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A Comparative Assessment of System Description

Methodologies and Formal Specification Languages

Abstract

A classification of formal specification techniques.which is useful for a corn-
parativeassessment is presented. In this classification, formal specification tech-

-niques are grouped into three approaches: operational, definitional and hybrid.
Depending on whether data abstraction or sequencing is emphasized, the opera-
tional and definitional approaches both can be further partitioned into two
schools: data paradigm and process paradigm. Five categories are identified,
and some representative formal specification'techniques in each category are sur-
veyed. A comparative assessment over these specification techniques is given
based oi a set of criteria, such as usability, verifiability, support for nonfunctional
requirements, etc. Our experiences in using formal specification techniques are
discussed. A real-time extension of the VDM method, designated RT-VDM, is
presented as the most promising approach for further study. Additional recom-
mendations for further study are also made.
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1 Introduction

A complete specification system consists of methods, languages and tools. Specification
languages can be classified into three groups according to the level of formality: informal,
semi-forrfial, and formal. Informal specification languages, mainly referring to natural lan-
guages, can contain many deficiencies, like inconsistency and ambiguity, wkich are difficult
to detect. Semi-formal languages have a well-defined syntax and partially defined semantics
which make building automatic tools possible. SA [DeM78], SREM [Alf85], and PSL/PSA
1TH77] are some of the well-known semi-formal specification systems; these systems are
widely used in industry because the documents resemble those written in natural language
and the semi-formal languages can be learned and understood with limited effort by people
who did not have extensive training in formal methods. Formal specification languages,
with well-defined syntax and semantics, have the advantage of being concise and unam-
biguous; they support formal reasoning about the functional specification, and provide a
basis for verification of the resulting software product.

The objective of this report is to survey on some representative formal specification
techniques and make an assessment of them. In order to provide a basis for systematic study
and facilitate the following assessment, a classification for formal specification techniques
is presented first in Section 2. In sections 3-5, the surveyed formal specification techniques I
are presented according to the classification, and a summary is given in section 6. In
section 7, a comparative assessment over formal specification techniques is given based ona set of criteria, such as usability, verifiability, support for nonfunctional requirements, etc.

Section 8 summarizes the trends in research related to formal specification techniques. Our
experiencecs in using formal specification languages are stated in section 9, and a formal
specification language, named RT-VDM, is proposed in section 10. Finally, some formal
specification techniques are recommended for further study.

2 Classification
We can categorize the formal specification techniques into three different approaches: op-

erational, definitional and hybrid. Using the operational approach, a system is described as
an abstract model by which the behavioral properties exhibited are those desired for the
specified system. Using the definitional approach, systems are specified by such behavioral
properties directly. In a hybrid approach, a specification method is extended by combining
with other formalisms for specifying more kinds of properties. In Figure 1(a), the fun-
damental difference between the operational and definitional approaches is illustrated by
showing how to specify the behavior of "stack". In the operational approach, a predefined
data type, sequence, is used to model the stack: push is modeled by concatenating an ele-
ment to the head of sequence, and pop is modeled by deleting the head element (using tail
function) with the pre-condition that the stack is not empty. In the definitional approach,
however, no explicit model (or data structure) is used; the behavior of stack is specified by
two equatioial axioms: the first one states that the empty stack cannot be popped, and
the second one describes the "last-in-first-out" property. In literature, researchers also call
the operational approach, constructive and the definitional approach axiomatic.



Operational Approach:
(using VDM notation)

init: * seq of ELEM

initO A []
push : seq of ELEM x ELEM -. seq of ELEM

push(stk, elem) !_ elem '" stk
pop (stk: seq of ELEM) stk': seq of ELEM

pre stk 56]
post stk' = ti stk

Definitional Approach:
(using algebraic notation, i.e. equational axioms)

init :, - STACK
push: STACK, ELEM - STACK

* pop: STACK -* STACK

pop(init) = UNDEFINED
pop(push(stk,elem)) = stk

(a) Using Data Paradigm

Operational Approach
(using CSP notation)

STACK = P<>
where P<> = push?z -+ P<>

P<.>A = (pop!z - P, I push?y - P<Y>^<X>^,)

(b) Using Pzocess Paradigm

Figure 1: Diverse formal specifications for the behavior of stack
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In [3ac88], specification techniques are classified into the'classes of data paradigm and
process paradigm. Based on that viewpoint, both the operational and definitional, ap-
proaches can be further split into two schools: data school, which advocates the primacy
of data abstractions, and process school, which focuses on sequences of events or actions
(operations). That is, the prime concerns of the-approaches based on the data and process
paradigms are data and sequencing respectively. The two examples shown in Figure 1(a)
use the data paradigm. An example of process paiadigm is shown in Figure 1(b) where
CSP notation (an operational approach) [Hoa85] is used; the specification states that (1)
the stack is empty initially; (2) when the stack is empty, it is ready to engage input event
push for getting an element; and (3) when not empty, either pop (output event) or push
can be engaged. Note that the sequencing of events is emphasized'when using the process
paradigm, but it is implicit when using the data paradigm.

Table 1 shows the classification for some formal specification techniques. Note that there
is no way to formalize this classification since the distinction between different categories
is not clear-cut. Sometimes for achieving a higher level of abstraction, the behavior of a
model, although using the technique classified as operational approach, can be described by
stating its properties. dso, most techniques incorporate both process and data paradigms
to some degree since 'no practical technique can rely purely on data or process notions.
However, we believe that such a classification can facilitate a comparative survey.

In general, both data and process paradigms are marred by their their biases. The
data approaches do not handle concurrency well. The lack of data abstraction in the
process approaches creates complexity and inflexibility to changes in data representation.
So in [Jac88], Jackson contends that each school has much to offer, and that an effective
approach to software development must contain ingredients from both schools, data and
process, in a reasonable balance. As shown in Table 1, it is interesting to note that each
hybrid approach indicated there is based on combining the techniques of both the data
paradigm and the process paradigm.

3 Operational Approaches

3.1 Data Paradigm - VDM, FDM and Z
VDM (Vienna Development Method) was developed at IBM Vienna Research Laboratories
during the 1970s. FDM (Formal Development Methodology) was developed by System
Development Corporation (SDC), Santa Monica, California. Z1 was developed by the
Programming Research-Group at the University of Oxford. In the literature, they are
often referred as model-oriented specification mehods.

3.1.1 Methods

Model-oriented specification is a technique that relies on formulating a model of the system
which defines a mathematical model of its data and also a corresponding animation of
this model. The data domain is modeled using well understood mathematical entities

1Z is pronounced "Zed' not "Zee'.
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1. Data Paradigm
Z

Operational VDM with Meta-IV
Approaches FDM with Ina Jo

. Process Paradigm
PAISLey. Estelle, SADMT. CSP, CCS,
Petri riets, Statecharts

3. Data Paradigm
Definitional Algebraic languages: OJ. AFFIRM, ACT ONE

Approaches Two-tiered language : Larch

4. Process Paradigm
Temporal Logic, Real-Time Logic

LOTOS (combine 2,3)

_SDL (combine 2.3)
Hy.brid SEGRAS (combine 2,3)

Approaches I Durra (combine 3,4)

Ina Jo extended with temporal logic (combine 1,4)

Table 1: A classification for formal specification techniques

such as sets and functions, and animation is specified under the form of a number of
operations (transform in FDM term). The main guideline in constructing a model-oriented
specification is to formalize data in such a way that the specification of the operations can
be written in a straightforward manner.

Both VDM [Jon89] and FDM (Kem85, Ber87] are software development methods,
based on their own specification languages, which adopt stepwise refinement techniques to
derive final implementation from the abstract specification. Z [Hay87] is only a specification
language, but a systematic refinement technique, which is suited for the style of Z and VDM,
has been investigated [MR87, Mor90].

3.1.2 Languages and Tools

Z and the specification languages of VDM and FDM, named Meta--IV and Ina Jo respec-
tively, are all based on first-order predicate logic and used to model the system as a state
machine. These languages sacrifice executability for high-level abstraction. Meta-IV and Z
provide a richer set of abstract data types and operators than Ina Jo for system modeling

During the last 15 years the language Meta-IV has been used in many different variants
The different-variants reflect that VDM has been a pragmatic approach where Mcta-IV has
been extended vith properties that were needed for specific applications. But this diversity
also hinders the development of tools to support VDM. The British Standards Institute
(BSI) is currently working on harmonizing the different variants to produce a standard for
Meta-IV, called-the BSI/VDM Specification Language (BSI/VDM-SL) [LAS9]. Although

4



there are-several ongoing projects for building VDM tools in Europe, the availability of
sophisticated tools is still unknown. Some available VDM tools are:

* A ITEX macro for writing VDM specifcation documents, called vdt. sty (Wo1861.

* EPROS (Evolutionary PROtotyping System) (HISS], developed by S. Hekmatpour at
University of Melbourne, is a UNIX-based prototyping environment which enables
very rapid generation of working prototypes from a formal specification using VDM
notation. The VDM notation is executable only if it iswritten in a constructive style.

* Specbox, developed by a. company called "Adelard" in London, can accept the BSI
draft standard and provide full static checking and a test harness.

In the development of Z, great emphasis is given to the readability of specifications.
It has led to the development of the 'schema', a device for organizing the presentation of
a Z specification, which is essentially a syntactic unit for expressing part of a specifica-
tion. Schemas can be manipulated by operations for extension, restriction, inclusion and
composition. Generic schemas can also be written. Some known Z tools are:

*Fuzz, developed by Mike Spivey at Oxford. This is a simple tool including LATEX
macro for documentation preparation, syntax checker and type cheker.

A proof assistant, called B, developed at Oxford. The tool stores axioms, rules of
inference, and application-oriented theories and proofs. Furthermore, it does much
housekeeping, thus providing a secure environment for the interactive construction of
proofs. In fact, B is a generic theorem prover, and it has been used in case studies
using Z J1Voo89J and VDM ILLS90].

* A Z toolset, resulting from a project called Genesis, developed by IST in UK. The
toolset includes an editor, syntax checker, type checker and proof checking.

A FDM specification brings together a formal model of system correctness requirements
and a hierarchy2 of functional representations of the system design both expressed using
the Ina Jo language. From this specification, the Ina Jo processor, a combined syntax
checker and theorem generator, constructs a number of logical formulas which assert that
the functional representations satisfiy the formal requirements model. These formulas must
be submitted to the ITP3 (interactive theorem prover) for proof, and the correctness of the
specified system depends upon their provability. The program-design specification is the
lowest level in the specification hierarchy, providing a module-by-module description of the
system implementation and driving the code verification process. One VCG (verification
condition generator) is required for each different implementation language used with the
methodology. Other than an incomplete VCG for Modula, there has been no development
of FDM tools to support code verification. It is not possible to complete the verification
process to the code level without a VCG. Thus the FDM has been used exclusively for design

2A system specification in FDM is built as a sequence of state machines, progressing from the abstract
to the concrete.

3The ITP incorporates some automatic features, but it is primarily a proof-checker and bookkeeper.

' _ - - -- - - .. : ., .. _ _ , f :t -5



veiification4 . A execution tool called Inatest[EK85], developed by the Reliable Software
Group at UCSB, allows Ina Jo specifications to be analyzed by symbolically executing the
specifications [Kem85].

3.1.3 Applications

VDM stands for a relatively well propagated method for developing deterministic systems
software, like compilers, database management systems, application program generators,
etc., as well as major parts of non-deterministic, concurrent and distributed software, such
as operating systemslocal-area nets, office automation systems, etc. Many applications of
VDM can be found in [BJ87, B+881.

Some applications using Z are listed as follows:

" A number of projects in the application of Z, conducted at Oxford from 1978-1986,
have been reported in*[Hay87]. The applications include IBM's Customer Information
Control System (CICS), UNIX filing system, and distributed operating system.

" A preventive cyclic retransmission version of the "sliding-window" protocol has been
specified and verified [D+88].

" To develop the IEEE standard floating-point transputer for Inmos [Bar89l. That
project is to develop the system from a Z specification to silicon implementation.
Many proofs were conducted to ensure that the implementation was true to the
specification.

The FDM tools have been used in the formal specification of a number of large systems,
however, only the security properties of these systems have been verified. This is not due
to any inherent weakness in the tools, but rather to the task at hand. In [Kem891, an
encryption protocol used in a secure network is specified and analyzed.

3.2 Process Paradigm - PAISLey, Estelle andSADMT

In this category, two kinds of representation techniques can be distinguished:

* tczt-based techniques, such as PAISLey [ZS86), Estelle [D+891, SADMT [L+88], CCS
[MilS0) and CSP [Hoa85).

# graphics.based techniques, including Statecharts [Har87] and Petri net-based methods,
such as SARA [E+86) and PROTEAN JBWWH88].

All the techniques use only some primitive data types, similar to most programming lan-
guages, for data domain description. In the following, only some text-based techniques are
discussed.

41n the past SDC has used a manual approach referred to as specification-to-code correlation [SoI82] to
assure that the implementation is consistent with the lowest level Ina Jo specification.

LA6



3.2.1 PAISLey

PAISLey [ZS86], designed by Zave at AT&T Bell Labs for describing embedded systems, is a
Process-oriented, Applicative, and Interpretable (executable) Specification Language. It is
actually based on two computational models: functional programming and asynchronously
interacting concurrent processes. A system specified in PAISLey consists of a set of asyn-
chronous processes; some processes represent virtual objects within the proposed system,
while others may be digital simulations of objects in its environment. Each PAISLey pro-
cess has a state and- goes through a never-ending sequence of a discrete state changes,
and the state changes are defined in a functional style. A mechanism, called "exchange
functions", is provided as a powerful means of specifying asynchronous interactions.

A PAISLey specification is a model of a system that can be executed so as to simulate
the behavior of the specified system. Such executability means that a specification can
be debugged and verified by the analyst. A timing constraint can be attached to any
operation in PAISLey specification. All timing constraints are honored by the interpreter
in simulated time when it can and failures are reported when it can not, so that execution
of a specification is automatically a performance simulation as well.

The PAISLey environment is a set of four programs that perform static analysis and
execution of specification written in PAISLey: the parser is used to detect syntatic errors
in a specification, the cross-reference is-to help a user locate references to the stuff
defined in a specification, the consistency checker is to detect all inconsistencies in a
specification, and the interpreter is to execute specifications.

3.2.2 Estelle

Estelle [DV89, D+891, is an ISO standard FDT (Formal Description Technique). In Es-
telle, a distributed system is specified as a hierarchy of communicating modules, which
have parent-child relationships. A module's behavior is described by a nondeterministic,
communicating, extended finite state machine', which uses Estelle primitives and Pascal
statements. The Pascal typing system is extended to define Estelle objects, which are all
strongly typed as in Pascal. The property enables to detect statically (i.e., during compi-
lation) the specification inconsistencies.

The Estelle development effort was strongly influenced by the OSI architecture and by
the desire to describe ISO protocols formally. An especially crucial requirement was the
ability to compile Estelle code. Thus Estelle is the result of a compromise between using
high-level constructs for the formal description and being able to easily and efficiently
implement those constructs.

LOTOS, classified as a hybrid approach in this article, is another ISO standard FDT.
The ESPRIT SEDOS (Software Environment for the Design of Open Systems) project,
which ran from 1984 to 1988, aimed to further develop Estelle and LOTOS to descibe
services and protocols for distributed architectures and to demonstrate their effectiveness
as concretely as possible by deriving simulators and other support tools. The results and
general comments about the project can be found in [DV89].

5Extended FSMis a FSM whose transitions also depend on soine internal variables in addition to the
input and cuurent state.

7
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3.2.3 SADMT

The SDI6 Architecture Dataflow Modeling Technique (SADMT) [L+88], developed at the
Institute of Defense Analyses (IDA), provides an uniform formal notation, using the typing
and functional facilities of the Ada programming language, for the description of SDI system
architectures and BM/C3 architectures7.

The basic building blocks of a SADMT description are the processes and communication
links (i.e. port mechanism), which are the two kinds of abstract components built in Ada.
These two components are used together to construct representations of platforms which
model all physical entities such as a "ground station", a "sensor satellite", or a "fragment
of debris". A platform consists ofseveral processes; each of these processes may-consist
of several other processes, and so on. Each leaf process, which is not decomposable, is
specified as an Ada task, and, each nonleaf process isconstructed from a set of subpro-
cesses by specifying port connections for each subprocess. The platforms are then grouped
together to form an initial configuration of the architecture, and a simulation is produced
when a configuration of platforms is executed under the control of-the SADHT/SF (SADMT
Simulation Framework), which simulates the physical environment in which the proposed
architecture operates.

The model used by the SADMT/SF provides two types of entities called platforms and
cones. Cones are the mechanism by which platforms become aware of other platforms in
the system. A platform may "emit a cone" by describing the geometry of the cone and its
associated data. This facility is used for modeling communication, radar, and laser beam
weapons. Given the physical characteristics of each platform, such as positiox., equation
of motion, life time, and cones' type, the SADMT/SF can simulate the movermsent of all
platforms and the emission of cones. SADMT modules are compiled by an Ada compiler,
linked with the SADMT/SF which is also written in Ada, and executed to simulate the
performance of the system. During the simulation, platforms can be created dynamically
or destroyed.

Due to the requirement that the description be directly executable, SADMT process
descriptions using complex Ada templates are significantly more verbose than if direct exe-
cution were not required. A tool, called SAGEN (for SADMT Generator) [K+88a], is designed
to accept a less verbose language, which eliminates much of the drudgery of specifying the
SADMT template, and automatically generates the required SADMT template.

SADMT also provides a facility for adding behavioral constraints to the Ada program
representing a SADMT model in the form of annotations, similar to Anna (ANNotated Ada)
[LH85), for run-time checks. A tool, called ToolA, has been built to assist in the validation
of these annotations by producing an equivalent Ada program that provides notification if
any of the constraints given in the annotations are violated during the simulation.

6SDI stands for Strategic Defense Initiative.
?BM/C3 stands for Battle Management and Command, Control, and Communications.
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4 Definitional Approaches

4.1 Data Paradigm - OBJ and Larch

This subsection- discusses two definitional approaches. OBJ, a pure algebraic specification
system developed at UCLA and SRI International, and Larch, a two-tiered specification
technique developed at MIT and DEC. Both are classified as data paradigm approaches.

4.1.1 OBJ : Algebraic Approach

OBJ is designed to support parameterized programming, using algebraic specification tech-
niques [Gog84]. OBJ is a language based on equational logic which can be interpreted
directly as rewrite rules, and several executable versions of OBJ (interpreter) have been
implemented in USA and Europe. OBJ provides features to assist the development of
correct specifications: 'objects' which allow large specifications to be broken down into
'mid-size' pieces, facilities for testing the pieces and their interconnections by executing
test cases, strong typing, the systematic use of error conditions (factored out from normal
behaviour) and semantic consistency checks. In some respects OBJ can be regarded as an
applicative programming language, though efficient execution is not a design objective.

OBJ was originally designed in 1976 by Goguen (GT79] as a language for "error alge-
bras," an attempt to extend algebraic abstract data type theory to handle errors and partial
functions in a simple, uniform way. Several versions of an OBJ interpreter have been imple-
mented, including OBJO and OBJT developed at UCLA, OBJ1 and OBJ2 [Fut85] at SRI.
OBJ3 [GW88] is the latest implementation developed at SRI. Although the syntax of OBJ3
is close to OBJ2, it has a different implementation based on a simple approach to order
sorted rewriting, and it also provides much sophisticated parameterized programming.

OBJ has been used for many applications, including debugging algebraic specifications
IGCG9O], rapid prototyping, defining programming languages in a way that immediately
yield an interpreter [GPG81J, specifying software systems (e.g, the GKS graphics kernel
system, an Ada configuration manager, the Macintosh QuickDraw program, and OBJ
itself). OBJ is also one of the languages for programming a massively parallel machine
to execute rewrite rules directly [G+871; in fact, researchers believe that OBJ on such a
machine should greatly out-perform a conventional language on a conventional machine, by
directly concurrent execution of rewrite rules. OBJ3 is also applied to theorem proving and
hardware verification [Gog88). The stepwise refinement method, one of the most effective
programming methods, based on OBJ was proposed in (NF89].

4.1.2 Larch : Two-tiered Approach

Larch [GHW85] is designed to specify the functionality of sequential programs, in particular
the properties of abstract data types. A Larch specification has components written in
two languages. A Larch interface language, e.g. Larch/Pascal, is used to describe the
observable behavior of program modules written in a particular programming language, A
e.g., Pascal. The Larch Shared Language (LSL) is used to write traits that define the
assertion language used in interface components. Essentially, interface specifications use
first-order predicate logic (pre- and post- conditions) to describe state transformations, and
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traits use equational axioms (algebraic approach) to describe fundamental abstractions, i.e.,
abstract data types, that are independent of state, and thus, of any programming language
The two-tiered approach separates the 'specification of underlying abstractions from the
specification of state transformations. In this way, Shared Language components can be
reused by different interface language components, and programming language dependent
issues - such as side effects, error handling,- and resource allocation - can be isolated into
the interface language components [Win87]. Each Larch interface language is designed for
a programming language, which influences everything from the modularization mechanisms
to the choice of reserved word. Larch/CLU and Larch/Pascal are presently the only two
moderately well-developed Larch interface languages.

The Larch Project has been designing and' implemeting software tools as part'of a
specification environment', including a syntax and static-semantics checker for the LSL and
a theorem prover for semantic checking, and the design of a syntax-directed editor and a,
specification library. LP [GG89), the Larch prover implemented at MIT, is more than a
rewrite-rule engine, but not quite a general-purpose first-order logic theorem prover. The
LSLC, the LSL Checker which serves as a front-end to LP, is to check the syntax and
static semantics of LSL specifications and 'generate LP proof obligations. The method of
debugging LSL specifications using both LSLC and LP has been studied in [GGH9O0].

Up to now, no Larch specification for large-scale application was found in the literature.
LP has been used in some nontrivial applications, including circuit verification [G+88] and
proving properties of an Avalon/C++ program' [WG89]. In [WG89], the program is first
"encoded" into Larch specification prior to performing program proof with proof checker.
With the conclusions indicated in [WG89], some comments from the experience using LP
are quoted as follows:

"The specificand domain is complex and no amount of machine assistance
is going to make that less complex."

"Using LP is like programming since the user designs a proof and lets LP
execute it."

"We used only a small subset of the full functionality of LP. To use LP at its
fullest and perhaps more effectively than we have illustrated here, the user needs
to understand concepts from rewrite-rule theory, e.g., confluence, termination,
convergence, termination orderings."

"A proof checker does not decrease the amount of thinking required on the
user's part; it can alleviate some of the bookkeeping and symbol pushing, but
no more."

4.2 Process Paradigm - Temporal Logic and,Real-Time Logic

Temporal Logic (TL), a formal language for expressing temporal properties, provides a nat-
ural way of describing and reasoning safety properties and liveness properties of a system
A structure of states (e.g. a sequence or tree of states), generated by every individual run of
a program, is the key concept that makes temporal logic suitable for program specification

85The program is a highly concurrent atomic FIFO queue implementation. Avalon/C++, designed at
CMU, is a programming language dealing with concurrency and faults.
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A temporal axiom is an assertion about state sequences, using temporal operators such as 0l
(henceforth), _ (eventually). A temporal logic specification, consisting of a set of temporal
axioms, specifies properties that must be true of all state sequences resulting from system
execution. Several variants of different temporal logics, including different types of tem-
poral semantics and different ways of real time extensions, have been studied by logicians
and-computer scientists [Gal87]. Temporal logic has been used for the spcfication and
verification of-concurrent program behavior [Lam83], reactive systems [Pnu86a], systems
composed of real-time discrete event processes [Ost89b] and hardware design [Mos85j.

Real-Time Logic (RTL) [JM86} is a formal language designed for reasoning about timing
properties of real-time systems, especially for safety analysis. In contrast to temporal logic,
RTL is intended to describe systems for which the absolute timing of events, and not only
their relative ordering is important. Time is captured by the occurrence functon; the
notation @(e, z) is used to denote the time of the ith occurrence of event c. RTL formulas,
which represent assertion over occurrence functions, are cons tructed using first-order logic.
Given-the timing specification of a system and a safety assertion to be analyzed, both in
RTL formulas, the goal is to relate the safety assertion to the systems specification. If the
safety assertion is a theorem derivable from the specification, then the system is safe with
respect to the behavior denoted by the safety assertion, as~long as the implementation is
faithful to the requirements' specification [JM86].

5 Hybrid Approaches

LOTOS (Language~of Temporal Ordering Specification) [DV89, EVD89] is one of the two
FDTs developed witLifi-ISO for the formal specification of open distributed systems. A
"OTOS specification contains two components: the description of process behaviors and
interactions (process abstraction), and the description of data structure and value expres-
sions (abstract data types). Process abstraction is based on many ideas from CSP and CCS,
and abstract data types are described by an algebraic specification language based on ACT
ONE (EM85].

SDL (Specification and Description Language) [BH89, SSR89], developed and standard-
ized by CCITT, has been developed for use in telecommunication systems including data
communication, but actually it can be used in real time and interactive systems. SDL has
two paradigms: Abstract Data Type (described in ACT ONE) and Finite State Machines
(for modeling system dynamic behavior). The user friendliness of SDL is partly due to the
graphical representation, SDL/GR, in which graphical syntax is used to give an overview.
SDL/GR is complemented by SDL/PR, a textual phrase representation using only textual
syntax, since graphical symbols are missing (being unsuitable) for some concepts, e.g. ab-
stract data type. SDL/GR and SDL/PR have a common subset of textual syntax, and
thus overlap each other.

SEGRAS5 [Kra87], a formal language for writing and analyzing specifications of dis-
tributed software systems that unifies algebraic specifications of abstract data types with
high-level Petri net specifications of nonsequential system3 in a common syntactic and se-
mantic framework. The data structure of a system, the information content of its local

ISEGRAS is a registered trademark of GMD.
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states, and static constraiiits to state changes are specified algebraically using positive
conditional equations. Dynamicbehavioi is specified by high-level Petri nets.

,uira JBW87], intended for real-timfe applications, is a specification'language which
combines two formalisms: Larch used to specify functional behavior, and an event expres-
si6n language used to specify timing behavior 0 .

In tWN89I, Ina Jo is-extended with-temporal logic to specify concurrency properties;
this method is referred as "Ina Jo + -TL in the following discussion.

A growing- field in- softwaie'engineering, called' multiparadigm programming, has been
advocated for building systems while using as many paradigms as we need, each paradigm
handling those aspects of the system for which it-is best suited [Hal86, Zav89]. In the same
spirit, applying different specification languages for different parts of a complex system in
forming a composite specification is also considered as a promising way. Several efforts have
been attempted in this direction. In [Ter87], a library problem is specified using a mixture
of specificatioii languages Z andCSP. In [ZJ89], the dynamicbehavior of control-oriented
systems is described by the combination of Statecharts and JSP/JSD structure diagrams,
and data domain is described in VDM.

6 Summary of the Surveyed Techniques

Table 2 shows the summary of surveyed specification techniques. Some observations are
made as follows:

1. All the techniques using the data paradigm, shown in Table 2(a), are designed for
specifying sequential systems. As shown in Table 2(b) and (c), techniques using
the process paradigm or-using the hybrid approach can specify either (non-realtime)
distributed systems or real-time systems.

2. Z, VDM and FDM have the capability for wide range of abstraction, i.e., the languages
provide constructs for specifying systems in a wide spectrum ranging from the most
abstract level to the concrete level which is closely akin to the final implementation
Based on such capability, stepwise refinement techniques for deriving implementation
were developed. On the other hand, definitional approaches, such as OBJ, Larch,
Temporal Logic and RTL, provide only the constructs of highest level of abstraction

3. The representation style of specifications in Z, VDM and FDM can be either prescrip-
tive (specify "how") or descriptive (specify "what"), depending on the desired level
of abstraction and specifier's intention. The descriptive style is more abstract, and
is less bound to implementational bias than the prescriptive style. The capability of
using both styles also contributes to the wide range of abstraction. LOTOS, SDL and
SEGRAS, on the other hand, specify dynamic behavior of the system in prescriptive
style and specify the data domain, using algebraic techniques, in descriptive style

"Real-time logic is used to define the semantics of the timing behaviors.
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Table 2: Summary of surveyed formal specification techniques
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7 A Comparative Assessment

In this section, the urveyed formal specification techniques are isessed based on the
following criteria:

I. General suitability for describingBM/C3 architectures at the highest level.

2. -Useability, The specification language should he easy t6 jeain and to use. Sup-
port for-multiple representations is one way to improve the useAbility. For example,
graphical representation can aid-in explaining the specifications.

3. The capability for specifying nonfunctional requirements, such as concurrency,
security, reliability, performance, fault tolerance, and time-out.

4. Verifiability. The specification methodology should provide capability for valida-
tion of completeness, consistency, and correctness with respect to both syntax and
semantics. The desired supporting tools include: syntax checker, interpreter, theorem
prover.

5. The capability for equivalence checking. The capability to study the equivalence
between two independently created specifications will help to check the consistency
of the understanding of the informal requirements. This capability can also help to
prove the consistency between the specifications of different abstraction levels. The
importance of equivalence notions in the context of formal descriptions of distributed
systems has been widely recognized.

6. The support for deriving implementation from the specification, either automat-
ically or through rigorous refinement steps.

In the assessment, Durra and Ina Jo + TL, instead of being treated as new languages,
are mentioned as the extensions of Larch and FDM, respectively.

7.1 Suitability for Describing BM/C3 Architectures

Among these surveyed techniques, only Estelle and SDL have the potential for describing
BM/C3 architectures since they provide, similar to SADMT, both the facility for describ.
ing a platform (as a subsystem in Estelle and a block in SDL) ds a hierarchy of processes
and the port mechanism for interprocess communication. SDL seems more appropriate for
describing BM/C3 since it provides both graphical representation and mechanism for de-
scribing real-time features. SADNIT is different from Estelle and SDL in two main aspects:
(1) Estelle and SDL are less verbose, or higher level, languageh since they are new-brand
description languages instead of the one based on a complex programming language. Both
Estelle and 3DL describe a process as an extended finite state machine where states are
explicitly declared, while SADMT describes a process as an Ada task using the normal
syntax and semantics of Ada. (2) SADMT can be regarded as a general technique, like
Estelle and SDL, for describing arbitrary systems composed of intercommunicating pro-
cesses. -However, SADMT/SF, which makes SADMT different from other techniques, is
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specifically designed to provide mechanisms, such as cones, simulated time and space, and
dynamic creation of platforms, for simulating the processes in BM/C3 architectures.

With some extensions, Estelle and SDL h'ave the potential to become the representation
techniques for early BM/C3 Architectural developrent purposes. As an example, SDLSIM
ISKG87] is an extended SDL which incorporates the performance analysis capabilities into
the SDL by introducing some novel concepts, such as mission, resource, delay, scheduling
mechanisms.

7.2 Useability

Understandability appears tobe inversely proportional to-the level of complexity and for-
nality present. In the study of [Dav88], Statecharts, PAISLey, and Petri nets appear to be
much more difficult to. comprehend than the others (natural language, finite state machine,
SAjRT, REVS, RLP andSDL) which are mostly less formal. Roughly speaking, reading
and writing a definitional specification initially takes more practice than reading and writ-
ing an operational specification, because,programmets trained in conventional languages
tend to think imperatively. However, it is very difficult to determine whether one technique
has higher useability than the other since many factors have to be considered, including hu-
man factors. In the following, we intend to evaluate the useability of eachtechnique based
on (1) modularity and reusability of components, (2) support of "human-friendly" form,
such as diagrams and flow charts, and (3) management tools for specification construction.

Z, OBJ and Larch support modularity and encourage reuse of components by provid-
ing libraries and mechanisms for parameterization, renaming, export-import interface, etc.
BSI/VDM SL will enchance original VDM for supporting modularity and parameterization
[LA89]. In [Ber86], FDM was enchanced to support modularity. Most techniques using the
process paradigm or the hybrid approach support modularity to some extent, but do not
encourage reuse of components; RTL and temporal logic are two exceptions which do not
support modularity. RTL describes timing properties of a system in a global way; temporal
logic was traditionally used in a global, non-modular and non-compositional way since it
reasons about the global state of the program, but some researchers have been investigating
methods of the modular specification using temporal logic [BKP84, Lam83]. Modularity is
supported only a little in PAISLey since process is the unique structuring unit. SDL and
LOTOS support modularity and use the algebraic technique, which encourages reusability,
for specifying abstract data types. SEGRAS supports modularity and encourages reuse in
both system structure (for dynamic behavior) and data structure.

Most surveyed specification techniques lack the support of "human-friendly" form, and
only SDL and SEGRAS support graphical representation. A tool, called GROPE (Graph-
ical Representation, Of Protocols in Estelle), was prototyped with the intention to animate
Estelle specifications in graphical form (NA90.

Synta-directed editors exist for some languages, such as Larch, Estelle, LOTO5, SDL
and SEGRAS. In ESPRIT SEDOS project, the workstations of Estelle and LOTOS, for
increasing efficiency and productivity in the development phases, have been prototyped
[DV89]. SDL is the language in widest use in industry by specifiers and developers of
telecommunication systems, such that diverse commercial supporting tools have been de-
veloped; YAST (Yet Another SDL Tool) [Z+891, for example, is a set of tools that sup-



port the use of full SDL'88, including the graphical editor and on-line SDL tutorial. The
SEGRAS laboratory, an interactive specification environment, is designed to support the
stepwise development of large specifications in SEGRAS [Kra87].

7.3 NonfunctionalRequirements
Most nonfunctional requirements, also called constraints, are difficult to specify formally.
Some constraints (e.g., response to failure, fault tolerance) are related to design solutions
that are not known at the time the requirements are written. Many constraints (e.g.,
maintainability) are not formalizable, given the current state of the art, and many other
are not explicit [Rom85]. Given the current state of the art, only some types of constraints
are addressedby current formal specification techniques, such as security, concurrency, and
timing constraints.

Some security properties can -be verified with respect to functional specifications using
the techniques with data-paradigm, although they do not intend to provide constructs for
specifying nonfunctional requirements. A large portion of the current formal verification
work has been dominated by security-related projects, and FDM is one of techniques which
have been used extensively in this area [C+81, Kem89]. In [WN89], Ina Jo was extended
with temporal logic for specifying concurrency. Larch has been used to demonstrate the
applicability of specifying some nonfunctional properties, such as synchronization IBHL87],
persistence and atomicity [WG89]. In~the work of Durra [BW871, Larch was extended with
an event expression languagefor specifying timing behavior.

All the techniques that use the process paradigm or the hybrid approach deal with
concurrency. When describing timing behavior we usually want to be able to specify that
(a) "something should occur within a certain time, otherwise ...... ", or that (b) "after a
certain time something must occur". In Estelle, a delay mechanism, which can specify the
delay time for each enabled transition in a finite state machine, is provided for modeling
time-out behavior (related to (a)) or a waiting function (related to (b)). In SDL, timing
behavior is described by setting a watch-dog timer which can be made in three different
ways. (1) using a timing device, within or outside of the system that takes care of waking
up the process at appropriate time, (2) using a continuous signal", (3) using the SDL
construct of timer 2 . Both PAISLey and SADMT provide only method (1) of SDL for
modeling time-out behavior. SADMT, PAISLey and SDL provide facilities for describing
some kinds of performance requirements, using SADMT, each platform can be associated
with a resource assignment module %lich define +he values for transit and processing delays
honored during simulation, PAISLey provides a timing attribute attached to functions in
the functional specification, referring to tihe evaluation time of the functions in the form of

a random variable with lower/upper bounds, mean, or the distibution; different types of
transmission delay can be modeled in SDL [SSR89). Estelle, temporal logic, LOTOS and
SEGRAS support tile representation of time ordering aspects and handle concurrency well,
but provide no construct for time measures, some real time extensions of temporal logic

"Built-in operator NOW can be used in any expression yielding the value of de current time.
12SDL timer is an entit) which can be activated by the SET statement and pcoduce a signal upon the

expiring of the time set.
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[PH88, Ost89b] and LOTOS [QF87] for expressing time quantitatively have been proposed.
RTL is designed specifically for specifying timing behavior and performance requirments.

7.4 Verifiability

Most techniques with data paradigm, based on either an extension of first-order predicate
calculus or equational -logic, provide a proof theory; all the theorem provers, primarily
are proof-checkers and bookkeepers that provide an environment 4for supporting formal
reasoning where the humans guide -proof creation using their insight into the problem
domain. OBJ is the only exception.which provides an interpreter instead of theorem prover;
despite being incomplete, testing; using the interpreter is a practical way of increasing
confidence in the correctness of the specification. In [Gog881, the'technique for proving
theorems using OBJ and its interpreter was developed.

Simulators for dynamic behavior checking exist for PAISLey, Estelle, SADMT, LOTOS,
SDL and SEGRAS"3 . Extensive efforts spent on the verification techniques for standard
FDTs have produced some other verification tools for Estelle [D+891, LOTOS [EVD89]
and SDL [FM89]. Temporal logic provides sound global proof systems 4 for reasoning the
properties of entire systems, but the technique-to support compositional proof systems
based on modular specifications is still under intensive investigation IBKP84]. In order
to use temporal logic itself as a tool for programming and simulation, two programming
languages based on Interval Temporal Logic (ITL), named Tempura [Mos86] and Tokio
[F+86], were designed and implemented. A decision procedure for RTL formulas, although
inherently computationally expensive, has been proposed in [JM861 for safety analysis.

7.5 Equivalence Checking
Among the surveyed techniques, only LOTOS, which is based on a process algebra derived
from CCS, has developed the equivalence theories, using the notions of behavioral equiv-
alence, and implemented the tool for equivalence checking[BC89]. In the work of [VB89],
the mapping of SDL.processes and queues onto an extended version of CCS was proposed
to make equivalence checking possible' 5 . The equivalence notion of algebraic specifications,
which could be applied to OBJ and Larch, has been addressed in several studies [BW881.

7.6 Support for Deriving Implementations

Both VDM and FDM support stepwise refinement techniques for deriving implementations
Some theoretical studies have been done on the stepwise refinement methods for Z [MR87,
Mor9O] and OBJ [NF89). The translation of OBJ notations into an efficient implementation

"SAn interactive Petri net simulator of SEGRAS was under developement as indicated in [Kra$7], but
its current status is unknown.

"The proof systems are referred as lobalsinice they are only applicable to entire systems, and cannot
be applied to components of systems.

'*CCS is a process algebra which has a clearly defined equivalence relation between processes. SDL, how-
ever, is a language and not an algebra, such that there is no way of telling whether two SDL specifications
are equivalent (apart from their being extually identical).
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is still a big challenge,.in [Shu89], a development strategy was designed for translating OBJ
into the MALPAS interimediate language which is then refined until it is easily translated
into code. Larch, based on a two-tiered specification technique, allows some implementation
issues, such as modular decumposition and exception handling, to be specified in interface
languages.

The transformational methods for translating a PAISLey specification into implemen-
tation, as- proposed-in [Zav84], where an operational approach for software development
was advocated, are not available yet. A generator of C source code for Estelle was built for
both simulation and implementation purposes [RC89]. A set of tools, called LIW(LOTOS
Implementation Workbench) [M+89], has been designed for providing an interactive process
to refine a LOTOS specification into a C source code; the very high level abstraction of
LOTOS precludes a direct compilation. For SDL, several implementation tools have been
built, including code synthesizer generating C++ source code from SDL-PR, and CHILL16

source code generators [FM89]. The development methodology for reactive systems based
on temporal logic-waz discussed a little in [Pnu8Gb], and the need for a compositional proof
system as a prerequisite for such methodology was pointed out. The formal grounds of
stepwise implementation using SEGRAS are currently ongoing research.

8 Trends in Research

Some active research issues on formal specification techniques are summarized as follows.

1 Hybrid Specification Methods. It is interesting that LOTOS, SDL and SEGRAS
all adopt algebraic techniques for describing properties of the data domain at the
lower tier, similar to Larch, and use other formalisms (the operational approach)
for specifying dynamic system behavior at the upper tier. This kind of two-tiered
approach seems to become a general solution for combining the best from the worlds
of data paradigm and process paradigm. Several other efforts have been attempted
to deal with practical complex systems using the hybrid approach. In [ZJ89], the
dynamic behavior of control-oriented systems is described by the combination of
Statecharts and JSP/JSD structure diagrams, and data domain is described in VDM.
The RAISE'" project [NG86] is intended to extend VDM in several areas, including
concurrent processes based on CSP, the use of algebraic axioms for higher level of
abstraction, and the support of modularity and parameterization.

2, Model Checking Techniques. Model checkng has become a well known method to
carry out automatic verification of distributed systems. In this method, a model rep-
resenting the behavior of the system is described using a certain operational approach
(serving as a behavioral specification), and the desired properties of the system are
specified in temporal logic formulas (serving as a requirement specification). EMC
[CES86] and XESAR [R+87], for example, are two typical systems which use a sub-
set of CSP and a variant of Estelle, respectively, for implementing the behavioral

'5 CIIILL (CCITT hligh Level Language), a general-purpose language suited for programming embedded
systems, supports concurrency and interprocess communication.

1'RAISE is an a ionym for "Rigorous Approach to Industrial Software Engineering".
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model, and use branching time temporal logic for specifying the desired properties.
For verification, a complete state graph representing all the behaviors of the system
is generated from the behavioral model first, and then a model checking algorithm is
applied to check if the state graph satisfies the temporal logic formulas. The limits of
model checking method using XESAR were discussed in [G+89b]. A model checking
technique for verifying real-time systems is proposed in [Ost89a, Ost89b], where a
timed transition model is provided as a generic computational model for real-time
systems, and a real-time temporal logic is used for specifying the properties to be
verified.

3. Object-oriented Specification. A more recent paradigm for system structuring
is the object-oriented approach, in which the system is divided into objects, each of
which has its own set of operations. The benefits of object orientation include support
for modular design, code sharing, and extensibility. The object-oriented approach of-
fers one of the most promising ways of structuring a system in a way which increases
cohesion within its parts and reduces the coupling between them. It is therefore
important that the specification should be able to reflect this structuring. Although
most object-oriented languages have been developed for implementation and proto-
typing, efforts on object-oriented extensions for several specification languages have
been attempted, including Z [DD90), VDM (Bea88], Estelle [SG88], LOTOS [CRS90],
SDL (BMPD87, HH89]. Algebraic languages are in a sense 'naturally' object oriented;
OBJ [GW88) is an example of a language based on object-oriented ideas which uses
equational specifications to define the behavior of objects. Without object-oriented
extension, both Z [190) and SDL (Mor89] have been used, by integrating with some
object-oriented design methodology, for developing complex software systems. In re-
cent years, object orientation has gained importance as a design methodology for
distributed systems, thus there is a strong need to formally specify object-oriented
systems; LOTOS has been shown to be well suited for specifying object-oriented
systems in [May89]. In [3+901, an object-oriented specification method for reactive
systems is presented.

4. Specification Languages for Real-time Systems. The timing specification is a
particularly important issue in specifying the requirements and in design of real-time
systems. In addition to the specification languages specifically designed for real-time
systems, several existing specification languages have been enhanced with timing
expressions, including LOTOS [vHTZ90, QAF90], CSP (K+88b, Zic90], Petri-nets
[CR83, G+89a], temporal logic [KdR83, Ost89b]. In [JG89], different formal models
for real-time systems are reviewed. Formal models of real-time programs are still
at an early stage of developernent, and a great deal of work remains to be done on
aspects such as designing language constructs for real-time behavior and developing
proof systems and associated semantic models.

5. Theory and Practice of the Compositional Method and Stepwise Refine-
ment Technique. Compositionality [Zwi89 and stepwise refinement techniques A
[BdRR90] have attracted a lot of research recently in the context of specification and
design of distributed systems. It is of great value for a specification method to be
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compositional so that the specification (and the properties) of a composed system
can be constructed (and deduced) from the specification of its components without

referring to their internal details. The stepwise refinement method postulates a sys-
tern construction route that starts with some relatively high-level specification, goes
through a number of provably correct'development steps, each of which replaces some
declarative, non-executable (or merely inefficient) aspects of the specification by im-
perative executable constructs, and ends with an (efficiently) executable program. A
compositional method for real-time distributed computing is illustrated in IHR90].
In [Bac90], a refinement calculus for sequential programs is applied to stepwise re-
finement of both parallel programs and reactive programs.

9 Our Experiences in Using Formal Specification Lan-
guages

In order to facilitateexperimental-investigations into the design and evaluation of Muti-
Version Software (MVS) [Avi85] as a means of achieving fault-tolerant systems, a dis-
tributed MVS supervisor and testbed, called the DEsign DIversity eXperiment (DEDIX)
system [A+85], has been designed and implemented by the UCLA Dependable Computing
and Fault-Tolerant Systems research group. Research was initiatld to produce a formal
specification for DEDIX after implementing the prototype DEDIX ifi C language. For the
purpose of validation, the specification should be executable or provable.

The design of the prototype DEDIX is based on a set of hierarchically structured layers,
shown in Figure 2, to reduce complexity and facilitate the inevitable modifications. Each
site has an identical set of layers and entities. These layers, from the bottom to the top,
are Trasport Layer, Synchronization Layer, Executive Layer nd Version Layer.

Being the first attempt, Larch was chosen to specify the synchronization protocol of
DEDIX which had been described using an Extended Finite State Machine in [GP85].
Since Larch does not support the notion to express timing constraints and concurrency,
the effort did not get satisfactory results. In addition, we found that it is difficult to
specify the protocol directly in Larch since our understanding of the protocol is based on
the state transition model which is usually viewed as a mutually exclusive alternative to
the axiomatic approach"8 . A protocol description language, named SPEX [Sch82], based
on the model of a non-deterministic state machine, is thus used to specify the protocol at
the first step, and then SPEX is translated into Larch Shared Language' 9 . In this piece
of work, SPEX and Larch can complement each other, since SPEX is more readable and
Larch provides equational axioms for theorem proof. We have a strong feeling that the
use of equational axioms becomes cumbersome, but it makes mechanical proof possible,
when dealing with the state transition systems for which operational approaches are well
suited. LOTOS and SDL, two hybrid techniques that use operational approaches at the

'
8 As pointed out in (S+821, the notion of specifying state transition machines axiomatically seems rela-

tively unexplored, although Flon and Misra IFM79 hint at it.
'91n [Sc82], a set of translation rules to generate algebraic specifications from SPEX are proposed, and

the algebraic specification is treated as the semantics of SPEX. Since the Larch Shared Langnage is an
algebraic approach, the translation rules are adopted with little modification in our work.
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upper tier for specifying dynamic process behavior, are two-tiered approaches which try to
apply algebraic technique in the appropriate domain, i.e., data domain at the lower tier.

Later, PAISLey [ZS86} was considered as an appropriate language to specify DEDIX
because it provides the following features. interprocess interactions, executability, interface
to the C language2', and expressions for timing constraints. Being-the second attempt,
an effort was initiated to specify the synchronization layer of DEDIX in PAISLey. The
successful experience with the synchronization layer then encouraged us to use PAISLey
to specify the remaining parts of DEDIX. Like programming languages, no specification
language is suitable for all kinds of problem domains. The fact has been recognized later
that PAISLey is appropriate for specifying the local executive and global executive, but not
appropriate for specifying the decision function. After some evaluations, Prolog [CM81]
was chosen to specify the decision function as a form of prototyping. This piece of work
demonstrates that specifying a software system in two different specification languages i3
feasible, as long as there is a clear-cut interface between the subsystems specified in different
languages. The specification of the decision function is validated by a Prolog interpreter,
and the PAISLey specification of the other parts can tolerate the incompleteness caused by
the undefined decision function. The size of the specification is medium; there are about
nine hundred lines in PAISLey and two hundred lines in Prolog, and the total size of the
specification (including comments) is about 1,700 lines [Wu88}. DEDIX was implemeted I
in about 14,000 lines of C code.

A system specified in PAISLey consists of processes that run in asynchronous parallel
and interact over virtual communication channels. The structure of the PAISLey spec-
ification for DEDIX is shown in Figure 3, where processes are represented by ellipses.
The specification is divided into five modules: synchronization/transport layer, local ez-
ecuttve, global executive, voter and version. The synchronization/transport layer at each
site is specified by six processes to describe the behaviors of broadcasting, time-out 2' and
synchronization. Both local executive and global executive are specified by one process
Although the decision function is specified in Prolog, the timing behavior of the voter and
its interactions with other module- are specified by a process which leaves the decision
algorithm undefined. Figure 3 shows the sequence of communications among the processes
when a cc-point is executed by DEDIX. The communications are implemented with the ex-
change functions in PAISLey. Although exchange functions allow bidirectional information
flow, only one direction is utilized in our specification.

With the experience of specifying DEDIX using PAISLey, some disadvantages of PAIS-
Ley have been recognized as follows:

1. Lack of support for modularity. As shown in Figure 3, tie hierarchical structure is
not supported in PAISLey since process is the unique structuring unit.

2. No construct for describing time-out behavior in a succinct way. Each timer has to
2 Functions left undefined in a PAISLey specification may be defined instead by functions written in

the C language. So those functions which are awkward or useless to specify in PAISLey can be defined
by functions in C (or esen left undefined for those better suited to another formalism, since PAISLey can
tolerate incompleteness).

"tTwo timer processes for the sender and the receiver, respectively, are not shown in Figure 3 for
simplicity.
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be modeled as a process which communicates with the process to be wakened up.

3. Lack of reasoning capability. PAISLey provides no formalism for theorem proof, and
its simulation cannot guarantee the correctness of the specification.

4. Functional style is the only style for behavioral description. There are three disad-
vantages of such limitation. First, requiring a specification notation to-be directly
executable restricts .the forms of specification that can be used, and thus the level
of abstraction using PAISLey is limited. Second, PAISLey does not have the power
of typical functional programming languages, and its functional style is cumbersome
for describing some complicated operations. Third, since each process is specified
by a function definition, different-events which affect the behavior of the process are
mixed, and thus not explicit, in a single function definition.

In the following section, a VDM-based specification language, called RT-VDM, is pro-
posed. We claim that the above disadvantages of PAISLey can be avoided when RT-VDM
is used, and DEDIX can be specified as a whole in a modular way using RT-VDM.

10 A VDM-based Formal Specification Language: RT-
VDM

As mentioned in previous sections, VDM [Jon89, B+88] is a model-oriented approach, and
it provides a rich set of notations to formulate a model of the system which defines a
mathematical model of its data and also corresponding operations on the data. For real-
time applications, timing behavior is as important as functional behavior. Oer the past few
years, VDM has been shown to be well suited to developing sequential software. However,
its lack of modularity and the absence of a method for handling temporal aspects of real-
time systems are shortcomings which limit its application in complex real-time systems. In
this section, a VDM-based specification language, called RT-VDM (Real Time extension
of VDM), is designed for specifying real-time systems. In order to integrate the formal
specifications of functionality and real-time requirements in an unified and modular way,
RT-VDM enhances VDM with the following features:

1. Modularity. A structuring mechanism is supported to model a complex system in a
hierarchical, modularized structure.

2. Concurrency. The notion of asynchronous processes is incorporated to express the
concurrent execution.

3. Timing Constraints. Expressions are provided for describing timing constraints, in-
cluding system performance, time-out. and transmission delay.

In the following subsections, the language constructs of RT-VDM are described. Some
detailed case studies of RT-VDM and their verifications can be found in [Wu90].

24



Figure 4: An example of system structure described in RT-VDM

10.1 Overview of RT-VDM

The behavior of a system is composed of the combined behavior of a number of asyn-
chronously interacting processes in the system. A process is a state transition machine
which runs autonomously and concurrently with other processes. The communication
among the processes is through interaction points which are-modeled as shared variables.
To cope with complexity, a process (or a module) can be.further partitioned into modules
with interaction points interconnecting among them. With the structuring mechanism,
the overall structure of a system specification may be organized in a hierarchical fashion.
Figure 4 shows an example of the system structure where P1 is the process without further
partition and M2 is the module further decomposed into two modules M4 and M5. In such
hierarchical structure, three kinds of nodes are distinguished:

1. The root, called system node, describes the top level structuring of the system.

2. The non-leaf nodes, called composite nodes, comprise the children nodes.

3. The leaf nodes, called primitive nodes, describe the primitive operations which
constitute the system behavior.

Note that a process can be specified as either a primitive node or a composite node. In the
following, we use node as a general term to stand for either primitive node or composite
node.

In many applications, a system may contain several identical processes or identical
modules in different processes. So in RT-VDM specifications, the types of nodes are
specified, and nodes are declared as instances of'nodes' types.

The specification method using RT-VDM can be classified as an operational approach
in the sense that a real-time system is specified as an explicit model of the proposed system
interacting with an explicit modelof the environment. Both the proposed system and the
environment are modeled as a set of RT-VDM'processes.
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SYSTEM system-name
Need package-name-list
Process Type

process-type-list
Process Instance

process-instance-declarations
Interconnect

process-interconnection-descr ition.
Performance Requirement

performance-statements
END system-name

Figure 5: A template for the description of system nodes

10.2 Construct for System Node

Figure 5 shows the template for describing a system node. The Need section lists the
names of the packages from which some useful information is imported. The packages are
usually formed by grouping the constants, data types, and functions which are commonly
needed in the descriptions of different nodes' types. The processes, which constitute the
system, are defined in Process Instance section with the types declared in Process Type
section. The Interconnect section describes the interconnections among these processes.
The system performance requirements, which should be enforced by the implementation,
are specified in Performance Requirement section. The construct is intended to separate
performance requirements from the functional specification. Of these sections, Process
Type, Process Instance and Interconnect are mandatory sections.

10.3 Construct for Composite Nodes

Figure 6 shows the template for describing the type of a composite node whose instances
are either processes or modules. The Interface section declares the interface varzables,
representing the interaction points, which are used for interacting with the outside world.
The children nodes, which constitute the composite node, are-defined in Module Instance
section with the types declared in Module Type section . The Interconnect section de-
scribes the interconnections among the children nodes. The Attach section describes the
attachment of the interaction points of children nodes to those of the composite node,
through the attachment, the children nodes can communicate with the outside world. The
Performance Requirement section has the same meaning as that in the system node except
with a different scope of description; the scope is over the combination of the descendant
nodes. Of these sections, Module Type and Module Instance are mandatory sections.

10.4 Construct for Primitive Nodes

Figure 7 shows the template for describing the type of a primitive node. The Constant,
Data Type, and State Variable sections define the constants, data types, and local state
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[PROCESS TYPE node-type-name]
[MODULE TYPE node-type-name]
Need package-nafne-list
Interface

interface-variable-declarations
Module Type

module-type-list
Module Instance

module-instance-declarations
Interconnect

module-interconnection-description
Attach

attachment-description
Performance Requirement

performance-statements
END node-type-name

Figure 6: A template for the description of composite nodes

variables, respectively, which can be accessed only at the local node. The initial values of
local state variables are defined in the Initial State section, and the interface variables
have default initial values. In the Operation section, which is the core part of the specifi-
cation, the primitive operations which constitute the system behavior are specified in VDM
notation; each operation is specified in two parts: the pre-condition defines the condition
which enables the operation, and the post-condition defines the changes on the local state
vaiables and interface variables once tile operation is executed. The Auxiliary Function
section defines the functions which are auxiliary for specifying the operations.

In order to express the requirement that some enabled operations must be delayed for
execution, the VDM notation is extended with a delay statement which is an optional in
the operation definition. A delay statement for operation OP is in the form "delay [El,
E21" where El/E2 is the minimum/maximum amount of time the operation OP, once
enabled, must/may be delayed for execution. Infinity can be represented in E2 using the
symbol co. A simple form "delay [E]" stands for "delay [E, E)". If the enabled operation
is still enabled when the delay period elapses, then it becomes fireable. Fireable operations
are the candidates to be executed next. The operations without delay statements become
fireable immediAtely once they are enabled. Within one process, several operations can
become fireable simultaneously, but some of them could be disabled later by the execution
of a certain fireable operation.

In the Fairness Constraint section, some operations are declared to hold a fairness
constraint. An operation, which has tile potential of being disabled by the execution of other
operations, holds a fairness constraint if the operation has to be executed eventually after
being enabled-and disabled a finite number of times. In the literature, different notions of
fairness has been proposed [QS83, LPS8l]. The notion of fairness used in RT-VDM is strong
fairness, i.e., the operation is executed infinitely many times if it is enabled infinitely many
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[PROCESS TYPE node-type-name)

IMODULE TYPE node-tVpe
'name)

Need package.name-list
Interface

interface.variabledeclarations
Constant

constant-declarations
Data Type

data.type-declarations
State Variable

state.variable.declarations

Initial State
initial.value-declarations

Operation
VDM.operation-definltions

Auxiliary, Function
VDM.function- definitions

Fairness Constraint
operation-list

Always
operation-names

Performance Requirement
performance-statcments

END node-type-name

Figure 7- A template for the description of primitive nodes
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times. Fairness constraints are generally crucial to'the satisfaction of liveness properties2 .
The Always section declares those operations which should not be disabled by other

operations (i.e., must be'executed eventilally) once they have been enabled.

10.5 Expression of Performance Requirement

In [Das85], timing constraints are classified into two categories: performance constraints,
which set limits on the response time of the proposed system, and behavioral constraints,
which make demands on the rates at which the environment applies stimuli to the sys-
tem. In RT-VDM, using the same constructs for modeling both the environment and
the proposed system blurs the distinction. Instead, two types of~timing constraints are
distinguished as follows:

" delay constraints which are specified in delay statements as a part of the operation
definitions. Delay constraints are suitable for modeling some kinds of timing behav-
iors, like time-out and event occurrence rate. The delay constraints can be treated
asa part of functional requirements, since tniey can be interpreted in the functional-
ity simulation using the algorithm which simulates Estelle specifications with delay
constraints [DB87].

" performance requirements which appear in Performance Requirement sections. This
category is related to real-time constraints which should be enforced by the imple-
mentation, and thus are independent of the functionality part.

The event-action model proposed in [Mok85 is adopted for specifying the performance
requirements. The event-action model is used to specify the causal and temporal relation-
ship of the computational actions that must be taken in response to events in a real-time
application, it is also a formal language which can be translated in real-time logic (RTL)
3[JM861 for reasoning about the timing properties of a design and for safety analysis. In

order to fit the event-action model into the RT-VDM model, the correspondence between
them is recognized as follows:

* Actions, which are schedulable units of work in event-action model, correspond to
operations in RT-VDM.

* An event serves as a temporal marker, i.e., the occurrence of an event marks a point
in time which is of significance in describing the timing behavior of the system. In
RT-VDM, an event can be referred to either as completing the execution of an oper-
ation, using the notation 4OP, which may trigger the execution of other operations,
or simply as the pre-condition of the triggered operation becoming true, using the
notation pre-OP. External events, like pushing a button or turning a switch on,
which are a part of environment, are modeled as the completing of the execution of
operations of environment processes which manipulate the interaction points.

"For example, a successful transmission will esentuall) occur after transmission loss has occurred con
secutihels a finite number of times, the operation of succemful transmission holds a fairness constraint.
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In order to specify the performance requirements, expressions for the execution sequence
of operations are required. The syntax in BNF is given as follows:

Eop = operation I Eo,; E, I Ep I E, I EQPoE
where ';', 'i', and '0' are the operators representing sequential, in terleaving, and nondert-
erministic selection executions, respectively. Given A ; ((B 0 C) I D) as an example,
ABD, ADB, ACD, and ADC are the four possible execution paths. The only restriction on
choosing the execution path is that the pre-condition of each operation on the path must
be satisfied.

The performance requirements are described using the f'61lowing forms which are the
same as in [JM86):

1. while <state predicate>, execute <Eop> with period = <time>, deadline = <time>

2. when <event>, execute <E0,,> with deadline = <time>, separation = <time>

The first form is referred to as a periodic timing constraint which requires some operations
to be executed at fixed intervals while some state predicates are true; <state predicate>
should be true during the execution of <Ep>, i.e., it should be satisfied by the pre-condition
of each operation in <Ep>. The second form is referred to as a sporadic timing constraint
which requires some operations to be executed before a specified deadline elapses after the
occurrence of a certain event; the separation parameter, as an optional, specifies a lower
bound on the length of an interval separating two successive occurrences of the triggering
event.

10.6 Remarks

Basically, RT-VDM takes advantage of some important features from three independent
techniques:

1. VDM [Jon89). The domain constructors available in VDM (like sets, maps, sequences
and trees) are used as generic abstract data types which are powerful enough for
describing the data domain of complicated software systems. The notion of operation
in VDM is adopted in a natural way to define the state transitions in distributed
systems. The succinctness of the RT-VDM specifications illustrated in jWu9O) is
mainly attributed to the use of VDM notations.

2. Estelle [D+89). The delay statement, the notion borrowed from Estelle, facilitates
some timing expressions, such as time-out. Both RT-VDM and Estelle model tile
systems in a hierarchical structure. Similar to the semantics of Estelle, concurrency
in RT-VDM is modeled by the interleaving of atomic transitions.

3. Event-action model [JM86]. The model is incorporated in RT-VDM for specifying
the performance requirements. The event-action model is to capture the temporal
ordering of the computational actions (operations in RT-VDM) that must be taken in
response to events (completion or enabling of operations in RT-VDM) in a real-time
application.
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11 Recommendations for Further Study
VDM and Z are promising techniques-for the specifying of sequential systems [BHL90].
VDM and Z have been used extensively in a variety of applications, especially in the
developement of sequential software. Both VDM and Z, sharing a common philosophy,
insist that the specification of requirements should be formulated from the beginning at
the highest possible level of abstraction, using all the available power of mathematics to
describe the desirable, observable and testable properties of the product which is to be
implemented. The British Standards Institute (BSI) is currently formulating a standard
for the VDM Specification Language - a standard that will also be proposed to the ISO.
That standard will contain fully formal, mathematical definitions of the semantics of the
BSI VDM SL.

For specifying distributed systems, we considered LOTOS [EVD89] as the most promis-
ing technique among the surveyed techniques. LOTOS has the merit (and takes the risks)
of being based on relatively new and powerful theories (CCS and ACT ONE), which so
far have mainly been confined to academic environments. The great promise of LOTOS
lies in the fact that it allowsas many levels of refinement as needed, through the use of
two language operators: parallel composition and restriction. The LOTOS specifications
that have been produced so far (see references in [BB89]) indicate that such quite complex
systems can be specified with an intuitively appealing structure, and be relatively concise
(when compared with other FDTs). One interesting feature of LOTOS is that there are four
main styles for writing LOTOS specifications, as identified in [VSvS88], i.e., the monolithic
style, the state-oriented style, the resource-oriented style and the constraint-oriented style.
At the Tenth International Symposium on Protocol Specification, Testing and Verification
(held in Canada on 12-15 June 1990), the fact that eight LOTOS papers were published
shows that LOTOS has attracted a lot of research work.

SDL JBH89, FM89], a promising language for specifying real-time systems, is estimated
to be known by more than 10,000 telecommunication engineers throughout the world. Key
features of SDL which make it a success are. support for graphics, hierarchical development
and refinement, supporting tools, and standardization.

STATENIATE [H+90] provides a promising approach for specifying the complex reactive
systems. STATEMATE is a set of tools, with a heavy graphical orientation, intended
for the specification, analysis, design, and documentation of large and complex reactive
systems. Using STATEMATE, the system is described from three interrelated points of
view, capturing structure, functionality, and behavior. These views are represented by three
graphical languages, the most intricate of which is the language of statecharts [Har87], used
to depict reactive behavior over time.
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