. Peleg, N. Pippenger, E. Up-
fal, “Fault Tolerance in Networks of Bounded De-
gree”, in Proc. of the 18th ACM STOC, pp. 370-
379, 1986.

[EG 88] D. Eppstein and Z. Galil, “Parallel Tech-
niques for Combinatorial Computation”, Annual
Compuler Science Review, 3:233-83, 1988.

[FW 78] S. Fortune and J. Wyllie, “Parallelism in
Random Access Machines”, Proc. the 10th ACM
STOC, pp. 114-118, 1978.

[Gib 89] P.Gibbons, “A More Practical PRAM Model,”
in Proc. of the 1989 ACM Symp. on Parallel Al-
gorithms and Architectures, pp. 158-168, 1989.

[HP 89] S. W. Hornick aud F. P. Preparata, “Deter-
ministic P-RAM: Simulation with Constant Redun-
dancy,” in Proc. of the 1989 ACM Symp. on Par-
allel Algorithms and Arch., pp. 103-109, 1989.

[(IEEE 90] [EEE Computer, “Fault-Tolerant Systems”,
a special issue, Vol.23, No.7, 1990.

[K* 90] C. Kaklamanis, A. Karlin, F. Leighton, V.
Milenkovic, P. Raghavan, S. Rao, C. Thombor-
son, A. Tsantilas, “Asymptotically Tight Bounds
for Computing with Arrays of Processors,” in Proc.
of the 31st IEEE FOCS, pp. 285-296, 1990.

{KS 89} P. C. Kanellakis and A. A. Shvartsman, “Ef-
ficient parallel algorithmms can be inade robust”,
Brown Univ. Tech. Report CS-89-35 (to appear
in Distributed Compuling); prel. version appears in

Proc. of the 8th ACM PODC, pp. 211-222, 1989.

[KR 96] R. M. Karp and V. Ramachandran, “A Sur-
vey of Parallel Algorithms [or Shared-Memory Ma-
chines™, in Handbook of Theoretical Computer Sci-
ence, J. van Leeuwen, Ed., North-Holland, 1990.

[Mar 91] C. Martel, personal communication, March,
1991.

[KP’S 90] Z. M. Kedem, K. V. Palem, and P. Spirakis,
“Efficient Robust Parallel Computations,” in Proc.

2ond ACM STOC, pp. 138-148, 1990.

[KPRS 90] 7. M. Kedem, K. V. Palemn, A. Raghu-
nathan, and P. Spirakis, “Combining Tentative
and Definite Executions for Dependable Parallel
Computing,” Univ. of Maryland, Tech. Report
UMIACS-TR-90-122, CS-TR-2537, 1990 (to ap-
pear in Proc 23d ACM STOC).

[KRS 88} C. P. Kruskal, ".. Rudolph, M. Snir, “Ef-
ficient Synchronization on Multiprocessors with
Shared Memory,” ACM Trans. on Prog. Lang.
and Sys., pp. H79-601, vol. 10, no. 4, 1988.

[LGFG 86] N.A. Lynch, N.D. Griffeth, M.J. Fischer,
L.J. Guibas, “Probabilistic Analysis of a Network
Resource Allocation Algorithm”, Information and
Control, vol. 68, pp. 47-85, 1986.

[MSP 90] C. Martel, R. Subramonian, and A. Park,
“Asynchronous PRAMs are (Almost) as Good as
Synchronous PRAMs,” in Proc. 32d IEEE Symp.
on Foundat. of Computer Sci., pp. 590-599, 1990.
Also see Tech. Rep. CSE-89-6, Univ. of Calif.-
Davis, 1989.

[Nis 90] N. Nishimura, “Asynchronous Shared Mem-
ory Parallel Computation,” in Proc. 3rd ACM
Symp. on Parallel Algorithms and Architectures,
pp- 76-84, 1990.

[Pip 85] N. Pippenger, “On networks of noisy gates”,
Proc. of 26th IEEE FOCS, pp. 30-38, 1985.

[Ran 87] A. Ranade, “How to Emulate Shared Mem-
ory”, Proc. of 28th IEEE FOCS, pp. 185-194,
1987.

[Rud 85] L. Rudolph, “A Robust Sorting Network”,
IEEE Trans. on Comp., vol.34, no.4, pp. 326-335,
1985.

[SM 84] D.B. Sarrazin and M. Malek, “Fault-tolerant
Semiconductor Memories”, IEEE Compuler, Vol .17,
No.8, pp. 49-56, 1984.

[SS 83} R. D. Schlichting and F. B. Schneider, “Fail-
stop Processors: an Approach to Designing Fault-
tolerant Computing Systems”, ACM Trans. Com-
pul. Syst., vol. 1, no. 3, pp. 222-238, 1983.

[Sch 80] J. T.Schwartz, “Ultracomputers”, ACM Trans.
on Prog. Lang. and Sys., Vol.2, No .4, pp.484-521,
1980.

[Shv 89] A. A.Shvartsman, “Achieving Optimal CRCW
PRAM Fault-tolerance™, Tech. Report CS-89-49,
Brown University, 1989 (to appear in Informal.
Proc. Letlers).

[Upf 89] E. Upfal, “An O(log N) Deterministic Packet
Routing Scheme,” in Proc. 21st ACM STOC, pp.
241-250, 1989.

[Val 90a] L. Valiant, “General Purpose Parallel Ar-
chitectures,” in Handbook of Theoretical Compuler
Science, J. van Leeuwen, Ed., North-lolland, 1990.

[Val 90b] L. Valiant, “A Bridging Model for Parallel
Computation,” Comm. of ACM, vol. 33, no. 8,
pp. 103-111, 1990.

forall processors PID=0..P — 1 parbegin
shared x{1..N7];
shared d[1..2N-1];
shared w[0..P-1};
private done, where;
private left, right;

fi

fi
od
end

parend .

——shared memory
—— “done” heap (progress trec)
~— “where” array
~—current node done/where
~—left/right child values

action,recovery
w[PID) := 1 + PID; ——the initial positions
end ;
action,recovery
while w[PID] # 0 do ——uwhile haven’t exited the tree
where := w[PID}; ——current heap location
done := d[where]; ——doneness of this subtree
if done then w[PID] := where div 2; ~—move up one level
elseif not done A where > N — 1 then ——at a leaf
if x[where— N] = 0 then x[where—~N] := 1; ——initialize leaf
elseif x[where—N] =1 then d[where] := 1; ——indicate “done”
fi
elseif not done A where < N — 1 then ——interior tree node
left := d[2+where]; right := d[2+where+1}; ——read left/right child values
ifleft A right then dfwhere] := 1; ——both children done
elseif not left A right then w[PID] := 2+where; ----go left
elseif left A not right then w[PID] := 2¢wherc- ——go right

elseif not left A not right then ——both subtrees are not done
——move down according to the PID bit
if not PID{log(where)] then w[PID] := 2+where; ——move left
elseif PID{log(where)] then w[PID] := 2s«where+1; —-—-move right

Figure 5: Algorithm X.

Appendix: Algorithm X
pseudocode

Here we give a detailed pseudocode for algorithm X.

In the algorithm X pseudocode, the action, recov-
ery end construct of [SS 83] is used to denote the ac-
tions and the recovery procedures for the processors.
In the algorithm this signifies that an action is also its
own recovery action, should a processor fail at any point
within the action block.

The notation “PID[log(k)]” is used to denote the
binary true/false valuec of the [log(k)j-th bit of the
log(NV)-bit long binary representation of PID, where the
most significant bit is the bit number 0, and the least
significant bit is bit number log N. Finally, div stands
for integer division with truncation.

14

Remark 6 The action/recovery construct can be im-
plemented by appropriately checkpointing the instruc-
tion counter in stable storage as the last instruction of
an action, and reading the instruction counter upon a
restart. We are not providing further details here.

Remark 7 The algorithm can be used to solve Write-
All “in place” using the array x[] as a tree of height
log & with the leaves x[N/2..N-1], and doubling up the
processors at the leaves, and using x[N] as the final el-
ement to be initialized and used as the algorithm ter-
mination sentinel. With this modification, array d[] is
not needed. The asymptotic efficiency of the algorithm
is not affected.

