
WRC-TR-90-38 AD-A235 931

OPTICAL ANALYSIS OF AIRCRAFT TRANSPARENCIES
(OPTRAN)
VOLUME I: THEORETICAL MANUAL

J. Loomis
J. Fielman
University of Dayton Research Institute
300 College Park Avenue
Dayton, Ohio 45469-0110

October 1990

Final Report for Period December 1988 - May 1990

Approved for public release; distribution unlimited

DTIC.
I LECTE

SAY is 499to

FLIGHT DYNAMICS LABORATORY
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

91-00246lI~llililil)Ilm~lli91 5 21 0Ltu8



NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publications.

RICHARD A. SMITH ROBERT E. MCCARTY, Supe isor
Aerospace Engineer Aircrew Protection Branch

FOR THE COMMANDER

RICHARDE.CLL#ffi
Chief
Vehicle Subsystems Division

If your address has changed, if you wish to be removed from our mailing
list, of if the addressee is no longer employed by your organization please
notify WRDC/FIVR, WPAFB, OH 45433-6553 to help us maintain a current mailing
list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

UDR-TR-90-63 WRDC-TR-90-3058, Vol I

6a. NAME OF PERFORMING ORGANIZATION 5b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Dayton (if applicable) Flight Dynamics Directorate (WL/FIVR)

Research InstituteI Wright Laboratories

6c. ADDRESS (City, State, and ZlP Code) 7b. ADDRESS (City, State, and ZIP Code)
300 College Park
Dayton, Ohio 45469-0110 Wright-Patterson AFB OH 45433-6553

8a. NAME OF FUNDING/SPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

I_ F33615-86-C-3414

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

62291F 2402 03 60

1 1 TI FLE (Include Security Classification)

Optical Analysis of Aircraft Transparencies (OPTRAN) Volume I: Theoretical Manual

12 PERSONAL AUTHOR(S)
J. Loomis and J. Fielman

13a. TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year Month, Day) 115 PAGE COUNT
Final IF ROM 12-88 To 5-90 31 October 1990 62

16 SUPPLEMENTARY NOTATION

t7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

L FIELD GROUP SUB-GROUP

19, ABSTRACT (Continue on reverse if necessary and identify by block number)

This document describes the theory of the Optical Transmission (OPTRAN) code developed to

predict the optical performance of aircraft aircrew enclosure transparency designs

subjected to operational loads. The theory on which the code is based is described.

The OPTRAN ray trace code accounts for thermal and stress optical effects. Orthotropic

indices of refraction are computed throughout the transparency volume. Geometry is

defined by parametric cubic solids. The refraction of incoming light is computed as a

function of parametric solid surface outward normals. Angular deviation, polarization

effects, and lensing are computed for each ray.

20 DISTRIBUTION/AVAILABfLITY OF ABSTRACT 2 1 . TRACT 'ECUfi i Y CLASSIFICATION

MUNCLASSIFIED/UI",,v,,;) ' _ AS R ,I 1 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE ;NDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

RICHARD A. SMITH .. 513) 255-2516 1 WL/FIVR

DD Form 1473. JUN 86 Privious editions are obsolete SECURITY CLASSIFICATION OF THI6 PAGE
UNCLASSIFIED



Foreword

This report was prepared by the University of Dayton Research Institute under Rockwell
International PO. #L9FM-60048-W-439, Project Title, "Transparency Optical Analysis
Capability Development" under United State Air Force Contract F33615-86-C-3414, The
project was administered by the Wright Research and Development Center, Wright-
Patterson Air Force Base, Ohio. Mr. Richard A. Smith, AFWAL/FIVR, was Laboratory
Project Engineer.

This is the final report submitted under the University of Dayton's efforts and doc-
uments the software developed in the period from December 1988 to May 1990. Project
supervision and technical assistance was provided through the Aerospace Mechanics Di-
vision of UDRI, Mr. Dale Whiford, Supervisor. Project manager for this effort was Mr.
Blaine E. West, and the Principal Investigator was Mr. John W. Fielman, who was also
responsible code development and code interfaces. Dr. John S. Loomis was the primary
contributor of the optics theory and ray trace analysis code. Dr. Robert A. Brockman
made strategic modifications to MAGNA and the MAGNA interface codes without which
the effort could not have been completed.

This report is published in two volumes. Volume I, OPTRAN Theoretical Manual,
describes the mathematical theory and working equations on which the OPTRAN code is
based. OPTRAN was developed to predict the optical performance of current and future
canopy designs. Orthotropic optical effects are computed as a function of temperatures
and stresses predicted by finite element codes. Volume II, OPTRAN User's Manual,
describes the operation of OPTRAN and the finite element codes with which OPTRAN
is interfaced. The operation of pre- and post-processor software is also described.

Accession For

NTTS GEA&I Vo
DTIC TAB 0
Unannounced 0
Justifristio

in By .
Distribution/

n Availability Codes
a h vaii and/or

Dist rspecial
serums.!!I II



Contents

I Introduction I

1.1 Optical Raytrace .. .. .. .. ... .... ... ... ... ... ... .... 3

1.2 Optical Analysis .. .. .. ... ... ... ... ... ... ... .... .. 4

1.3 Polarization .. .. .. .. ... ... ... ... ... .... ... ... .... 6

2 Raytracing Parametric Surfaces 11

2.1 Overview. .. .. ... ... ... ... ... ... ... ... ... ... .. 11

2.2 Hyperpatches .. .. .. .. ... ... .... ... ... ... ... ... .. 12

2.3 Parametric Surfaces. .. .. ... ... ... ... ... ... ... ... .. 13

2.4 Surface Intersection. .. .. ... ... ... ... ... ... ... ... .. 14

2.5 Ray Refraction. .. .. .. ... ... ... ... ... .... ... ... .. 15

2.6 Refraction and Reflection Coefficients .. .. .. ... ... ... ... .... 16

2.7 Mueller Matrices. .. .. .. ... ... ... ... ... .... ... ..... 18

2.8 Output Data .. .. .. ... ... ... ... ... ... ... ... ...... 19

3 Nonlinear Least-Squares Optimization 20

3.1 Mathematic Preliminaries .. .. .. ... ... ... ... ... ... ..... 20

3.2 Method of Least-Squares. .. .. .. .. ... ... ... ... .... ..... 22

3.2.1 Homogeneous Matrix Formulation. .. .. .. .... ... ... .. 23

3.2.2 Nonlinear Effects .. .. .. .. ... ... ... ... .... ... .. 23

3.2.3 Damped Least-Squares. .. .. .. .. ... ... ... ... ..... 24

3.3 Method of QU Factorization .. .. .. ... ... ... ... ... ... .. 24

V



4 Differential Rays 30

4.1 Surface Intersection ....... .............................. 30

4.2 Ray Refraction ........ ................................. 31

4.3 Differential Trace of Parametric Surface ........................ 31

5 Anisotropic Refractive Index Ellipsoid 33

5.1 Orthotropic Indices of Refraction ............................ 33

5.2 Geometric Transformation ................................. 34

5.3 Stress Birefringence ....... .............................. 35

5.4 Tensor Rotation Transformation ..... ....................... 37

5.5 Principal Axes of Projected Ellipse ...... ...................... 38

6 Optical Waves in Anisotropic Materials 40

6.1 Light Propagation in Anisotropic Materials ..................... 40

6.2 Double Refraction ....... ............................... 47

6.3 Reflection and Refraction Coefficients ..... .................... 49

6.3.1 Reflection and Refraction in Isotropic Media ................ 51

vi



List of Figures

1.1 Angular deviation of a point in space by aircraft transparency ......... 5

1.2 Diagram illustrating the definition of angular coordinates ............ 5

1.3 Using a grid to show distortion and angular deviation .............. 7

1.4 Examples of polarization states ...... ........................ 9

1.5 Angles used to characterize the polarization ellipse ................ 10

6.1 Construction of the D vectors belonging to a wave normal k [1] ...... .. 41
6.2 Intersection of the normal surface with xz plane for (a) biaxial crystals,

(b) positive uniaxial crystals, and (c) negative uniaxial crystals 31..... .. 44

6.3 Orientation of rays and waves in a uniaxial crystal [21 ............ 44

6.4 Optical path for rays and wavefronts ............................ 46

6.5 A light beam with two orthogonal field components traversing a calcite
principal section [21 ....... ............................... 46

6.6 Double refraction at the boundary of an anisotropic material ........ .. 47

6.7 Ordinary reflection at the boundary of an anisotropic material ....... .48

6.8 Extraordinary reflection at the boundary of an anisotropic material. ... 49

6.9 Refraction and reflection at boundary between two anisotropic materials. 50

vii



List of Tables

6.1 Typical refractive indices of some crystals [3] .. .. .. .. .. .. . .. . .. 43

Viii



Section 1

Introduction

OPTRAN is a raytrace code which evaluates the optical quality of aircraft tranparencies
subjected to operation load conditions. This volume describes the theoretical background
on which the code is based.

The raytrace optical code is interfaced to finite element thermal and stress codes to
permit the effects of operational loads to be modeled. Thermal, displacement, and stress
field definition data computed by the finite element codes are input to the optics code.
This information is required to compute the orthotropic indices "' refraction throughout
the material volume of the aircraft transparency. This computation is performed at each
step along the propagation path of each ray.

The optics code tracks rays of various wavelengths through the transparency. The
deformed geometry generated by the stress analysis is used to determine angles of reflec-
tion and refraction at transparency layer boundaries. Birefringent indices of refraction
are computed as a function of material, temperature, and stress state at the refracting
surfaces and within the transparency material.

Post-processing graphics codes display the angular deviation, transmittance, and po-
larization effects over specified regions of the transparency. Plots of displacement vectors
and deformed grids can be also generated.

The PATRAN ill finite element pre- and post-processing software provides the com-
mon interface between the thermal and stress finite element codes and the the optical
analysis code. PATRAN is a software product of the PATRAN Division of PDA En-
gineering, Costa Mesa, CA. PATRAN software is available for many computer systems
and offers device drivers for many interactive graphics terminals. PATRAN provides
excellent tools for defining the model geometries and generating graphic displays of the
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models. It is widely used, well supported, and interfaced to many of the more popu-
lar finite element codes, thus offering the opportunity of using other analysis tools in
conjunction with OPTRAN.

Isoparametric cubic hyperpatches defined by the same mathematical formulation as
those used by PATRAN [11 (Chapter 37) are used in OPTRAN. They are also used
to model the deformed transparency layer solid geometry and map the temperature
and stress parameters within the transparency material layers. The temperature (T)
and the six orthogonal stress parameters ( a,, ov az rzy r. 7-, ) are required at
each incremental step along the optical ray trace paths to compute continuously varying
orthotropic indices of refraction. Displacements are critical in determining reflected and
refracted optical ray path directions at layer boundaries.

Temperature, pressure, and density fields in thelsurrounding air stream can also be
mapped using a series of isoparametric hyperpatches. These parameters determine index
of refraction in the atmosphere.

The mathematical formulation of hyperpatches is presented in detail in Chapter 37
of the PATRAN Plus User's Manual [1]. The hyperpatch formulation is that of a cubic
solid (64 node) isoparametric finite element. Coordinates and other data parameters are
mapped within the hyperpatch with the same parametric equations.

For raytracing, the entrance and exit surfaces of each part must be identified. Surfaces
must be numbered sequentially from the outside of the aircraft to the eye. The eye
position and a set of pilot reference axes must also be defined. Rays are specified by
direction angles with respect to the pilot coordinate system. Rays can also be specified
indirectly by defining a mesh of nodes over the first entrance surface. The 3D coordinates
of these nodes are used to generate ray directions.

The OPTRAN code accounts for three-dimensional orthotropic optical effects. An
orthotropic index of refraction ellipsoid is computed as a function of the stress and tem-
perat ure values. Orthotropic effects can result from either orthotropic material properties
or from form birefringance caused by stress optic effects.

Optical material properties include orthotropic indices of refraction, orthotropic tem-
perature coefficients of the indices of refraction, and a six by six matrix of stress optic
coefficients. Orthotropic optical material properties input to OPTRAN are defined with
respect to material axes.

The material axes are defined with respect to reference axes. The reference axes
can be either the global coordinate axes or axes defined by the derivatives of the global
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coordinates with respect to the geometric hyperpatch parametric variables. This latter
reference axis option allows the optic axis orientation to vary with the curvature of the
transparency. By default the material axes are aligned with the reference axes and the

global coordinate axes are the reference axes.

The following method is used to find the ray from a known target location that
intersects the eye point. First we aim a ray from the target to the eye and trace an
actual ray until the ray intersects the eye plane. Then we trace differential rays (close

to the original ray), differing first in azimuth and then in elevation. The intersection
of these rays at the eye plane (XY plane in pilot coordinates) are used to genrate a

first-order matrix that can be solved to give a correction to te original ray, that is a
new ray that now intersects the eye point.

An extensive list of variables are generated at each intersection point. These include

the hyperpatch ID and face number, material ID, hyperpatch parameters (u, v, w),
corresponding 3D coordinates (x, y, z), the direction of the surface normal, the direction
of the refracted ray, a reference polarization direction, polarization and transmittance

arrays, and auxiliary variables needed to generate differential rays. A detailed surface-
by-surface list of this information can be generated on the output listing.

There are three output files generated by OPTRAN. The first is the output listing,
which contains a copy of the input parameters, detailed ray trace information, error

messages, and summary tables. The second is a PATRAN nodal results file, which
c( tains 14 columns of summary data. The PATRAN nodal results file can be used in

PATRAN to produce a variety of 3D plots. The third file is an optical results file, which

contains outline segments that help define the field of view and raytrace information on
a uniform grid of azimuth/elevation variables. The optical results file is used to generate

two-dimensional grid distortion plots, angular deviation fields, and polarization ellipses.

1.1 Optical Raytrace

Rays are represented as straight lines in space. Rays are refracted at the point they inter-

sect an optical surface. The two operations involved in raytracing, therefore, are finding
the intersection of a ray with the surface and refracting the ray at the surface. For para-
metric surfaces, ray intersection is an iterative procedure, requiring a two-dimensional

nonlinear optimization. Calculating the direction of propagation of the refracted ray is

also an iterative process, since the index of refractive varies with direction.

Finding the first intersection on an entrance surface requires a search over available

patches. For an intersection point to be valid, the parametric variables corresponding
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to the intersection point must lie within the bounds of 0 < ( u, v. w ) < 1. Once
the entrance hyperpatch face has been identified, the ray may be traced through the
part without additional searching because the PATRAN geometry file identifies adjacent
hyperpatches. After a ray exits a part, however, another search of a list of patches may
be required to find the entrance into the next part.

Stress and temperature affect light rays in two ways. First, the surfaces of the trans-
parency deform as a result of stress and temperature changes, so that the geometry of
the transparency changes. Second, the index of refraction of the transparency layers
depends on both temperature and stress. OPTRAN uses the isoparametric surface ge-
ometry definitions from PATRAN to locate boundaries for ray refraction and reflection.
The results of finite-element heat and stress programs define the volumetric temptrature
and stre ; states of the transparency, from which the index ellipsoid is calculated.

At an interface between two dielectric materials, a plane of incidence is defined by the
normal vector to the surface and the direction vector of the incident ray. The light ray is
split into reflected and refracted rays, propagating in the plane of incidence. Snell's law
determines the direction of propagation. The polarization of the incident ray, defined by
the electric field vector, is decomposed into components parallel and perpendicular to the
plane of incidence. The Fresnel equations determine the reflectance and transmittance
7F each polarization component.

Within a birefringent material, the electric field vector must be decomposed into
components parallel to the principal axes of the dielectric material, as determined by the
dielectric tensor. The components propagate with slightly different phase shifts causing
one polarization state to be retarded in phase with respect to the other.

1.2 Optical Analysis

Rays are traced from the outer world to the eye poi-A, as shown in Figure 1.1. Azimuth
and elevation angles are used to specify the actual directi ,n k of a target point in the
outer world. This is the dotted line drawn from the object to the eye in Figure 1.1. The
direction of the exit ray k' shows the apparent direction of the target, as shown by the
dotted line from the image to the eye. The difference between the apparent direction
and the actual direction is the angular deviation. The angular deviation 6k is calculated
from 6k = k' - k. Deviation causes objects to be seen at other than their true direction
from the observer.

In OPTRAN, 2D direction coordinates of a vector are defined with respect to the
pilot reference system. Note that direction vectors point toward the eye, and that zero

4



I-

Figure 1.1: Angular deviation of a point in space by aircraft transparency

1

Figure 1.2: Dipgram illustrating the definition of angular coordinates
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angle corresponds to a direction parallel to the pilot z-axis. For this case the point of
regard (object or image point) lies along the negative z-axis, directly in front of the pilot.

The magnitude of direction coordinates is the angle 0 in degrees between the vector
and the pilot z-axis, as shown in Figure 1.2. The orientation of the angular coordinates
is obtained by projecting the direction vector onto the xy-plane and finding the angle 0
with respect to the x-axis, as shown in Figure 1.2. Then azimuth and elevation direction
angles A. and AY are found from

AX = cos0

A = sin 0

The magnitude of direction angles extends from 0 to 180'. A direction angle of 180'
refers to a point directly behind the pilot. For the 1800 direction the orientation 0 is
indeterminate. The horizontal or x-component of direction is called azimuth, and will
be positive for points of regard to the right of the pilot and negative to the left. The
vertical or y-component of direction is called elevation, and will be positive for points
above the horizon (xz-plane) and negative below.

Angular deviation is the most direct measure of optical quality of a transparency.
One method of demonstrating angular deviation is to show how a rectilinear grid in
angle coordinates is distorted by the transparency. The data from a square array of
rays, equally spaced in azimuth and elevation, can be displayed in single cross-sections
of elevation or azimuth error or as deformed grids, emulating the typical grid board
photograph.

Grid distortion is shown in Figure 1.3 (a). The undistorted grid is shown in dashed
lines and the distorted grid by solid lines. The arrow is the angular deviation for a single
point on the grid. If arrows are drawn at every grid point, then the representation shown
in Figure 1.3 (b) is obtained. Finally, by removing the grids we can produce a plot of
angular deviation vectors as shown in Figure 1.3 (c). Both grid distortion and angular
deviation plots can be produced from OPTRAN optical results files.

1.3 Polarization

Characterizing the state of polarization is discussed in Born and Wolf 131 pp. 30-32,
Hecht [2] pp. 321-326, and in Azzam and Bashara [91. The different possible states of

6
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polarization of monochromatic light can be represented by a set of four real quantities,
called the Stokes parameters, denoted by the vector

st = (s 8. 1S2 83),

each component of which has the dimensions of irradiance. The first term, So, gives the
total irradiance of the light wave and therefore is always positive. The next three terms

give the difference between the irradiance of three different sets of orthogonal polarization
states, and can therefore be either positive, negative, or zero.

Suppose we had our choice of ideal linear and circular polarizers. Let Io be the total

irradiance of the wave and I,, I4, 145, I- 4 s, ., It be the intensities transmitted by the
corresponding ideal polarizer. Then

so 0 [ 1 . + IV = 45 + I-45 = + It

s -- I-I,

S2 = 1-4 I-45

S3 = I-It

where s, gives the difference between the irradiance of x and y linear polarization states,

s2 represents the preference for polarization between +45' and -45', and S3 is the dif-
ference between right- and left-circular polarizations.

For unpolarized light, there is no preference for any particular polarization so that
51 = 92 = 53 = 0 and the Stokes vector has the simple form

st=(5o 0 0 0).

The Stokes parameters of a totally polarized wave satisfy the condition

s2 =s2 +s2 +s2
0 + S2 +38

The general case can be treated by splitting the wave into two components, one totally

polarized and one unpolarized. Let

s= A + A +s2

Then

su (s - S') o 0 o)

-t P. P 1 S2 S3)
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Circular

Elliptical

Linear

Figure 1.4: Examples of polarization states

We can also define the degree of polarization Dp as the ratio of the irradiance of the

totally polarized component to the total irradiance

Dp --

The degree of polarization varies from zero for unpolarized light to unity for totally
polarized light, with intermediate values for partially polarized light.

Polarization has a simple geometric interpretation as an ellipse. The shape and

orientation of the ellipse relate to the polarization state, as shown in Figure 1.4. The
size of the ellipse relates to the relative brightness of the polarized component of the
transmitted ray. The shape of the ellipse may be characterized by two angles, the

ellipticity angle E and the orientation angle 0, as shown in Figure 1.5. The relationship
between the Stokes parameters and the polarization ellipse is

at = s ,cos2ecos29

s2 = .5, cos 2E sin 20

s3 = sP sin2E

9



Figure 1.5: Angles used to characterize the polarization ellipse
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Section 2

Raytracing Parametric Surfaces

Raytracing is the process of following a ray of light through an optical system. Rays are
represented lines in space. The intersection point is calculated for a ray with a surface.
For parametric surfaces, this is an iterative procedure, requiring a two-dimensional non-
linear optimization. The ray is next refracted or reflected at the surface, and a new ray
direction vector is calculated. Then the raytrace is repeated for the succeeding surfaces
until the image surface is reached.

This chapter presents the working equations necessary to find the intersection between
rays and parametric surfaces.

2.1 Overview

Three ray transfer mechanisms have been devised for tracing rays through optical trans-
parencies. The first is an insertion process. Eligible hyperpatches for ray entry are those
associated with the entrance surface. Ray intersections are tested for each eligible hy-
perpatch until a legal intersection is found. If no intersection is found, the action taken
depends on the transmission code for that component. If the transmission code is zero,
the ray is assumed to be blocked. The ray trace is continued to the next component if the
transmission code is set. The second mechanism is that of internal propagation in which
a ray is traced from one side of the hyperpatch to another. The third is ray extraction
at the exit face of a hyperpatch. The adjoining face is either a new hyperpatch, the exit
surface, or an edge face. If the adjoining face is a new hyperpatch, the local parametric
ray coordinates must be calculated for the new hyperpatch. If the exit surface is encoun-
tered, the ray is refracted into air and traced to the eye plane or to the entrance surface
of the next optical component. Finally, if an edge face is encountered, the ray is either
reflected from the interface or totally absorbed at the point of intersection.

11



2.2 Hyperpatches

The geometric model used in OPTRAN is the hyperpatch defined by PATRAN (chapter
37) [1]. A hyperpatch is a 3-dimensional mapping of the parametric unit cube in (u, v,
w) to world coordinates (X, Y, z).

The following method evaluates a tricubic hyperpatch at (u,v,w) to obtain (X,Y,Z)
coordinates.

Formal Parameters:

" C (Input) = Hyperpatch coefficients. For each coordinate (X,Y,Z), these are ar-
ranged in a 4x4x4 matrix of the form:

C (0,0,0) C (0,1,0) ifC, (0,0,0) C, (0,1,0)
C (1,0,0) C (1,1,0) IfC', (1,0,0) C, (1,1,0)
cu, (0,0,0) cu, (0,1,0) if V (0,0,0) Ct,,, (0,1,0)
Cu (1,0,0) Ct, (1,1,0) fCt, (1,0,0) Ct,, (1,1,0)
C (0,0,1) C (0,1,1) ifC, (0,0,1) C., (0,1,1)
C (1,0,1)1 C (1,1,1) IfC, (1,0,j) C, (1,1,1)
Cu, (0,0,1) C', (0,1,1) fCt, (0,0,1) C.., (0,1,1)
Cu, (1,0,1) Cu, (1,1,1) Ifc,, (1,0,1) C.", (1,1,1)
C,, (0,0,0) CL, (0,1,0) ifCt,, (0,0,0) C"., (0,1,0)
C,, (1,0,0) C., (1,1,0) IfC.., (1,0,0) C,, (1,1,0)
Cu. (0,0,0) cu., (0,1,0) ifCut.. (0,0,0) Ct,,,i (0,1,0)[C,, (0,0,1) C,, (0,1,1) ifC,,, (0,0,1) C,,, (0,1,1)
C, (1,0,1) C,, (1,1,1) IfC.., (1,0,1) C,,, (1,1,1)
Cu.. (0,0,1) C.., (0,1,1) ifcu.. (0,0,1) CU.,, (0,1,1)
Cu.. (1,0,1) C,,, (1,1,1) Ifcu.., (1,0,1) Ct,,,, (1,1,1)

* UVW (Input) =Parametric coordinates on the interval 10,11

* XYZ (Output) =Cartesian coordinates at point (u,v,w) of the patch

Method:

12



For each coordinate, evaluate:

HU = MU
HV = MV

Ho = MW

in which:

Ut = (u3 u2 u )

Vt = (v v v )

wt = (w3 w2 w 2 )

C is the 4x4x4 matrix of patch coefficients for coordinate X, and M is a 4x4 matrix
defining the coefficients of the first order (cubic) Hermite polynomials:

2 -30 1

M -2 30 0M=[?I
1 -21 0
1 -10 0

Hi = (H,), * (H,.,)j * (H, )k for i=1-4, j=1-4, k=1-4
I=i+4(j-1) +16(k- I O

Note: The products MU, MV, and MW are the same for all three coordinates. The
matrix M above is the transpose of the matrix M defined in the PATRAN theory chapter.

64 64 64

X = AIgCz, Y = I HA+64, Z = EHLCI+128
l~1 1=1 i=1

2.3 Parametric Surfaces

Parametric surfaces are found by setting one of the parametric variables to one of its
limiting values (0 or 1). This yields one of the six faces- of the hyperpatch. Although
any one of the six faces may be used in OPTRAN, we show the case for w held constant.
This parametric surface is defined by

S(u,v) = ( X(u,v) Y(u,v) Z(u,v) )

13



Surface Normal

At any point (u, v) on the parametric surface, we can construct a vector N perpendicular
to the patch by computing the cross product of the tangent vectors Su and Sv.

N = Su S

where

s -= aS(Uv) = x(uv) aY(uv) 8Z(u,v))
au0u au au

S = aS(u, v) _ x(U'u) aY(Uu) aZ(UV)
av 8 3V 3V

2.4 Surface Intersection

A general discussion of geometric modeling based on parametric cubic surfaces is found in
Mortenson 141. Raytracing of parametric surfaces has been applied to studies of computer
graphics [5,6,71.

Given the parametric surface

S(u,v) = ( X(u,v) Y(u,v) Z(u,v) )
and a ray defined by the point p and the unit direction k, the square of the distance
from the surface to the ray is

,2 = IF12 = IP' - p - qkj 2

where F is the defect vector and p' the intersection point,

p' = S(u,v)

and the distance q along the ray to the point of intersection is

q = (p' - p) k.

A local minimum of 02 = 0 corresponds to a point (u, v) where the ray intersects the
surface. All components of the defect vector F must vanish for an intersection point to
exist. A solution can be obtained by adjusting the variables u, v, and q. Those points
where 402 is a minimum, but 4,2 > 0, indicate that the ray missed the surface by a finite
distance. Thus a minimization algorithm will still converge near a "silhouette edge" of
the surface, but will give a non-zero minimum.
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2.5 Ray Refraction

Refraction at a boundary between two dielectric media is determined by Snell's law, that

n(k x N) = n'(k' x N)

where N is the surface normal vector and k the unit vector in the direction of propagation.

We can obtain another representation of Snell's Law by examining the following
vector triple product:

n'(k'x N) x N = n(k x N) x N

Using a standard vector identity, we can write this as

(N . N)n'k' - (N. n'k')N = (N . N)nk - (N. nk)N

Let

g' = N.N

F = nk.N=ngcosO
IF' = nk'.N=ngcosO

These definitions allow us to write

n'k' = nk + -YN

where
" - g

Now let us address the problem of finding 1'. We seek a solution that avoids trigonometric

functions.
n' sin 9' = nsin9

n 2(1 - cos 2 0') = n 2 (1 - cos2 0)
2 n12 _ = g2n2 - r2

g" = r '(, '
r = r 2 + g2(n - n2)

r = ±J r+g92 (n#2 -n 2 )

If the argument of the square root is negative, we have total internal reflection.

The choice of sign can be made as follows:

Refraction: r' and I have the same sign

Reflection: ' and r change signs

For reflection, F = -r.

15



2.6 Refraction and Reflection Coefficients

The refraction and reflection coefficients determine the energy which is transmitted or
reflected at a dielectric interface.

The calculation of these coefficients is best performed in a local coordinate system
defined as follows. Let z be the normal to the surface, with orthogonal vectors x and y
lying in the plane of the surface, and let x be perpendicular to the plane of incidence.
then

x = kxz
y = ZXx

If the propagation vector ko is parallel to the surface normal (normal incidence), no plane
of incidence is defined. The choice of x is then arbitrary, and we let x be in the direction
of the incident polarization reference axis d,.

The Maxwell equations for reflection and refraction at the boundary between two
isotropic materials can be solved for ampltiude reflection/refraction coefficients,

The following amplitude reflection/transmission coefficients may be obtained

Em
E.

where i is one of four possible combinations, (reflecting or refracting) and (p-polarization
or s-polarization), o represents the entrance medium and m represents the exit medium.

Energy reflection/transmission coefficients are obtained from

T,=flkn fltml
n=ko .z

For reflection, the index of refraction of exit and entrance media are the same.

S-Polarization

For an incident ray polarized perpendicular to the plane of incidence (s-polarization),
the electric field vector e, = x and the reflection and transmission amplitude coefficients

16



are

no 2n, cos 0
n, coe + nn cOf

no cos 8 - nn cos

no cos 0 + nm cos 01

where 0 is the angle of incidence and O' the angle of refraction. For this case, the
amplitude coefficients simplify to

2r

F - 171rrr
F+'-
r + 171

P-Polarization

For an incident ray polarized parallel to the plane of incidence (p-polarization), e, = y
and

2n, cos 0tp = n,= cos0 + nocosOf

nm cos 8 - no cos Of
rp - -

n. cos 0 + no cos 0'

Normal incidence

For normal incidence, there is no plane of incidence defined. We can then choose x = eo.
Then the equations simplify to

Eb 2n,
Eo n, + n,,
E. nm - n,

E0 n. + n.

17
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2.7 Mueller Matrices

In a general polarizing system, the output polarization state is related to the input
polarization state by

SO [ mOO io
0  

M0 2 mO3 SO
,S1 MIO 110 ro l M12 M1t3 ,51(1 = i 2 0 n 2 1 in 2 2 Mn2 3  2

S3 Mi3 0 in 3 1 in 3 2 in 3 3  S3

where the matrix M is called a Mueller matrix. [9]

Following are Mueller matrices for common optical components. The Mueller matrix
for a polarizer oriented at 00:

1 100
( 1 100

P(0 2 00 0 0

0 0 0 0.

Linear retarder, oriented along x-axis:

1 0 0 0
0 0 0 0

Q(0) = 0 2 cos6 sin6]
0 -0 sin b cos b

The Mueller matrix for reflection/transmission is equivalent to a partial polarizer
with tranmission factors t, ty

t + tz - ty 0 0
p _ t - tv t" + ty 0 0

2 0 0 2 v/F-t F 0
0 0 0 2V/7v

Rotation matrix:

R a) 0 cos 2a sin 2a 0
R( 0) 0 sin2 cos 2 0

0 0 0 1

To find the Mueller matrix of a device oriented at an azimuth of 0:

M = R(-6)MR(O)

18



2.8 Output Data

The result of a ray trace is a set of ray data, consisting of the following information at
intersection points:

NPAT geometric hyperpatch ID
(u, v, w) parametric coordinates

p ray position vector (1, y, z)
n surface normal unit vector
k direction of wave propagation
d polarization reference vector
N mean index of refraction
6N difference in refractive index
d distance to next surface

These data are calculated for the object surface, each intermediate surface intersected
by the ray, and finally for the image surface. The optical path to the next surface is Nd.

The optical retardance is bNd.
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Section 3

Nonlinear Least-Squares Optimization

The surface intersection problem defined in the previous section is solved by the nonlinear
least-squares optimization technique presented in this section.

The optimization method seeks to minimize the sum of squares of defect terms, and
the ideal solution is obtained if each individual term vanishes. The method expands the
merit function in a Taylor series about a starting point, keeping the linear and quadratic
terms in the variables. This approximate function is then minimized, and a solution
vector is found. This vector may extend outside the region of validity for the Taylor
series, so the solution iector is reduced in magnitude or damped to keep changes within
the region of validity.

3.1 Mathematic Preliminaries

Merit Function

The defect functions f, are functions of a set of N variables (xI, x 2,..., XN):

fl = fI(XtX 2 ,. . . ,XN)

f2 = f2(x, 2,... , N)

fM = fM(Xl,X 2,. .. ,ZN)

The merit function is of the type
M

2=0

20



or
o2 = ftf = f. f jifil2

where f is a (M x 1) vector and ft is the (1 x M) transpose of f. The first form of the
expression uses the notation of matrix multiplication. The second form shows a vector
dot (or inner) product, and the last form is a vector norm over defect space.

Linear Defect Model

Over a small region about the starting point, the defects may be approximated by a
Taylor series,

f = ao + Ax.

where A is a (M x N) matrix of first derivatives:

_i - af,
A,-ax1

and x are changes in the variables from the starting point.

Gradient

The gradient g is a (N x 1) vector given by

g = V' 2

Its components are

a 02 =2 fl f + f22+. + A f
_axi 2(1 a,1 ax

then
g = 2Atf

A very inefficient method for finding a solution point is to search for a minimum along
the vector -g. This is known as the gradient search method, and for a highly nonlinear
function may be a good strategy. Experience has shown, however, that for most cases
the local gradient is not a good predictor of the final minimum.
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3.2 Method of Least-Squares

Using the linear model for the defects allows us to express the merit function as

02 = (ao + Ax) • (ao + Ax) = ao -ao + 2co. x + xtCx

where

co = Atao

C = A t A

Let aj represent column j of matrix A. The matrix C is a symmetric (N x N) matrix,
whose elements can be written as a sum over the defects,

M
c- Ai,(ai)o = a.ao

M

Cjk = AjjAjk = aj " ah
I i=1

The matrix C is called the covariance array. The gradient is

g = 2Atf = 2(co + Cx)

The minimum of 02 is obtained by setting g = 0 and solving for x. The resulting matrix
equation

co + Cx = 0

is a set of simultaneous linear equations known as the normal equations of least-squares.
Providing that the matrix C is not singular, these equations can always be solved, and
the formal solution xm may be written

X, = -C-I0

At the minimum, the merit function becomes

0 2  a- a0  + co0 x,,

In fact, the matrix C is frequently nearly singular, so that direct matrix inversion is an
inappropriate numeric method for solving the normal equations. Before exploring a more
appropriate method, we present an alternative formulation of the matrix equations, using
homogeneous matrices, and discuss some problems associated with nonlinear effects.
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3.2.1 Homogeneous Matrix Formulation

Homogeneous, or augmented matrices A' and x', can be constructed such that

f = a + Ax =A'x' = ( Ala. ) (I
where A' has N' = N + 1 columns, and x' has N' rows. The augmented form of the
covariance array C is given by:

CO =(ct0 ao C• a)

Homogeneous matrices provide a compact way of representing and storing the compo-
nents of the normal equations,

C'x' = 0

Since C' is a symmetric matrix, a triangular partition can be used to represent the
full matrix. The homogeneous C' matrix may be multiplied by a nonzero scalar value
without changing the solution of the system of equations. For example, we could choose
to normalize the matrix so that the lower right corner element is unity. This element
is zero only if the current design represents an ideal solution, in which case, no further
processing is necessary.

3.2.2 Nonlinear Effects

A Taylor series expansion of a scalar function of several variables may be written as
1it

= _ +g 0 . x + 1x Hx
2

where H is the Hessian matrix of second derivatives, defined as

a2,'9
Hj.;= 

axax

The Hessian matrix may be expressed as

Hik = M

1Y1 axk 0dxid;
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A linear defect model predicts that

2= a0 a0 + 2c 0 x + xtCx

and matches the first and second terms of the Taylor series but it leaves out the second
derivatives in the Hessian matrix.

Hj k = 2 (Cik + f aia

3.2.3 Damped Least-Squares

As an alternative to performing lengthy calculations of second derivatives, a damping
term of the form pl, where I is the identity matrix, may be incorporated to eliminate
singularities and restrict the least-squares solution to

x = - (C + pI C 0

In the limit as p -+ 0, the solution approaches the least-squares prediction. An exact
solution is obtained if the defects are linear functions of the variables. Sufficiently large
values of p guarantee a nonsingular matrix inversion by making the eigenvalues non-
negative. As p becomes large, the solution approaches a small step opposed to the
direction of the local gradient, which usually results in a smaller merit function and thus
a design improvement. The method of damped least-squares has been used extensively
and successfully in optical design. Damping plays an important role in any nonlinear
optimization program, but we choose to introduce it at a later stage in the process. Let
us turn our attention instead to the technique of orthogonal variables.

3.3 Method of QU Factorization

QU factorization is a method of transforming the normal equations into a set of or-
thonormal equations. We seek to transform the matrix A' into another (M x N') matrix
Q whose columns q, are orthonormal over the defects,

Af
qj qk F, QijQik =

24 =
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The constant Aj represents the magnitude of qj, It is zero only if the corresponding q,
vector is zero. The transformation will be an augmented upper triangular matrix U such
that

QU = A'

The matrix U has the form

1 C1 2  .13 CtIN a10

0 1 a 23 . a2N a 20
0 0 1 "'" a3N a3o

U: : : ". :

0 0 0 ... 1 OLNO

0 0 0 ... 0 1

where
ajk = A2

We define a new set of variables w such that

w = Ux'

The defect vectors can now be written as
N

f = A'x' = Qw = ao + E qjwj
j= 1

The merit function itself can be expressed as a quadratic sum,
N

4,2 = A2 1+,\(W, + aljo) 2

j=1

where the minimum value of 02 is be obtained by inspection as wj = -ao. The solution
can be expressed compactly as

W = -U 0

The following steps are repeated as often as necessary to obtain a final solution:

1. Calculate the required derivatives.

2. Carry out the QU factorization.

3. Determine the predicted location of the minimum by setting w = -u 0 .

4. Solve the triangular matrix equation w = Ux' for x.

5. Search for improvement in the direction predicted by the model.

Each step will now be described in detail.
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Calculation of Derivatives

Derivatives of the defect functions may be calculated either analytically or numerically.
In raytracing parametric surfaces, the partial derivatives are calculated analytically.

These derivatives are given by

F U = Su - (Su .k)k
FV = Sv (Su.k)k

Cholesky Decomposition

The Cholesky decomposition algorithm is one way of carrying out the factorization of
the C matrix indicated in the previous section.

The general column qk is given by

k-i

qk = ak - qik

where for j < k
q * q- q* ac - \20t, A 0

q• ak

and for j = k
k qk . qk =qk ak

The Cholesky algorithm involves the following a recursive process:

- ;(C ~k- t~kt
Aj,=

and
k-i

A2 k = Ckk - 2 k 2

j=1
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The algorithm is a simple iterative procedure. For the first column, q = at with
A = C11. The next column is constructed by requiring that

q2 - a 2 - qla1 2

where

C 12
a 12  2

'\ a2 A2

= C22 a121

Each new column is constructed to be orthogonal to the previous columns. This is
the general principle of Gram-Schmidt orthogonalization except that the columns are
calculated from the covariance matrix rather than the original A' matrix. If the sequence
of calculations causes a negative value of \ 2 , we set that coefficient to zero and then
continue the calculations. If the merit function is independent of a particular variable xj
then the matrix element Cjj will be zero. The coefficients aij and A; must also be zero.
If the variable is linearly dependent on earlier variables, then the algorithm used for A2

should sum to zero (or within a specified tolerance of zero).

Obtaining a Solution

The merit function can be reduced to a quadratic form through the following steps:

02 = f.f

N N N
= ao.ao+2 (ao.qj)wj+E(qj.q)wwk

j1 j1= k=l

N

= A(0+ + 2ajowj + w }
j=1

N

'\ \ZA(W, + ao)2

where
N

0o =ao ao -E j o
j=1

The minimum value of 02 can be obtained by inspection as wj= -a, 0 . The solution can
be expressed compactly as

W = -U 0
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The eigenvalues {A } determine the relative influence of the transformed variables on the
magnitude of the merit function. If A = 0, then wj has no effect on the solution. Zero,
or extremely small values of A, are common in least-squares equations. Such values
results from variables which are either linearly related to other variables or which have
no effect on the merit function. This situation leads to an ill-conditioned matrix inverse
(indeterminate values). Using QU factorization, we can recognize variables for which
A2 = 0, and exclude them from further processing. Small values of A' are associated with
vectors oriented along valleys of the merit functions. Larger values of A' are associated
with directions normal to the walls of the valleys. If A is zero, we have an unused degree
of freedom in the design. There is a continum of designs that satisfy the merit function.

Round-off errors can lead to imaginary values for some A, rather than small positive
values. If we set A, to zero at this stage of the calculation, we can avoid some of the
problems of ill-conditioning.

Back Substitution

A triangular matrix equation, such as

W = Ux'

is easy to solve for x' by using the method of back substitution. First, we use the
definition of an upper triangular matrix to write

N
Wo = X. + ojX j

Then beginning at the bottom of the matrix, we can generate the following sequence:

XN = WN

XN_ 1 = WN 1 - CtNI1,NZN

N
Xi --- ti - ai Xj

j=i +l

Search in One Dimension

Searches in one dimension may be made along any single variable xj, transformed variable
wj, or solution vector uo. The general case is to define a search vector v and parameter
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p such that
X = pv

where p = 0 is the current point and p = 1 is the predicted solution to

O(p) = 0

Our technique is to first calculate 0(1). If the merit function is smaller than the original
value 4(0), we calculate 0(1.5). Otherwise, we find 0(0.5). At this stage, we have enough
information to construct an interpolating parabola 0(p) = bo + bip + b~p2 . We locate
either the minimum value or the closet root p,, and then find 0(p,) directly. The value
of p associated with the smallest value of the merit function is used to generate the
starting position for the next iteration of optimization.
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Section 4

Differential Rays

Differential raytracing is a simplified method of finding rays that are close to some
reference ray. If the reference ray is the central ray traveling along the optic axis, then
the close rays are called paraxial rays. A differential raytrace is the generalization of the
idea of paraxial rays. Differential rays are faster to calculate than exact rays and can be
used to determine the focussing properties of a narrow bundle of rays, like those entering
the eye from an external object point.

Differential rays are used to calculate the astigmatism and defocus of a small bundle
of rays. Given a central ray from p traveling along the unit direction k, the differential
ray is given by bp and 6k.

4.1 Surface Intersection

The differential ray intersects a surface at a distance q + 6q along the ray, yielding 6p'
subject to the condition that the differential ray lies in the surface tangent plane,

bp' • N = O.

Taking the derivative of the ray translation equation gives

6p' b tp + q 6k + 6q k

Let
= p + q 6k.

Then
k.N

and
bp' = p + bq k.
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4.2 Ray Refraction

The refracted ray is given by
n'k' = nk + -"N

and the differential ray is

n' 6k' = n 6k + -6N + 61 N

subject to the condition that k' is a unit vector, so that

k' •6k' = 0

Let
k n 6k + -y 6N

Then
6-1 k'

k' N

and
n' 6k'= + 6- N

4.3 Differential Trace of Parametric Surface

For a parametric surface, the ray intersection differential 6S is given by

6S = S', 6 u + S" 6v

Then
Su bu + S 6v= + k 6q

represents a set of three linear equations in three unknowns (bu, 6v, 6q) which may be
solved using Cramer's rule:

6u = k
k-N

k.S 1 x6v -k.

k.N

q = - 3
k'N
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The differential surface normal 6N is also required. The surface normal for parametric
surfaces is given by

N =S" x S

from which the differential normal can be obtained as

bN =(WS) x S' + S' x (WS)

where

bS" = S", u + S" 6v
bS, = S" tu + Sw6V.
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Section 5

Anisotropic Refractive Index Ellipsoid

This section explains how OPTRAN computes the coefficients of an ellipsoid whose
principal axes define the orthotropic indices of refraction at a particular location as a
function of temperature and stress.

5.1 Orthotropic Indices of Refraction

The equation for the index ellipsoid of an unstressed material with respect to the principal
axes of the material (x, y, z) is given by

2 2 z

The orthotropic indices of refraction (n, ny, n,) are given by

dn=

= +dT

n.=ly dny Adn

n. = h, +--AT
dl'

where (ft, A,,, h,) is a set of orthotropic indices of refraction, (dn,/dT, dn./dT, dn=/dT)
is a set of orthotropic temperature coefficients along the same axes, and AT is the
temperature change.

A geometric transformation is required if the axes of the material are not aligned
with the global axes.
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5.2 Geometric Transformation

The direction cosines of the material axes are calculated as direction cosines with respect
to a set of global coordinates and stored as column vectors in the matrix X. If the axes
of the material are aligned with the global axes, this matrix is the unit matrix. A user
provided transformation matrix may be defined for materials whose axes have a fixed
orientation with respect to a set of reference axes, which may be the global axes or an
orthogonal set of axes aligned with respect to the parametric parameters. This option
was intended to accommodate materials that are deformed to follow an irregular shape.

The choices are distinguished by setting the following flags for each material:

IUVWAX(IMATL) = 0 use the global axes as reference axes
I use the derivatives of the parametric parameters

with respect to the global axes to define a set
of reference axes

IOPMTR(IMATL) = 0 do not use the OPMATR matrix to define the material
axes with respect to the reference axes

= I use the OPMATR matrix

Let D, contain the direction cosines of the material axes with respect to the reference
axes stored as column vectors,

D=,1 [m in

where 1, m, n, are unit direction cosine vectors which define the direction of the three
material axes with respect to the reference axes.

If the global axes are used as the reference axes X is simply set equal to input material
axis direction cosine matrix OPMATR for material IMATL.

X = D,

Otherwise a set of orthogonal reference axes is computed as a function of the derivates
of the x, y, z coordinates with respect to the u, v, w geometric hyperpatch parametric
parameters. Then

X = DoDuw

34



where
D." , ,=[ V2 V3 ]

The vectors defined by partial derivative triples V, = (X", Y., Z.), V. = (X., Yv,
Zv), Vw = (Xw,, Y,,, Zw) are not orthogonal except in special cases where the geometry
has curvilinear orthogonality. An orthogonal set of direction cosines is computed by
taking cross products of partial derivative triples and normalizing the results to unit
vectors. In general only the direction of one of the vectors remains unaltered and can be
used as reference. By an arbitrary decision, the following convention has been adopted
for defining the a reference axis system (VI, V2, V3) based on the parametric partial
derivatives is computed as follows:

If IVOPT = 1 (Parameter u held constant)

V2 = IV

V, - (V.x v)IV x V.

V3 = (VI X V2)/I V XV21

If IVOPT = 2 (Parameter v held constant)

V, = vu/IV.I

V2 = (v X V)/Iv X VU
V3 = (VI X V2)/IVI X V2I

If IVOPT = 3 (Parameter w held constant)

V, = vU/tV.l

V3 = (V X V.)!IVU X V.
V2 = (v 3 X IV i VI

where the program variable IVOPT is set as a function of the incident face.

5.3 Stress Birefringence

When a stress is applied to a material, the index ellipsoid is modified, and the changes in
the components of the dielectric tensor are linearly related to the six stress components.
[31fp. 703-7041
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On applying stress, the index ellipsoid is changed into another whose equation is

a,,x 2 + a,,y2 + a,,z 2 + 2azyxy + 2azyz + 2a,,xz = 1.

The coefficients of the ellipse are defined by

{A} = {Ao} + lq]{c}

where
azz I~/n' rz

a., o'vy

{A} {Ao} = 1/flu and z

aZ 0 "VZ
a zz k 0 j r.,

The first term contains the orthotropic indices and associated thermal coefficients. The
second term contains stress-related terms where {a} is the stress tensor and [q] is a set
of 36 stress-optical coefficients.

Although all the stress-optic coefficients may have unique nonzero values, symmetry
considerations for crystalline or isotropic materials prescribe relationships among the
coefficients and reduce the number of independent values that must be specified. For
cubic crystals, the three principal axes (x, y, z) are equivalent, and consequently the
following relations hold among the stress-optics coefficients:

q1 -= q22 =q33

q12 = q2 1 =q 23 =q 32 =q 1 3=q 31

q44 = q55 = q66

with all the remaining coefficients being zero.

For isotropic materials, the above relations must remain unaltered for any change of
axes. This is only possible if the stress-optical coefficients satisfy the additional relation

2q44 = ql1 - q12.

If the global coordinate system is different from that of the dielectric material, the
stresses must first be converted to the material coordinates. Then the resulting dielectric
tensor must be transformed back into the global coordinate system. If {}' denotes
material coordinates and {a} global coordinates, then

= [SP}
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where (sI is the coordinate transformation matrix. In material coordinates,

{A} ' {A,}' + [q'{a}'

which may be written in reference coordinates as

{A} = [s]-t{Aoy + [s]-'[qj'[sj{o}.

The matrix [s]-'[q]'[s] is not a function of stress and in many cases is not a function of
location, and therefore can be precomputed.

5.4 Tensor Rotation Transformation

Given a point expressed in (x, y, z) global coordinates, we find the corresponding repre-
sentation in (t, m, n) coordinates. Let 1, m, n be the unit direction of the material axes
in (x, y, z) global coordinates. Then

t_ m, na,1
(tm n) (x y z) 4V mY n.

t m, n, .

The reverse transformation is

( y z m n m, m .
n, it nz

The coordinate transformation matrix Is] is given by

12 t2 t2 2t,t 2tl 24,t,22

M2 m m2 2mzm, 2mm, 2mm,
[s, n! n 2 n2 2nn, 2nn, 2nn,[1 4m 1 4mt 'mz (4m, + m24y) (4tm. + m,t) (ISMS + t4m)

mn mitn. m.n, (mznyt + nm.t) (mitn, + nz.) (mn. + ren,)
4n_ t. tn, (t.n, + nzt) (ln,. + n,4) (4nz + tznz)
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5.5 Principal Axes of Projected Ellipse

Given an ellipsoid A in the (x, y, z) coordinate system and an axis of projection given
by the unit vector (u, v, w). Then

ux + vy + wz = 0

is the equation of a plane through the origin and perpendicular to the projection axis.
The intersection of this plane with the ellipsoid is an ellipse. We want to find the major
and minor axes of this ellipse.

We find the lengths of the axes by finding the extrema of r 2 = x 2 + y2 + z2 subject
to the constraints that the extrema lies on the plane and the ellipsoid.

By using Lagrange's method of undetermined multipliers (A1 and A2), we define the
following:

h(x,y,z) = x2 + Y2 + Z2 + Alh(x, y, z) + A2h 2 (X, y, z)

where

h1(x,y, z) = a..x 2 + ay 2 + a,,z 2 + 2a,,xy + 2a,yz + 2azxz - 1

h2 (x,y,z) = ux + vy + wz.

Then setting the partial derivatives of h(x, y, z) = 0 gives

T-'X 2x + 2A1 lax + azpy + ayz] + A2 U = 0
ah

= 2y + 2A1 laYy + ayvx + ayz] + A2v = 0
ah

= 2z + 2A1 [a,,z + az,z + a%,y1 + A2 w = 0.

Then we may obtain
ah h h

x + y-- + z-Tz = 2r2+ 2A, = 0

and ah ah O
Us + vT + w- = 2A, [uaz + va,~ + wa.1 + A2 =0ax Y az

where

a, = azx + a,,y + a,,z

a. = azyx + a,,,y + azz

a, = azx + a,,y + azz.
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Then

S 2x - 2r2 a. + 2r2 u ua, + vay + waI 0
Oh=2

2y - 2ra + 2r2 v [ua, + va+wa=0

Oh_Oz 2z - 2r 2a, + 2r 2w [ua, + va, + waI = 0.

Factoring gives the following system of homogeneous equations.

x[r - 2 _ a, + uau] + y[-a,, + ua.] + z[-a.. + ua.1  = 0
z[-a, + vaul + y[r -2 - a., + vav] + z[-a,. + va,] = 0

X[-az, + waul + y(-a.,, + wa0J + zfr - a,, + wa,] = 0

where

au = a,,u + a,,v + a,,w

a = = a,,u + ayv + a,,w

a, = a,,u + azv + azzW.

The determinant of coefficients of this set of three homogeneous equations must vanish
for there to be a nontrivial solution for x, y, and z. Using this requirement gives

Ir-2 - a., + ua1  [-a,, + ual [-a,, + uaI
[-a,,, + vau1  r-2 - a., + vav] [-a,,, + vawl = 0
[-a,, + wa 1 J I-a,, + wavJ [r-2 - a,, + waj

Expanding the determinant gives

ar4 + br2 + 1 = 0

where
a = (a, - a2 ) - (as - a4 )

a, = azavy + a,,a,, + a,,a,,
S 2 " 2

a2 = a!, + ay, +
as = az.(va, + waw~) + ayy,(ua 1 + wa,) + a,, (ua 1 + va11)

a4 = a,,,(vawL + wa 1) + a,,,(va 1 + uav) + a,,(tsa, + wa11),

and
b = uau + va, + wa, - a,, - ayy - a,,.

This equation is a simple quadratic in r2. The solutions are the major and minor axes.
The system of homogeneous equations can then be solved for the direction of the respec-
tive principal axes.
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Section 6

Optical Waves in Anisotropic Materials

Transparent materials may be optically anisotropic due to intrinsic crystal properties
or as a result of mechanical stresses. In either case, the index of refraction becomes a
function of direction within the material and can be described by the equation of an

ellipsoid. An anisotropic material permits two monochromatic plane waves with two
different polarizations and two different velocities to propagate in any given direction.

The directions of the two displacement field vectors D corresponding to a given direction
of propagation k are perpendicular to each other. The phenomonon of wave propagation

in an anisotropic material is called birefringence or double refraction.

6.1 Light Propagation in Anisotropic Materials

As discussed in the previous section, the equation for the index ellipsoid with respect to
the principal axes of the material (x, y, z) is given by

x 2 + y2  z 2

W2 2 + 2

After rotating the coordinate system, this ellipsoid is changed into another whose equa-
tion is

ax 2 + a,,y 2 + azzZ 2 + 2a2 vxy + 2a,.yz + 2a..xz = 1.

In a birefringent medium two orthogonal polarized waves may be propagated in a
given direction. Let a set of principal axes (x, y, z) be defined, with the direction of
propagation in the z-direction, the allowed polarization directions along the x and y axes,
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D''D

Figure 6.1: Construction of the D vectors belonging to a wave normal k I1.

and the associated indices of refraction be given by n. and n,. The Jones matrix for the
propagating wave is then

- rjn d/ ' 0

0 0 e-2rin , /A /

where d is the distance propagated. This relationship may be factored by defining

flz + fly
n n,-- n

2

6 n. n.
2

The optical path b along the ray is given by

6 = nd

and the Jones matrix is now given by

= ( ee r2d/ ) J"
which may be expressed as the Mueller matrix of a linear retarder.

As shown in Figure 6.1, the intersection of the dielectric ellipsoid with a plane through
the origin and perpendicular to the direction of wave propagation k defines an ellipse
whose major and minor axes determine the direction of the displacement field vectors d
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and the associated indices of refraction for the two orthogonal polarized waves propagat-
ing in the direction k. The vector d is a unit vector in the direction of the displacement
D.

Wavefront propagation is governed by the triplet of unit vectors (d, h, k) such that

k=dxh

Rays in a birfringent medium do not propagate in the same direction as the wavefront.
Ray propagation is determined by the Poynting vector S given by

S=ExH

The direction of ray propagation and polarization is represented by the triplet of unit
vectors (e, h, s) such that

s=exh

The electric field E is related to the displacement field D by the dielectric tensor.

D=E

The index ellipsoid is an equivalent representation of the dielectric tensor that relates
the electric and displacement fields as follows:

E = a, a,  D (6.1)
E. a., ay, a., D]

The indices of refraction may be graphed on a polar plot as a function of the direction
of wave propagation. This defines a two-sheeted surface called the normal surface. Where
the sheets intersect, the two orthogonal polarized waves have the same index of refraction.
These directions are called the optic axes of the medium.

A material is classified as isotropic if the three principal indices of refraction are
equal, as uniaxial if two of the three principal indices are equal, and as biaxial if none
of the principal indices are the same. Table 6.1 lists typical refractive indices of some
crystals.

The wave normal surface for an isotropic material is a sphere, since the index of
refraction does not vary with direction. For a uniaxial material, the normal surface
consists of a sphere and an ellipsoid of revolution. If n., = ny then these two sheets touch
at two points on the z-axis because both wavefronts propagate along the z-axis with the
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Table 6.1: Typical refractive indices of some crystals [3] .

Crystal Refractive Indices
isotropic Fluorite 1.392

Sodium chloride, NaCI 1.544
Diamond, C 2.417
CdTe 2.69
GaAs 3.40

no,

Uniaxial Ice, H20 1.309 1.310
(Positive) Quartz, SiO 2  1.544 1.553

Beryllium oxide, BeO 1.717 1.732
Zircon, ZrSiO4  1.923 1.968
ZnS 2.354 2.358
Rutile, TiO2  2.616 2.903

Uniaxial ADP, (NH,)HP04  1.522 1.478
(Negative) Beryl, Be3Al,(SiO,) 6  1.598 1.590

KDP, KH2 PO 4  1.507 1.467
Sodium nitrate, NaNO, 1.587 1.366
Calcite, CaCO, 1.658 1.486
Tourmaline 1.638 1.618
Sapphire. A1203  1.768 1.760
Lithium niobate LiNbO, 2.300 2.208
Barium titanate, BaTiO, 2.416 2.364
Proustite, Ag3AsS, 3.019 2.739

n' n' n:

Biaxial Gypsum 1.520 1.523 1.530
Feldspar 1.522 1.526 1.530
Mica 1.552 1.582 1.588
Topaz 1.619 1.620 1.627
Sodium nitrite 1.344 1.411 1.651
YAIO) 1.923 1.938 1.947
SbSI 2.7 3.2 3.8
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Figure 6.2: Intersection of the normal surface with xz plane for (a) biaxial crystals, (b)
positive uniaxial crystals, and (c) negative uniaxial crystals [31.
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le-Wave A/0

f -Wave

Figure 6.3: Orientation of rays and waves in a uniaxial crystal [2].
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same index of refraction. This direction is called the optic axis of the material. A biaxial
material has two separate optic axes coplanar with longest and shortest principal axes.
Figure 6.2 shows cross-sections of the normal surface for biaxial and uniaxial crystals.

Figure 6.3 shows Huygens wavelets for two modes of propagation in an anisotropic
crystal. Huygens wavelets for which the index of refraction is independent of direction are
spherical wavefronts, and the associated rays are called ordinary waves. The direction
of wavefront propagation and the direction of energy transfer (ray direction) are the
same. Wavelets for which the index of refraction varies with direction are ellipsoidal
wavefronts, and the associated waves are called extraordinary waves. The direction of
ray propagation is different from that of wavefront propagation. The envelope of all
wavelets in both cases is a plane wave propagating horizontally to the right.

Given the direction of wave propagation k and the refractive index ellipsoid A, we
can calculate dj, ni, d2 , and n2 for the principal polarization states, as shown in Section
5. If n1 = n 2 there is no unique choice of principal directions, and we may arbitarily
select the principal polarization states.

For each polarization mode, we calculate h = k x d and the electric field. Then using

the directions of the electric and magnetic fields, we can calculate the ray direction s
from

s=exh

The ray index of refraction n, is obtained from the wave index of refraction by

n, = nk " s

For a wavefront propagating normal to a plane-parallel slab of material of thickness d,
as shown in Figure 6.4, the optical path 6 is given by

b = nd

If the ray direction makes an angle a wittl the wave direction, the distance traveled by
the ray in the material is d/ cos a and the index is n cos a, so that the calculated optical

path is the same whether calculated for the wavefront or the ray.

Figure 6.5 is an illustration of the propagation of light through a calcite crystal. If
we send a narrow beam of normal (unpolarized) light into a calcite crystal, it will split

into two beams. Rotating the crystal causes one of the rays to remain stationary and
the other to move in a circle about it, following the motion of the crystal. The fixed
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Figure 6.4: Optical path for rays and wavefronts.
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Figure 6.5: A light beam with two orthogonal field components traversing a calcite
principal section (21.
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Figure 6.6: Double refraction at the boundary of an anisotropic material.

ray, which follows the usual rules of refraction, is the ordinary ray. The moving ray, not
following the usual rules, is the extraordinary ray.

In the discussion so far, the incident wavefront has been normal to the crystal surface,
so that the direction of refraction was also normal to the crystal surface. In general.
however, rays will be incident at an oblique angle to a dielectric boundary surface.

6.2 Double Refraction

Consider an unpolarized plane wave incident on the surface of an anisotropic material.
The refracted wave, in general, is a mixture of two propagation modes. The conditions
for refraction, established by the application of Fermat's Principle, required that the
refracted wavefront lie in the plane of incidence established by the incident propagation
vector and the surface normal and that Snell's Law is satisfied,

n sin 0 = nj sin 01 = n2 sin 02

For an extraordinary ray, the index of refraction is a function of the angle of incidence,
leading to the following transcendental equation

nsin0 = n,(0,) sin 0,

which must be solved for 0,. The solution can be obtained graphically as shown in
Figure 6.6. The wavefront optical cosines are vectors whose magnitude is the index of
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Figure 6.7: Ordinary reflection at the boundary of an anisotropic material.

refraction. The wavefront normal surface traces the index of refraction as a function
of angle of incidence for the two possible propagation modes. The projection of the
wavefront propagation vector onto the boundary is equal to n sin 0. This projection must
be the same for the incident and refracted rays to satisfy Snell's Law. The refracted waves
may be found by extending a vertical line from the incident wavefront propagtion vector
through the normal surface. The intersection points with the normal surface represent
the two refracted waves.

If a polarized wave propagating within an anisotropic material is incident at an exit
surface, part of the wave will be reflected at the surface. For an ordinary wave, shown
in Figure 6.7, the angle of reflection will be equal to the angle of incidence. For an
extraordinary wave, shown in Figure 6.8, the angle of reflection is not equal to the angle
of incidence because the index of refraction is different for the reflected wave.

In examining Figures 6.7 and 6.8, we observe that there are two possible solutions
for the reflected wave. Only one solution is reported for each situation. The polarization
modes for this geometry turn out to be uncoupled. The ordinary wave reflects only as
an ordinary wave, and the extraordinary incident wave reflects only as an extraordinary
wave. This situation is shown in Figure 6.9. The short rays denote the Poynting vector
and the longer waves the wave propagation vector. The p-polarization case corresponds
to the extraordinary wave. The associated wave normal surfaces are shown for each
polarization mode.

In general, at the boundary between two different anisotropic materials, there are
two possible reflected waves and two refracted waves for a polarized incident wave. The
energy carried by the incident wave is divided among the four possible output waves.

48



kI I
9 I

I I

Figure 6.8: Extraordinary reflection at the boundary of an anisotropic material.

The distribution of energy is determined by using the boundary conditions imposed by
Maxwell's equations on the transverse components of the electric and magnetic fields.
This distribution will be discussed in the next section.

6.3 Reflection and Refraction Coefficients

Let s, be the unit Poynting vector of the incident ray, e, the electric field vector, and h,
the magnetic field vector, such that

s, = e. x h,

Let z be the normal to the surface, with orthogonal vectors x and y lying in the plane
of the surface. There will be two reflected beams, s. and s, and two refracted beams Sb
and Sd. At the boundary, the transverse components of electric and magnetic fields are
continuous.

These boundary conditions are:

Eoe. • x + E~e, • x - Ecec • x = Ebeb • x + Eded x

Eoeo • y + E~e. • y + E!ec • y = Ebeb y + Eded y

noEoh• x + nEoho . x + nEh• x = nbEbhb x + ndEdhd X

noE oh o  Y + naEaha • y + nEch• y = nbEbhb • y + ndEdhd•y
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Figure 6.9: Refraction and reflection at boundary between two anisotropic materials.
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--e "x eb "X -ec "X ed "X EW [ eo x
-ea y eb •y -ec•y ed • Y Eb = eo •y Eo

-nahz• x nbhb x -nch •x ndhd• X Ec noho x
-noh •y nbhb y -nh, •y ndhd Y Ed noho • y

Let x be perpendicular to the plane of incidence, then

X = soX Z

y = zxx

If the Poynting vector is parallel to the surface normal (normal incidence), no plane of
incidence is defined. The choice of x is then arbitrary. We typically let x = eo.

The following amplitude reflection/transmission coefficients may be Aained

tm = EmEo

where rn is one of the four reflecting or refracting rays (a, b, c, d). Energy reflec-
t ion/ transmission coefficients are obtained from

Tm= I sm "z it.I
noso • z

6.3.1 Reflection and Refraction in Isotropic Media

The equations for reflection and refraction at the boundary between two isotropic ma-
terials define the Fresnel coefficients. In this section we show how they may be derived
from the general expressions given above.

S-Polarization

For an incident ray polarized perpendicular to the plane of incidence (s-polarization),
eo = x and

-1 1 0 0 Ea 1
0 0 Cos6 Cos0' Eb 00 0 no - n. E, 0 E

no cos 0 n, cos 0' 0 0 Ed no cos O
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from which we obtain E, Ed = 0 andI_ E, E,1
no cos 0 n, cos 0' Eb no cos 0 E

These equations can be solved for the reflection and transmission amplitude coefficients

2n, cos 0n0 css  n os8
no cos 0 - n' cos8'
no cOS 0- n, cos8

noCos + n., Cos

P-Polarization

For an incident ray polarized parallel to the plane of incidence (p-polarization), eo So xX
and

o I 1 0 0 Ea 0 
0 0 Cos 0 Cos ' Eb C_ 0cosO E°

0 0 no -n E -no

no cos 0 n, cos 0' 0 0 Ed 0

from which we obtain E. = Eb = 0 and

[Cos8 Cos0'][E,] [Cos ][cno -~O ][E]=[ sO]
n ,  Ed -noI

These equations can be solved for the reflection and transmission amplitude coefficients

Ed 2n, cos O
S Eo ncosO+noCos80

E__ n, cos O - no cos 0'

Eo- n, cos O + no Cos 8'

Normal incidence

For isotropic media at normal incidence, there is no plane of incidence defined. We can
then choose x = eo. Then the equations simplify to

Eo + E. = Eh

noE,, -- noEa = nEb
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from which we can find the transmission and reflection amplitude coefficients

Eb -2n,
E, n, + n,

E. n, - n,

E. n., + n,
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