	NTATION	PAGE	OMB NO. UTILE-UTIN
	ted to average 1 hour viewing the collection urden, to Washingto	r per response, including the ti n of information. Send common n Headquarters Services, Direct	me for reviewing instructions, searching existing data source ents regarding this burden estimate or any other aspect of th torate for information Operations and Reports, 1215 Jeffers
i ingeneri ingen tingen kingen bitten h		3. REPORT TY	PE AND DATES COVERED
	4990 e title:	Proceedin	ngs article
Piezoelectric Properti Modified Lead Titanate 5. AUTHOR(S) R. Y. Ting*; and W.A. Smith (ONR Co	A. A. Shaulov (Bar bde 1131)	es of a Calciur -Ilan U., Israe	n- P.E. #62314N Task #RJ14-T21-OTO W.U. #59-0593-0-0 Assn #DN880-326
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Underwater Sound Refe Naval Research Labora P.O. Box 568337	erence Detachment Itory		DTIC
Orlando, FL 32856-83	37		MAY 1 7 1001
			U U
11. SUPPLEMENTARY NOTES This article appeared	on pp 707-710 in	1990 Ultrasonic	s Symposium which published
11. SUPPLEMENTARY NOTES This article appeared the proceedings of th	on pp 707-710 in le 4-7 Dec 90 IEEE 1	1990 Ultrasonic Jltrasonics Sym	cs Symposium which published nposium held in Honolulu.
11. SUPPLEMENTARY NOTES This article appeared the proceedings of th 12a. DISTRIBUTION/AVAILABILITY	on pp 707-710 in de 4-7 Dec 90 IEEE 1 STATEMENT	1990 Ultrasonic Jltrasonics Sym	cs Symposium which published nposium held in Honolulu. 12b. DISTRIBUTION CODE
11. SUPPLEMENTARY NOTES This article appeared the proceedings of th 12a. DISTRIBUTION/AVAILABILITY Approved for public r	on pp 707-710 in le 4-7 Dec 90 IEEE STATEMENT elease; distributio	1990 Ultrasonic Jltrasonics Sym	cs Symposium which published nposium held in Honolulu. 12b. DISTRIBUTION CODE
11. SUPPLEMENTARY NOTES This article appeared the proceedings of th 12a. DISTRIBUTION/AVAILABILITY Approved for public r 13. ABSTRACT (Maximum 200 word A series of 1-3 piezo ceramic with a dice-a 0.10 mm in size, and ferent epoxy resins w composites were foun temperature dependenc ceramic. The free-fi the composite was cal	son pp 707-710 in the 4-7 Dec 90 IEEE to STATEMENT release; distribution to composite samples with composite samples with the ceramic volume vere used. The pies d to be stable with e of the composite eld voltage sensits ibrated and shown	1990 Ultrasonic Jltrasonics Sym on unlimited were fabricated The ceramic r fraction varie zoelectric d a n pressure from properties was lvity of a prot	a s Symposium which published aposium held in Honolulu. 12b. DISTRIBUTION CODE I by using lead titanate rods were approximately ed from 10 to 30%. Two dif- and g _h coefficients of the m ambient to 20 MPa. The s similar to that of the soli rotype hydrophone made from up to 6 kHz.
 11. SUPPLEMENTARY NOTES This article appeared the proceedings of th 12a. DISTRIBUTION / AVAILABILITY Approved for public r 13. ABSTRACT (Maximum 200 word A series of 1-3 piezo ceramic with a dice-a 0.10 mm in size, and ferent epoxy resins w composites were foun temperature dependenc ceramic. The free-fi the composite was cal 14. SUBJECT TERMS Piezocomposites Hydrophone Lead Titanate Ceramic 17. SECURITY CLASSIFICATION I 	ton pp 707-710 in the 4-7 Dec 90 IEEE to STATEMENT release; distribution (5) composite samples with the ceramic volume vere used. The pies and to be stable with e of the composite eld voltage sensit: ibrated and shown to 18. SECURITY CLASSIFICATION	N 19. SECURITY CL	ASSIFICATION 20. LIMITATION OF ABSTRA

٠

·

GENERAL INSTRUCTIONS FOR COMPLETING SF 298			
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.			
Block 1. Agency Use Only (Leave blank).	Block 12a. Distribution/Availability Statement		
Block 2. <u>Report Date</u> . Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.	Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).		
Block 3. <u>Type of Report and Dates Covered</u> . State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).	DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents." DOE - See authorities.		
Block 4. <u>Title and Subtitle</u> . A title is taken from the part of the report that provides the most	NASA - See Handbook NHB 2200.2. NTIS - Leave blank.		
meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the spacific volume. On	Block 12b. Distribution Code.		
classified documents enter the title classification in parentheses.	DOD - Leave blank. DOE - Enter DOE distribution categories from the Standard Distribution for		
Block 5. <u>Funding Numbers</u> . To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:	Unclassified Scientific and Technical Reports. NASA - Leave blank. NTIS - Leave blank.		
C- ContractPR- ProjectG- GrantTA- TaskPE- ProgramWU- Work UnitElementAccession No.	Block 13. <u>Abstract</u> . Include a brief (<i>Maximum</i> 200 words) factual summary of the most significant information contained in the report.		
Block 6. <u>Author(s)</u> . Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow	Block 14. <u>Subject Terms</u> . Keywords or phrases identifying major subjects in the report.		
the name(s).	Block 15. <u>Number of Pages</u> . Enter the total number of pages		
Block 7. <u>Performing Organization Name(s) and</u> <u>Address(es)</u> . Self-explanatory. Block 8. <u>Performing Organization Report</u> Number. Enter the unique alphanumeric report	Block 16. <u>Price Code</u> . Enter appropriate price code (NTIS only).		
number(s) assigned by the organization performing the report.	Blocks 17 19. Security Classifications. Self-		
Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.	accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and		
Block 10. <u>Sponsoring/Monitoring Agency</u> <u>Report Number</u> . (If known)	bottom of the page.		
Block 11. <u>Supplementary Notes</u> . Enter information not included elsewhere such as: Prepared in cooperation with; Trans. of; To be published in When a report is revised, include a statement whether the new report supersedes	Block 20. <u>Limitation of Abstract</u> . This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract		

5

or supplements the older report.

is assumed to be unlimited.

.

``

• #

PIEZOELECTRIC PROPERTIES OF 1-3 COMPOSITES OF A CALCIUM-MODIFIED LEAD TITANATE IN EPOXY RESINS

Robert Y. Ting, Avner A. Shaulov⁺ and Wallace A. Smith[#]

*Naval Research Laboratory, P. O. Box 568337, Orlando, FL 32856 +Physics Department, Bar-Ilan University, Ramat-Gan 52100, Israel #Office of Naval Research, Code 1131, Arlington, VA 22217

A series of 1-3 piezocomposite samples were fabricated by using lead titanate ceramic with a dice-and-fill technique. The ceramic rods were approximately 0.10 mm in size, and the ceramic volume fraction varied from 10 to 30%. Two different epoxy resins were used. The piezoelectric d_h and g_h coefficients of the composites were found to be stable with pressure from ambient to 20 MPa. The temperature dependence of the composite properties was similar to that of the solid ceramic. The free-field voltage sensitivity of a prototype hydrophone made from the composite was calibrated and shown to be constant up to 6 kHz.

INTRODUCTION

The development of future hull-mounted hydrophone arrays requires piezoelectric materials that exhibit high sensitivities in a hydrostatic mode far exceeding what the conventional PZT ceramics can offer. New piezoelectric composite materials with different connectivity patterns [1] were considered as potential candidates for hydrostatic-mode sensing [2]. Among different types of piezocomposites, the 1-3 type, consisting of thin parallel rods of ceramic imbedded in a polymer, was successfully developed for use in pulse-echo ultrasonic transducer arrays [3]. This success has led to an interest in considering this composite for hydrophone applications. In this paper, the piezoelectric properties of a series of 1-3 composites were investigated. Samples were fabricated by using lead titanate and two different types of epoxy resins. Their piezoelectric d and g_h coefficients were evaluated as a function of pressure and temperature, and a prototype

hydrophone was also assembled for evaluating the acoustic response of the composite in water. These experimental results are presented and discussed here.

EXPERIMENTAL

The ceramic used for composite fabrication was a calcium-modified lead titanate, designated as the C-24 type by Toshiba. Two epoxy polymers were used to assess the effect of polymer phase on the properties of the composite. The Stycast epoxy was stiffer than the second one, called Spurr, when both were cured at 70° C overnight. Composite samples were made by using the dice-and-fill technique [4] to form 40-mm diameter and 1-mm thick disks. Square ceramic rods were 0.10 mm in size, and ceramic volume fraction varied from 10 to 30%.

The hydrostatic d_h and g_h coefficients of each sample were determined from measurements in an acoustic coupler by using an acoustic reciprocity technique [5] at 1 kHz. This measurement frequency was selected to ensure a true hydrostatic response from the sample. The experiments covered the pressure range from ambient to 20 MPa and a temperature range of 0 - 50°C. The d_{33} coefficient of each composite sample was also measured at 100 Hz by using a Berlincourt meter. At least twenty measurements were made over the surface of the sample in order to obtain an acceptable average d_{33} value.

A 1-3 composite sample containing approximately 17% ceramic rods in Stycast epoxy was used for hydrophone fabrication. The composite sample was bonded to a 5-cm thick stainless-steel base

1051-0117/90/0000-0707 \$1.00 C 1990 IEEE

1990 ULTRASONICS SYMPOSIUM – 707

plate, and the assembly was then water-proofed by encapsulation with an Eccobond resin. The prototype hydrophone was tested at a water depth of 4 m over the frequency range of 100 Hz through 100 kHz.

RESULTS AND DISCUSSION

Figure 1 shows the d₃₃ and d_b coefficients for the composites as a function of lead titanate (PT) volume fraction. The data represent the experimental result obtained at room temperature and ambient pressure. Ceramic volume fraction was calculated from density measurement. The data points at the extreme right are those measured for a solid lead titanate ceramic disk. The two curves in Fig. 1 represent the result from a theoretical calculation [6] based on the simple parallel-series connectivity model of Haun and Newnham [7]. The analysis predicted a trend similar to the experimental observation, but the calculated values were approximately 10 to 20% too large.

The pressure dependence of the piezoelectric d_h and g_h coefficients for composite samples is shown in Fig. 2. The samples contained approximately 20% of lead titanate ceramic. This result suggests that these composites are remarkably stable with pressure. The property degradation for the 1-3 composites at 20 MPa is less than 0.2 dB.

In Fig. 3, the measured d_h coefficients of three composite samples are shown as a function of temperature. The d_h properties of a solid lead titanate and a PZT5 sample [8] are also included for comparison. The composite d_h coefficients are reduced from that of lead titanate, but their temperature dependence is similar to that of the pure ceramic. The material is very stable over the temperature range tested. With the softer Spurr epoxy, there is a further reduction in d_h. But, the d_h property of this composite is still comparable to that of a solid PZT5 ceramic.

Figure 4 shows the temperature dependence of the g_h coefficients of the composites. As the temperature increases, the g_h coefficients decrease gradually. When compared with the property of solid lead titanate, the slopes in this plot are approximately the same. It is believed that the

reduction in g_h is related to the increase in the permittivity ϵ of the sample with temperature through the relationship $g = (d/\epsilon)$.

It is also noted from Fig. 4 that the g_h coefficients increase with an increase in the ceramic volume fraction from 20 to 30%. This result is different from the prediction of an early calculation [6], which suggested that the g_h coefficients of the PT/epoxy 1-3 composite would show a maximum value at about 8% ceramic loading. This discrepancy suggests a need to improve the predictive capability of the simple parallel-series connectivity model. When compared with the pure lead titanate, the g_h coefficients are seen to have been increased by a factor of 2 or greater in the composite samples. For conventional PZT5 ceramics, the g_h values are typically in the range of 2-3 mV-m/N, as is also shown in Fig. 4. Thus, the improvement obtained in the PT/epoxy 1-3 composites is even more impressive in comparison. Since the hydrostatic sensitivity of a hydrophone is equal to the product of g_h and the thickness of the sensing element, the 1-3 composite provides a viable means to the design of sensitive new transducers for passive detection.

A prototype hydrophone was fabricated as described above by using one of the PT/Stycast 1-3 composite samples. The hydrophone was calibrated in water for its free-field voltage sensitivity over the frequency range of 100 Hz through 100 kHz. The calibration result is shown in Fig. 5. At the end of a 0.3-m cable, a constant sensitivity of about -201 dB re 1 V/ μ Pa was measured from 100 Hz to 6 kHz, a response ideal for broadband acoustic detection. At higher frequencies, different modes of the motion of the base plate began to interfere with the acoustic response of the sensor, but on the average a 4-5 dB increase in sensitivity seemed to be present. To take advantage of this high frequency behavior, a different hydrophone design will be required for the 1-3 piezocomposites.

CONCLUSION

New 1-3 piezocomposites of lead titanate and epoxy were experimentally investigated to show their stable d_h and g_h properties with pressure up to 20 MPa. While the d coefficient was found to be stable with temperature, the g_h coefficient decreased slightly with temperature. A comparison of the experimental result with calculations from a simple parallel-series connectivity model indicated the need to improve the predictive capability for the performance of 1-3 composites. The role of the polymer phase was examined to show the benefit of using a stiff matrix. The result from a preliminary hydroacoustic evaluation, together with the advantages of low density and high g_h values they offer, suggest that the 1-3 piezocomposites represent a class of promising new materials for underwater acoustic applications.

REFERENCES

[1] R. E. Newnham, D. P. Skinner and L. E. Cross, Mat'ls Res. Bull., <u>13</u>, 525 (1978).

[2] R. Y. Ting, Ferroelectrics, <u>67</u>, 143 (1986).

[3] W. A. Smith, Proc. 6th Intern'l Symp. Appl Ferroelectrics, p. 249, Jun 1986, Bethleham, PA.

[4] H. P. Savakas, K. A. Klicker and R. E. Newnham, Mat'ls Res. Bull. <u>16</u>, 677 (1981).

[5] R. J. Bobber, <u>Underwater Electroacoustic</u> <u>Measurements</u>, US Govern. Print. Office, Washington, DC, 1970.

[6] A. A. Shaulov, W. A. Smith and R. Y. Ting, Ferroelectrics, <u>93</u>, 177 (1989).

[7] M. J. Haun and R. E. Newnham, Ferroelectrics, <u>68</u>, 123 (1986).

[8] K. M. Rittenmyer, R. Y. Ting and T. A. Henriques, J. Acous. Soc. Am. <u>79</u>, 2073 (1986).

Fig. 1: Piezoelectric d_{33} and d_h coefficients of 1-3 composites as a function of ceramic volume fraction.

Fig. 2: Pressure dependence of the d_h and g_h coefficients of 1-3 composites.

1990 ULTRASONICS SYMPOSIUM - 709

Fig. 3: Temperature dependence of the d_h coefficients of 1-3 composites.

Fig. 4: Temperature dependence of the g_h coefficients of 1-3 composites.

Fig. 5: Free-field voltage sensitivity of a 1-3 composite hydrophone.

•

•

ŧ.