
p _ _ _ _ _ Carnegie-MellIon University
___ ~ SoftwareEngineeringInstitute___

-n Assurance of Software Quality
CO

Curriculum Module SEI-CM-7-1.1 (Preliminary)

Iu I

JWN 0 4 f991

p N D
W O y ,e N, 

p ~ l c r l c w

UNinie

91-0084

02



Assurance of Software Quality

SEI Curriculum Module SEI-CM-7-1.1 (Preliminary)

July 1987

* - -J *-j.,. ..

Bradley J. Brown
Boeing Military Airplane Company

_Carnegie Mellon University
SSoftware Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.



This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

RevIew and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN,Capt, USAFSEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides aocess to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Atb: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Infornation Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder,



Assurance of Software Quality

Contents
Capsule Description 1
Philosophy 1

Objectives 1
Prerequisite Knowledge 2
Module Content 3

Outline 3
Annotated Outline 3

Teaching Considerations 11
Exercises 11

Bibliographies 13
Books 13
Papers 13

SEI-CM-7-1.1 (Preliminary) iii



Asurance of Software Quality
Module Revision History

Version 1.1 (July 1987) format changes for title page aid front matter
Version 1.0 (April 1987) original version

iv SEI-CM-7-1 .1 (Preliminary)



I

Assurance of Software Quality

Capsule Description fled requirements.

A module on Assurance of Software Quality is re-
This module presents the underlying philosophy and quired in addition to the other modules treating soft-
associated principles and practices related to the as- ware development because of the unique functional
surance of software quality. It includes a description role inherent in the assurance of software quality.
of the assurance activities associated with the phases Most of the activities and functions in the software
of the software development life-cycle (e.g., require- development process are product oriented and, as
ments, design, test, etc.). such, are nearly isolated from other activities and

functions in the software development process. As-
surance of software quality, on the other hand, is a
process oriented function which is inherently in-

Philosophy volved with every activity and function of the soft-
ware development process.

I This module presents the concepts underlying the as-
surance of software quality as a function of the soft-
ware development process. Specifically, this mod-
ule provides: Objectives

1. a basic understanding of the concept of qual-
ity as it relates to software A student who has worked through this module

2. an explanation of the concept of software should be able to:
quality assurance as it relates to the software 1. explain the concept of assurance of software
development process quality, and discuss the relationship of soft-

and government ware quality assurance to the phases of the3. an overview of the industry sofwargdeelomenmprces

standards related to software software development process

4. an examination of processes related to soft- 2. discuss methods related to assurance of qual-
ware defect reporting, resolution, and anal- ity of software products
ysis 3. describe the concept of traceability, identify

5. an explanation of requirements traceability traceable products, and discuss schemes for

and correlation, and the use of traceability to implementing and using traceability
demonstrate of satisfaction of requirements 4. define the characteristics of software non-

6. an examination of methods used to docu- conformance reporting, identify related in-

ment assurance activities formation analysis, and discuss non-
conformance resolution including corrective

7. an examination of the social factors involved action as to the cause of the non-
in influencing the actions of persons despite conformance
an adversarial relationship 5. demonstrate awareness of the social factors

This module provides the concepts underlying the predominant in system non-conformance
development, implementation, and maintenance of a resolution and ccrrective action, and know
software quality assurance progia.n which assures how to achieve cooperatior in spite of an ad-
that the process used in the development of software versarial relationship
results in a product which complies with the speci- 6. identify the components of software docu-

SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

mentation and related data, and specify con- 7. basic statistical methods
trol mechanisms for achieving the appropri- 8. technical communication, including interper-
ate quality sonal and writing skills

7. be familiar with project, industry, and gov-
emmental standards, and understand their re-
lationship to the software development proc-
ess

8. discuss the components of a software quality
assurance program, and understand how to
align those components to a software devel-
opment program with allowance for size,
complexity, and other constraining factors
associated with the program

9. demonstrate awareness of the social factors
involved in implementing and maintaining a
software quality assurance program

Since the actions associated with the assurance of
software quality are highly dependent on the charac-
teristics of the underlying software development pro-
gram, this module cannot provide individual meth-
ods related to implementation or maintenance of a
software quality assurance program. Instead, this
module provides the concepts which serve as the
basis for assurance of software quality and which
provide the general knowledge required to develop
specific software development project assurance
methods.

Prerequisite Knowledge

Since the assurance of software quality is concerned
with assuring the quality of the entire software de-
velopment process, a general knowledge of the soft-
ware development process is necessary to under-
stand the relationship of software quality assurance
functions to their associated software development
functions. The minimum required knowledge
should include a basic knowledge of:

1. software requirements definition and repre-
sentation

2. software design methods and resulting docu-
mentation and data, specifically including
maintenance and enhancement methods

3. software code representations and con-
straints

4. inspection, waikthrough, review, and audit
conduct

5. test methods, including test case assessment

6. configuration management and configuration
control

2 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

Module Content

Outline VIII. Corrective Action as to Cause
1. Identifying the Requirement for Corrective

I. Introduction Action
1. The Philosophy of Assurance 2. Determining the Action to be Taken
2. The Meaning of Quality 3. Implementing the Corrective Action
3. The Relationship of Assurance to the Software 4. Documenting the Corrective Action

Life-cycle 5. Periodic Review of Actions Taken
II. Tailoring the Software Quality Assurance IX. Traceability

Program X. Records
I. Reviews XI. Software Quality Program Planning

1. Walkthrough XII. Social Factors
2. Inspection 1. Accuracy
3. Configuration Audits 2. Authority

IV. Evaluation 3. Benefit
1. Software Requirements 4. Communication

2. Preliminary Design 5. Consistency

3. Detailed Design 6. Retaliation

4. Coding and Unit Test
5. Integration and Testing

6. System Testing
7. Types of Evaluations Annotated Outline

V. Configuration Management . Introduction
1. Maintaining Product Integrity 1. The Philosophy of Assurance
2. Change Management
3. Version Control The concept of Assurance of Software Quality is

based on the principle of establishing good software
4. Metrics engineering practices and monitoring adherence to
5. Configuration Management Planning those practices throughout the software development

life-cycle. This results, to a large extent, in giving
VI. Error Reporting control of the software development process priority

1. Identification of Defect over control of the software product. It must be
2. Analysis of Defect understood that quality cannot be the assigned func-

tion of any one person or organization; rather, it
3. Correction of Defect must be the primary responsibility of every person
4. Implementation of Correction involved in the development of a producL The role

of Software Quality Assurance, then, is to influence5. Regression Testing everyone to perform their function in a quality man-

6. Categorization of Defect ner. The basis for this philosophy is that the consis-
7. Relationship to Development Phases tent use of a quality process will result in a quality

VII. Trend Analysis product.

1. Error Quantity 2. The Meaning of Quality

h 2. Error Frequency A precise definition of quality is not important in
order to understand the concept of software quality

3. Program Unit Complexity assurance. For the purpose of this module, quality
4. Compilation Frequency is the presence of desired characteristics and the ab-

sence of undesirable characteristics in the product or

SEI-CM-7-1.1 (Preliminary) 3



Assurance of Software Quality

process. The preceding statement is not intended to A technical review is a disciplined group process
be a definition of quality for use in all cir- focused toward an extensive examination of a product
cumstances; it provides a basis for understanding or process. It derives a large portion of its efficacy
which is necessary in order to discuss the concept of from the combined expertise of the members of the
software quality assurance. group. A more extensive coverage of this subject can

be found in The Software Technical Review Process
The characteristics whose absence or presence module [Collofello86].
denote quality are completely dependent upon the
situation surrounding each individual product. In 1. Walkthrough
essence, quality is relative. It is conceivable that a A walkthrough is usually an informal, somewhat un-
situation could occur where meeting schedule is Aiwilnehrevi of a sofore ouct un-
more important than whether the item works. In this disciplined, review of a software product; usually
event, timeliness would be more important as a qual- source code Yourdon78].
ity characteristic than would functionality. Al- 2. Inspection
though this may be an extreme example, the moral is
that the actual quality characteristics are dependent An inspection is a formal, disciplined review of all
upon each unique situation, and that quality is not a software products; not just source code [Fagan76],
concrete, immutable concept referring to some un- [Fagan86].
changing characteristic. 3. Configuration Audits

3. The Relationship of Assurance to the Software Final acceptance of a software product is frequently
Life-cycle based on completing a set of configuration audits.

The function of Software Quality Assurance inter- These audits ensure that the product has satisfac-
acts to some degree with each phase of every soft- torily met all of its applicable requirements.
ware development process. Planning should occur a. Functional
in the initial phases of a software project and should
address the methods and techniques to be used in The primary purpose of the Functional Configu-
each phase. A description of every product resulting ration Audit is to ensure that the product that was
from a phase and the attributes desired of each prod- tested to demonstrate compliance with contract
uct should be defined in order to provide a basis for requirements is essentially the same as the prod-
objectively identifying satisfactory completion of uct that will be delivered. Conducting software
the phase. tests frequently takes months or even years, dur-

II. Tailoring the Software Quality Assurance ing which time the software item being tested
may undergo revisions and modifications. The

Program Functional Configuration Audit should ensure

Each software development effort is unique to some that none of these revisions adversely affects the
extent; even though some of the same methods and results of previous tests.
techniques can be used frequently, some differences b. Physical
between projects will almost always exist. Some fac-
tors that have a large impact on the software quality The primary purpose of the Physical Configura-
assurance program are: tion Audit is to ensure that all of the requirements

" schedule requirements of the contract have been satisfied, with special
available budget emphasis on the documentation and data delivery

requirements. This audit usually is performed af-
* technical complexity of the software product ter the Functional Configuration Audit has dem-

" anticipated size of the software product onstrated that the item functions properly.

* relative experience of the labor pool IV. Evaluation

* available resources An evaluation is usually performed by a single indi-
* contract requirements vidual and is intended to ensure compliance with all

These and other factors determine the nature of the applicable requirements for each software product. Al-
software quality assurance program. The initial plan- though evaluation of software products is actually a
ning of the software quality assurance program should software quality control function, it provides informa-
identify how each of these factors will affect the pro- tion regarding the software development process that
gram and determine how the program will be tailored may not be obtained effectively in anv other manner.

The actual evaluation of the software products may beperformed by any organization or individual within the

III. Reviews software development project. The following lists of
evaluations to be performed during each phase of soft-

4 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

ware development are only suggestions. The actual The activities and products of the coding and unit
products to be evaluated should be determined while test phase should be examined throughout the con-
planning the software quality assurance program. duct of this phase. This examination should consist
1. Software Requirements of the following evaluations:

. all revised program plans
The activities and products of the software require- * source code
ments phase should be examined throughout the
conduct of this phase. This examination should • object code
evaluate the following: * software development folders

" software development plan e unit test procedures
" software standards and procedures manual e unit test results
" software configuration management plan e all revised description documents
" software quality program plan e integration test procedures

" Software requirements specification * software test procedure
" interface requirements specification e all revised manuals
" operational concept document 5. Integration and Testing

2. Preliminary Design The activities and products of the integration and

The activities and products of the preliminary design testing phase should be examined throughout the
phase should be examined throughout the conduct of conduct of this phase. This examination should con-

this phase. This examination should consist of the sist of the following evaluations:
following evaluations: e all revised program plans

a. All revised program plans e integration test results

b. software top level design document e all revised description documents
c. software test plan * revised source codec.s•r revised object code

d. operator's manual

e. user's manual e revised software development files
e software test procedures

f. diagnostic manual * all revised manuals
g. computer resources integrated support 6. System Testing

document

3. Detailed Design The activities and products of the system testing
phase should be examined throughout the conduct of

The activities and products of the detailed design this phase. This examination should consist of the
phase should be examined throughout the conduct of following evaluations:
this phase. This examination should consist of the - all revised program plans
following evaluations:

* all revised program plans *sse etrpr" softare tied esigndo t * all revised description documents" software detailed design document rei dso ce o e* revised source code
* interface design document * revised object code
* database design document" softare develnoment i revised software development files

te software product specification" unit test cases
"~~~~ ~ ~ ~ itgaintscae*version description document

integationall manuals
" software test description almnus

* software programmer's manual 7. Types of Evaluations
" firmware support manual The following types of evaluations are based upon
* all revised manuals those found in DOD-STD-2168 Software Quality
* computer resources integrated support docu- Program [DoD87I. Some or all of these evaluations

ment apply to every software product. The software qual-
ity assurance program plan should specify which

4. Coding and Unit Test products are evaluated, and which evaluations are

SEI-CM-7-1.1 (Preliminary) 5



ssurance of Software Quality

performed on dose products. techniques are used, errors seem to be a fact of life.1
" adheren e to required format and documen- Maintaining an effective error reporting system, how-

tati-, standards ever, will help minimize the potential impact of soft-
ware errors. Every software development project* compliance with contractual requirements should establish an error reporting system even if it

" internal consistency consists of notes scribbled on the back of a dinner nap-
* understandability kin. It takes valuable resources to detect each error,

but they are wasted if they must be used to locate anceiitny it indicated dom nts error that had been previously detected.
* consistency with indicated documents

* appropriate requirements analysis, design, An error reporting system should be tailored to the
coding techniques used to prepare item needs of the software development project. However

simple or elaborate the system may be, it should ad-
* appropriate allocation of sizing, timing dress the following areas:

resores
" adequate test coverage of requirements 1. Identification of Defect

" testability of requirements Each defect identified should be described in clear,
* consistency between data definition and use precise terms. This description should usually be of

the behavior of the system, although in some cases it
0 adequacy of test cases, test procedures may be more efficient to describe the actual defect
* completeness of testing in the software producL In any case, the description
• completeness of regression testing should be written to be understandable to persons

somewhat unfamiliar with the specific software
1. Configuration Management product, and to be understandable after time has

Software configuration management encompasses the passed. If appropriate care is taken in documenting
disciplines and techniques of initiating, evaluating, and errors, valuable data will be available in the futurecontrolling change to software products during and af- for analysis which could identify improved methods

ter the development process. It emphasizes the impor- of developing or maintaining the software product.

tance of configuration control in managing software 2. Analysis of Defect
production. The Software Configuration Management
module (TomaykofS] provides detailed information The severity of the defect and the difficulty of cor-
regarding the principles and procedures of software recting the defect should be documented to provide a
configuration managemenL An effective configuration basis for determining resource allocation and
management should control changes for all software scheduling defect correction priorities. Errors are
products on a software development project, including frequently detected faster than they can be resolved,
specifically documentation, test reports, and software and performing an initial defect analysis can provide
error reports. Software configuration management pro- valuable information to project management for es-
vides the foundation for all of the rest of the activities tablishing priorities. Typically, the analysis can be
which occur during software development, performed much more rapidly than can identifying

the actual correction and therefore should be consid-
Although the need for a formalized methodology for ered as an independent operation within the error
software configuration management may not be ap- reporting system.
parent on smaller projects, the need quickly becomes
crucial to success as the project grows even slightly in 3. Correction of Defect
size. A team of three people may be able to maintain Documenting the correction of the defect is impor-
an oral history of the project, a feat which is patently tant to maintain proper configuration accounting.
impossible for a team of thirty people. The description of the correction should include:

The functions of software configuration management * a narrative description of the correction
that provide a basis for assuring software quality are: * a list of program units affected

1. Maintaining Product Integrity e the number, revision, and sections of all docu-

2. Change Management ments affected
3. Version Control e any test procedures changed as a result of the

correction.

4. Metrics

5. Configuration Management Planning 4. Implementation of Correction

/1. Error Reporting Updates to software are frequently performed in
blocks after a baseline has been established. What

Unfortunately, no matter what software engineering this essentially means is that error corrections are

SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

identified by working with an engineering copy of which have been baselined, and even more complete
the software, and then are incorporated en masse for products which have been delivered to a cus-
into the official baselined version of the software tomer.
after a certain number of errors have been corrected.
Identification of which error was corrected in which VII. Trend Analysis
version of softw: . is important. Recording the im- Analysis of trends in the performance of work can help
plementation of the correction makes this possible. to avoid the development of a non-conforming product.
The description of the implementation should in- Trend analysis is a passive activity in that it provides
clude: information indicating that corrective actions maybe

" the version in which the correction was incor- necessary, and in some cases may even suggest appro-
porated priate corrective actions, but does not affect the soft-

" the authority for incorporating the correction. ware development process itself. Essentially, trend
analysis essentially refers to a form of data analysis

5. Regression Testing where time is represented as one of the elements of a
report. The data that comprise the other elements of

Retesting the affected function is necessary after the the trend report determine the nature and ultimate util-change is incorporated since as many as 20 percent ity of the report. Trend reports are extremely phase

of all corrections result in additional errors. Fre- de n of th t areport s a e wl pe

quently, additional functions will need to be tested dependent in that a report which is valuable while pre-

to ensure that no latent defects were induced by the paring requirement specifications may be useless dur-

correction. In the event that latent defects were in- ing system testing. Some of the possible report types

duced by the correction, one method of resolution are:

would be to treat them as new errors and initiate a 1. Error Quantity
new error report. The description of regression test-
ing should include: Error quantity reports frequently plot the quantity of

errors versus the time of initiation and the time of
* a list of test paragraphs/objectives retested closure. This report can be based on cumulative

" the version of software used to perform quantity or instantaneous quantity. Separating the
regression test errors into major functions or by responsible persons

" indication of successful/unsuccessful ac- can be useful in locating the source of unusual quan-
complishment of test. tities of errors. Statistical process control methods

can even be used to provide upper and lower
6. Categorization of Defect bounds, or critical limits, which can identify

Errors can frequently be grouped into categories whether further training of the responsible persons is

which will allow future data analysis of errors en- necessary or beneficial.

countered. The most efficient time to categorize 2. Error Frequency
them is usually as they are resolved while the infor-
mation is still fresh. Possible classifications for er- Error frequency charts report the quantity of errors
ror categorization include: per unit of software product. The unit used may be a

section of a requirements specification, a test proce-
Serror type-requirements, design, code, test, dure paragraph, a source code program unit, or any
etc. other objectively identifiable component of a soft-

" error priority-no work around available, ware software. The utility of an error frequency
work around available, cosmetic. report is based on the Pareto Principle of non-

* error frequency-recurring, non-recurring. homogeneous error distribution. If errors are non-
homogeneously distributed in the product to be ex-

7. Relationship to Development Phases amined, then units with high detected error fre-

The software error reporting system should be de- quencies will probably also have a larger than nor-
signed to change in complexity as the complexity of mal number of latent errors.

the software development project changes. The con- 3. Program Unit Complexity
figuration control requirements for the products of
each phase increase with the maturity of that phase Various metrics have been developed for measuring
until, at phase completion, each product is placed the relative complexity of software source code and
under rigid change control with requested changes have been verified to have some correlation to error
requiring a specified authorization prior to imple- frequency, e.g., McCabe's cyclomatic complexity
mentation. The software error reporting system metric, or Halstead's information metric. A com-
should also change in complexity to match the pro- plexity metric which has demonstrated a correlation
gram; the system should be simple for products un- to error frequency could be used in the early phases
der engineering control, more complete for products of a project to identify units of unusually high com-

plexity as candidates for simplification through

SEI-CM-7-1.1 (Preliminary) 7



Assurance of Software Quality

redesign. greatest frequency. It might be desirable to estab-
lish a lower limit below which corrective action is

4. Compilation Frequency not required.

Compilation frequency is an example of a report c. Error magnitude
which, on the surface, may appear to be trivial.
DeMarco, however, indicates that for whatever A standard threshold can also be established on
reason---and there are identifiable reasons--program the basis of error magnitude. This would focus
units which are compiled frequently during design the corrective action resources on the errors
are also compiled frequently during integration and which have the largest impact on the project. An
system test. Therefore, a unit which has been com- example would be to set a requirement that, after
piled three standard deviations above the mean num- the start of system test, corrective action be man-
ber of compilations would be a prime candidate for datory for all errors which halt system test con-
evaluation as to the reason for the unusually high duct. The difficulty with a system of this type lies
compilation frequency. in the inherent subjectivity of determining error

VIII. Corrective Action as to Cause magnitude.
d. Statistical sampling

The purpose of a corrective action system is to

eliminate recurring errors by correcting the problem A statistical sample of all errors could be selected
that caused the errors. Identifying the root cause of at random for required corrective action. The
recurring defects is frequently difficult, but unless a benefit of this method would be reduction in
concerted action is taken to correct the root cause that resource allocation required over that of compre-
was identified, the effort is in vain. An organized cor- hensive corrective action. This benefit may be
rective action syster, should provide for the following: false, however, in that the number of errors not

addressed and thus recur may require more
1. Identifying the Requirement for Corrective resources than would a more focused corrective

Action action system.

The initial activity of any corrective action system is 2. Determining the Action to be Taken
to determine when a corrective action would be
beneficial. Several methods are available for estab- Determining the action to be taken to correct the
lishing standard thresholds for non-conformances root cause of a recurring defect requires disciplined
prior to a required corrective action. Some of these analysis. Factors such as resource availability and
methods are as follows: anticipated political resistance should be taken into

account during the assessment of the action to be
a. Comprehensive taken. Possible actions could consist of additional

Performing comprehensive corrective action on training for the individuals involved, an improve-

every non-conformance is probably the simplest ment in unit test methods, or even scrapping the unit

method. No real decision needs to be made other and starting over from scratch.

than whether it is a non-conformance or not. The 3. Implementing the Corrective Action
main disadvantage of this method is the inappro-
priate allocation of resources. Not all non- Implementing the identified corrective action is of-
conformances are of the same magnitude and not ten the responsibility of someone other than the per-
all non-conformances have a recurring root cause; son who identified the action. Proper coordination
they are frequently non-recurring minor errors. should exist to ensure that the people involved un-
However, depending on the criticality of the proj- derstand the purpose and expected benefit of im-
ect, it may be desirable to at least examine every plementing the corrective action.
error for potential corrective action. 4. Documenting the Corrective Action

b. Error frequency A disciplined method of documenting corrective ac-

The frequency of errors within a unit of a soft- tions is necessary to ensure that the corrective action
ware project may be used as a basis for a standard system is effective. This method should ensure that
threshold. qtatistical process control techniques the errors for which corrective action is required are
can be used to determine the number of errors identified, that the action to be taken is recorded,
permissible before requiring corrective action. A and that the implementation of the corrective action
simpler method, however, is to list the units in is documented. Provisions should also be consid-
descending order by frequency of defects, then ered for establishing an end date for corrective ac-
start from the top of the list and work down. This tions of a temporal nature.
method ensures that corrective action resources
are always focused on the errors having the 5. Periodic Review of Actions Taken

8 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

No one likes to perform corrective action, and if the function, assurance is not concerned with the software
identified corrective action is not embedded into an product per se, but with the process which produces
existing system, it is easy to fail to comply. In order that product. Since the software development process
for a corrective action system to be effective, it must is composed of humans, the interaction with that proc-
ensure that continued corrective action is maintained ess must therefore be through humans. Social factors
through a system of periodic review. Once the ac- are those concepts that must be considered when inter-
tion has been implemented, provisions should exist acting with humans in the role of assuring software
to review the action after a week or maybe a month quality.
has passed to ensure that the individuals responsible
for performing the action understand their responsi- 1. Accuracy
bilities and are maintaining the corrective action. Accuracy of data is of paramount importance when

IX. Traceability presenting any information as a result of a software
quality assurance activity. Credibility is difficult to

The principle of traceability is that every software achieve and can easily be lost through an inadvertent
product should be traceable back to the product from misstatement or a minor miscalculation. One of the
which it was derived. With effective traceability, it most frequent defenses used to avoid changing the
should be possible to identify the requirement or design status quo, and unfortunately a very effective one, is
decision from which each algorithm in the software that the data used to show the need for the change is
product was derived. Test procedures should be trace- inaccurate. This defense is often taken to the ex-
able to the requirement or design for which they dem- treme where a mistake in a presentation years ago is
onstrate product compliance. Traceability provides for used as a basis for saying that a current report is
ease in determining phase completion and product inaccurate. Under the pressure of a management
completeness. It supports the accomplishment of re- review there is no time to demonstrate whether the
views and evaluations, and provides for increased con- data is correct or not, and the credibility of the
fidence in the accuracy of requirements verification, organizations/people involved in the eyes of the
Also, effective traceability can assist in ensuring that management making the decisions is the determin-
test procedures are updated whenever errors are dis- ing factor in what those decisions are. Even though
covered which were undetected by the applicable pro- reports may frequently have to be prepared under a
cedure. tight schedule, always take time to ensure the data is

X. Records accurate.
2. Authority

Maintaining an effective software quality assurance
program requires a disciplined method of handling the Individuals involved in assuring software quality
records processed-software error reports, product may be designated as having authority in some corn-
evaluation checklists, configuration records, review re- party procedure or policy statement, but the authority
ports, corrective action records, etc. Each record necessary to influence changes despite an adver-
should have a means of unique identification to ensure sarial relationship can rarely be enforced through
that it can be conveniently referenced. Retention re- management action. If the individuals involved are
quirements should be established for each type of not competent to influence changes or the organi-
record to ensure that they are stored in the appropriate zation involved has insufficient credibility to gain
manner and for the appropriate time necessary depend- management support-especially adversarial man-
ing on their criticality. agement support-then rarely can any amount of

high-level management direction or corporate policy
Xl. Software Quality Program Planning avail.

Before starting a software project, and then throughout Each person has the authority that they are capable
all phases of the project, planning should be done to of assuming and for which they are willing to be
ensure that the needs of the project are addressed. responsible. Authority is gained through demon-
Every technique, method, record, and system should be strating one's competence to the persons whom one
established as necessary to support the project and then is interested in influencing. This competence is not
discontinued when no longer necessary. A technique just a matter of credentials, but a matter of whether
that can be helpful in planning a software quality as- the changes are really beneficial to the company as a
surance program for a new project is to use an old plan whole or self serving to the person interested in get-
or a data item description for a plan as a checklist to ting them implemented.
ensure that all possible items are considered in the new
plan. 3. Benefit

XII. Social Factors An effective program for assuring software quality

Social factors play an important role in the application will provide an overall benefit even though it will
of quality assurance in a real world environment. As a occasionally create temporary hardships for individ-

SEI-CM-7-1 .1 (Preliminary) 9



Assurance of Software Quality

ual persons or organizations. It is important to em-
phasize the benefits which will result from each ac-
tion. It is also important that persons responsible for
software quality assurance be alert for opportunities
to help individual persons and organizations when-
ever possible. If the process of collecting data to
prepare a report results in the compilation of data
necessary to produce certain system documentation,
it might be beneficial to provide that data to the
organization responsible for preparing the documen-
tation, thus saving Jiem duplication of effort. It is
important, however, to maintain objectivity so that
effective evaluations can be performed.

4. Communication

Assurance of Software Quality consists essentially
of communicating information. Every evaluation or
verification performed essentially consists of assimi-
lating information and providing feedback as a result
of that information; in other words, communication.
Many forms of communication are used, but the pri-
mary forms are speech and writing. It is important
that people who are responsible for assuring soft-
ware quality be proficient at communication.

5. Consistency

It is important that actions taken and decisions made
be consistent. If direction changes frequently, for
whatever reason, the persons responsible for follow-
ing that direction become confused and quickly
learn not to follow any direction unless it is what
they want. No procedure or policy regarding soft-
ware quality assurance should be set in place unless
the means and the desire exist to ensure that it is
adhered to consistently and for as long as is neces-
sary. Establishing standards and requirements and
then allowing them to be disregarded or ignored
damages the credibility of all standards and require-
ments.

6. Retaliation

A person responsible for assuring software quality
will frequently encounter personal abuse merely be-
cause of the responsibilities of the position. Many
opportunities are available to that person to retaliate
due to the inherent responsibilities of the position.
Although it is almost always difficult, retaliation
should always be avoided. Personal vendettas
usually result in tremendous losses to the company
or project and vastly outweigh whatever personal
satisfaction is gained. If revenge is frequently
sought, the persons involved will soon lose whatever
credibility they have and in so doing will destroy
their value to the company.

10 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

*Teaching Considerations

Exercises record retest activities accomplished to demonstrate
successful correction of the defect. The system

These exercises will give the student a greater under- should also provide for error status reporting. Addi-

standing of the concepts underlying the assurance of tional refinements can be included, such as identifi-

software quality. Although they can be accomplish- cation of errors in all software-related products (e.g.,

ed individually, all of these exercises will benefit by manuals, specifications) identification of the root

association with a non-trivial software development cause of the defect, and corrective actions to

project that involves many students and that demon- eliminate the root cause.
strates good software engineering principles. If the system is implemented with a software devel-

Reviews. Have the student establish a system for opment project, the student should prepare a sum-

performing walkthroughs and/or inspections on soft- mary report a suitable amount of time after the sys-

ware products. The system should define what prod- tem is in use, describing the difficulties encountered

ucts are to be examined and should include criteria in implementing the system and the location of

for completing the reviews. The records used to suspected inaccurate data within the system. If grad-

document accomplishment of reviews should be de- ing pressure or other motivational influences are

veloped or described. The system should include placed upon the software development project for

provisions for identifying non-conformances and schedule accomplishment, etc., the student should
possibly even reassuring them. A method should ex- notice an associated influence on the accuracy of the

ist to verify objectively the status of review conduct software error data.
and to ensure that all applicable products are re- Trend Analysis. Have the student develop a system
viewed. The review of revisions and updates should for data collection and analysis which will detect
be addressed. trends in the performance of work which could lead

Evaluations. Have the student prepare an evalua- to a non-conforming product. The method used to
tion plan for a single software product, e.g., a Soft- verify the usefulness of the analysis in regard to cor-
ware Requirements Specification. This plan should relation to software non-conformances should be ad-
address methods for objectively verifying the dressed.
presence or absence of the desired characteristics of An alternative would be to have the student identify
the product. The forms and records used to docu- various methods of data analysis which could be
ment accomplishment of the review should be devel- used for trend analysis. Emphasis could be placed
oped or described. Non-conformances should be ad- on using data other than software error data as the
dressed identified and possibly corrected. basis of the analysis.

Configuration Management. Have the student de- Corrective Action. Have the student establish a
scribe a system which would ensure that product in- methodology for determining the threshold for per-
tegrity and change control are maintained throughout missible non-conformances prior to required correc-
the software development process. This method tive action. A description of how non-conformances
should ensure that the appropriate change authoriza- are identified and tracked should be included. The
tion has been received prior to implementing the method should be objective, repeatable, and verifi-
change during each applicable phase of the software able. The student should also develop a way of veri-
development project. If desired, this system could fying that the proposed method correlates in some
be restricted in application to source code to limit way with defect frequency.
the magnitude of the system. This system should
include records or forms used to document any veri- As a more advanced exercise, have the student de-
fication activities, velop the entire corrective action system. Reports

and forms should be prepared with procedures de-
Software Error Reporting. Have the student de- scribing their initiation and use. The system should

* velop a system for collecting and reporting software include provisions for evaluating its relative efficacy
error data. The system should accurately identify and should provide supporting data for a costvbenefit
the software error, record the analysis of the cause of analysis.
the error, document the correction of the defect, and Traceability. Have the student develop a standard.

SEI-CM-7-1.1 (Preliminary) 11



Assurance of Software Quality

method for establishing traceability within a soft-
ware development project's documentation and
products. The method should include provisions for
discrete identification of requirements and correla-
tion of requirements to their applicable references.
The method should provide for independent verifi-
cation of the accuracy of the various data products.

Records. Have the student develop a system for
identifying and controlling of records used for as-
surance of software quality. The system should en-
sure that the records are complete and accurate and
should address retention requirements and storage.

Software Quality Program Plan. Developing an
entire Software Quality Program Plan is an am-
bitious exercise, however, it could be accomplished
as an incremental, multi-semester, team project. The
initial team could develop the framework for the en-
tire plan and the detailed procedures for the Require-
ments Analysis phase. Successive teams could then
complete the detailed procedures for each of the suc-
cessive phases. Attention should be given configu-
ration management of the Software Quality Program
Plan document as a software product. Correlation
between the SQPP and the associated Software De-
velopment Plan, Software Configuration Manage-
ment Plan, and Software Test Plan should be main-
tained to prevent conflicting provisions or unneces-
sary duplication of provisions.

Human Factors. Have the student observe an on-
going software development project for the effect of
human factors on the project's productivity. Have
the student conduct interviews and collect data (such
as memos) that indicate the influence of human fac-
tors on the project. A report should be prepared de-
scribing instances observed; if possible, have the stu-
dent evaluate possible methods of reducing adverse
effects caused by human factors. A hint is that
human factors can also be referred to occasionally as
politics.

12 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

*Bibliographies

Books Papers

DeMarco78 Adrlon82
DeMarco, T. Structure Analysis and System Adrion, W. R., M. A. Branstad, and
Specification. Yourdon Press, 1978. J. C. Chemiavsky. Validation, Verification, and

Testing of Computing Software. Computing Surveys
DeMarco82 14, 2 (June 1982), 334-367.
DeMarco, T. Controlling Software Projects. Your- Abstract: Software quality is achieved through the
don Press, 1982. application of development techniques and the use

This book is possibly one of the best treatises on the of verification procedures throughout the develop-

subject of metrics, even though it never actually ment process. Careful consideration of specific

uses the term metric. It also provides a realistic quality attributes and validation requirements leads

perspective on the psychology of software project to the selection of a balanced collection of review,
maneienth analysis, and testing techniques for use throughoutmanagement, the life cycle. This paper surveys current verifi-

cation, validation, and testing approaches and dis-
Evans84 cusses their strengths, weaknesses, and life-cycle
Evans, M. W. Productive . Software Test usage. In conjunction with these, the paper de-
Management. John Wiley, 1984. scribes automated tools used to implement valida-

tion, verification, and testing. In the discusssion of
Machiavelli1 3 new research thrusts, emphasis is given to the con-
SNctinued need to develop a stronger theoretical basisMachiavelli, N. The Prince. Bantam Books, Inc., for testing and the need to employ combinations of
1981. First published in 1513. tools and techniques that may vary over each appli-

This book presents several excellent concepts re- cation.
lated to influencing people in spite of an adverse
relationship. It was written to explain how a prince Boger85
should control his principality, but with only a Boger, D. C., and N. R. Lyons. The Organization of
minor change in view point, it also provides a the Software Quality Assurance Process. Data Base
remarkably incisive commentary on interpersonal (USA) 16, 2 (Winter 1985), 11-15.
and interorganizational relationships.

Abstract: This paper discusses and analyzes ap-
Myers79 proaches to the problem of software quality as-

surance. The approaches offered in the literatureMyers, G. J. The Art of Software Testing. John usually focus on designing in quality. This can be aWiley, 1979. productive approach, but there are also benefits to

This is a landmark book on the principles of soft- be gained by establishing an independent quality
ware testing. The self-assessment given in the assurance (QA) group to review all aspects of theforeword of the book provides real enlightenment software development process. This paper dis-
regarding the difficulty of developing comprehen- cusses the organization of such a group using the
sine test casesd function of an operations auditing group as a

model.

Quirk85 Bowen80
Ver#fcation and Validation of Real-time Software. Bowen,W. J. Quirk, ed. Springer-Verlag, 1985. . Bowen, J. B. Standard Error Classification to Sup-

port Software Reliability Assessment. Proc. AFIPS

Yourdon78 1980 National Computer Conference. May, 1980.. Yourdon, E. Structured Walkthroughs. Yourdon Abstract: A standard software error classification
Press, 1978. is viable based on experimental use of different

schemes on Hughes Fullerton projects. Error clas-
srcation schemes have prolifereated independently
due to varied emphasis on depth of casual

SEI-CM-7-1.1 (Preliminary) 13



Assurance of Software Quality

traceability and when error data was collected. A Abstract: This paper is a personal account of soft-
standard classification is proposed that can be ap- ware errors and how they could have been avoided.
plied to all phases of software development. It in- It provides detailed data that supports the impor-
cludes a major casual category for design errors. tance of reliable software techniques. The data
Software error classification is a prerequisite both represents 73 errors that occurred in afile manage-
for feedback for error prevention and detection, and ment system and its related interface programs.
for prediction of residual errors in operational soft- These errors fall into 13 groups. The relations be-
ware. tween each group and violation of software engi-

neering ideas supports the major conclusions that;

Buckley86 programmers should record and analyze their er-

Buckley, F. J. The Search for Software Quality, or rors, and software engineering ideas reduce errors.

One More Trip Down the Yellow Brick Road. ACM ColofeIlo5
Software Engineering Notes 11, 1 (1986), 16-18. CoIlofello85Colofello, J. S., and L. B. Balcom. A Proposed

Abstract: This paper takes a look at the current Causative Software Error Classification Scheme.
expressions of the need for increased Software Proc. 1985 AFIPS National Computer Conference.
Quality, and provides a transform for a portion of it AFIPS, July, 1985, 537-545.
into Software Productivity. Some of the quick re-
sponses to these concerns are examined and dis- Abstract: Various tools, techniques, and method-
carded, and an overall management approach to ologies have been developed by software engineers
meet these needs is prescribed, over the last 15 years. A goal of many of these

approaches is to increase product reliability andA lighthearted view of the pitfalls of a naive ap- reduce its cost by decreasing the number andproach to software quality assurance. Bucley severity of errors introduced by the software devel-

gives an almost cynical view of the role of software o e ro ros T e oll e software error
quality assurance in relation to a software devel- opment process. The collection of software error
qumet psurane idata would appear to be a natural means for vali-
opient program, dation of these software engineering techniques.

Yet, current software error collection efforts have
Chusho83 had limited success in this area. A new causative
Chusho, T. Coverage Measure for Path Testing software error classification scheme is introduced
Based on the Concept of Essential Branches. J. Info. in this paper to refine these data collection efforts
Processing 6,4 (1983), 199-205. so that they can be better used in software engi-

neering validation studies.
Abstract: A new coverage rate based on essential
branches (full coverage of all branches) is proposed Collofello86
for efficient and effective software testing. The con-
ventional coverage measure for branch testing has Collofello, J. S. The Software Technical Review
defects such as overestimation of software quality Process. Curriculum Module SEI-CM-3.1.0, Soft-
and redundant test data selection, because all ware Engineering Institute, Carnegie-Mellon Uni-
branches are treated equally. In order to solve versity, Sept., 1986.
these problems, concepts of essential branches and
nonessential branches for path testing are intro- Day85
duced. Essential branches and nonessential ones Day, R., and T. McVey. A Survey of Software
are called primitive and inheritor arcs, respectively, Quality Assurance in the Department of Defense
in a control flow graph of a tested program. During Life-Cycle Software Support. Proc. IEEE

A reduction algorithm for transforming a control Conf. on Software Maintenance. IEEE Computer
flow graph to a directed graph with only primitive Society, Nov., 1985, 79-85.
arcs is presented and its correctness is proved.
Furthermore, it is experimentally and theoretically Abstract: This paper summarizes the authors' re-
ascertained that the coverage measure on this search into the state-of-the-practice of software
inheritor-reduced graph is nearly linear to the num- quality assurance (SQA) in software organizations
ber of test cases and therefore suitable for software throughout the Department of Defense (DoD). In-
quality assurance. formation was obtained through personal visits to a

limited number of software facilities and by utilizing

Clamp178 a SQA questionnaire that was mailed to 27 DoD
software organizations. Twenty questionnaires

Ciampi, P. L. Software Error Patterns-A Personal were returned from Army, Navy, Marine Corps, and
Case History. Proc. 3rd USAIJAPAN Computer Air Force organizations involved in the Life Cycle
Conference. Oct, 1978, 176-181. Software Support (LCSS) process. The survey de-

veloped information regarding such topics as:

14 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

staffing; personnel qualifications; quality standards fixed sample size testing and sequential testing are
used; SQA responsibilites; error data collection; considered.
adequacy of existing documentation; staff composi-
tion; distribution of SQA effort; and workforce mix. Fagan76
In addition, a list of SQA "Lessons Learned" was Fagan, M. E. Design and Code Inspections to
developed from comments made by DoD quality
managers. The results of this study indicate a wide Reduce Errors in Program Development. IBM Sys-
variance in the application of SQA within the DoD. tems J. 15, 3 (1976).

This is the landmark paper on software inspections.
DoD87 It presents the basic methodology for a disciplined
Defense System Software Quality Program. U.S. approach to identifying and correcting defects
Army Electronics Research and Development Corn- through a visual examination of the product.
mand, 1987.

This Military Standard provides direction for estab- Fagan86

lishing software quality assurance programs for all Fagan, M. E. Advances in Software Inspections.

sponsored software development contracts spon- IEEE Trans. Software Eng. SE-12, 7 (1986).
sored by the Department of Defense. Abstract: This paper presents new studies and ex-

periences that enhance the use of the inspection
DownsS85 process and improve its contribution to develop-
Downs, T. A Review of Some of the Reliability Is- ment of defect-free software on time and at lower
sues in Software Engineering. J. Electrical and costs. Examples of benefits are cited followed by

Electronic Eng. 5, 1 (March 1985), 36-48. descriptions of the process and some methods of
obtaining the enhanced results.

Abstract: This paper commences with a detailed Software Inspection is a method of static testing to
discussion of the problems and difficulties associ- verify that software meets its requirements. It en-
ated with software testing. It is shown that large gages the developers and others in a formal process
software systems are so complex that software com- of investigation that usually detects more defects in

h panies are obliged to terminate the testing process the product-and at a lower cost--than does ma-
and release such systems with every expectation chine testing. Users of the method report very sig-
that the software still contains many errors. The nificant improvements in quality that are accom-
possibility of using statistical models as an aid to panied by lower development costs and greatly
deciding on the optimum time to release software is reduced maintenance efforts. Excellent results have
discussed and several such models are described. been obtained by small and large organizations in
The idea of "disciplined" programming as a means all aspects of new development as well as in mainte-
of reducing software error content is also de- nance. There is some evidence that developers who
scribed, and ancillary topics such as formal specf- participate in the inspection of their own product
cations and program proofs are discussed. Other actually create fewer defects in future work. Be-
concepts, such as fault-tolerant software and soft- cause inspections formalize the development proc-ware complexity measures, are also briefly de-warecomlexty masuesarealsobriflyde-ess, productivity and quality enhancing tools can be
scribed. Finally, the implications of the fact that adopted more easily and rapidly.
hardware is cheap and reliable and software is ex-
pensive and unreliable are discussed. It is argued
that many designs currently in use defy engineering Fay85
common sense. Fay, S. D., and D. G. Holmes. Help! I Have to

Update an Undr.umented Program. Proc. IEEE
Duran8l Conf. on Software Maintenance. Nov., 1985,
Duran, J. W., and J. J. Wiorkowski. Capture- 194-202.
Recapture Sampling for Estimating Software Error Abstract: This paper discusses a method for docu-
Content. IEEE Trans. Software Eng. SE-7, 1 (Jan. menting and maintaining an undocumented pro-
1981), 147-148. gram. The paper provides guidance t" junior per-

Abstract: Mills' capture-recapture sampling meth- sonnel and management of areas that can alleviate

od allows the estimation of the number of errors in the situation.

a program by randomly inserting known errors and The paper specifically addresses:
then testing the program for both inserted and in- 9 First Impressions
digenous errors. This correspondence shows how e Resources, Who and What
correct confident limits and maximum likelihood es-
timates can be obtained from the test results. Both 9 Approaches

SEI-CM-7-1.1 (Preliminary) 15



Assurance of Software Quality

* Schedule Assessment This is a list of section headings to give an outline
of the content of a Software Quality AssuranceThis paper is directed to those people in industry Plan. It provides some detail as to suggested con-

who are faced with documenting an undocumented tent of the sections.
program. However, it is also written with the hope

that this will give the person supervising the main-
tainer a clearer view of the help which can be given McCall81
by providing the resources and time necessary to McCall J., D. Markham, M. Stosick, and
maintain a program in the proper manner. R. McGindly. The Automated Measurement of

Software Quality. Proc. COMPSAC 81. IEEE,
Hamlet82 1981, 52-58.
Hamlet, R. Program Maintenance: A Modest The- Abstract: This paper describes the use of auto-
ory. Proc. 15th Hawaii Intl. Conference on System mated tools to support the application of software
Sciences. Jan., 1982, 21-26. metrics. A prototype tool has been developed under

Abstract: Design methods do not carry over into a contract to US Air Force Rome Air Development
program's life once it is released. The subsequent Center and US Army Computer Systems Command
"maintenance phase" is thought to dominate the Army Institute for Research in Management Infor-maitnanc p horquaslis o ughtft o dohe onlyemation and Computer Science. A brief descriptioncost and poor quality of software. The only existing of the concept of software quality metrics, the tool,

maintenance theory is mini-development: programs and its use during a large scale software develop-
are changed in the same way they are designed, n is prided.
beginning wim requirements and proceeding to test- ment is provided.

ing. Maintenance programmers are impatient with
such a view, because the constraints under which Morse86
they work make it impractical. Morse, C. A. Software Quality Assurance.
The world defines maintenance as an activity with Measurement and Control 19 (1986), 99-104.
low unit cost, appropriate when development is too This paper introduces the subject of software qual-
expensive. Some facts about real maintenance need ity assurance to a wider audience of engineers so
explaining: they may appreciate why software quality assurance

1. Some people have a talent for it; others do has a place of importance in the software process
not. and therefore must be considered seriously for all

2. Some programs are much easier to main- software projects.
tain than others.

3. Maintenance becomes progressively harder Perry85
to do as more is done, until finally any pro- Perry, D. E., and W. M. Evangelist. An Empirical
gram becomes unmaintainable. Study of Software Interface Faults. Proc. Intl. Symp.

4. Testing of maintenance changes seems eas- on New Directions in Computing. IEEE Computer
ier than initial development testing. Society, Trondheim, Norway, Aug., 1985, 32-38.

5. Maintenance documentation is different Abstract: We demonstrate through a survey of the
than design documentation. literature on software errors that the research com-

munity has paid little attention to the problem of
Herndon78 interface errors. The main focus of the paper is to
Herndon, M. A. Cost Effectiveness in Software Er- present the results of a preliminary empirical study
ror Analysis Systems. Proc. Second Software Life of error reports for a large software system. We
Cycle Management Workshop. Aug., 1978. determined that at least 66% of these errors arose

from interface problems. The errors fell naturally
Abstract: Software error analysis systems must into fifteen separate categories, most of which were
have the capability of functioning as both a cost related to problems with the methodology.
effective and valuable managerial tool. To achieve
this capability, the design of the data collection Pope83
must reflect the individual project's managerial Popegconcerns, and the resulting empirical analysis Pope, A. B. Software Configuration Management:should be availablefor long term access. Quality Assurance Tool. Proc. 1983 IEEE Engi-

neering Management Conference. Nov., 1983.

IEEE81 Abstract: The literature of computer system devel-
ANSIIEEE Std. 730-1981, IEEE Standard for Soft- opment makes a strong case that many development
ware Quality Assurance Plans. American National failures or problems are caused by documentation.
Standards Institute, 1981. Many of these problems are the result of poorly

16 SEI-CM-7-1.1 (Preliminary)



Assurance of Software Quality

defined requirements which are changed without 909-916.
control. The original cost and schedule are based
on developer perceptions as to the requirements Abstract: This paper describes a family of tools
and then changes are agreed to in an uncontrolled which not only supports software development, but
manner. Software Quality Assurance has the re- also assures the quality of each software product
sponsibility for ensuring complete requirements from the requirements definition to the integrated
definitions as well as controlling changes to re- system. It is based upon an explicit definition of the
quirements and design; and tracking the resulting design objects and includes: specification verifi-
impact on cost and schedule. Software Configu- cation; design evaluation; static program analysis;
ration Management is the Quality Assurance tool dynamic program analysis; integration test audit-
for development project communications and track- ing; and configuration management.
ing changes in cost and schedule.

Sol78
Poston84 Soi, I. M., and K. Gopal. Error Prediction in Soft-
Poston, R. M. Implementing a Standard Software ware. Microelectronics and Reliability 18 (1978),
Quality Assurance Program. Proc. Third Software 433-436.
Engineering Standards Application Workshop. Abstract: Errors are introduced in software at all
IEEE, 1984, 38-44. stages of the software production and the number of

Abstract: Software Quality Assurance Programs errors found during the software development phase
represent one approach to improving product qual- affects significantly the cost of a project in terms of
ity and increasing productivity. Software Quality manpower and computer resources needed for cor-
Assurance is defined in ANSIIIEEE 730 as the recting the errors. Early detection and correction
planned and systematic pattern of all actions neces- of errors leads to substantial savings in cost. In this
sary to assure that products will function as speci- paper, causes, classifications and statistical be-
fled. This implies that an SQA Program will affect haviour exhibited by software errors have been dis-
everything involved in the creation of software. cussed and a-simple cost model which considers the
This paper describes one approach to implementing use of a tool or technique to detect additional errors
an SQA Program. The approach has evolved over during the design phase and thereby save some of
seven different projects and has been only slightly the greater expense of correcting the errors during

f the test phase has been discussed. It has been em-modified on the last four projects. phasized that inexpensive means of detecting and

The approach presented in this paper is essentially preventing errors applied during requirements
figure out what you want to do and then implement analysis and design could significantly reduce the
it incrementally. This is a good approach as long as cost of a project.
one understands that the basic Software Quality As-
surance Program framework must still be deter- Stamm81
mined before implementation. Stamm, S. L. Assuring Quality, Quality Assurance.

Datamation ? (1981), 195-200.Puhr83
Puhr-Westerheide, P., and B. Krzykacz. A Statis- This paper describes an integrated Software Quality
tical Method for the Detection of Software Errors. Assurance Program in use at General Electric's
Proc. 3rd IFAC/IFIP Symp. on Software for Com- Space Division.
puter Control. Oct., 1982, 383-386. Tomayko86

Abstract: A statistical software error detection Tomayko, J. E. Software Configuration
method is presented that relies on some structural Management. Curriculum Module SEI-CM-4. 1.0,
properties of the test object. The main idea is to Software Engineering Institute, Carnegie-Mellon
select test paths by means of transition probabilities str E eerin nt C e M
between the nodes of the control flow graph so that University, Sept, 1986.
all paths have equal probabilities to be drawn. The
transition probabilities can be determined from the Walker79
control flow graph of a program in a simple way. Walker, M. G. Auditing Software Development
This selection process turns out to have good statis- Projects: A Control Mechanism for the Digital Sys-
tical properties. tems Development Methodology. Proc. COMPCON
e 79. IEEE, Spring, 1979, 310-314.Sneed82

Sneed, H. M., and A. Merey. Automated Software Abstract: This paper will introduce the audit os a
Snalit H.ssurandc. r. Atomated Softwarecontrol mechanism for the Computer Sciences Cor-
Quality Assurance. Proc. COMPSAC 82. 1985, poration (CSC) approach to system development.

SEI-CM-7-1.1 (Preliminary) 17



Assurance of Software Quality

The audit is performed on developing computer sys-
teins by a team independent of the developmental
project. The independent audit is a cardinalfeature
of the Digital System Development Methodology
(DSDM) which is the methodology CSC employs to
engineer software systems. Audits are the most
powerful mechanism for control built into the
DSDM.

Yacobellls84
Yacobellis, R. H. Software and Development Proc-

ess Quality Metrics. Proc. 1st Data Engineering
Conf. IEEE Computer Society, 1984, 262-269.

Software projects that deliver a software or system
product and involve from 30 to several hundred de-
velopers, testers, and project managers are consid-
ered. A description is given of a framework for
gathering and reporting software and development
process quality metrics, as well as data engineering
issues related to data collection and report gener-
ation. The framework is described in project-
independent terms, and a methodology for applying
metrics to a given software project is included. A
key aspect of this application is the use of project
milestones predicted by a failure rate model.

Yamada86
Yamada, S., H. Narihisa, and H. Ohtera. Non-
homogeneous Software Error Detection Rate Model:
Data Analysis and Applications. RAIRO Rech.

Oper./Oper. Res. (France) 20, 1 (1986), 51-60.

Abstract: A software reliability growth model
called a nonhomogeneous error detection rate
model is reviewed and applied to an actual data set
of software failure occurrence time. In particular
optimal software release policies with both software
cost and software reliability requirements, i.e. cost-
reliability optimal release policies, are discussed
for the model. Using the numerical results of the
data analyses, the cost-reliability optimal software
release policy is illustrated.

18 SEI-CM-7-1.1 (Preliminary)



ILIMITED, UNCLASSIFIED
,)$%TV CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SEC:URITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
SECURITY CLAS.SIFiCATLON AUTHORITY 3 OISTRISUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
OE.CLASSIFICATION'OOWANGRAOING SCHEDULE DISTRIBUTION UNLIMITED
N/A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

EfFRPORING ORGANIZATION REPORT NUK48EA(S) S. MONITORING ORGANIZATION ACPOAT NUmB4ER(S)

SEI-CM-7-l. I
NAME OF PERFORMING ORGANIZATION III OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION

I (it jpP t~c.bli

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

ADORESS lCity. Stdie and ZIP Codoi 7b. ADDRIESS (City. S(a to and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

NAME OF FUNOING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBERA
ORGANIZATION (t applicable)

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003

AODRESS lCily. Sta, and ZIP Code) 10. SOURCE OF FUNDING NOS. _____________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI1T

PITTSBURGH, PA 15213 ELE ME NT NO. NO. NO. NO.

TIL I3ldeScr752FfainoA C N/A N/A N/A
b ssurance of Software Quality________________________

"PERSONAL AUTHOR(S)

Bradley J. Brown, Boeing Military Airplane C. mpnay
I, TYPE OF REPORT 131L TIME COVEREO 114 OATE OF REPORT (Yr. Mo.. Odyl, 16. P AGE COUNT

FI NAL FROM _____TO ___ I-July 1987 I18
SUPPLEMENTARY NO0TATION

COSATI CODES I&8 SUBjIECT TERMS (COAftAue on flg, If u@Cf&W7 ani detify by blo-ci narmberI

IfLO IGROUP I Sue Got I software quality assurance configuration management
technical review

ABSTRACT lConlIiu on 'Wr4Vr4 If meceary and ideffy by *tocN nuombe',

This module presents the underlying philosophy and associated principles and practices
related to the assurance of software quality. It includes a description of the
assurance activities associated with the phases of the software development life-cycle
(e.g., requirements, design, test, etc.).

OISTRISUTION/AVAILASILITY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

1.ASSIFI60/UNLMITEO ipSAME AS RPT. 0 OTIC USERS M UNCLASSIFIED, UNIMITED DISTRIBUTION
NAME OP RESPONSIBLE INOIVIDUAL 22b6 TELEPHONE NUMBER 22c. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF mRclude Ante Code) ESD/AVS
412 268-7630 SET JPO



The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under oontract with the United States Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area. and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educationa materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEt, by Carnegie Melon University, or by the United States governmenL

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that al copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mal can be sent to education@sei.cmu.edu on the Internet.

CuTiculum Modules (* Suppor Maerials available) Educational Materials

CM-I (superseded by CM 191 EM-I Software Maintenance Exercses kw a Software
CM-2 h'W~iao to Software Design Engineering Prop Course
CM-3 The Software Tedi Reiew Process* EM-2 APSE Inlra Molor: An Anifact for Software
CM-4 Cguration ament Engneering Educaton
CM-S Inti Pi EM-3 Reading Computer Progrwns: Instructors Guide and
CM4 Software Saet/ Exercses

CM-7 Assurance of Software Oualty
CM.4 Forml oSpecilcainof Sftware"
CM4 Uni Testing ow~ Anaysis
CM-t0 Modeh of Software Evolulon: Lile Cycle and Process
CM-Il Sofvam Specicaens: A Framework
CM-12 Software Meri
CM-13 Inodeion to Software Venicaion and Validation
CM-14 Inaleald Propety Proclion r Software
CM-IS Software Developimen and Licensing Contrafs
CM-Is Software Oeielopmen Usin VOM
CM-I7 User Inteface Oevelopmenr
CM-is [superseded by CM-23
CM-I9 Softwem A quiremens
CM-20 Formal Verificalion of Programs
CM-21 Software Project Managemen
CM-22 Software Design Methods for Real-Tre Systems'
CM-23 Tecnical Wring for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-2 Language and System Support or Concurrent

Programioge
CM-2 Understanding Program Dependencies


