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ABSTRACT - manipulatability and dexterity. The
2 development of the technology neceasary
The Arti:ulat:d {ot:l Body (ATB) m:d:l is to achieve the level of fine task
a 1c:mp:1er : mulat :" rproa::m whtc "a; performance required in aerospace
Ao; ginally bevedope 1 °rd 1e 3 ud:io operations involves an wunderstanding of
: rcr:: hmem e; {nam ?: u;hgf eJ:cl :: the three-dimensional kinematics and
trgmll gt;speedia rc:a i 4 i. zoqed ’ dynamics of robotic asystems and of the
t: a yl i;eeEOdmensdona ia: o: ane 1°2 control techniques for accurately
- :te : gwhi h x‘ Ey;a:':. equ t:2:2 ef manipulating these devices, At the
aye ms ¢ he tu.er s qua 80 Armstrong Aerospace Medical Research

motion with constraint relations of the
type employed in the Lagrange method. 1In
this paper the use of the ATB model as a

Laboratory, Wright-Patterson Air Force
Base, the Articulated Total Body (ATB)
model has been succeasfully used in the

;zszzsse:yn::;csvarrizrla::SSIat:z:i a:: investigation of manikin and human body
: LY : L . "
demonstrated. For this purpose the ATB dynamics. In view of the model's dvnamic

aimulation capability and the
similarities between robotic arms and the
human arm, an attempt has been made in
this study to add an active driving

model has been modified to allow for the
application of torques at the joints as
functions of state variables of the
system, Specifically, the motion of a

materialas, These tasks require extreme

dynamics, allowing a svstem to Dbe
described as a set of rigid segments,
coupled at Joints which allow the
application of torques as functiona of
Joint orfientations and rate of change of -
orientations, A typical 1initial bodyv q

.
RO

'

feature to the - ATB model's pasasive |
robotic arm with ax revolute response capabilities in order to use {t !
articulations with joint torques {
prescribed an functions of angular as a d’"aﬂic’ and  feedback control ¢
displacement and angular velocity are simulation tool. .
demonstrated. The simulation procedures 1
developed in this work may serve asa DESCRIPTION OF THE ATB MODEL l,A
valuable tools for analyzin robotic
mechanisms dynamic efrect: goint load The ATB model was originally developed as
tran!ml;ﬂi;ni feed-baci control the Crash Viectim Simulator (CVS) model |
!lso;leQH ‘;mployed in the actuator for the National Highway Traffic Safety t.
control and end-effector trajectories. Administration (NHTSA) by Calapan !’»
Corporation in the early 1970's to z;
- predictively simulate occupant motion '
INTRODUCTION R during automobile crashes (Ref., 1). It IAL
- was subsequently modified to address Air i
Work in the ae;ospace environment Force requirements and renamed the ATB S
presents special pPoblems which can be model (Refs 2-5) It has been used tx,
handled remotely by the use of automation e y ’ : Lo
techniques and robpts. During aerospace extensively to studv human and manikin i ﬁ
operations, robot -‘ayms and handa can be body dynamics in aireraft ejections, g |
controlled by a distant operator through ::;:TObi;: hggizzis ?zg r91i:::::am a:i ﬂ'}
exoskeletal devices to perform tasks such (Refs -6-8§ ce ents: .yj
as repairing failed equipment, rescueing o ’ . jy
astronauts and handling hazardous The ATB model 1s based on rigid body L{
.
t,
}

.
Visiting Scientist on intergovernmental
personnel aasignment from the University
of Missouri-Rolla,
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configuration for a human or manikin
simulation is shown in Figure 1. External
forces are applied to the =segments
through interaction with other segments,
contact planea used to describe the seat,
floor, control panel, ete., belt
restraint systems, pressure fields such
as those due to wind forcesa, and gravity,
Each segment has a surface approximated
bv an ellipscid which is used to define a

contact surface, application polnta for
external forces and a reference for
calculation of the contact forces. Motion
constraints can also be placed on or

between the segments,

FIGURE 1. INITIAL BODY CONFIGURATION
FOR HUMAN OR MANIKIN ATB SIMULATION

Many complex dynamic asystems that can be
described {in terms of multiple rigid
bodies can be modeled with the ATB model
because of {ta generality and

flexibility,
of the geometrical,
properties of the
characteriatics;

environment, such

An input data set consisting
inertial and mater{ial
segments; the joint
definition of the
as contact planes,
belts, wind forces and gravity; and time
historiea of known motions defines a
specific aimulation for the model.

The
optiona
hiatory

ATB model provides a wide variety of
for output, including the time
data for the motion of all
segmenta, transferred joint forces and
torques, and external f{nteractive forceas.
Also the associated VIEW graphics program
providea three-dimenafonal projected
imagen of the avstem as shown in Figure 1
for the human body (Ref., 9).

404

JOINT ACTUATORS S

The above described features make the- ATBﬁ-
model an 1deal tool for modeling thoj
dynamics of robotic systems,’ Howevor,‘lnﬁ
the ATB model, which was originnlly'
designed to predict passive responae,. thc:
system of rigid bodies reacted " to’
external forces cauqed by the prescribed
environment, To "simulate robotio
svstems, an active driving capability had
to be added to the model.

syatems have actuatora such
driving each Jjoint articulation.i
actuators typically apply a torque’: )’
to the joint that drives the Joint to-
specific position or through lﬁ
trajectory. The torques are adjusted: by;
the feedback algorithms of the sysatem, i
The active driving components of robotiofj'
aystems are such actuators., Therefores.
the capability to model actuator reaponnm
was
element.

Robotic
motors
These

The most common state variables used int
feedback control are the joint position»
and velocity. The model uses thesx
positions and velocities of the system of
segments to calculate all the forces and:in
torques on each segment at each.
integration time step. These forces and
torques {include contact forces between:
segments and between segments and other!
surfaces or belts, aerodvnamic forces,’
gravity and Jjoint resistive torques.'ﬁg- v
Since the actuators need this asame v
information for the feedback algorithms,’
the actuator torque calculation was added
to this part of the program. The progrnn!ﬂ'
has been set up to feed back Joint anglo’p
and velocity, enabling the use of" u
position, derivative and 1ntegr|1£%
control, At each time step in the"
all the state variables are known
be wused as feedback variables
actuators, Therefore variables
linear positions or forces may
used for feedback. :
actuator feedback calculation (s h‘
contained in a subroutine that the’ userxﬁi
can modify to model the feedback:$
algorithm required, Without modifving'qv
this subroutine, there is Still e
conaiderable flexibility in the feedback
provided by asimply by changing - the
feedback parameters in the program input
program {input,

The

ROBOT SIMULATION

test and demonstrate the use of the
ATB model as a robotic simulator, sn .§°
example robot with six articulations has
been =aimulated. The input  requirements’
for thia simulation are representative of "{;
those for any robotic simulator including .

To




spatial geometry, inertial properties and located at the segment center of mass.

Joint position control Information, The The joint locations and rotations axes
results of the simulations made of this orientations were measured and prescribed
robot demonatrate the ability of the ATB with respect to these 1local coordinate
. model to predict typlcal control system syatems, The robot is shown in its home
responses while taking 1into account the position and its articulations are
effects of {inertial properties and defined  as: walst yaw at Joint 1,
gravity on avstem responae, shoulder pitch at joint 2, elbow pitch at
Joint 3, forearm roll at joint 4, wriat
Simulation Specification pl:ch 6et Joint S5 and wrist roll at
Joint 6.

To simulate any system the ATB model

requires an input file describing that Each Joint was aasigned an actuator,
avystem and the surfaces that it mav which applied torques as functions of the
contact, The data describing the aystem Joint position wvariables, about the
consists of the mass, moments of inertia respective joint axes. The form of the
and geometry of each rigid 1link, the torque feedback algorithm for each

location and rotation axis orientation of actuator wused in the initial simulations

each articulating joint and ', the La:

characteristics of each actusator. The N

robot simulated is based on an American T = rz(e'eo) = r3(9) (n
Cimflex MR6500 Merlin robot and the

model's depiction ecf it s shown ({n Where: 6o = f1‘”'

Figure 2 with {ts six Jjoints labelled.
Mass and moment of inertia data were
estimated from the limited mass data and
geometric data avallable on the robot.

T is the Jjoint torque
applied by the actuator,

8 1Is the Jjoint angle,

For this simulation the planes and

ellipsoids associated with the segmenta

are used onlyv for graphical display. Ir 8 is the Joint target
contact by a robot segment with another angle,

object was to be simulated the .

geometrical elements could be wused to 8 is the joint angular
determine whether contact was occurring, velocity,

the <contact point on the segment and the
t 1is time, and

contact forces. All of the segment and
Joint data are prescribed in each of the
segments’ local coordinate systems, fi are input functions.

The input functions can have a variety of

8 - WRIST ROLL forms 1including a constant, polvnomial,

— 5 - WRIST PITCH tabular or combination., Simple functions
were chosen for these simulations to test
4 - FOREARM ROLL the program, The functions used were:
3 ~ ELBOW PITCH 00 = a
r"—'%--z-snouumn PITCH fo(x) = bx
]
f_(x) = cx
The constants a, b and ¢ used for each
- joint were varied to demonstrate
) different system responses,

~—1 -~ WAIST YAW
The robot motion for a simulation in
which all the joints were driven to
different angles is shown in Figure 3.
The graphics program allows the simulated
syatem to be displayed at any time step

FV "\\;\\ Results

and from any viewing angle. The
sfmulation also provides time hiatory
data on the segment positions and

______ - = orfentations, the joint orientations and
torques, and the actuator torques, Figure

FIGURE 2. ROBOT ARM WITH SIX JOINTS 4 contains plots of all of the joint
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FIGURE 3. SIMULATED ROBOT MOTION

angles for the above aimulation. These
plots demonatrate several important
characteristics of a dynamic simulation,.
The wrist pitch target angle was zero
degrees, but the wrist does pitch
slightly during the firat 400 msec. due
to the motion of the other joints, The ’
shoulder pitch levels off at an angle inertial effects of the asystem, The
alightly 1less than its 45 degrees target forearm roll i{is eapecially affected by
angle and the elbow pitch levels off at the large motions of the wrist.

an angle alightly more than {ts 90
degreea target angle due to the torque
required at each of these Jjoints to

the other actuators were driven to zero
The Teedback parameters for the wriatsy::
roll actuator were varied to obtain the:’
different wrist roll responses 'seen 'in
the plots, The differences in the other
Joints' motions again demonstrate the

DISCUSSION

In this studv, we have demonstrated that'"

compensate for the weight of the arm. It ‘g‘;

fs also 1likely that the shape of the the ATB model, with the active drlving.“lﬁﬁéﬁ
forearm roll plot is affected by the capability of the actuator modifications, ‘f”‘}q
wrist roll., : can be wused as a rodbotic dyvnamics. 3}$q

13
simulation tool. It is intrinsic to the .,
ATB program to account for the dyvnamic '

)

Figure 5 contains lots from four :

slﬁulatlons in uhichp the wrist roll characteristics (or inertial effects) off ‘4}3“

actuator was driven to 90 degrees and all the arm, as exhibited by the tim'-.y§5ﬂ
histories of the varfous joint motion in ' | ¥/ 'l
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FIGURE 4. JOINT ANGLE RESPONSES
the robotic arm simulation (Figures 4 and Future work with the ATB model, could
5). Although the segment vaw, pitch and allow investigations of integral control,
roll angles are kinematic quantities, a control algorithms which couple the
pure kinematic simulation would not motiona of several joints, force control,
predict the respaonses demonstrated here and adaptive control. Because the model
due to {ts neglect of the (inertia calculates all the state variables needed

properties of the syvstem, Bringing out
the dynamic characteristics of the svstem
under simulation, has been proved to be
one of =several..strengths of the ATB
model, With its capability to incorporate

a variety of environmental forcex and
torques and {ts flexibility ¢to model
different system satructures, the model
has been established to be 3a versatile

tool for further
simulation methods.

development of robotic

for each of these control methods at each
time step, their dependence can easilyv be
incorporated into the feedback =ul:iroutine
developed in this study,

The next logical step in this work is a
validation of the model predictions, This
can be accomplished by exorciaing a robot
with the same structure, inertial
propertiea and feedback algorithms and

comparing its responses with those of the
model.
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