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ABSTRACT

This thesis describes research involving Quantitative Structure-Retention

Relationships (QSRR). This type of research utilizes applied mathematics,

multivariate statistics and computational techniques for determining models of

retention behavior.

The methodology discussed here is based upon the fact that there is a

relationship between a compound's molecular structure and its chromatographic

retention behavior. Linear models are created relating the observed retention data to

a set of descriptors which numerically encode structural information. The

regression models are statistically validated to ensure their credibility. Statistical

transformations, used to improve a model's predictability, are also discussed.

The first study generated regression equations modeling gas

chromatographic retention behavior of polychlorinated dibenzodioxins for

non-polar, moderately polar, and polar stationary phases. Extremely accurate

predictive models using topological, electronic, geometrical and atom-based

descriptors were validated and predictions made for the isomers where no

experimental data existed.

The second study involved the complete set of polychlorinated

dibenzofurans. Linear regression models were developed to relate retention

behavior on five chromatographic columns to a set of descriptors which encoded the

structural information. These high quality models were then used to predict

unknown retention data.

This thesis demonstrates the usefulness of computer assisted QSRR. The

techniques described here are valuable tools for predicting unknown retention data.
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Chapter 1

INTRODUCTION

Computer-aided research in the field of chemistry has been expanding

rapidly over the past few years. The ever-increasing capabilities of today's modem

computers are enormous. They are used not only for data storage but also for many

computationally intense procedures which were difficult if not impossible to

perform before computer assistance (1-4). Chemometrics is just one of the new

fields computers have opened up (5,6). This field uses statistics, computers and

applied mathematics to solve problems of a chemical nature as illustrated in Figure

1.1.

Quantitative structure-retention relationships (QSRR) are a part of

chemometics which has been the focus of much research (7). The following

chapters explain in detail the process of QSRR and discuss the results of two studies

in this area.

One of the most common problems in analytical chemistry has been the

separation and subsequent analysis of chemical mixtures containing volatile organic

compounds. Gas chromatography has proved to be an extremely effective method

for doing this. Chromatography is based upon the differential retention of one

compound as compared to another as they pass through a column containing a

stationary phase. The gas chromatographic stationary phase consists of a material

which is polar, non-polar, or perhaps some degree of polarity in between. The solute

to be separated and analyzed travels through the column in a solvent called the
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Figure 1.1 The study of chemometrics.
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mobile phase. In gas chromatography the mobile phase is called a carrier gas which

is usually helium. Th. ensuing interactions between the mobile phase, solute and

stationary phase are the reasons for the differential retention. While some of the

interactions are understood, a detailed understanding of these interactions has not

yet been developed.

Some of the most common retention interactions include dipole-dipole,

dipole-induced dipole, acid-base and dispersion forces. The nature of the

interactions is dependent on the structure of the mobile phase, stationary phase and

solute. If the mobile phase and stationary phase are held constant then a relationship

between the solute's structure and the column interactions can be developed.

Furthermore, a relationship between the solute's retention behavior on a

chromatographic column and the solute's structure must also be possible (8,9).

Finding which particular attributes of a compound's structure are important

in this relationship is the difficult task; however, once found, this information could

be of great use to the analytical chemist. Since differential retention is s means of

separating individual compounds from a mixture, a prediction of a solute's retention

behavior will be particularly useful when experimentally derived retention data is

not available as a standard for comparison. This can easily be the case if the

compounds to be studied are extremely toxic, regulated or costly to produce. QSRR

data would then be of great value to the chemist seeking to separate and

subsequently analyze a mixture.

The first study presented in this thesis models the retention behavior of the

75 polychlorinated dibenzodioxin (PCDD) isomers on five different stationary

phases. PCDD isomers are extremely toxic compounds (10). The stationary phases

varied in polarity from SP-2100 (non-polar) to SP-2330 (polar). The models
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obtained for all stationary phases were excellent. Additionally rigorous statistical

methods were employed, such as transformations, to obtain only the best models.

Outlier analysis was approached from two directions and the methods were

compared and contrasted.

The second study involved modeling the retention behavior of the 135

polychlorinated dibenzofuran (PCDF) isomers, which are also toxic (11), on five

different stationary phases of varying polarities. Again, excellent results were

obtained. Besides the normal statistical analysis, algebraic transformations were

used to solve the problems of non-constant variance of the residuals and

non-linearity of the regression model. All models maintained their statistical

strengths and were internally validated.

Both of these studies were made with homogenous data sets, i.e. similar

compounds. The only structural variable was the number of chlorines (one to eight)

and the positions of the chlorines on the dioxin or furan backbone. Most

homogenous data sets are easily modeled. These data sets are also closed which

means there are no more isomers belonging to the PCDDs or PCDFs. Regression

models were developed for the entire data set of PCDDs or PCDFs which produced

valuable predictions of retention behavior for anyone attempting to separate and

analyze these extremely toxic compounds.
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Chapter 2

METHODOLOGY

Analyzing multivariate data sets with statistical methods is not unique to

chemical problems (1-3). The data is usually broken down into a set of matrices

where each member of the data set can be represented by a number or group of

numbers which encode information about the member. This is true whether the

study involves sociology, meteorology or chemistry. The data set can then be

studied by relating the representative group of numbers, or independent variables, to

the desired outcome, or dependent variable. A widely used method to obtain a

relation is multiple linear regression. In structure-property relationships multiple

linear regression (MLR) is used to develop quantitative models relating a set of

descriptors, which numerically encode structural information, to a property such as a

boiling point (4), or a chromatographic retention index (5).

This chapter details the steps taken to develop models capable of predicting

retention data. Quantitative structure-retention relationship (QSRR) studies have

been the topic of much work (6,7). The methods used in these studies vary greatly,

and the methodology described here is not all inclusive.

OSRR Studies

In any separation scheme involving chromatography there are three

important factors which will determine a compound's retention time on a column:
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the mobile phase, the stationary phase, and the solute itself. The retention data

obtained can be characteristic of a compound thus allowing for the identification of

a single compound from a mixture of many compounds. In all QSRR studies

presented in this thesis the mobile phase and stationary phase were constant, and

therefore it was the difference between the solutes which was analyzed to determine

retention. The relationship sought was between the structure of the solutes moving

through a chromatographic column and the various retention times of those solutes

on the column. A common method in QSRR work involves three basic steps: 1)

Collecting of the data set with associated retention data and entry of the structures

and retention data into a computer database, 2) numerical encoding of the structural

information to generate descriptors which describe the compound's structure, and 3)

performing MLR to obtain a model which relates structure to retention while

mataining the model's validity as a predictive device. This method is known as

the parametric approach and is shown in Figure 2.1.

The Data Set

Generating a valid data set is crucial in QSRR studies. To start, a set of

compounds must have experimentally determined retention data. The retention data

is best if it is in the form of retention indexes (8) which can help to eliminate the

randomness of the experimental parameters by setting the value of the index relative

to a standard compound, usually an alkane. Of course retention indexes are not

always available so relative retention times may also be used. A relative retention

time (RRT) is the time a compound spends on a chromatographic column relative to

an arbitrarily set standard compound. The standard compound's time is usually set
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The Parametric Approach

CI C
C 0 Retention
aI o * a Values

Cl Cl

/ 
3-1) Model

Generate and Multiple Model Linear
Analyze Linear Validation Equations

Descriptors Regression

Figure 2.1 The parametric approach for QSRR studies.



9

to 1.000 minute so any unknown eluting prior to the standard receives an RRT of

less than 1.000 minute and any compound eluting after the standard receives a value

of more than 1.000 minute.

Data sets can also be relatively diverse in nature. They can consist of

compounds containing a wide array of functional groups, various degrees of

saturation, and many different atom types. On the other hand, they can be very

homogenous such as the PCDDs and PCDFs reported in this thesis. Homogeneous

data sets have some advantages. They may be closed, which infers that there is a

specific number of compounds belonging to the data set. For example, there are

exactly 75 PCDDs and 135 PCDFs. Homogeneous sets contain similar compounds

which make structure entry relatively simple. Literature is usually available which

contains some experimental retention data; however, not all the data for all isomers

of a closed data set are available. Hence the need for QSRR studies.

The experimental data is best if obtained from a single laboratory. This

eliminates error between laboratories. Experimental parameters such as column

type, column length, temperature program and carrier gas should be reported to

make the experiment reproducible. Finally the associated experimental error, if

available, is important since the experimental error should never exceed the

statistical error in the models. This phenomenon is termed "overfitting" and it

interferes with the credibility of the regression models.

Data Set Entry

The data set must be entered into the computer. The structures were entered

into a Sun 4/110 workstation via a graphics terminal. The graphics terminal permits
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the formation of a two-dimensional representation of the compounds. The

compounds were stored as a series of bond types (single, double, aromatic, etc.),

atom types (C, 0, H, Cl) and atom connections in the form of a connection table.

The two-dimensional nature of the connection table limits its ability to

describe features such as bond angles, bond lengths, torsional angles and

non-bonded interactions. To obtain these features and generate descriptors encoding

information about the three dimensional structure, the compounds must be modeled.

To accomplish this, the compounds can be modeled classically using methods such

as MM2 by Allinger (9,10) or quantum mechanically with a modeling routine such

as MOPAC developed by Dewar, et al.(l1). Basically both methods create a

three-dimensional model of the structure which minimizes the associated strain

energy. The strain energy is altered by optimizing various factors such as the bond

lengths and bond angles until a potential minimum is located. The

three-dimensional model is then viewed graphically to determine if the modeled

structure is chemically correct or if perhaps only a local minimum was achieved

instead of the desired global minimum. The model can be moved out of a local

minimum and the strain re-minimized to the global minimum. It should be noted

that no program can do this minimization perfectly and the minimum reached may

not be the lowest strain energy possible.

Descriptor Generation

There are three basic classes of descriptors which numerically encode

information about the structure of the whole molecule. They are topological,

electronic and geometrical descriptors. There is another type of descriptor, but it
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only encodes information about a specific sector of a molecule. These are called

atom-based descriptors and until recently their primary use was for the prediction of

13C NMR chemical shifts (12,13). The following paragraphs characterize the

descriptors involved in each class, but descriptors selected for inclusion in specific

models will be discussed in greater detail in the appropriate chapter.

Topological Descriptors. These descriptors are calculated from the

connection table as discussed earlier. Each structure can be considered as a graph

containing a series of nodes and edges. An atom is a node and a bond is an edge.

The topological environment is encoded as path lengths, atom types, bond types and

others. Molecular connectivity indexes (14) and weighted paths (15) are just two

examples. Three-dimensional models are not necessary for the calculation of

topological descriptors.

Electronic Descriptors. There are many types of electronic descriptors

available. They span the range from Del Re sigma charges (16) through atomic

charges by Abraham and Smith (17,18) to extended Huickel (19,20) and CNDO (21)

calculations. These descriptors characterize a molecule's autopolarizabilities,

partial atomic charges, dipole moment, bonding energies and total energies. Many

of these descriptors can be important when describing the polar or non-polar

interactions between the solute and the stationary phase. For some descriptors, such

as those which rely on throughspace distance interactions, the molecule must be

three-dimensionally modeled using the methods discussed earlier.

Geometrical Descriptors. These descriptors numerically describe the

three-dimensional nature of a molecule. Again for this class of descriptors a three

dimensional model stored as x, y, and z coordinates is essential. Geometrical

descriptors include moments of inertia (22), surface area and volume (23-25), and
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charged partial surface areas (26). The reproducibility of these descriptors is greatly

increased if the compounds being studied are fairly rigid and do not possess many

low-energy conformations.

Atom-Based Descrfiiors. Although these descriptors were mainly developed

for 13C NMR spectral simulation, they have shown their worthiness in QSRR

studies as described in Chapters 3 and 4. Atom-based descriptors are able to

numerically encode structural information about a carbon's or a group of carbons'

local environment. The carbons of interest may be activated so descriptor

generating routines, which calculate topological, electronic and geometrical

descriptors, will generate these descriptors for the desired environment only. These

descriptors include total average charge (derived from Abraham and Smith) for all

heavy atoms one to five bonds away from the atom(s) of interest (18). A heavy

atom is any non-hydrogen atom. The variable of one to five bonds away allows the

generation of five separate descriptors. Others include heteroatom counts, and Van

der Waals throughspace distance interactions (27).

Descriptor Analysis and Model Generation

In QSRR studies over 200 descriptors can be calculated per compound when

atom-based descriptors are included. The problem becomes trying to determine a

pool of a few information-rich descriptors to submit to regression analysis and

model building techniques.

Descriptor Analysis. To find only the best descriptors to use in the study, the

descriptors are analyzed both separately and together (28). Separate analysis

attempts to delete from consideration all descriptors which have a high number of
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zero values (usually more than 50%), descriptors which have a high number of

identical values (again about 50%), or descriptors with low standard deviations.

These descriptors usually contain very little information or cannot be used to resolve

the variation in the retention data for the final models. Analyzing descriptors

together first eliminates pairwise correlations. As shown in Figure 2.2 columns 3

and 4, although not identical, are exactly correlated (i.e. column 3=2 X column 4).

There is redundant information present. Only one of these descriptors needs to be

retained. Any pairwise correlations of R>0.90 (R is the multiple correlation

coefficient) can usually be eliminated; however, a deleted descriptor can always be

switched into the final model to determine if any improvement can be realized.

Secondly, the possibility of some type of multicollinearity also exists.

Multicollinearities are determined in three ways. The first is regression of one

descriptor against all others, each in turn, to determine the multiple correlation

coefficient (MCC or R). An R >0.95 is usually the cutoff for determining excessive

multicollinearity (29).

The second method of multicollinearity detection depends upon the

condition index and the related variance decomposition proportions (30). The

condition index values can be any number between 1.0 and infinity. The higher the

number the greater the possibility of collinearity. Condition indexes are calculated

by adding a column of ones to the data matrix where the rows define the compounds

and the columns are the descriptors. Next calculate the singular values by taking the

square root of the eigenvalues of the correlation matrix. The condition index is then

the ratio of the largest singular value to the ith singular value. Belsey, Kuh and

Welsch determined a condition index of 30.0 or greater could mean a collinearity

problem exists. The variance decomposition proportion is the percentage of total
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DATA MATRIX

DESCRIPTORS

Compounds Desc I De 2 Dew 3 Dew 4 Dew 5

isomer 1 0.012 21.123 2.14 1.07 0.0124

isomer 2 0.054 38.124 8.72 4.36 0.0043

isomer 3 1.287 54.907 5.16 2.58 0.0000

isomer 4 0.564 43.990 2.98 1.49 0.0033

isomer 5 0.500 27.908 4.26 2.13 0.0203

isomer 6 0.400 13.034 1.02 0.51 0.0089

Figure 2.2 Analysis of descriptors.
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variance of regression coefficient associated with a particular singular value. For

any particular model a condition index greater than 30.0 together with two or more

variance decomposition proportions above 0.75 usually infers collinearity problems.

The third method of multicollinearity diagnostics is vector space descriptor

analysis (31). Descriptors containing information overlap can be screened out by

determining their orthogonality as compared to an initial basis vector. The basis

vector is usually the descriptor which is most highly pairwise correlated to the

dependent variable. The next descriptor selected will be the one that is most

orthogonal to the basis vector and the routine continues until all descriptors are

described by a plane angle and distance. Any descriptor which is orthogonal to

another will have no information overlap and therefore not correlated. In

n-dimensional space n descriptors can be orthogonalized. This process can whittle

the final pool of descriptors down to only a few.

Descriptor analysis can be a tedious process. With a pool of over 200

descriptors to start, the process of deleting descriptors can be lengthy. Care must be

taken not to submit more than about 25 descriptors at one time for regression

analysis, since this would increase the probability of chance correlations (32).

Regression Analysis. The method used for developing models in Chapters 3

and 4 was the linear least squares method (33). In the two studies undertaken

regression techniques using interactive regression analysis or forward stepwise

regression was chosen (29). Other methods include leaps and bounds (34) and

multiple linear regression analysis by progressive deletion (29). These methods are

able to generate many different models which all have the capability to fit the

retention data to a regression line. To determine the best models, equations are

analyzed with respect to the multiple correlation coefficient (R), the F-statistic (F),
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and partial F values for all descriptors. Also analyzed are the standard errors and

plots of calculated versus observed values and residual versus calculated values.

Another important aspect of model generation was the number of observations to the

number of descriptors ratio. If the data set of interest had only 40 experimental

observations from which to develop a model for retention behavior, it is obvious that

a model with 40 descriptors could perfectly describe the retention behavior. This is

not practical nor would the model produced have any predictive power. In order to

maintain statistical validity, an observation to descriptor ratio of at least five was

main ained. For example, a column with only 15 observations could have a model

with no more than three descriptors.

Non-linearity and Non-constant Variance. Generally multiple linear

regression analysis can be performed using the generated descriptors without

additional scaling or modifying of the dependent or independent variables.

Sometimes, however, non-linearity exists between an independent variable and

dependent variable. This is easily seen when a plot of the dependent variable versus

the independent variable or a plot of calculated values versus observed values is

made (Figure 2.3). If it is not readily seen in these plots, which could be the case for

a calculated versus observed plot, a residual plot may better illustrate the

non-linearity. A residual plot should have a normal distribution around the zero line

and display a typical random pattern while a residual plot stemming from a

non-linearity problem can look quite different (Figure 2.4). Solving this problem

can be accomplished in two ways: (1) transform the independent variable(s) (x-axis)

or (2) transform the dependent variable (y-axis). Transformation of the x-axis

should always be attempted first as long as the variance of the error terms is

generally constant. Transforming the y-axis could bring about the problem of
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(a) 6.760 Dependent Variable vs. Descriptor 143
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Figure 2.3 Non-linearity of the dependent variable vs. the independent
variable (a), and the calculated vs. observed plot (b).
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Figure 2.4 Standard residual plots showing normal distribution of error terms (a),
and non-linearity of the regression function (b).
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non-constant variance of the error terms (29). Transformations to use for typical

non-linearities are shown in Figure 2.5. If this does not solve the non-linearity

problem then transformation of the y-axis may be attempted; however, residual plots

must be examined to determine constancy of variance or the predictive power of the

model could be jeopardized. Once the dependent variable is transformed, it must be

transformed back to its original form to determine the predicted values for the

retention data or the values will be meaningless.

The problem of non-constant error variance is shown in Figure 2.6. Here a

transformation of the y-axis is needed, since it is the distribution of the dependent

variable which needs to be altered in some way. Different transformations can be

tried such as Yfi-log Y, YiY -5, or Y7rfY 2 where YT is the transformed dependent

variable; however, a general method could be YfYx where x=-2, -1.5, -1, -.5, .5,

1.5, 2, etc. This type of general procedure was developed by Box and Cox (35).

Sometimes a simple transformation of the dependent variable will solve both a

non-linear and non-constant variance problem simultaneously; however, plots of

calculated versus observed and residuals must be viewed to confirm the correctness

of the transformation. Solving non-linearity and non-constant variance adds to the

validity of the final model and usually increases the R value while decreasing the

standard error of the modeL

Outlier Detection

Outliers are observed values which do not fit the generated regression

equation well. These points can be graphically detected in most cases in calculated

vs. observed plots or residual plots; however, if the outliers fall on the regression
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Figure 2.5 Typical transformations of the independent variable or x-axis.
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(a) Calculated vs. Observed
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Figure 2.6 Graphical plots showing non-constant variance in
(a) the calculated vs. observed plot, and (b) the
residual plot.
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line at or near the minimum or maximum value of the x-axis, it may be exerting

undue pressure on the regression function to conform thereby giving misleading

results. This type of outlier may not be detected graphically. Discarding all outliers

does not necessarily add to the validity of the model but some form of quantitative

and qualitative outlier analysis should be conducted to determine the presence of

outliers. Outliers in these studies were determined in two ways: (1) using outlier

diagnostics such as leverage values, studentized residuals, DFFITS, Cook's distance,

and standardized residuals (29,30), and (2) from Rousseeuw's robust regression

analysis (RRA) (36,37).

Diagnostics. The quantitative outlier detection methods listed above are

calculated for each of the final models as described in Neter, Wasserman, and

Kutner. A limit for each type of test is set, and if the observation in question

exceeds the limits of three of these tests, the observation is flagged as an outlier.

Although not removed from consideration, it will be subjected to further qualitative

and quantitative study to determine possible reasons as to why it was flagged.

Robust Regression Analysis. Robust regression analysis uses a method of

least median squares which is not particularly sensitive to the presence of outliers.

If this method is compared to the results obtained from interactive regression

analysis, the regression coefficients should be nearly identical (or within one

standard deviation). If not, there may be outliers present which are affecting the

least mean sum of squares regression. RRA will perform the least median squares

and display the error in terms of the standard deviation. An observation which lies

2.5 or more standard deviations away from the mean will be flagged as an outlier.

In the end a re-weighted least squares is performed on all points not flagged as
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outliers (outliers are given a weight of zero). Again, any point flagged as an outlier

is examined in further detail.

Validating the Model

There are two basic methods of validating a regression model: internal or

external.

External Validation. External validation is an excellent method of

validation. To accomplish this, some of the original data should be set aside into a

prediction set. The remainder of the data is the training set and is used to generate

the regression equations. The splitting of the data is done randomly to prevent any

statistical bias. Most of the data will be in the training set so as to have the most

information available to regress upon. Once the final model has been obtained,

predictions are made to see how well the model predicts the retention behavior of

the prediction set. In a study with 100 observations, an appropriate training set to

prediction set ratio might be 9:1, but can vary according to the amount of data

available. One problem with external predictions is that small data sets cannot

easily be broken down. For example, a data set with 20 observations can only have

four descriptors in the final model in keeping with the minimum 5:1 observations/

descriptor ratio discussed earlier. If some observations are dedicated to a prediction

set, not only does the number of possible descriptors in the model decrease but the

structural information available from which to generate models also suffers.

Internal Validation. Internal validation in the form of jackknifing is not

dependent on the size of the data set and therefore is very suitable for small data

sets. In jackknifing, one observation is held out and the model is recalculated. The
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jackknifed estimate is the predicted value calculated with the new model for the

observation being held out. This has also been called the leave-one-out method

(38). This calculation is repeated until all observations, in turn, are left out and the

jackknifed estimates determined. A jackknifed residual is then the difference

between the jackknifed estimate and the experimental observation. Large

jackknifed residuals may show possible inconsistencies in the model.

ADAPT System

The ADAPT (Automated Data Analysis and Pattern recognition Toolkit)

software contains a series of automated programs which allow the analysis of a wide

range of data sets (39). It contains routines for structure entry, molecular modeling,

descriptor generation, descriptor analysis (including objective feature selection),

regression analysis and validation techniques. It has been proven in QSRR research

in the past (5) as well as quantitative structure-activity relationships (QSAR) (40),

QSPR (property) (41), and 13C NMR spectral simulation (12,13).

Adapt studies start the same way as outlined in this chapter. The data set is

entered into a Sun 4/110 workstation via a graphics terminal using the subroutine

UDRAW (42). The initial structure need only be two-dimensional. It is then stored

as a connection table. ADAPT can store up to 1000 structures/data set.

The next step, if required, is three-dimensional modeling which ADAPT can

also perform with a simple classical method (39) or can be done by more by more

rigorous methods (9-11).

The data is then assembled into a worklist containing a training set and a

prediction set if possible. Once this is completed, descriptor generation can follow.
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All four types of descriptors, topological, electronic, geometrical and atom-based,

can be calculated using ADAPT. The descriptors numerically encode information

about the structures in the worklist. ADAPT can store 200 descriptors but can

calculate well over 200 descriptors. In order to reduce the pool of descriptors to

only a few information-rich descriptors, ADAPT routines allow objective feature

selection. Pairwise correlations and multicollinearities can be determined as well as

vector space descriptor analysis. The remaining descriptors are then submitted to

regression analysis and model building.

ADAPT allows regression analysis by progressive deletion, leaps and bounds

and interactively. Calculated values and residuals can be plotted with graphical

plotting programs. Outlier detection, variance decomposition and jackknifing is

performed through ADAPT's data diagnostics generation (DDG) program. After the

final models are obtained, predictions of unknown values from the prediction set can

be made.
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Chapter 3

PREDICTION OF GAS CHROMATOGRAPHIC RETENTION

DATA FOR POLYCHLORINATED DIRBENZODIOXINS

Polychlorinated dibenzodioxins (PCDD) have been the subject of intense

study recently (1-3). Their toxicity is well known, and trace analysis of dioxins

continues to be performed by many different analytical techniques (4,5). Gas

chromatography (GC) is of great use in this area as wel as in the separation of

dioxin isomers (6). In gas chromatography, Kovits' retention index and relative

retention times are normally used for identifying the different isomers. Kovtts'

retention index is calculated using the equation 1 (7,8) where ID is the retention

log tD - log tN
ID= 100N + 100 (1)log tN... - log tN

index of isomer D, tD is the corrected retention time of isomer D, tN is the corrected

retention time of the n-alkane standard with a carbon number of N and tN+1 is the

alkane standard with a carbon number of N+1. Standard N elutes just prior to

isomer D.

Relative retention time for the dioxins is the retention time of the isomer in

question relative to 2,3,7,8-tetrachloro dibenzodioxin which is the most lethal

isomer (1). Some other PCDD studies used the natural abundance 13C

2,3,7,8-tetrachloro isomer as the standard (5,9). This time is reported in minutes.

The PCDDs are a closed data set, meaning there is a limited number of
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isomers possible. In this case there were only 75 isomers starting with the two

mono-substituted isomers and ending with the one octachloro isomer. These

isomers can have chlorines attached to carbons 1-4 and/or 6-9 as shown in Figure

3.1. The 75 different isomers are listed in Table 3.1.

The retention of a compound in a chromatographic column depends on the

interactions of the solute with the stationary phase. The extent of these interactions

is based upon the structural, chemical and electronic properties of the compound.

Compounds will usuilly display unique retention characteristics which will enable

separation of each specific compound to its time of retention on the

chromatographic column of interest. Retention behavior of PCDDs has been

reported for many different stationary phases (10-13).

Experimental Section

To start a QSRR study, a set of relative retention times and/or retention

indexes were needed for the dioxins. The data was available from a number of

different sources, and although a complete set of all 75 isomers was not available at

the time for any particular column type, some data were available for retention on

five different stationary phases. Specific column data cross referenced to each

compound is also shown in Table 3.1. Column parameters and references are shown

in Table 3.2. The exact retention times or retention indexes are also reported in the

appropriate reference. The experimental error associated with each column type

was not always available. The DB-5 column was taken to have an error of three to

seven retention index units from previous retention index work (8). If no error was

given it was assumed to be about 1% at the mean of the data points.
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Dibenzodioxin

0 
2

Figure 3.1 Structure of the dibenzodioxin backbone.
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Table 3.1 The 75 polychlorinated dibenzodioxin isomers and retention data.

Column and data type
DB-5 SE-54 OV-1701 SP-2330 SP-2100

Isomer RI RRT RRT RRT RRT

01 1-C 0.293
02 2-Cl 0.299
03 12-diC1
04 13-diCI
05 14-diCl
06 16-diCi
07 17-diCI
08 18-diCi
09 19-diC1
10 23-diCI 1993 0.433
11 27-diCI 1985 0.424
12 28-diC1 1985
13 123-trCl
14 124-trCl 2152 0.600
15 126-tr
16 127-trCI
17 128-trCl
18 129-trCl
19 136-trCl
20 137-trCl
21 138-trCI
22 139-trCl
23 146-trCl
24 147-trCl
25 178-trCl
26 237-trCl 0.651
27 1234-teCi 2379 1.010 0.980
28 1236-teCI 2378 1.020 0.975
29 1237-teCi 2382 1.011 0.985
30 1238-teC1 2382 1.011 0.985
31 1239-teC1 2392 1.068 1.010
32 1246-teC1 2346 1.005 0.910
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Table 3.1 (ConL)

Column and data type
DB-5 SE-54 OV-1701 SP-2330 SP-2100

Isomer RI RRT RRT RRT RRT
33 1247-teCI 2340 0.960 0.897
34 1248-teCi 2340 0.960 0.897
35 1249-teCI 2346 1.005 0.910
36 1267-teC 2408 1.100 1.040
37 1268-teC 2349 0.977 0.918
38 1269-teC 2378 1.077 0.972
39 1278-teCI 2400 1.054 1.030
40 1279-teCI 2364 1.021 0.951
41 1289-teC 2428 1.173 1.090
42 1368-tea 2290 1.075 1.052 0.876 0.813
43 1369-teC 2315 0.955 0.852
44 1378-teCI 2340 0.935 0.905
45 1379-teC 2304 1.082 1.063 0.906 0.833
46 1469-teC 2341 1.053 0.896
47 1478-teCi 2353 0.994 0.928
48 2378-teC 2386 1.125 1.106 1.000 1.000
49 12346-peCI
50 12347-peC 2573 1.540
51 12367-peCi 2604
52 12368-peC1 1.215 1.189
53 12369-peC1
54 12378-peCi 2587 1.253 1.229 1.630
55 12379-peCI 1.225 1.203
56 12389-peCI 2623
57 12467-peCi
58 12468-peCi 2501 1.192 1.170
59 12469-peCi
60 12478-peCi 1.220 1.196 1.460
61 12479-peCI 2501 1.192 1.170
62 12489-peCi
63 123467-heCi 2812
64 123468-heC1 2742
65 123469-heCl
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Table 3.1 (Cont.)

Column and data type

DB-5 SE-54 OV-1701 SP-2330 SP-2100
Isomer RI RRT RRT RRT RRT

66 123478-heC1 2781 1.411 1.370 2.540
67 123678-heC1 2788 1.409 1.363 2.650
68 123679-heCi 1.337 1.338 2.420
69 123689-heCi 1.337 1.338
70 123789-heCl 1.432 1.395 2.760
71 124679-heC1 2713 2.220
72 124689-heCl 2713
73 1234678-hpCl 2994 1.659 1.588 4.180
74 1234679-hpCl 2949 3.780
75 12346789-ocC1 3196 6.760

RI--Retention Index
RRT-Relative Retention Time
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Table 3.2 Column parameters.

Manufacturer(a)  J&W Supelco H-P Supelco H-P
Column Type(b) DB-5 SE-54 OV-1701 SP-2330 SP-2100
Column I.D.(ram) 0.25 0.3 0.3 0.25 0.2
Column Length (m) 60 25 20 60 50
Film Thickness (pm) 0.25 0.10 0.10 0.2 NA
Carrier Gas He He He H He
Data(c) RI RRT RRT RRf RRT
Temperature 170 (1 min) 60-260 60-260 100-180 @20/min 225

Program (0C) 170-340 @20/min 10/min 100/min 180-260 @5 0/min Const.
Reference (10) (11) (11) (12) (13)

a) Columns obtained from J&W Scientific, Supelco, or Hewlett Packard.
b) DB-5 is a methyl silicone column with 5% phenyl substitution.

SE-54 is similar to DB-5. It is being replaced by DB-5.
OV-1701 is 86% dimethyl polysiloxane and 14%cyanopropyl phenyl.
SP-2330 is 90% bis cyanopropyl and 10%cyanopropyl phenyl polysiloxane.
SP-2100 is 100% dimethyl polysiloxane.

c) RI=Retention Index calculated using equation 1.
RRT=Relative Retention Time which is relative to 2,3,7,8 tetrachloro dibenzodioxin

which = 1.000 rin. except for SE-54 and OV- 1701 which are relative to
5-chloro-2-(2,4-dichlorophenoxy)-anisole which =1.000 win. Absolute retention
times for the standard on SE-54 and OV-1701 is 18.14 min. and 17.54 min.
respectively.
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The QSRR study consisted of four stages as described in Chapter 2: 1)

Entry, modeling and storage of the structures as a series of x, y, and z coordinates

and the corresponding retention data; 2) generation of descriptors; 3) multiple linear

regression analysis; and 4) model validation techniques.

Entry. Storae and Molecular Modeling

The PCDD structures were entered into the ADAPT system using the

UDRAW subroutine as described in Chapter 2. The structures were first stored as a

connection table of atom types, bond types and bond connections. Three

dimensional models were generated using the classical molecular modeling routine

of ADAPT. Although this modeling program is not as robust at minimizing strain

energies as Allinger's MM2 (14,15), or MOPAC (16), it was determined that the

dioxins were all fairly planar and this was confirmed by modeling a few selected

isomers with MM2 and AMPAC. All three routines showed the dioxins as planar so

the remaining isomers were modeled with the basic ADAPT program.

Descriptor Generation

The structure of a molecule can be described by a set of numerical values.

The values can then directly represent the properties of the molecule. The

descriptors calculated in this study were topological, electronic and geometrical, but

in contrast to other studies of QSRR (17,18), this study saw the introduction of

atom-based descriptors to describe the environment surrounding the bridgehead

carbons as shown in Figure 3.2. These descriptors proved to be of great value.
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Figure 3.2 Atom-based descriptors describe the environment
surrounding the bridgehead carbons (*).
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Topological Descriptors. The topological descriptors used were path, cluster

and general shape indices. All of these descriptors can be generated from a

two-dimensional model of the compound which is stored as a connection table. The

7XC descriptor is a chain path descriptor (19). The shape descriptors are Kappa

indices as described by Kier (20). These descriptors have been used before in other

studies and correlate well with structure-retention relationships.

Electronic Descriptors. Three electronic descriptors were important for

predicting the retention behavior of the PCDDs. The first was a sum total of all

partial negative charges of the molecule as calculated with an equation from

Abraham and Smith (21,22). This was accomplished using an ADAPT program

developed by Dixon (23). The other two descriptors involved simple Huickel theory

(24). The simple Hickel calculations led to the total energy of the molecule and the

electron density minimum. These two values are related to the number of chlorines

present and the positions they occupy. Compounds with chlorines positioned near

the oxygen have a greater retention index or longer relative retention time (see data

in Table 3.1), a greater total energy and higher strain energies.

Geometrical Descriptors. These descriptors must be calculated using the

three-dimensional x, y and z coordinates of the compounds. This was why the time

was taken to model (minimize the strain energy of) the dioxins carefully. Many of

these descriptors utilize the throughspace distance or bond length between atoms in

their calculations. Others use the surface area or volume of a molecule to calculate a

charged partial surface area (25). These types of descriptors have been valuable in

other studies (25,26). Two whole molecule geometrical descriptors were calculated

for this study. The length-to-breadth ratio (I/B) is the minimum ratio of the

molecule's length compared to its breadth (27). It is effectively encoding the
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positions of the chlorines. For example if a tetrachloro isomer has chlorines at the 1,

4, 6, 9 positions (see Figure 3.1) its ./B ratio would be substantially smaller than the

2, 3, 7, 8 isomer. The other geometrical descriptor was based upon the symmetry of

the molecule. The descriptor determines the number of unique atoms in a molecule

and divides this by the total number of atoms to form a symmetry index. The

descriptor uses throughspace and bond distances to determine an atom's uniqueness.

Atom-Based Descriptors. At first glance, the position of the chlorine atoms

seemed to influence the magnitude of the retention index or retention time. It

became necessary to investigate this fact and look for a descriptor which could

encode the necessary chlorine position information. Furthermore, when the

chlorines were near the oxygen the retention values were greater on all column

types, polar or non-polar. Therefore descriptors which could actually describe the

environment near the oxygen topologically, electronically and geometrically would

be of great use. Atom-based descriptors similar to those used in 13C NMR spectral

simulation work were used. Three atom-based descriptors were used in this study.

The environment of the bridgehead carbons was determined to be the area of

concern for descriptor calculations. The bridgehead carbons are the nearest

neighbors to the oxygen and by describing the environment of the bridgehead

carbons, the environment of the oxygens would also be partially described. The first

descriptor was based upon Extended Huickel Theory (24,28). The average Huckel

charge of all heavy atoms (non-hydrogen) three bonds away from the bridgehead

carbons was calculated. The second descriptor was derived from Dixon's charge

program based on the partial atomic charges for each atom as shown in Figure 3.3.

The descriptor is a step atomic charge descriptor calculated using methods described

by Abraham and Smith (21,22). The last atom-based descriptor calculated was the
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H2 H 1

is 9 0a 15

116

H 21 H 20

ATOM TYPE CHARGE

1 C -.0492
2 C +.0738
3 C +.0738
4 C -.0492
5 0 -.1751
6 C -.0492
7 C +.0SUM
8 C +e.0738
9 C -.0492
10 0 -.1751
11 C +.0804
12 C +.0804
13 C +.0804
14 C +.0804
15 Cl -.1022
16 CI -.1022
17 C1 -.1022
18 Cl -.1022
19 H +.0848
20 H +.0848
21 H +.0848
22 H +.0848

Figure 3.3 Partial atomic charges for each atom of 2,3,7,8 tetrachloro, dibenzodioxin.
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Van der Waals energy of the bridgehead carbons interacting with all heavy atoms

one bond away from the bridgehead atoms. For each atom-based descriptor, the

value for each of the four bridgehead carbons was calculated and then the average of

the four was taken as the descriptor value. These descriptors encode information

which describes the bridgehead environment as a whole. These atom-based

descriptors also contain topological, electronic and geometrical information, but

where whole molecule descriptors encode structural information about the total

molecule, these descriptors look at a specific area or even a specific atom's

environment.

Refression Analysis

More than 200 descriptors were calculated for each of the 75 PCDD isomers;

however, not all of these descriptors can be used in the model. To delete descriptors

from the list, about 25 descriptors at a time were subjected to analysis in which

descriptors encoding nearly the same information (i.e. highly correlated, R>0.90)

were deleted. This was described in Chapter 2 as objective feature selection. High

pairwise correlations can influence the validity and predictability of the final model.

Objective feature selection was performed and a pool of about 40 descriptors

remained. These remaining descriptors were entered into a vector space descriptor

analysis program to determine which descriptors had the highest information content

while also displaying any remaining multicollinearities. The dependent variables

were the observed retention data for each of the stationary phases. The top few

descriptors containing the most information were then regressed upon each other to

determine if any multicollinearities still existed. The variance decomposition
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proportions and related condition indexes were also examined as discussed in

Chapter 2. As a result of these tests, a total of 11 descriptors could be used to

predict the retention of the PCDDs on five different stationary phases. More than

190 descriptors were deleted in these steps. The final 11 descriptors (Figure 3.4)

were then submitted to interactive regression analysis to determine the best possible

model for each column.

Results and Discussion

Models were developed for each column that contained anywhere from two

to five descriptors depending upon the number of observations available to use in

the modeling process. Since not more than 41 observations were available out of a

maximum of 75 for any one column, no observations were held out to use as a

prediction set as described in Chapter 2. Therefore, the entire set of observations

was used to develop models and the models were internally validated.

The DB-5 stationary phase had the greatest number of experimental

observations available (N=41). This was also the only data set where the author

reported a retention index instead of a relative retention time. The best equation

developed by interactive regression analysis for the DB-5 is given in equation 2.

The coefficients for the model are listed in the order of information content with

respect to the dependent variable. For instance, TOAC 3 was the most highly

correlated with the retention index so it was selected first. The numbers with the

coefficients are the 95% confidence intervals for each of the coefficients. The

standard error of 9.84 retention index units corresponds to an error of approximately

0.8% of the range. The experimental error was not available in (10), but from other



43

Descriptors Submitted to Regression Analysis

AVHC 3(a) Average Huckel charge for all heavy atoms 3 bonds away from the
bridgehead carbons. The value is the average of all four carbons.

TOAC 3(a) Sum of the absolute values of the atomic charges for all heavy
atoms 3 bonds away averaged over the four bridgehead carbons.

CXVD 1(a) Van der Waals energy of the bridgehead carbons interacting with
other heavy atoms. Only 1-4 interactions or greater are included.

7ZCH (b) Simple 71h order chain ring path.

KAPA 3(b) Shape index relating atom types.

KAPA 6(b)  Shape index relating atom and bond types.

QNEG(c) The charge on the most negative atom.

EDMN(C) Electron density minimum. This is the sum of the contributions
of the atomic orbitals to each of the molecular orbitals multiplied
by the number of electrons in the molecular orbitals.

ETOT(c) Total HUckel energy of the system which is a sum of the energies
of all occupied molecular orbitals.

LI(d) Minimum length-to-breadth ratio.

SYMM 35 (d) Encodes symmetry by calculating an index defined as the number
of unique structural atoms divided by the total number of atoms.

(a) Atom-based.

(b) Topological.
(c) Electronic.

(d) Geometrical.

Figure 3.4 The final pool of descriptors submitted to regression analysis.
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RI= 980.1 ± 8.952 (TOAC 3) +
-426.7 ± 28.09 (91APA 3) +1278 ± 140.7 ( XcH) +

102.8± 11.32 (IJB) + (2)

1087 (INTERCEPT)

N=41 s=9.84 (0.4%) R=0.999 F=6938

work done with retention index equations the reproducibility associated in this type

work is usually three to seven index units (8). A recent study modeling

dibenzofurans on DB-5 also foumd experimental errors in this range (29). The

model presented here does not overfit the data but it does have the ability to predict

fairly close to the experimental error. The low standard error and high F value

coupled with a P value less than 0.0001 demonstrates the superb fit of the calculated

values.

The same procedures were used to model the other four stationary phases.

The number of descriptors used to model any one of the columns never violated the

rule of one descriptor for every five observations. On the columns with only 15

observations only three descriptors could be used. This makes it difficult to obtain

good models. The results of modeling are shown in Table 3.3. Only descriptors

which were significant for a particular column are shown with coefficients.

One of the stationary phases, SP-2100, was extremely hard to model at first.

Upon graphing the dependent variable versus the independent variable some

interesting relationships became apparent. Figure 3.5 shows the plots of relative

retention times versus the values for TOAC 3 and the values for ETOT. The

non-linear relationship was clearly evident and different transformations on the
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(a) 6.760 RRT SP-2100 vs TOAC 3

5.070
RRT

(min)
3.380

1.690

S.

0.000
0.818 1.203 1587 1.971 2.355

TOAC 3 values

(0) 6.760 RRT SP-2100 vs ETOT

5.070

RRT
(min)

3380

1.690

mU

0.000 p , p

.0753 .0857 .0961 .107 .117

ETOT values

Figure 3.5 Plots of relative retention times for SP-2100 versus
(a) the values for TOAC 3 and (b) the values for ETOT.
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dependent variable (x-axis) were attempted as discussed in Chapter 2. At first a

simple square (X2) function and antilog (10X) were tried, but nearly the same

non-linear relationship persisted. This was due to the narrow range of values of the

independent variable which simple squaring would not correct. Upon further

investigation it was determined that a transformation of the dependent variable or

y-axis could eliminate the non-linearity; however, three precautions must be adhered

to. First, the transformed y-axis must be plotted against the available descriptors

and the plots should not show any non-linearities. This was performed and no

non-linearities were found. Second the new y-axis must be modeled or regressed

again with the descriptor pool to obtain a new model with different regression

coefficients. This was done and the results are shown in Table 3.4. Third, after

transforming the y-axis the error variance associated with the model must be

analyzed to determine if it is constant. This was accomplished graphically as

explained in Chapter 2. The residual plot in Figure 3.6 after transformation of the

y-axis showed no evidence of non-constant variance. The new model was plotted as

a calculated versus observed plot and no curvilinear relationship was found (Figure

3.7). The actual transformation is shown in equation 3 where YT is the new

dependent variable. A factor of 100 was used as a scaling factor. An R--0.999

showed quite an improvement. The most important step was to be sure the

transformation did not interfere with the constancy of the error variance.

The model calculates the log of the retention time instead of the actual

retention time so any predictions must be transformed back to retention times by

taking the antilog of the raw predictions and dividing by the scaling factor. The

reason the non-linearity existed for only the SP-2100 column and not the others can

be found upon examination of the column data in Table 3.2. The experimental
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Table 3.4 Coefficients for the SP-2100 model after transforming the y-axis.

RRT= 3.813 ± .064 (ETOT)
-0.442 ± .036 (KAPA 3)
0. 144 ±.018 (LI/B)
-0.640 ±.170 (AVUC 3)
-65.60 (Intercept)

R=0 .999

s = 0.015(0.7%)

F= 3766
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YT=log(100 (RRT)) (3)

parameters show that SP-2100 was the only column where the temperature was held

constant and no programming was attempted. When the dependent variables of the

other columns were plotted against the descriptor values no non-linearity was

observed. This non-linear behavior for isothermal GC data has been documented

before (10).

Outlier Detection

Outliers tend to be poorly fitted points which for some reason cannot be

brought back into the fitted region without compromising the validity of the model.

Two different methods were used to check for outliers as discussed in

Chapter 2. The data diagnostics generation (DDG) routine of ADAPT and robust

regression analysis (RRA) (30,31) were compared and contrasted against each other

to determine which compound for each column could be considered as outliers.

DDG uses a number of tests (see Chapter 2) such as DFFITS, leverage values,

Cook's distance and studentized residuals to determine outliers. Generally, if the

cutoff values for three of the tests were exceeded the point was taken to be an

outlier. The outliers determined by DDG for each column are shown in Table 3.5.

RRA uses a least median squares approach instead of a least mean squares method.

Any point which has a residual greater than 2.5 times the standard error was

determined to be an outlier. Outliers determined by RRA are shown in Table 3.6.
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Table 3.5 Outliers determined by DDG.

Isomer DB-5 SE-54 OV-1701 SP-2330 SP-2100

1-moiioCl X

2-mnonoCl X

1234-teCI X

1267-teCl

1269-teCl

1278-teCI

1289-teCI X

I 469-teCi, X

1478-teCI

2378-teCl X X

1237 8-peCi

1234678-hpCl X X

12346789-ocCl X
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Table 3.6 Outliers determined by RRA.

Isomer DB-5 SE-54 OV- 1701 SP-2330 SP-2100

1-monoCi X

2-nionoCi X

1234-teCi

1267-teCI X

1269-teCi X

1278-teCi X

1289-tedl X

1469-teC1 X

1478-teCl X

2378-teCi X X

12378-peCi X

1234678-hpCl X

12346789-ocCi X X
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The DB-5 column had the same one outlier with DDG and RRA, and

graphically it is obvious that the point has the highest retention time and could

exhibit a large leverage on the regression line. Graphs with and without the outlier

are shown in Figure 3.8. Since both methods considered the octachloro isomer an

outlier and the point did have a large leverage value, the point was dropped from the

model.

The SE-54 column showed one DDG outlier and two RRA outliers. Both

methods chose the same heptachloro isomer and RRA also chose the pentachloro

isomer. A model without the two RRA outliers was chosen, but since the number of

observations was below 15, a model with no more than two descriptors could be

used.

The OV-1701 column showed two outliers for DDG and none for RRA.

Graphically the outliers did not seem to effect the model and DDG values were not

large enough to consider these two compounds as outliers. Therefore, the original

model and coefficients for N=15 observations is the final model.

The stationary phase SP-2330 showed outliers for both the DDG and RRA

methods. While DDG revealed the presence of three outliers, RRA revealed a total

of seven outliers. The 1,2,8,9 and the 1,4,6,9 isomers were common to both so they

were taken to be true outliers. The other DDG outlier, 1,2,3,4, was not considered

an outlier since it seemed to have little impact on the regression line. The remaining

RRA outliers were removed from the modeling process as they did tend to influence

the regression line. The DDG values for these remaining outliers, although not

above the cut off values for three of the five tests, were high enough to make them

outliers. The number of observations now changes to 15 and only three descriptors

may be used in the final model. Looking at the original data this column had
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a) Calculated vs. Observed plot for DS-5 including outliers.
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b) Calculated vs. Observed plot for DB-5 excluding outliers.
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Figure 3.8 Calculated vs. observed plots for DB-5 before outlier
removal (a) and after outlier removal (b).
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observations only for the tetrachloro isomers so in reality this model was only a

curve fitting exercise. With only the tetrachloro isomers available any predictons

outside this area may not be valid. This will be discussed again later.

The final column, SP-2100, showed three DDG outliers and four RRA

outliers. The two mono-substituted isomers and the 2,3,7,8 isomer were common to

both methods. The mono-substituted isomers had large leverage values as did the

octachloro isomer. Since these points could greatly influence the regression line

because of the positions on it, they were removed from the model.

A summary of the outliers is shown in Table 3.7. This shows that most of

the outliers were found by both methods and that the RRA results were used most of

the time. This was done mainly because the RRA method was more robust and

therefore more confidence was generated from the RRA results. This was not

always the case as is evident in Chapter 4 of this thesis which models dibenzofurans.

From the outlier summary three compounds were specifically found to be outliers 3

or more times. These were the 2,3,7,8, the 1,2,3,4,6,7,8, and the 1,2,3,4,6,7,8,9

isomers. The octachloro and heptachloro isomers had large retention times which

puts them on the high end of the regression line and therefore they could exert a

great deal of leverage. The 2,3,7,8 tetrachloro isomer was an outlier in four different

models. This was probably due to its shape as it is the longest molecule and has the

greatest I/B ratio. The remaining outliers could be caused by experimental error or

a combination of steric effects as well as electronic effects which interact with each

column differently to cause the compound not to behave ideally. The exact reasons

are not known. New models for all columns, except OV-1701 which had no

outliers, are shown in Table 3.8.
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Table 3.7 Outlier summary.

Isomer Freguency as an outlier

RRA DDG TOTAL

i-Cl 1 1 2

2-Cl 1 1 2

1234-teCl 1 1

1267-tedl 1 1

1269-teCI 1 1

1278-tedl 1 1

1289-teCd 1 1 2

1469-tedl 1 1 2

1478-teCd 1 1

2378-teCl 2 2 4

12378-peCI 1 1

1234678-hpCl 1 2 3

12346789-ocCI 2 1 3
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Model Validation

To validate these models the jackknifed residuals were calculated for each of

the final models as shown in Table 3.9. Jackknifing is an excellent way to test the

internal validity of a model as discussed in Chapter 2. From the final models

calculated versus observed plots and residual plots were obtained and examined to

ensure linearity and constancy of variance. Figures 3.9 through 3.13 show the

calculated versus observed plots for all the final models. These plots were all

reasonable and helped to prove model validity. Again because of the small size of

the experimental data sets only internal validation experiments were performed.

Predictions

Since experimental retention times were not available for all classes of

isomers (mono-, di-, tri-) on every column, predictions could not be made for all 75

isomers on all columns. It was felt in order to predict the trichloro-dibenzodioxin

retention times that at least one trichloro isomer should have been included in the

modeling procedure. Since this was not possible, predictions were made only where

experimental data was available. For instance, since there were no mono-substituted

observations for DB-5, no predictions were made as to their retention index;

however, all the other 73 isomers, including the outlying octachloro isomer, were

predicted. Predictions of the outliers were made since the experimental value was

already present, and a comparison of the predicted versus the observed values could

be made. The SP-2330 column had only tetra-substituted observations so the model,



60

Table 3.9 Jackknifing results.

DB-5

Isomer Observed JK Estimate 1K Residual
23-diCI 1993 2004 -11
27-diC1 1985 1967 18
28-diC1 1985 1970 15
124-trCl 2152 2159 -7
1234-teCI 2379 2383 -4
1236-teC1 2378 2392 -14
1237-teCl 2382 2382 0

1238-teCI 2382 2378 4
1239-teC1 2392 2398 -6
1246-teC1 2346 2357 -11
1247-teC1 2340 2336 4
1248-teC1 2340 2338 2
1249-teC1 2346 2343 3
1267-teCI 2408 2431 -23
1268-teCl 2349 2360 -11
1269-teCI 2378 2364 14
1278-teC1 2400 2403 -3
1279-teCi 2364 2364 0
1289-teCI 2428 2419 9
1368-teCl 2290 2285 5
1369-teC1 2315 2311 4
1378-teCl 2340 2335 5
1379-teCl 2304 2303 1
1469-teCl 2341 2330 11
1478-teC1 2353 2344 9
2378-teCI 2386 2400 -14
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Table 3.9 (Cont.)

DB-5
Isomer Observed JK Estimate JK Residual

12347-peCi 2573 2570 3
12367-peCl 2604 2608 -4
12378-peCI 2587 2590 -3
12389-peCI 2623 2609 16
12468-peC 2501 2512 -11
12479-peCi 2501 2513 -12

123467-heCI 2812 2791 21
123468-heCI 2742 2739 3
123478-heI 2781 2772 9
123678-heCI 2788 2794 -6
124679-heCI 2713 2727 -14
124689-heCI 2713 2727 -14
1234678-hpCI 2994 2975 19
1234679-hpCI 2949 2951 -2
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Table 3.9 (Cont.)

SE-54

Isomer Observed JK Estimate JK Residual

1368-teCi 1.07500 1.08416 -0.00916
1379-teC1 1.08200 1.07865 0.00335
2378-teCG 1.12500 1.14339 -0.01839
12368-peC1 1.21500 1.19962 0.01538
12379-peCI 1.22500 1.20399 0.02101
12468-peC1 1.19200 1.19176 0.00024
12478-peC1 1.22000 1.21770 0.00230
12479-peCi 1.19200 1.19307 -0.00107
123478-heC1 1.41100 1.41065 0.00035
123678-heC1 1.40900 1.40562 0.00338
123679-heC1 1.33700 1.36185 -0.02485
123689-heC1 1.33700 1.36869 -0.03169
123789-heC1 1.43200 1.39619 0.03581
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Table 3.9 (Cont.)

OV-1701
Isomer Observed JK Estimate JK Residual

1368-teCi 1.05200 1.04308 0.00892

1379-teCI 1.06300 1.03140 0.03160
2378-teCi 1.10600 1.15517 -0.04917

12368-peCI 1.18900 1.20592 -0.01692
12378-peC1 1.22900 1.21864 0.01036

12379-peG 1.20300 1.19845 0.00455

12468-peC 1.17000 1.18491 -0.01491

12478-peC 1.19600 1.20741 -0.01141

12479-peCI 1.17000 1.15436 0.01564

123478-heCl 1.37000 1.36728 0.00272

;3678-heCl 1.36300 1.36407 -0.00107

123679-heCI 1.33800 1.35629 -0.01829

123689-heCI 1.33800 1.35127 -0.01327

123789-heCI 1.39500 1.38808 0.00692

1234678-hpCl 1.58800 1.53194 0.05606
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Table 3.9 (Cont.)

SP-2330
Isomer Observed JK Estimate JK Residual

1234-teC1 1.01000 1.03333 -0.02333
1236-teC1 1.02000 1.02920 -0.00920
1237-teC1 1.01100 0.99762 0.01338
1238-teC1 1.01100 1.01199 -0.00099
1239-teC1 1.06800 1.07070 -0.00270
1246-teC1 1.00500 1.00126 0.00374
1247-teC1 0.96000 0.94138 0.01862
1248-te1 0.96000 0.95445 0.00555
1249-teC1 1.00500 1.01471 -0.00971
1268-teC1 0.97700 0.98554 -0.00854
1279-teC1 1.02100 1.01439 0.00661
1368-teCl 0.87600 0.88666 -0.01066
1369-teC1 0.95500 0.94527 0.00973
1378-teC1 0.93500 0.94080 -0.00580
1379-teC1 0.90600 0.91787 -0.01187
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Table 3.9 (Cont.)

SP-2100
Isomer Observed JK Estimate JK Residual

23-dil 1.63649 1.63362 0.00287
27-diC1 1.62737 1.60107 0.02629
124-trCl 1.77815 1.77257 0.00558
237-trC1 1.81358 1.81801 -0.00443
1234-teCI 1.99123 1.99744 -0.00622
1236-teC1 1.98900 2.00722 -0.01822
1237-teC1 1.99344 1.99478 -0.00134
1238-teCi 1.99344 1.99959 -0.00615
1239-teC1 2.00432 1.99877 0.00555
1246-teCI 1.95904 1.96375 -0.00471
1247-teCI 1.95279 1.95669 -0.00390
1248-teCi 1.95279 1.94708 0.00571
1249-teC1 1.95904 1.96236 -0.00332
1267-teCl 2.01703 2.04208 -0.02505
1268-teCI 1.96284 1.97859 -0.01575
1269-teC1 1.98767 1.97691 0.01076
1278-teC1 2.01284 2.01955 -0.00671
1279-teC1 1.97818 1.97943 -0.00125
1289-teCI 2.03743 2.03278 0.00464
1368-teC1 1.91009 1.92681 -0.01672
1369-teC1 1.93044 1.92077 0.00967
1378-teCI 1.95665 1 96033 -0.00368
1379-teCI 1.92064 1.91723 0.00341
1469-teC1 1.95231 1.93582 0.01649
1478-teC1 1.96755 1.95706 0.01049
12347-peCi 2.18752 2.18444 0.00308
12378-peC1 2.21219 2.20873 0.00346
12478-peCI 2.16435 2.17102 -0.00667
123478-heC1 2.40483 2.39196 0.01288
123678-heC1 2.42325 2.42114 0.00211
123679-heC1 2.38382 2.38246 0.00136
123789-heC1 2.44091 2.41199 0.02892
124679-heC1 2.34635 2.36239 -0.01604
1234678-hpC1 2.62118 2.61008 0.01109
1234679-hpCl 2.57749 2.59106 -0.01357
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in fact, became a simple curve fitting exercise. Predictions were made for all 22

tetrachloro isomers. Predictions for the other columns were calculated in the same

manner and the results for all columns are shown in Table 3.10 along with the errors

for the observations used in the model.

As a further test of model validity, the predictions for 73 isomers (excluding

mono-substituted) were correlated against each other for the DB-5 and SP-2100

columns. These two columns were picked for two reasons: 1) they had predictions

available for nearly all the isomers and 2) the polarities are nearly identical. The

correlation coeficient was R=0.9995 or a nearly perfect correlation. This was

extremely significant since both models were found independently and do not

contain the same descriptors. Only two of the four descriptors were common to both

models. This shows that both models were describing the same type of retention

behavior and, except for using different experimental conditions, the data were

highly correlated. This was the only example where a comparison of columns of

nearly identical polarity could be made.

Conclusions

Retention behavior was successfully modeled for most of the 75 isomers of

the polychlorinated dibenzodioxins an five different staionary phases of varying

polarity. Topological, electronic and geometrical descriptors were used as well as

the atom-based descriptors which were new to this type of study. The atom-based

descriptors were very important and helped to encode the structural environment of

the bridgehead carbons. The models were statistically significant and fit the data

extremely well. The usefulness of transformations was realized and increased the fit
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Table 3.10 Predicted values for all columns.

DB-5

Isomer Observed Predicted Residual
12-diCI 2009
13-diC1 1941
14-diCl 1953
16-diCI 1995
17-diCl 1975
18-diCI 1970
19-diC1 1992
23-diCl 1993 2001 + 8
27-diC1 1985 1972 - 7
28-diCI 1985 1973 - 12
123-trCl 2195
124-trC1 2152 2157 + 5
126-trCl 2211
127-trC 2200
128-trCl 2191
129-trCl 2206
136-trC1 2146
137-trC1 2132
138-trCl 2133
139-trCl 2153
146-trCl 2159
147-trC1 2140
178-trCl 2190
237-trC1 2192
1234-teC1 2379 2382 + 3
1236-teCd 2378 2391 + 13
1237-teC1 2382 2382 0
1238-teC1 2382 2379 - 3
1239-teC1 2392 2397 + 5
1246-teC 2346 2356 + 10
1247-teC1 2340 2337 - 3
1248-teC1 2340 2338 - 2
1249-teC1 2346 2343 - 3
1267-teC1 2408 2426 + 18
1268-teC 2349 2359 + 10
1269-teC 2378 2366 - 12
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Table 3.10 (Cont.)

DB-5
Isomer Observed Predicted Residual

1278-teCl 2400 2403 + 3
1279-teC1 2364 2364 0
1289-teC1 2428 2421 - 7
1368-teC 2290 2286 - 4
1369-teC1 2315 2312 - 3
1378-teCI 2340 2335 - 5
1379-teC1 2304 2303 - 1
1469-teC1 2341 2332 - 9
1478-teC 2353 2345 - 8
2378-teC 2386 2398 + 13
12346-peC1 2585 2585 0
12347-pea 2573 2570 - 3
12367-peC 2604 2607 + 3
12368-peC 2546
12369-peC 2561 2561 0
12378-peCI 2587 2590 + 3
12379-peC 2563
12389-peC 2623 2610 - 13
12467-peC 2570 2570 0
12468-peC1 2501 2511 + 10
12469-peC 2533 2533 0
12478-peC 2551

12479-pea 2501 2512 + 11
12489-peC1 2560 2560 0
123467-heC 2812 2793 - 19
123468-heC1 2742 2740 - 2
123469-heC1 2752 2752 0
123478-heC1 2781 2773 - 8
123678-heC1 2788 2793 + 5
123679-heC1 2755
123689-heC1 2752
123789-heC1 2799
124679-heC1 2713 2725 + 12
124689-heC1 2713 2726 + 13
1234678-hpC1 2994 2978 - 16
1234679-hpC1 2949 2951 + 2
12346789-ocC 3196 3176 - 20
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Table 3.10 (Cont)

SE-54
Isomer Observed Predicted Residual

1234-teCi 1.118

1236-teCi 1.066

1237-teCi 1.067

1238-teCl 1.067
1239-teCi 1.064

1246-teCl 1.051

1247-teCl 1.059
1248-tedl 1.059
1249-teCl 1.045

1267-teCl 1.100
1 268-teCI 1.051

1269-teCi 1.049

1278-tedl 1.080
1279-tedl 1.049

1289-tedl 1.094

1368-teCl 1.075 1.081 +0.006

1 369-teCi 1.041

1 378-teCi 1.062

1379-teCl 1.082 1.080 -0.002

1469-tedl 1.099

1478-tedl 1.096

2378-tedI 1.125 1.136 +0.011
1 2346-pedl 1.216

I 2347-pedI 1.229
1 2367-peCi 1.209
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Table 3.10 (Cont.)

SE-54

Isomer Observed Predicted Residual

12368-peC1 1.215 1.202 -0.013

12369-peC1 1.201

12378-peC1 1.253 1.223 -0.030

12379-peCI 1.225 1.208 -0.017

12389-peC1 1.209

12467-peC 1.198

12468-peC1 1.192 1.192 0.000

12469-peC1 1.200

12478-peC1 1.220 1.218 -0.002

12479-peCa 1.192 1.193 +0.001

12489-peC1 1.195

123467-heCI 1.364

123468-heC1 1.360

123469-heC1 1.393

123478-heC1 1.411 1.411 0.000

123678-heC1 1.409 1.407 -0.002

123679-heC1 1.337 1.357 +0.020

123689-heCI 1.337 1.363 +0.026

123789-heC1 1.432 1.405 -0.027

124679-heCI 1.385

124689-heC1 1.381

1234678-hpCI 1.659 1.515 -0.144

1234679-hpCI 1.515
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Table 3.10 (Cont.)

OV-1701
Isomer Observed Predicted Residual

1234-teQ 0.959
1236-teCa 1.010
1237-teC1 1.031
1238-teC 1.039
1239-teCa 0.995
1246-teC1 0.986
1247-teC1 1.017
1248-teC 1.006
1249-tea 0.983
1267-teC 1.042
1268-tea 1.024
1269-teC 0.976
1278-teC 1.019
1279-twa 1.035
1289-teC 1.021
1368-teC 1.052 1.047 -0.005
1369-twa 0.981
1378-tea 1.062
1379-teC 1.063 1.038 -0.025
1469-tC 0.956
1478-teC 1.006
2378-teC1 1.106 1.120 +0.014
12346-peC 1.176
12347-peC 1.181
12367-peC1 1.211



77

Table 3.10 (Cont.)

OV-1701
Isomer Observed Predicted Residual

12368-peCI 1.189 1.205 +0.016

12369-peC1 1.169

12378-peCI 1.229 1.220 -0.009

12379-peCI 1.203 1.199 -0.004

12389-peCi 1.242

12467-peCi 1.189

12468-peC1 1.170 1.182 +0.012

12469-peCI 1.148

12478-peCI 1.196 1.206 +0.010

12479-peCi 1.170 1.159 -0.011

12489-peCl 1.179

123467-heCi 1.386

123468-heCi 1.375

123469-heC1 1.332

123478-heCI 1.370 1.368 -0.002

123678-heCl 1.363 1.364 +0.001

123679-heC 1.338 1.354 +0.016

123689-heCi 1.338 1.349 +0.011

123789-heCl 1.395 1.389 -0.006

124679-heCI 1.353

124689-heCl 1.337

1234678-hpCI 1.588 1.570 -0.018

1234679-hpCI 1.542
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Table 3. 10 (Cont.)

SP-2330
Isomer Observed Predicted Residual

1234-teC1 1.010 1.014 +0.004
1236-teCl 1.020 1.027 +0.007
1237-te1 1.011 1.000 -0.011
1238-teG 1.011 1.012 +0.001
1239-teC1 1.068 1.070 40.002
1246-te1 1.005 1.002 -0.003
1247-teC1 0.960 0.944 -0.016
1248-teC1 0.960 0.955 -0.005
1249-teC1 1.005 1.013 +0.008
1267-teC1 1.100 1.056 -0.044
1268-teC1 0.977 0.984 +0.007
1269-teC1 1.077 1.042 -0.035
1278-teC1 1.054 1.041 -0.013
1279-teC1 1.021 1.016 -0.005
1289-teC 1.173 1.111 -0.062
1368-teC1 0.876 0.883 +0.007
1369-teC1 0.955 0.948 -0.007
1378-teC1 0.935 0.939 +0.004
1379-teC1 0.906 0.915 +0.009
1469-teC1 1.053 0.975 -0.078
1478-teC 0.994 0.972 -0.022
2378-teC1 1.000 0.964 -0.036
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Table 3.10 (Cont.)

SP-2100
Isomer Observed Predicted Residual

1-Cl 0.293 0.257 -0.036
2-Cl 0.299 0.270 -0.029
12-diCi 0.423
13-diC1 0.370
14-diCl 0.366
16-diCl 0.397
17-diCl 0.385
18-diC1 0.387
19-diCI 0.383
23-diC1 0.433 0.431 -0.002
27-diC1 0.424 0.405 -0.019
28-diCl 0.403
123-trC1 0.657
124-trC1 0.600 0.594 -0.006
126-trCl 0.663
127-trC1 0.648
128-trC1 0.646
129-trC1 0.648
136-trCl 0.580
137-trCI 0.564
138-trCl 0.572
139-trCI 0.570
146-trCI 0.574
147-Wro 0.564
178-trCI 0.635
237-trCl 0.651 0.656 +0.005
1234-teC1 0.980 0.990 +0.010
1236-teC1 0.975 1.014 +0.039
1237-teCI 0.985 0.988 +0.003
1238-teC1 0.985 0.998 +0.013
1239-teC1 1.010 0.998 -0.012
1246-teCl 0.910 0.919 +0.009
1247-teC1 0.897 0.905 +0.008
1248-teCI 0.897 0.886 -0.011
1249-teC1 0.910 0.916 +0.006
1267-teCI 1.040 1.093 +0.053
1268-teC1 0.918 0.951 +0.033
1269-teC1 0.972 0.951 -0.021
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Table 3.10 (Cont.)

SP-2100
Isomer Observed Predicted Residual

1278-teC 1.030 1.044 +0.014
1279-teC1 0.951 0.954 +0.003
1289-teCI 1.090 1.080 -0.010
1368-teC1 0.813 0.838 +0.025
1369-teCl 0.852 0.836 -0.016
1378-teCi 0.905 0.912 +0.007
1379-teCI 0.833 0.829 -0.004
1469-teCi 0.896 0.872 -0.024
1478-teC1 0.928 0.911 -0.017
2378-teC1 1.000 1.055 +0.055
12346-peCi 1.564
12347-pe1 1.540 1.530 -0.010
12367-peC1 1.687
12368-peC1 1.502
12369-pe1 1.508
12378-peCI 1.630 1.618 -0.022
12379-peCI 1.491
12389-peC1 1.687
12467-peCI 1.550
12468-peC 1.360
12469-peCI 1.426
12478-pe1 1.460 1.481 +0.021
12479-peC1 1.371
12489-peC1 1.536
123467-heC1 2.603
123468-heC1 2.285
123469-heC1 2.381
123478-heC1 2.540 2.472 -0.068
123678-heC1 2.650 2.639 -0.011
123679-heC1 2.420 2.413 -0.007
123689-heC1 2.392
123789-heC1 2.760 2.604 -0.156
124679-heC1 2.220 2.296 +0.076
124689-heC1 2.293
1234678-hpC1 4.180 4.096 -0.084
1234679-hpCl 3.780 3.878 +0.098
12346789-ocCI 6.760 6.444 -0.316
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or significance of the SP-2100 model. Outlier detection was accomplished by two

completely different methods and the analysis was carried out in order to obtain the

best models for each column. Predictions were made only where valid experimental

data existed. Correlations of predictions between similar columns proved to be a

valuable tool in validating some of the models as did the jackknifing results. This

study indicates the power of QSRR research. These compounds are extremely toxic

and studies of this type allow retention data to be predicted instead of

experimentally determined. The methods used in this chapter were further refined in

the next chapter in which models were obtained for another homogenous data set.
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Chapter 4

PREDICTION OF GAS CHROMATOGRAPHIC RETENTION

DATA FOR POLYCHLORINATED DIBENZOFURANS

Polychlorinated dibenzofurans have also been intensely studied recently.

Their toxicity is well known and their presence has been reported in water as well as

in fly ash from incinerators (1-3). Trace analysis of the furans is very similar to the

dioxins. Gas chromatography has been used to separate many of the PCDF isomers

and their retention data in the form of retention indexes (4) and relative retention

times (5-8) has been reported on many different stationary phases. The relative

retention times are usually relative to the 2,3,7,8 tetrachloro dibenzofuran which is

the most toxic (1). Some of the experiments used other compounds, such as

anisoles, as the elution standard for relative retention times.

There are 135 polychlorinated dibenzofurans and this is a closed data set.

Although similar to the dioxins, there is only one oxygen bridging the space between

the two aromatic rings instead of two. The isomers can have chlorines attached to

positions 1-4 and/or 6-9 as shown in Figure 4.1. The 135 isomers and their retention

data are shown in Table 4.1.

The strength of the interactions between the stationary phase and the

compound placed on a chromatographic column determine the retention of the

compound. The interactions are based upon electronic, chemical and structural

properties of the compounds. The time of retention on a column is usually unique to

the compound and forms the basis of separation.
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Figure 4.1 The structure and numbering scheme of the
polychiorinated dibenzofuras.
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Table 4.1 The 135 polychlorinated dibenzofurans and retention data.

SP-2330 OV-101 DB-5 SE-54 OV- 1701 DB-5
Isomers RRT RRT RI RRT RRT RRT

1-Cl 1739 0.341
2-Cl 1749 0.443
3-Cl 1749 0.439
4-Cl 1760 0.457
12-diC1 1934
13-diCl 1884
14-diC1 1913
16-diC1
17-diC1 1910
18-diC1 1925
19-diC1 1975
23-di1 1939
24-diC1 1912
26-diC1 1946 0.626
27-diCl 1930 0.611
28-diC1 1935 0.615
34-diC1 1959
36-diC1 1944
37-diCl 1930
46-diC1 1953
123-trCl 2113
124-trCl 2085
126-trCl 2125
127-trCl 2109
128-trCl 2129
129-trC1
134-trCl 2088
136-trCl 2072 0.748
137-trCl 2057 0.747
138-trCi 2070 0.752
139-trC1 2124
146-trIC 2094
147-trCI 2086
148-trCl 2100
149-trCl 2151
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Table 4.1 (Cont.)

SP-2330 OV-101 DB-5 SE-54 OV-1701 DB-5
Isomers RRT RRT RI RRT RRT RRT
234-trCl 2148 0.831
236-trCI 2141
237-trCI 2134
238-trC1 2132 0.805
239-trCl 2111
246-trC1 2101
247-trC1 2099
248-trCl 2097
249-trCl 2082
346-trCl 2152
347-trCl 2150
348-trC1 2151 0.824
349-trC1 2125
1234-teC1 0.800 0.978 2310
1236-teC1 2307
1237-teC1 0.766 0.950 2294
1238-teC1 0.805 0.967 2307
1239-teC1 2369
1246-teC1 2264
1247-teC1 2264
1248-teC1 2274 0.949
1249-teC1 2335
1267-teC1 0.873 0.995 2329
1268-teC1 2281
1269-teC1 2364
1278-teC1 0.840 0.989 2322
1279-teCI 0.875 1.005 2341
1289-teC 2406
1346-teC1 2262
1347-teC1 2257
1348-teC1 2276
1349-teC1 2325
1367-teCd 0.713 0.937 2272
1368-teC1 0.625 0.889 2227
1369-teC1 2296
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Table 4.1 (Cont.)

SP-2330 OV-101 DB-5 SE-54 OV-1701 DB-5
Isomers RRT RRT RI RRT RRT RRT

1378-ted 2263
1379-teC1 0.687 0.938 2273
1467-teC1 0.806 0.954 2288
1468-teCI 2242
1469-teCI 2314
1478-teC1 2290
2346-teCi 1.029 1.006 2339 1.003
2347-teCi 0.970 1.005 2337
2348-teC1 1.008 1.002 2340 1.000
2349-teC1 2308
2367-teCi 1.042 1.017 2354
2368-teCi 0.891 0.959 2297 0.964
2378-teCI 1.000 1.000 2338 1.111 1.114 1.000
2467-teC 0.934 0.967 2305
2468-teCI 2254 1.064 1.061
3467-teC 2362
12346-peC1 2496
12347-peC1 2495 1.153
12348-peCa 2508
12349-peC1
12367-pea 1.078 1.226 2540
12368-peC
12369-pea 2546
12378-peC 1.040 1.217 2507 1.215 1.193 1.154
12379-pea
12389-peC 2593
12467-peC 2465
12468-peC 0.842 1.100 1.158 1.138
12469-peC 2497
12478-peC 0.939 1.164 1.190 1.168 1.124
12479-peC 0.959 1.181 2479
12489-pea 2559
13467-peC1 2469
13468-peC1
13469-peC1
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Table 4.1 (Cont.)

SP-2330 OV-101 DB-5 SE-54 OV-1701 DB-5
Isomers RRT RRT RI RRT RRT RRT

13478-peC1 2469
13479-peC1 2473
13489-peC
23467-peG 1.465 1.271 2555
23468-peCi 2495 1.206 1.206
23469-peCI 2476
23478-peC1 1.403 1.258 2551 1.243 1.242 1.193
23479-peCl 2467
23489-peCl 1.104 1.237 2521
123467-heC1 1.424 1.540 2706
123468-heC1 2650 1.318 1.279
123469-heC1
123478-heC1 1.370 1.542 2708
123479-heC1 2720
123489-heC1
123678-heCl 1.384 1.554 1.371 1.330 1.326
123679-heCl
123689-heCl 1.587 1.604
123789-heC1
124678-heCl 1.225 1.453 1.324 1.287 1.287
124679-heCl
124689-heCl 1.401 1.494 2686 1.348 1.311
134678-heCl 1.199 1.454
134679-heCl
234678-heCl 2.001 1.603 2748 1.406 1.400 1.364
1234678-hpC1 1.834 1.998 2898 1.567 1.495
1234679-hpC1 2913
1234689-hpC 2.084 2.061 2922 1.598 1.526
1234789-hpC1 2986
12346789-ocC1 3147 1.798
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Experimental Section

The available data for the furans included retention indexes as well as

rclative retention times on five different stationary phases ranging from the polar

SP-2330 to the non-polar OV-101. Two different data sets were found for the same

column, DB-5, one reported retention indexes (DB-5 RI) and the other reported

relative retention times (DB-5 RRT). This gave a total of six data sets to model.

The six data sets were experimentally determined from four different sources; two

of the sources cited data on two different columns. Column parameters and

references are shown in Table 4.2.

One of the data sets, DB-5 RI, reported data for 115 out of the 135 isomers.

This was the largest data set. The other sets had 35 isomers for both SP-2330 and

OV-101, 14 isomers for SE-54 and OV-1701, and 26 isomers for DB-5 RRT. The

experimental error was not reported in most cases. The DB-5 RI experimental error

was later found to be approximately seven index units (9). The error for the other

data sets was assumed to be about 1% at the mean of the range.

This study was conducted in four stages as described in Chapter 2: 1) Entry,

modeling and storage of the structures in three-dimensions and the associated

retention data; 2) Generation of descriptors; 3) Multiple linear regression analysis;

and 4) Model validation.
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Entry, Storage and Molecular Modelin!

The structures of each of the 135 PCDF isomers were entered into a Sun

4/110 workstation using the ADAPT subroutine UDRAW (10) and stored as a

connection table as described in Chapter 2. Three-dimensional models were

generated with the molecular modeling routine of ADAPT (11). The structure of the

furans was nearly planar. This was confirmed using the molecular modeling

routines MOPAC (12) and Allinger's MM2 (13,14). This was understandable since

their are two aromatic rings with a fairly rigid bridge in between.

Descriptor Generation

The structures of the PCDFs were numerically encoded in the form of

descriptors. Four types of descriptors were calculated: topological, electronic,

geometrical and atom-based descriptors. The atom-based descriptors encoded

information about the environment surrounding the bridgehead carbons.

Topological. The only topological descriptor used was a simple path 1

molecular connectivity index developed by Kier and Hall (15). This type of

descriptor can be calculated using the connection table data only. This descriptor

has been used in other QSRR studies and correlates well with retention data (16-18).

Electronic. Only one purely electronic descriptor was used. This was the

descriptor QSUM which was calculated using equation 1 where Q is the sum of the

absolute values of all partial atomic charges (qi). The partial atomic charges were

calculated using the method described by Abraham and Smith (19,20) and later

modified for use with ADAPT (21).



93

Q-I 1q1  (1)

Geometrical. These descriptors require a three-dimensional model of the

compound stored as x, y and z coordinates. A total of four geometrical descriptors

were used. The descriptor SHDW3 is defined as the area of the shadow a molecule

projects onto a two-dimensional plane by disregarding the third dimension. The

plane for SHDW3 is the Y-Z plane. The first and second moments of inertia were

aligned with the X and Y axis and since the molecule was relatively flat, this

descriptor encoded the smallest possible shadow area. The largest shadow area

would be a projection onto the X-Y plane. The algorithm for this calculation can be

found in Stouch and Jurs (22), but was further refined by Rohrbaugh and Jurs (23).

All compounds were stored in the same orientation to overcome any problems

varying orientations might create. The next descriptor was a three-dimensional

Weiner index (3D-W). The Weiner index (24) is the sum of the distances between

pairs of atoms using the values from the connection table. The 3-D Weiner index

uses throughspace distances determined from the three-dimensional models. The

descriptor WPSA2 is a charged partial surface area descriptor based upon the partial

atomic charges calculated using the method developed by Abraham and Smith

(19,20) but then related to the surface area of the molecule. These descriptors were

developed by Stanton (25). WPSA2 was calculated using equation 2 where +SA is

the positive surface area for atom i with a positive partial atomic charge and Qr+ is

the total positive charge. The total surface area is the solvent accessible surface area

using water as a solvent (26). The 1000 is a scaling factor. The final geometrical
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WPSA2= {Z ( + SA) Qr + Total Surface Area} (2)

descriptor is MOMH2 which is the second major moment of inertia of the molecule

with hydrogens attached. The units of MOMI2 are mass times distance squared

(AMU-Angstroms 2) (27).

Atom-Based. At first the atom-based descriptors calculated for the PCDFs

were similar to the atom-based descriptors calculated for the PCDDs in that the

environment of the four bridgehead carbons was chosen. This lead to many

descriptors being calculated for the four carbon center environment. Most of these

descriptors were deleted during objective feature selection and initial attempts at

building regression models. The atom-based descriptors were not proving to be as

valuable as they were with the dioxins. A new atom selection was made to try to

develop descriptors more adept at encoding structural information about the

bridgehead. Another set of atom-based descriptors were calculated to describe the

environment surrounding the two carbons bonded to the one oxygen (Figure 4.2).

Therefore, there are two different sets of atom-based descriptors presented in the

models and the descriptors calculated are referred to as (4C) or (2C); for example

TOACI (4C) and TOACI (2C) for the four and two active carbon center cases

respectively.

A total of six different atom-based descriptors were calculated for the final

models. The descriptor CSTR3 was calculated for both the (2C) and (4C)

environments. CSTR3 is the sum over all chlorines of the chlorine Van der Waals

energy divided by the throughspace distance between the chlorine and the carbon
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Atom-Based Descriptors

(a) 9 1
8 2

7 3

(b) 9

7 3

6 4
0

Figure 4.2 Positions of the activated carbon centers of interest for the
atom-based descriptors (*). For some descriptors
only two carbons were active (a) and for others all
four bridgehead carbons were active (b).
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center raised to the third power (28). The next descriptor, TOACI (2C), is the sum

of the absolute values of the partial atomic charges for all heavy atoms

(non-hydrogens) one bond from the two carbon centers. TOHC3 (2C) is the sum of

the absolute values of the HUckel charges for all heavy atoms three bonds away from

the two carbon centers. WHK2-1 (2C) is the sum of the Hickel charges for all

heavy atoms two bonds away from the two carbon centers. The HUckel charges

were determined from extended Huickel theory (29,30). The final atom-based

descriptor was MNAC1 (4C) which is the most negative atomic charge among the

heavy atoms one bond away from the four carbon center. The atomic charges were

Abraham and Smith charges (19,20).

Six of the final 11 descriptors were atom-based as shown in the descriptor

summary in Table 4.3. Atom-based descriptors were able to describe the

environment of either the four bridgehead carbons or the two carbons bonded to the

oxygen. There were four (2C) descriptors and two (4C) descriptors showing the

importance of the area surrounding the oxygen. The actual values of the descriptors

are averaged over either the two or four carbon environment to determine a single

value.

Reiression Analysis

Well over 300 descriptors were calculated for the 135 PCDF isomers. The

atom-based descriptors alone accounted for over half of the total descriptors

calculated. To delete most of the descriptors which contained redundant

information, objective feature selection was performed. The goal of objective

feature selection was to eliminate any high pairwise correlations of R>0.90 and
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Table 4.3 Descriptor summary.

MOLC (a) Simple path 1 molecular connectivity.

QSUM (b) Sum of the absolute values of the atomic charges.

SHDW3 (c) Area of the shadow projected onto the Y-Z plane when the compound
has its first and second moments of inertia aligned with the X and Y
axis.

3D-W(c) Three-dimensional Weiner index using throughspace distances.

WPSA2 (c) Weighted positive charged surface area.

MOMH2 (c) Second major moment of inertia with hydrogens attached.

CSTR 3 (d) Sum over all the chlorines of the Van der Waals energy of the chlorine
(2C/4C) divided by the throughspace distance raised to the third power from

the carbon center of interest to the chlorine.

TOAC1(2C)(d) Sum of the absolutes values of the atomic charges for all heavy atoms
1 bond away and averaged over the two carbon centers.

TOHC3(2C)(d) Sum of the absolute values of the Hfickel charges for all heavy atoms
3 bonds away from the two carbon centers.

WHK2 (2C)(d) The weighted sum of the Huickel charges on heavy atoms two bonds
away from the two carbon centers.

MNAC1(4C)(d) Most negative atomic charge among heavy atoms 1 bonds away.

(a) Topological
(b) Electronic
(c) Geometrical
(d) Atom-based



98

eliminate any descriptors containing mostly zeros or a significant number of

identical values. These descriptors have little or no information content.

Descriptors with very low standard deviations were also eliminated for the same

reason. A considerable pool of descriptors remained and were subjected to rigorous

multicollinearity testing as described in Chapter 2. The set of descriptors containing

the most unique and relevant information were subjected to initial attempts at

regression analysis. When initial models showed little promise, new descriptors

were calculated. These were the atom-based descriptors which concentrated on the

environment surrounding the carbons bonded to the oxygen. These new descriptors

were subjected to objective feature selection and tested for multicollinearities along

with the other descriptors until a final pool of descriptors remained. This final pool

was shown in Table 4.3. The descriptors were then submitted to interactive or

forward stepwise regression analysis (31) to determine the optimum model for each

of the six data sets.

Results and Discussion

Models were obtained for each of the data sets and contained from two to

five descriptors each. Although one of the data sets contained over 100

observations, only four descriptors were needed to model the column successfully.

Any more descriptors would, perhaps, overfit the data.

As briefly discussed earlier, new atom-based descriptors were calculated

based upon a two carbon environment instead of the four carbon environment. This

change reflects the idea from Chapter 3 of determining the environment near the

oxygen topologically, electronically and geometrically. For the dioxins there were
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two oxygens and four carbon centers were used. This was not as productive for the

furans, and a switch to the two carbon centers was made in an attempt to refine the

oxygen's environment further. As with the dioxins, positioning the chlorines near

the oxygen increases the retention time on the column. Any descriptors which could

numerically encode this structural feature would be a good candidate for a model.

The (2C) descriptors survived objective feature selection and initial regression

analysis much better for the furans although two (4C) descriptors did remain

throughout the modeling process.

The column with the greatest number of observations was the DB-5 RI

column in which Hale et al. reported 115 retention indexes for the 135 isomers (4).

Many different mode'.; were developed but the best model was a four descriptor

model given in equation 3. The model was one of the best models obtained for any

RI = 529.4 (MOLCI) +
11.61 (WPSA2) +

-152.4 (WHK2) + (3)
0.056 (MOMH2) +

-1764 (Const.)

R=0.999 s=14.42 (0.6%) F=10062 N=115

column as can be seen with the low error s=14.42 or about 0.6%. The experimental

reproducibility was about seven retention index units. The F-statistic shows the high

degree of statistical credibility of the model and demonstrates the superb fit of the

calculated values
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The same procedure was used to generate regression models for the other

five data sets. The observation to descriptor ratio never violated the 5:1 rule as

described in Chapter 2; therefore, some models could only have two descriptors.

The coefficients for the initial regression models for all data sets are shown in Table

4.4.

Initially excellent models were developed for all of the stationary phases.

The multiple correlation coefficients and associated errors were acceptable and in

most cases, superb. However, upon graphical analysis of the calculated versus

observed and residual plots, a non-linearity problem in the OV-101 model became

apparent. The calculated versus observed plot shown in Figure 4.3 shows the

non-linear problem; however, it is more noticeable in the residual plot shown in

Figure 4.4. To solve this problem, graphs of the dependent variable versus the

independent variables were generated and analyzed to determine the cause of the

non-linearity. Neither of these plots showed any significant problems with

non-linearity. The next step would have been a transformation of the independent

variable or x-axis if any problems were evident; however, this would not have

proved valuable since the residual plot also showed a separate problem,

non-constant variance. The non-constant variance is shown in Figure 4.4 as the

increase in the error as the dependent variable increases (31). The variance problem

is very subtle, but since it was present a transformation of the dependent variable or

y-axis was attempted as discussed in Chapter 2. Transformations of the y-axis are

not usually attempted first because these transformations will normally effect the

error variance. Since the error variance was already a problem, a transformation of

the y-axis could solve both the non-linearity problem and the variance problem

simultaneously.
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To start the process, a simple transformation of YT1=Y '5 was attempted

where YT is the transformed dependent variable. This square root transformation

improved both the calculated versus observed plot (Figure 4.5) and the residual plot

(Figure 4.6). Since this simple transformation was able to reduce the error to

s=0.013 or about 1.0% at the mean of the range and improve the multiple correlation

coefficient to R=0.996 it was decided that this model was sufficient to predict other

relative retention times. As a further test, Box-Cox transformations (32) were

attempted to determine the best transformation possible to minimize both the

non-linearity and non-constant variance problems. The best transformation was

calculated to be YT=Y°-1. This truly minimized the sum-squared error, and the two

plots of calculated vs. observed and residual vs. calculated were a significant

improvement over the non-transformed plots. However, there was a problem with

accepting this model as the best. Since the square root transformation already had

an error of 1.0%, any model producing a standard error of less than this may be

overfitting the data. The experimental error for this data set could not be assumed to

be any better than about 1%; therefore, the square root model was chosen. During

the modeling procedure, the independent variables were not transformed. New

coefficients were generated and the model for OV-101 where YT=Y ° '5 is shown in

equation 4. To make predictions, the model's calculated values were squared to

transform them back to the proper units of minutes.

Outlier Analysis

Outliers are poorly fitted points which for some reason cannot be brought

back into the fitted space without altering the model variables and/or compromising
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RRT= 0.007932 CSTR3 (2C) +
0.001730 3D-W + (4)

-0.3502 Const.

R=0.996 s = 0.013(1.0%) F= 1788 N=35

the validity of the model. Outliers can exist for many reasons, for instance, a poorly

measured experimental value or an isomer which the descriptors cannot explain

properly.

Two different techniques were used to check for outliers statistically as

discussed in Chapter 2. The techniques were the data diagnostics generation (DDG)

routine inherent to the ADAPT software system and robust regression analysis

(RRA) which uses a least median squares instead of a least mean squares approach

to regression analysis (33-35). Both methods were compared and outliers were

identified on the basis of the results from both routines.

DDG uses five different tests--DFFITS, Cook's distance, leverage,

studentized residuals and standardized residuals--to determine a point's fit. As

described in Chapter 2 the routine will calculate a cutoff value for each of the tests

and isomers exceeding the cutoff values for three of the five tests are considered to

be an outlier. The outliers determined by DDG are shown in Table 4.5. The results

show no significant problems with outliers. No one isomer was an outlier on more

than one column. The data set with the most outliers was the DB-5 RI column

which had three outliers. This is not significant considering the column had 115

observations at the start. The outliers were also spread throughout the range of

isomers from mono-substituted to the octa-substituted which seems to verify that all
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isomers are being predicted fairly well, i.e. no one group such as the tetrachloro

isomers are falling out of the models.

The robust regression analysis method calculates a regression model using a

least median squares algorithm which is not as susceptible to outlying data points.

From the least median squares results, the program calculates the standard error, and

if the error of any point exceeds 2.5 standard deviations, the point is considered to

be an outlier. Outlying points then receive a weight of zero and a least mean squares

is calculated without the outliers. RRA results are shown in Table 4.6. RRA found

outliers on three of the five chromatographic columns. OV-1701 and OV-101 had

points which were borderline outliers but not enough to be singled out as outliers.

RRA did find a total of 16 points as outliers on the remaining four data sets which

reflects the retention values for 13 isomers since three isomers were detected as

outliers for two different columns. The isomers chosen twice were 1,2,3,6,8,9

hexachloro, 2,3,4,6,7,8 hexachloro and 1,2,3,4,6,8,9 heptachloro. The 1,2,3,6,8,9

hexachloro isomer was a borderline outlier for the SP-2330 and DB-5 RRT data sets.

The models without these points were not very different, and the descriptor

coefficients did not vary by more than one standard deviation. The 2,3,4,6,7,8

hexachloro isomer was an outlier for the SP-2330 and SE-54 data sets. It was a

borderline outlier for the SE-54 data set but a true outlier for the SP-2330 column.

This isomer did have the greatest retention time of any hexachloro isomer and a

large leverage value in DDG test results. The 1,2,3,4,6,8,9 heptachloro isomer was

also an outlier for the SP-2330 and SE-54 columns. As the point of greatest value of

the experimentally available observations it did have a high leverage value for the

SE-54 column. For the SP-2330 column its least median squares residual was

greater than 2.5 standard deviations. The remaining isomers which RRA detected as
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outliers were spread throughout the range of data from mono-substituted to the

heptachloro isomers with no one particular substitution pattern standing out as a

potential problem of the predictability of the models. These points could have been

outliers for any of the reasons mentioned earlier.

When selecting isomers which would be excluded from modeling; both

methods, DDG and RRA, were examined. The results are shown in Table 4.7. A

total of 11 different isomers were identified as outliers and removed from

consideration during model development. Only one isomer, 1,2,3,4,6,8,9

heptachloro, was an outlier on two different data sets. This was due to high leverage

values. Seven data points were found to be outliers by both methods; three isomers

were determined by RRA alone and one isomer was determined by DDG alone. No

clear pattern was evident which would imply a problem with the models. All classes

of isomers from mono-substituted to the octachloro isomer were being calculated

very well. These points were true outliers and their exclusion improved the model

statistics. Again two columns, OV-1701 and OV-101, had no outliers to exclude.

The OV-101 column did have two data points for the two heaviest isomers which

could have been selected as outliers. It was determined that the reason these points

were borderline was because of the non-linearity problem discussed earlier. If these

points had been deleted at the beginning of the modeling process, a non-linearity

problem would have most likely never been detected. Since these points were

included in calculating all transformations, they were left included in all models.

Any exclusion of these points and transformations may not have been necessary.

The total number of outliers was minimal, but since these points were

excluded from regression analysis new model coefficients had to be calculated. The

results are shown in Table 4.8. The relative standard error shown as a percentage of
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the mean of the range is also presented. This shows that the error for most of the

column is now very close to the assumed experimental error of 1.0%. Since the

experimental error of the DB-5 RI column is known to be approximately seven

retention index units or less than 0.3%, an error of 0.5% was considered excellent.

Model Validation

Validation of the regression models was achieved internally and primarily

with the method known as jackknifing as explained in Chapter 2. However, for one

of the data sets, DB-5 RI, another internal validation method called duplexing (36)

was also used. Since this data set had 110 observations to use in the final modeling

process and needed only four descriptors to describe the retention behavior, the data

set was randomly divided in half numerous times and the model coefficients were

recalculated using half the data. The duplexing models' coefficients were compared

to the coefficients of the final model to determine if there were any large changes in

the coefficients for the four descriptors. Any large changes (greater than one

standard deviation) would imply a possible validity problem. The duplexing test;

however, showed the DB-5 RI model to be extremely stable. Recalculated

coefficients were very close to those of the final model and varied much less than

one standard deviation.

There were not as many experimental observations available for the other

data sets and jackknifing was used as the internal test of the models validity.

Jackknifing recalculates the model numerous times with each observation held out

once. It then uses this new model to generate a predicted value for all of the points

when that point is not included in the modeling process. The jackknifing results
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showed no validation problems for any of the models. All jackknifed estimates were

extremely close to the calculated values using all available observations in the

modeling process.

In a final analysis, plots of calculated versus observed and residuals were

generated. Figures 4.7 through 4.12 show the calculated versus observed plots for

all six data sets. These plots further demonstrate the high quality of the models.

The plots show an excellent fit of the experimental data to the calculated values.

Predictions

Since it was not possible to generate models using experimental observations

representing all classes of isomers for each data set, it would not be valid to make

predictions in these areas. For instance, there were no mono-, di- or tri-substituted

experimental observations available for the OV-101, OV-1701, SE-54 and SP-2330

data sets, therefore, no predictions were made for these classes of compounds for the

above stationary phases. However, predictions of the remaining isomers were

generated. This rule was enforced in order to avoid overstepping the bounds of the

regression models. Predicted values were determined for all isomers of the two

DB-5 data sets. Observed, predicted and residual values for all data sets are shown

in Table 4.9.

Predictions were also determined for the outliers detected previously. This

was done to provide a value the model would calculate for that point. A comparison

of nearby isomers can be made and the predicted value need not be accepted.
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Table 4.9 Predicted values for all data sets.

DB-5 RI
Isomer Predicted Observed Residual

I-Cl 1717 1739 22
2-Cl 1742 1749 7
3-Cl 1749 1749 0
4-Cl 1755 1760 5
12-diCl 1958 1934 -24
13-diC1 1898 1884 -14
14-diC1 1919 1913 -6
16-diCl 1915
17-diCl 1905 1910 5
18-diCl 1891 1925 34
19-diCl 1960 1975 15
23-diC 1945 1939 -6
24-diCl 1918 1912 -6
26-diCd 1945 1946 1
27-diCl 1936 1930 -6
28-diCl 1919 1935 16
34-diCl 1960 1959 -1
36-diCl 1938 1944 6
37-diCl 1938 1930 -8
46-diCl 1928 1953 25
123-trCl 2127 2113 -14
124-trCl 2112 2085 -27
126-trCl 2153 2125 -28
127-trCl 2144 2109 -35
128-trCl 2126 2129 3
129-trC1 2171
134-trCl 2093 2088 -5
136-trCl 2076 2072 -4
137-trCl 2082 2057 -25
138-trCl 2074 2070 -4
139-trCl 2122 2124 2
146-trCl 2091 2094 3
147-trCl 2083 2086 3
148-trCl 2094 2100 6
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Table 4.9 (Cont.)

DB-5 RI

Isomer Predicted Observed Residual
149-trCl 2148 2151 3
234-trC1 2156 2148 -8
236-trC1 2138 2141 3
237-trC1 2139 2134 -5
238-trC 2132 2132 0
239-trCl 2091 2111 20
246-trC 2105 2101 -4
247-trC 2103 2099 -4
248-trC1 2094 2097 3
249-trC1 2058 2082 24
346-trC1 2139 2152 13
347-trC1 2146 2150 4
348-trC 2151 2151 0
349-tC 2116 2125 9
1234-teC1 2345 2310 -35
1236-teC1 2303 2307 4
1237-teCi 2312 2294 -18
1238-teC1 2295 2307 12
1239-teCl 2374 2369 -5
1246-teC1 2296 2264 -32
1247-teCi 2292 2264 -28
1248-teC1 2283 2274 -9
1249-teC1 2332 2335 3
1267-teCl 2354 2329 -25
1268-teC1 2297 2281 -16
1269-teCl 2361 2364 3
1278-teC 2336 2322 -14
1279-teCl 2335 2341 6
1289-teC1 2384 2406 22
1346-teCl 2263 2262 -1
1347-teCi 2263 2257 -6
1348-teC1 2269 2276 7
1349-teC1 2350 2325 -25
1367-teCl 2279 2272 -7
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Table 4.9 (Cont.)

DB-5 RI
Isomer Predicted Observed Residual

1368-teC1 2236 2227 -9
1369-teC1 2281 2296 15
1378-te¢ 2267 2263 -4
1379-teC1 2261 2273 12
1467-teC1 2288 2288 0
1468-teC1 2248 2242 -6
1469-teC1 2295 2314 19
1478-teC1 2279 2290 11
2346-teC1 2334 2339 5
2347-teC1 2339 2337 -2
2348-teC1 2331 2340 9
2349-teC1 2291 2308 17
2367-teC1 2348 2354 6
2368-teC1 2295 2297 2
2378-teC1 2337 2338 1
2467-teC1 2306 2305 -1
2468-teC1 2257 2254 -3
3467-teC1 2345 2362 17
12346-peC1 2515 2496 -19
12347-peC1 2520 2495 -25
12348-peC1 2518 2508 -10
12349-peC1 2578
12367-peCi 2505 2540 35
12368-peC1 2449
12369-peC1 2543 2546 3
12378-peC1 2508 2507 -1
12379-peC1 2525
12389-peC1 2588 2593 5
12467-peC1 2497 2465 -32
12468-peC1 2436
12469-peC1 2498 2497 -1
12478-peC1 2478
12479-peC1 2501 2479 -22
12489-peC1 2548 2559 11
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Table 4.9 (Cont.)

DB-5 RI
Isomer Predicted Observed Residual

13467-peC1 2457 2469 12
13468-peC1 2414
13469-peCI 2495
13478-peCI 2458 2469 11
13479-peCI 2477 2473 -4
13489-peCi 2565
23467-peC1 2541 2555 14
23468-peCi 2483 2495 12
23469-peCi 2472 2476 4
23478-peC1 2535 2551 16
23479-peC1 2463 2467 4
23489-peCi 2527 2521 -6
123467-heC1 2714 2706 -8
123468-heCl 2661 2650 -11
123469-heC1 2723
123478-heC1 2709 2708 -1
123479-heC1 2710 2720 10
123489-heC1 2792
123678-heC1 2681
123679-heC1 2743
123689-heC1 2733
123789-heC1 2799
124678-heC1 2670
124679-heC1 2695
124689-heC1 2685 2686 1
134678-heC1 2635
134679-heCi 2688
234678-heC1 2720 2748 28
1234678-hpC1 2884 2898 14
1234679-hpC1 2921 2913 -8
1234689-hpC1 2918 2922 4
1234789-hpC1 2978 2986 8
12346789-ocC1 3147 3147 0
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Table 4.9 (Cont.)

DB-5 RRT
Isomer Predicted Observed Residual
i-C 0.387 0.341 -0.046
2-C 0.438 0.443 0.005
3-CI 0.446 0.439 -0.007
4-C 0.454 0.457 0.003
12-diC1 0.579
13-diCl 0.577
14-diC1 0.571
16-dia 0.575
17-diCl 0.574
18-diCa 0.558
19-dia 0.472
23-diCl 0.625
24-diCl 0.629
26-dia 0.629 0.626 -0.003
27-diC 0.621 0.611 -0.010
28-diC 0.613 0.615 0.002
34-dia 0.640
36-diC1 0.637
37-dia 0.629
46-diC1 0.646
123-trCl 0.771
124-trC1 0.763
126-trCl 0.766
127-trCI 0.766
128-trC1 0.750
129-trCl 0.660
134-trCI 0.764
136-trCl 0.764 0.748 -0.016
137-trCl 0.763 0.747 -0.016
138-trCl 0.748 0.752 0.004
139-trCl 0.665
146-trCl 0.759
147-trCl 0.758
148-trCl 0.742
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Table 4.9 (Cont.)

DB-5 RRT
Isomer Predicted Observed Residual

149-trCl 0.652
234-trC1 0.818 0.831 0.013
236-trC1 0.816
237-trCl 0.808
238-trCl 0.800 0.805 0.005
239-trC 0.748
246-trCi 0.821
247-trCl 0.812
248-trC 0.804
249-trC1 0.745
346-trC1 0.832
347-trC1 0.823
348-trCI 0.815 0.824 0.009
349-rCl 0.764
1234-teC1 0.958
1236-teC1 0.959
1237-teC1 0.958
1238-teC1 0.942
1239-teCI 0.855
1246-teCI 0.951
1247-teC1 0.950
1248-teC1 0.934 0.949 0.015
1249-teC1 0.840
1267-teC1 0.956
1268-teC1 0.937
1269-teC1 0.840
1278-teC 0.940
1279-teC 0.853
1289-teC1 0.848
1346-teC1 0.951
1347-teC1 0.950
1348-teC1 0.935
1349-teCd 0.847
1367-teC1 0.953
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Table 4.9 (Cont.)

DB-5 RRT
Isomer Predicted Observed Residual

1368-teC1 0.934
1369-teC1 0.845
1378-teC1 0.938
1379-teC1 0.857
1467-teC1 0.948
1468-teC1 0.929
1469-teC1 0.832
1478-teC1 0.932
2346-te1 1.010 1.003 -0.007
2347-teCI 1.001
2348-teC1 0.994 1.000 0.006
2349-teC1 0.938
2367-teC1 1.002
2368-teCI 0.991 0.964 -0.027
2378-teC1 0.987 1.000 0.013
2467-teC1 1.006
2468-teCi 0.995
3467-teC1 1.017
12346-peCi 1.146
12347-peC1 1.145 1.153 0.008
12348-peC 1.129
12349-peC1 1.038
12367-peC 1.148
12368-peC1 1.129
12369-peC 1.035
12378-peC1 1.132 1.154 0.022
12379-peC1 1.048
12389-peC 1.043
12467-peC1 1.140
12468-peC 1.121
12469-peC1 1.020
12478-peC 1.124 1.124 0.000
12479-peC 1.032
12489-peC1 1.028
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Table 4.9 (Cont.)

DB-5 RRT
Isomer Predicted Observed Residual

13467-peC1 1.140
13468-peCl 1.121
13469-peC1 1.027
13478-peC1 1.125
13479-peCa 1.040
13489-peC1 1.035
23467-peCl 1.196
23468-peCI 1.185
23469-peCI 1.122
23478-pe1 1.180 1.193 0.013
23479-pe1 1.127
23489-peCi 1.129
123467-heC1 1.335
123468-heCl 1.316
123469-heCl 1.218
123478-heCl 1.319
123479-heC1 1.231
123489-heCl 1.226
123678-heCl 1.321 1.326 0.005
123679-heCl 1.230
123689-heCl 1.223
123789-heCi 1.239
124678-heCI 1.313 1.287 -0.026
124679-heCI 1.215
124689-heC1 1.208
134678-heCl 1.314
134679-heC1 1.223
234678-heCl 1.374 1.364 -0.010
1234678-hpCI 1.508
1234679-hpC1 1.413
1234689-hpC1 1.406
1234789-hpC1 1.421
12346789-ocCl 1.604 1.798 0.194
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Table 4.9 (ConL)

SP-2330
Isomer Predicted Observed Residual

1234-teC1 0.828 0.800 -0.028
1236-teC1 0.671
1237-teC1 0.782 0.766 -0.016
1238-teC1 0.794 0.805 0.011
1239-teC1 0.938
1246-teC1 0.622
1247-teC1 0.650
1248-teC1 0.662
1249-teC1 0.827
1267-teCi 0.807 0.873 0.066
1268-teC1 0.690
1269-teC1 0.868
1278-teC1 0.790 0.840 0.050
1279-teC1 0.867 0.875 0.008
1289-teC1 0.992
1346-ted 0.652
1347-teC1 0.686
1348-teC1 0.683
1349-teC1 0.813
1367-teC1 0.727 0.713 -0.014
1368-teCI 0.621 0.625 0.004
1369-teCI 0.608
1378-teC1 0.729
1379-teC1 0.682 0.687 0.005
1467-teC1 0.707 0.806 0.099
1468-teC1 0.588
1469-teC1 0.695
1478-teC1 0.596
2346-teC1 1.004 1.029 0.026
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Table 4.9 (Cont.)

SP-2330
Isomer Predicted Observed Residual

2347-teCl 1.033 0.970 -0.063
2348-teC1 1.077
2349-teC1 0.782
2367-teC1 1.010 1.042 0.032
2368-teC1 0.912 0.891 -0.021
2378-teC1 1.019 1.000 -0.019
2467-te1 0.996 0.934 -0.062
2468-teC1 0.883
3467-teC1 1.128
12346-peC1 1.020
12347-peC1 1.052
12348-peC1 1.083
12349-peC1 1.210
12367-peC1 1.056 1.078 0.022
12368-peC1 0.938
12369-peC1 1.085
12378-peCi 1.052 1.040 -0.012
12379-peCl 1.113
12389-peC1 1.339
12467-peCl 0.987
12468-peCl 0.892 0.842 -0.050
12469-peCl 1.053
12478-peCG 0.908 0.939 0.031
12479-peCl 1.034 0.959 -0.075
12489-peCi 1.228
13467-peC1 1.003
13468-peC1 0.932
13469-peC1 0.980
13478-peCi 0.963
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Table 4.9 (Cont.)

SP-2330
Isomer Predicted Observed Residual

13479-peCl 0.947
13489-peC1 1.164
23467-peC1 1.406 1.465 0.059
23468-peG 1.287
23469-peC1 0.962
23478-peC1 1.321 1.403 0.082
23479-peCi 1.026
23489-peCl 1.129 1.104 -0.025
123467-heCi 1.410 1.424 0.014
123468-heCi 1.302
123469-heCl 1.491
123478-heCl 1.347 1.370 0.023
123479-heCl 1.485
123489-heCl 1.573
123678-heCl 1.404 1.384 -0.020
123679-heCl 1.485
123689-heC1 1.531 1.587 0.056
123789-heCl 1.611
124678-heCl 1.303 1.225 -0.078
124679-heC1 1.272
124689-heCl 1.462 1.401 -0.061
134678-heC 1.342 1.199 -0.143
134679-heC 1.334
234678-heC 1.729 2.001 0.272
1234678-hpCl 1.809 1.834 0.025
1234679-hpCl 1.902
1234689-hpCI 1.925 2.084 0.159
1234789-hpCI 2.002
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Table 4.9 (Cont.)

SE-54
Isomer Preicted Observed Residual

1234-tedl 1.065
1236-tedl 1.060
1237-teCi 1.082
1238-teCi 1.073
1239-teCi 1.095
1246-teCi 1.032
1247-tedl 1.058
1248-tedl 1.050
1249-teCi 1.072
1267-tedl 1.071
1268-tedl 1.053
1269-tedl 1.085
1278-tedi 1.075
1279-teCl 1.089
1289-tedl 1.090
1346-tedl 1.039
1347-tedl 1.065
1348-tedl 1.056
1349-teCl 1.076
1 367-tedI 1.068
1368-tedl 1.053
1369-tedl 1.062
1378-tedi 1.074
1379-teCi 1.077
1467-tedl 1.045
1468-teCi 1.03 1
1469-tedI 1.053
1478-tedi 1.054
2346-teCl 1.066
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Table 4.9 (Cont)

SE-54
Isomer Predicted Observed Residual

2347-teC1 1.094
2348-teC1 1.091
2349-teC1 1.058
2367-teC1 1.092
2368-te1 1.083
2378-teC1 1.103 1.111 0.008
2467-teCI 1.065
2468-teC1 1.055 1.064 0.009
3467-teCi 1.077
12346-peCi 1.183
12347-peCi 1.211
12348-peC1 1.206
12349-peCl 1.224
12367-peC1 1.214
12368-peC1 1.196
12369-peCi 1.227
12378-peC 1.222 1.215 -0.007
12379-peC1 1.237
12389-peC1 1.252
12467-peCi 1.183
12468-peCi 1.169 1.158 -0.011
12469-peC1 1.198
12478-peCi 1.195 1.190 -0.005
12479-peC1 1.215
12489-peg 1.230
13467-peCl 1.186
13468-peC1 1.177
13469-peC1 1.192
13478-peC1 1.207
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Table 4.9 (Cont.)

SE-54
Isomer Predicted Observed Residual

13479-peC 1.209
13489-peC1 1.226
23467-peC1 1.224
23468-peCG 1.207 1.206 -0.001
23469-peC1 1.177
23478-peCl 1.239 1.243 0.004
23479-peCG 1.206
23489-pe1 1.210
123467-heC1 1.346
123468-heCl 1.330 1.318 -0.012
123469-heC1 1.363
123478-heCi 1.362
123479-heC1 1.387
123489-heCi 1.382
123678-heC1 1.368 1.371 0.003
123679-heCl 1.391
123689-heCi 1.392
123789-heCi 1.413
124678-heCl 1.332 1.324 -0.008
124679-heCl 1.334
124689-heCl 1.357 1.348 -0.009
134678-heCi 1.339
134679-heCl 1.349
234678-heC1 1.377 1.406 0.029
1234678-hpCI 1.514 1.567 0.053
1234679-hpC1 1.538
1234689-hpC1 1.535 1.598 0.063
1234789-hpC1 1.573
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Table 4.9 (Cont.)

OV-1701
Isomer Predicted Observed Residual

1234-teCI 0.315
1236-teCI 0.235
1237-teCI 0.192
1238-teCi 0.135
1239-teC1 0.301
1246-teCI 0.170
1247-teC1 0.138
1248-teC1 0.074
1249-teC1 0.253
1267-teC1 0.209
1268-teCI 0.098
1269-teCI 0.242
1278-teCi 0.102
1279-teC1 0.217
1289-teCi 0.220
1346-teC1 0.230
1347-teC1 0.194
1348-teC1 0.133
1349-teC1 0.292
1367-teC1 0.228
1368-teCI 0.123
1369-teC1 0.208
1378-teCI 0.126
1379-teC1 0.196
1467-ted 0.215
1468-teC1 0.103
1469-teC1 0.227
1478-teC1 0.110
2346-teC1 0.250
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Table 4.9 (Cont.)

OV-1701
Isomer Predicted Observed Residual

2347-teC1 0.221
2348-teC1 0.163
2349-teC1 0.235
2367-teC1 0.189
2368-teCi 0.082
2378-teC1 0.089 0.114 0.025
2467-teC1 0.181
2468-teC1 0.065 0.061 -0.004
3467-teC1 0.289
12346-peC1 0.352
12347-peCI 0.314
12348-peC1 0.261
12349-peC1 0.425
12367-peC1 0.310
12368-peC1 0.205
12369-peC1 0.334
12378-peCI 0.201 0.193 -0.008
12379-peC1 0.309
12389-peC1 0.342
12467-peC1 0.244
12468-peC1 0.140 0.138 -0.002
12469-peC1 0.281
12478-peC1 0.148 0.168 0.020
12479-peC1 0.276
12489-peCl 0.294
13467-peCI 0.297
13468-peC1 0.204
13469-peC1 0.306
13478-peC1 0.206
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Table 4.9 (ConL)

OV-1701
Isomer Predicted Observed Residual

13479-peC1 0.293
13489-peC1 0.323
23467-peC1 0.334
23468-peC1 0.221 0.206 -0.015
23469-peC1 0.250
23478-peC1 0.233 0.242 0.009
23479-peC1 0.268
23489-peC1 0.259
123467-heC1 0.420
123468-heC1 0.317 0.279 -0.038
123469-heC1 0.459
123478-heC1 0.322
123479-heC1 0.448
123489-heC1 0.448
123678-heC1 0.358 0.330 -0.028
123679-heC1 0.424
123689-heC1 0.397
123789-heCI 0.426
124678-heC1 0.284 0.287 0.003
124679-heC1 0.337
124689-heC1 0.336 0.311 -0.025
134678-heC1 0.343
134679-heCi 0.389
234678-heCi 0.372 0.400 0.028
1234678-hpCI 0.472 0.495 0.023
1234679-hpCI 0.548
1234689-hpCI 0.513 0.526 0.013
1234789-hpCl 0.566
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Table 4.9 (Cont.)

OV-101
Isomer Predicted Observed Residual

1234-teCl 1.009 0.978 -0.031
1236-teC1 0.939
1237-teC1 0.962 0.950 -0.012
1238-teCi 0.923 0.967 0.044
1239-teCi 1.035
1246-teCI 0.932
1247-teC1 0.941
1248-teC1 0.918
1249-teC1 0.984
1267-teC1 0.992 0.995 0.003
1268-ted 0.924
1269-ted 0.995
1278-teC1 0.976 0.989 0.013
1279-teC1 0.974 1.005 0.031
1289-teC1 1.014
1346-teC1 0.922
1347-teC1 0.925
1348-teC1 0.902
1349-teCi 1.018
1367-teC1 0.940 0.937 -0.003
1368-teC1 0.885 0.889 0.004
1369-teCI 0.950
1378-teC1 0.910
1379-teC1 0.923 0.938 0.015
1467-teC1 0.952 0.954 0.002
1468-teC1 0.896
1469-teC1 0.966
1478-teC1 0.929
2346-teC1 1.000 1.006 0.006
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Table 4.9 (Cont.)

OV-101
Isomer Predicted Observed Residual

2347-teC1 1.014 1.005 -0.009
2348-teC1 0.982 1.002 0.020
2349-teCi 0.942
2367-teC1 1.009 1.017 0.008
2368-teC1 0.948 0.959 0.011
2378-teC1 0.990 1.000 0.010
2467-teC1 0.958 0.967 0.009
2468-teCi 0.903
3467-teC1 1.018
12346-peC1 1.239
12347-peC1 1.259
12348-peC1 1.230
12349-peC1 1.331
12367-peC1 1.214 1.226 0.012
12368-peC1 1.136
12369-peC1 1.278
12378-peC1 1.222 1.217 -0.005
12379-peC1 1.258
12389-peC1 1.305
12467-peC1 1.219
12468-peC1 1.132 1.100 -0.032
12469-peC1 1.215
12478-peC1 1.186 1.164 -0.022
12479-peC1 1.228 1.181 -0.047
12489-peC1 1.257
13467-peC1 1.184
13468-peC1 1.109
13469-peC1 1.250
13478-peCI 1.172
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Table 4.9 (Cont.)

OV-101
Isomer Predicted Observed Residual

13479-peCI 1.217
13489-peC1 1.287
23467-peC1 1.292 1.271 -0.021
23468-peCI 1.207
23469-peCi 1.196
23478-peC1 1.281 1.258 -0.023
23479-peC1 1.188
23489-peCi 1.236 1.237 0.001
123467-heC1 1.581 1.540 -0.041
123468-heC1 1.495
123469-hed 1.602
123478-heC1 1.566 1.542 -0.024
123479-heC1 1.587
123489-heC1 1.667
123678-heC1 1.513 1.554 0.041
123679-heC1 1.623
123689-heC 1.588 1.604 0.016
123789-heC1 1.694
124678-heC1 1.517 1.453 -0.064
124679-heC1 1.550
124689-heCi 1.520 1.494 -0.026
134678-heC1 1.474 1.454 -0.020
134679-heC1 1.580
234678-heC1 1.606 1.603 -0.003
1234678-hpCI 1.933 1.998 0.065
1234679-hpC1 2.013
1234689-hpC1 1.983 2.061 0.078
1234789-hpC1 2.086
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Condusions

The retention behavior for the isomers of the polychlorinated dibenzofurans

was successfully modeled for six different data set. reflecting five separate

chromatographic stationary phases. The models selected to represent retention

behavior were statistically valid and correlated highly with observed data.

Descriptors employed were topological, electronic, and geometrical as well as the

atom-based descriptors which were first used in Chapter 3 of this thesis. The

statistical problem of non-linearity was addressed, analyzed and solved for the

OV-101 data set. A comprehensive outlier detection scheme involving two different

methods, DDG and RRA, was utilized and outliers were selectively removed from

the modeling process to further enhance the predictability of the models.

Predictions were generated only where appropriate and the final models all passed

internal validation testing. This QSRR study provides retention data where none

existed before and demonstrates the usefulness of this area of research.
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Chapter 5

SUMMARY

This thesis presented research in the area of quantitative structure-retention

relationships. These important relationships allow for the prediction of retendon

behavior of various compounds on both gas and liquid chromatographic stationary

phases of varying polarities. The methodology utilized for the calculations is based

upon the fact that there is a definite relationship between experimentally determined

retention values and the structure of the molecules. The relationships were

developed with linear regression analysis which can relate the retention of a

molecule on a chromatographic column to a series of descriptors which numerically

encode the topology, electronics and geometry of the whole molecule. To further

the process of encoding structural information, a new type of descriptor in the area

of QSRR research was calculated. Atom-based descriptors were employed to

describe the topological, electronic and geometrical environment of a group of

selected carbon atoms only. These descriptors were able to describe the interactions

of small areas of the molecule and were extremely useful in all models. These

models were then used to predict the retention behavior for compounds where no

experimental data existed.

In Chapter 2, Methodology, a description of the parametric approach was

given. Statistical methods such as multiple linear regression analysis, objective

feature selection, outlier detection and model validation techniques were discussed.
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Also presented was an analysis of transformations and how they can be employed in

solving statistical problems. An important aspect of this thesis was the application

of the ADAPT software system and an overview of ADAPT's versatility,

uniqueness, and power was provided.

In the two studies presented, regression models were developed relating

retention behavior to the structural features of 210 polychlorinated dibenzodioxins

and dibenzofurans. These compounds are extremely toxic and very hazardous to

anyone who must handle them. Predictions of retention data instead of experimental

determination is an obvious benefit to this work.

The research in Chapter 3 led to models relating the retention behavior of the

75 polychlorinated dibenzodioxins on five different stationary phases of varying

polarity to structural descriptors. Models with excellent predictive ability were

developed and validated for each stationary phase. The models contained

topological, electronic, geometrical and atom-based descriptors. A statistical

transformation was performed on one data set to enhance the validity and

predictability of the model. As a result predictions of retention values were

presented for isomers where experimental values were not available.

Chapter 4 also utilized the same methodology described in Chapter 2 and

Chapter 3 but for the 135 polychlorinated dibenzofurans for which six data sets were

available representing five different stationary phases. Excellent models were

developed for all data sets. The statistical problem of non-linearity and non-constant

variance was analyzed, discussed and overcome with a transformation of the

dependent variable. As with Chapter 3, topological, electronic, geometrical and

atom-based descriptors were employed in the final models. Predictions for all data

sets were presented.
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The work presented in this thesis shows the ability of QSRR and the

parametric approach to chemical problem solving. Computer-based techniques are

critical to this area of research. The relationships developed here with the aid of

computers are only a small portion of those currently existing for other compounds.

The future goal of this research is to develop adequate relationships to model

retention behavior for a much broader range of compounds.


