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PREFACE

This technical paper is the first publication in an area of research, neural network
applications, under the Manpower and Pe-sonnel Division's Force Manageinent program. Development

of this technology in the personnel modeling arena will greatly improve the capahility to understand
the interdependencies of many related variables

The authors wish to thank Ms Kathy Berry for assistance in reviewing and preparing this

document, Dr Brice M. Stone and Dr Thomas R. Saving provided many interesting views on the
material. : )
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SUMMARY

This technical paper introduces the concepts of neural networks with emphasis on the Air
Force perconnel system. Neural networks offer a method of analyzing and simulating the personnel
system with few restrictions on the form of the relationships in the system. The system can be
estimated or "trained" with all of its interdependencies considered. It provides a basic foundation on
which further research can be done. The paper is an introductory primer designed for individuals who
have little or no knowledge of this growiig field. Additional information on the specific applications
of neural networks within the field of manpower and personnel can be found in the final report titled,
Neural Networks and their Application to Air Force Personnel Modeling, published by the Manpower
and Personnel Division of the Air Force Human Resources Laboratory, currently in press.
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I. INTRODUCTION

This technical paper provides an explanation of neural network tcchnology in the form of a
primer. The primer gives a basic understanding of how neural networks are used, what they are
capable of, and some implementation details.

The second section is a brief history to introduce the scope of the field and discuss why there
has been a sudden push of interest in the field. In Section III, a working definition of neural
networks, network capabilities, and some real world applications are addressed. In Section IV,
traditional methods, such as logit analysis,-are compared to the use of neural networks for the same
application. Section V examines two of the many types of network architectures to give an
understanding of the learning techniques most commonly applied in neural network research. Section
VI provides example applications in the area of personnel modeling.

II. HISTORY

The ideas immanent in neural networks have beer; around for a long time. As early as 1890
William James, in his psychology primer, laid out many of the general concepts still used in neural
network research. His treatment was purely conceptual and little was done to extend the models he
outlined. In 1943, Warren McCullouch and Walter Pitts created the first formal models of neurons
and neural networks, and this launched a series of more extensive explorations of neural networks.
For most of the researchers, the capabilities of biological systems were primary motivating factors.
Many researchers hoped to emulate the capabilities of the brain and nervous system by creating
svstems based on what was known about real neurons and their network structure. At that time,
neural networks were even viewed as alternatives to digital computers in creating automated systems.

During 1969 Marvin Minsky and Seymour Papert published an influential book that took the
bloom off this early research. In Perceptrons, they rigorously proved a basic limitation of the primary
class of neural network models that were being studied at the time—they were linear. This meant the
models could not solve problems that were not linearly separable. Moreover, because of this limitation,
these models of neurons and neural networks could not be combined to produce general computing
engines. In short, there were problems they simply could not solve. Despite possibilities for extending
the models Minsky and Papert had analyzed, the impact of their publication was significant.

During the 1970's and early 80’s less research was done in the field, and much of this research
was performed in Europe and Asia. The majority of researchers were neurobiclogists and

mathematicians. In the early 19R0’s several elements converged to generate an explosion of interest
in the field.

Four major factors contributed to the resurgence of interest in neural networks. First, the field
gained credibility through the efforts of some physicists. They drew analogies between the
mathematical behavior of neural networks and spin glasses. Statistical mechanics provided a firmer
foundation for some types of neural networks. Second, new and more powerful network architectures
were discovered or rediscovered. These architectures addressed the limitations cited by Minsky and
Papert. Third, results from neurobiology suggested new architectures for neural networks. Fourth,

the availability of cheap and powerful computers allowed widespread experimentation with neura!
network techniques.

All of these factors led to an explosion of research in the field. A host of international
conferences have been held since 1988; and the IEEE in cunjunction with International Neural
Network Society (INNS) continue to hoid the International Joint Conference on Neural Networks
fIJCNN) twice a year. The IEEE holds a annual conference each year in Colorado. Annual
international conferences are also held in Europe with many smaller conferences and workshaps




available. At last count there are five journals dedicated to the field, three newsletters, and some
thirty books (with more in publication). The field has attracted a large group of interdisciplinary
researchers ranging from neurobiologists and mathematicians to physicists, engineers and
psychologists.

III. DEFINITION, CAPABILITIES, AND APPLICATIONS

What is a Neural Network?

While the field is very broad and researchers in the various disciplines use a variety of terms
and definitions when discussing neural networks, three characteristics are alirost universally accepted
as being exhibited by neural networks, Neural networks are collections of simple processing elements
connected together and all working at the same time. First, the networks are compcsed of simple
processing elements (neurons). By themselves these elements do not perform any complicated
processing. Second, the neurons are connected together into a network topology which allows
sommunication among the neurons. Third, all of the communication and simple neuron processing

occurs in parallel. That is to say, all of the computations and communication are done at the same
time.

a A\

What is a Neural Network?

+ Simple processing elements (neurons)
+ Connected together
+ Workiilg at the same time

L 3 )

Figure 1. Primary features of a neural network.
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Biological Neural Networks

These collections of simple processing elements exhibit some very interesting behaviors.
Among these behaviors are pattern classification or recognition, control, adaptation, optimization, and
associative memory. We have examples, or existence proofs, of highly connected systems which exhibit
the capabilities just mentioned. All of these examples are biological systems—man, dogs, bumblebees,
etc.

Capabilities

The most impressive classification and control tasks these biological systems perform are
usually taken for granted—recognizing friends, finding food, walking. These are very difficult
recognition and control tasks; but they are essential to survival, and biological systems perform them
with apparent ease. Despite this apparent ease, these types of tasks have been the most elusive to
reproduce using computers or other types of automatons. The hope of neural network research is that
reural networks, by emulating some of the structure in the biological nervous system, may better
perform these cemplex tasks.

Components

Biological systems do not obtain their capabilities by employing fast components. In fact,
neurons (the basic processing elements of the brain) are extremely slow when compared to the
components of digital computers. A typical neuron can process information and produce a response
about 100 times per second. Computers can currently produce a response (perform a basic
computation) over 50 million times per second. Simply comparing component processing speed,
current digital computers operate about 500,000 times faster than a single neuron.

1 )

Biological
“Computing” Components
are Slow

Connections or computations made per second

» Neurons: 100 per second
+ Coniputers: 50 million and up

Serial computers are roughly 509,000 times faster
than a single neuron.

\ b

Figure 2. Operating speed of hiological neurons and computer chips.
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Brains make up for this speed deficiency by employing many neurons to work on a single
problem simultaneouslv. The human brain has about 100 billion neurons, with each neuron having
on average 1000 dendrites (connection paths to other neurons). This allows for a total of 100 trillior:
synapses or inlerconnections between neurons. All of these neurons process and communicate
information in parailel which means that 10,000 trillion interconnections can be made per second in
the human brain. A simpler biological system, the cockroach, can mzke about 50 ballion
interconnections per second.

On the other hand, serial computers have one effective interconnection. Even though the
fastest computers (Cray XMP-2) utilize this connection 50 million times per second, their overall
information processing capability is no match for a biological system. The human brain processes
about 20 million times more information than the fastest serial computer, and the "simple" cockroach
manages about 1000 times the information of the same computer.

(f

Biological ?‘

"Computing” Components
are Plentiful

Human brain

« 100 Bifion (10") neurons

» 1,000 dendrites (connactions paths) per neuran
» 100 trillion (10" synapses (connections)

» All neurons wnrk in parallel

» 10,000 (10'% trillion interconnections per second

Cockroach
« 1 billien (10%) synapsas (conneciions)
« 50 billion interconnactions per second
Setial computers

« 1 connection
« 50 miljon interconnections per second
(Cray XMP-2)

The human brain is about 20 million times "faster”
than a serial computer

The cockroack brain is about 1,000 times “faster”
than a serial computer

N -/

Figure 3.  Scale of biological neural
networks.

Lesson

_’I‘he main point of these comparisons is just this: Highly interconnected assemblies of simple
processing elements produce interesting and useful behavior. When operating in parallel, these same
assemblies perform some operations much more quickly than serial computers. In general, these slow,

-
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error prone units (neurons) can perform tasks the fastest computers cannot currentl)'.approach. While
current neural network research is a long way from reproducing the capabilities of biological systems,
the desire to attain and understand these capabilities is the impetus behind much of the research in
the field.

4 )

Lesson

Highly interconnected  assemblies of simple
processing elements produce interesting and
useful behavior.

‘These same assemblies perform some vperations
much more quickly than senal computers.

L .

Figrure 4. Lessons from biclogical neural networks.

Artificial Neural Network (ANN) Implementations

Currently these paraliel biological structures are usually simulated on serial computers. Since
the simulation is not truly running in parallel, these simulations are very slow compared Lo their
biclogical counterparts. (Naturally cecurring neural networks gain their speed through parallel
operation.) Some use is currently made of digital signal processing chips to speed the computations.
but this is still essentially a serial process.

Hardware implementations of neurons and networks are currently under development. Several
groups (Intel, TRW, the Jet Propulsion Laboratory, AT&T, Syntonics, and others) are building neuron
and neurai network VLSI chips, and a few of these are actually in production. These chips hold the
promise of speeding neural network simulations by several orders of magnitude. Still, problems
inherent in the highly connected nature of the problem have yet to be fully addressed.

Areas of long-term research include optical computers and biological computers. Optical
computers hold the promise of extremely fast operation and vast numbers of interconnections,
Biclogical computers, if they are fully developed, should allow very dense, small scale constructions.
Both of these areas (particularly biclogical) are many years from commercial implementation.
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ANN Capabilities
Assogiative Memory

Despite these constraints, interesting results are being obtained with simulators in areas such
as assoc.ative memory or recall. Assaciative memory involves the completion of a pattern or set of
informatica. This type of memory is typical of human memories. For example, during the course of
a conversation someone may discuss an acquaintance who is married, lives in the suburbs, and is a
banker. You might be reminded of your uncle John who also has all those characteristics. This type
of memory is a two-way street. When discussing your uncle John, you always have in mind that he
is a married banker living in the suburbs. A very similar process is pattern completion. The example
demonstrated in Figure 5 involves the reconstruction of a complete image of a plane from an occluded

view of the plane. Neural netwurks perform these pattern completion functions as a natural result
of their operation.

@\ )

Associative Memory

! Married ™
Suburbs

@) uncie Jonn

Banker § ©

\

\

Figure 5, Examples of associative memory.
Pattern Recognition and Classification

' As displayed in Figure 6, Another area where natural and artificial networks excel is pattern
recognition and classification. As mentioned before, this type of classification is critical to survival of
any species and also appears to form the basis of many higher-level cognitive functions. Before any




action can be contemplated, the situation or problem must be recognized and to a certain extent
classified,

= )
Pattern HRecognition — Ciassification

R

] .

2 ~, Submarine
E‘ Propelier

Frequency

Aviatlon Subtast: 1 U PT
Two Hand Score; 2400 j .
Age: 65 Failure

Figure 8. Examples of pattern
classification.

In the first example from Figure 6, artificial neural networks are not yet capable of
consistently recognizing a picture of mom. Still, this type of difficult classification is an active area
of research and several projects are directed at this type of goal.

A second area where pattern recognition is important involves classifying the source of a sonar
or radar signal. Given the power spectrum f om a sonar signal, the neural network determines
whether the source is a submarine propeller or a fishing trawler. This type of ¢lassification has met
with some research success and is being pursued by several research groups.

The third example in Figure 6 is from the manpower area. Given a candidate’s characteristics
(test scores, demographic factors, etc.) what is the likelihood the candidate will pass Undergraduate
Pilot Training? A similar question could be asked about reenlisting or separating from military
service. Many other behavioral models can be cast as classification tasks. Neural networks are also
being applied in the areas of optimization, speech, and visicn.



Neural Network Applications

Figure 7 displays some examples of specific neurai network applications gauged by their stage
of development. Those applications classified as in the research stage are typically software
demonstrations »f a concept. They would involve the solution of small, “toy world” problems using
software simulations of neural networks. Applications in the demonstration stage usually have some
specific hardware to support the operation of the neural networks and are applied to a larger scale
problem representative of the actual area being researched. fielded systems are either commercial
products or completed neural network systems being applied to actual problems. Noteworthy among
! those applications in this group, credit risk assessment is a commercial product operating entirely in

an MS-DOS personal computer environment. This specific application involves classification of credit
v card applicants according to their credit risk. The problem is similar to many manpower classification

problems where a decision must be made based on an individual’s characteristics and environmental
or economic factors.

s oA e A T A S T R T
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| Specific Neural Network Applications

= Fielded
\.' Research Demonstration  System

Adaptive channel equalizer
Cradit risk assessinent
Explosives detection
Procsss monitor

Robot control

Optical charactar recog.

Speech recoglition
Alrpiane piloting

Text to speech conversion
Systems modelling

[ Sonar ciassificatian
Hand wrilten OCR
Star idectification
Sensor fusion

Patteen complation

- e K —g

\= Y,

Figure 7. Current status of some neural
network applications.
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IV. NEURONS AND TRADITIONAL METHODS

.

Solving Clagsification Problems

It can be seen that many of the applications in Figure 7 involve solving classification problems.
Let’s lock at hew classification problems are usually approached using more traditional techniques.
Most of the traditional techniques are parametrie, such as regression or logit analysis. These involve
the estimation of parameters that divide a decision space (usually binary) based on the inputs or
determinants of the classification. Other.techniques, clustering algorithms, may not require the

estimation of parameters. Instead, these algorithms classify the observed cases into groups whose
characteristics are similar,

Each technique provides its own perspective on a problem and has its own limitations.
Parametric techniques require the underlying functional form of the relationship be known and
specified in advance. An error distribution must also be specified. Clustering algorithms can be even
more restrictive in imposing the specific type of a cluster being searched for: nearest neighbor,
minimum spanning tree, etc. In general, neural networks impose fewer assumptions about the
structure of the problem and thus allow more flexibility in searching for a solution.

Logit Analysis

Figure 8 shows g traditional classification technique, logit analysis, as a black box. Using the
individual reenlistment decision as an example, an individual's characteristics are seen as inputs (the
grey region on Figure 8). These inputs are fed into the black box which produces an output that is
interpreted as the probability the individual will reenlist.

((;

~)
A View of Logit

as a Black Box

Inputs

\S

Figure 8. Logit analysis viewed as a black box.
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Looking at the problem in more detail (Figure 9), we can see that each of the inputs (I) has
a coefficient asscciated with it, W, through Wy. When solving for the probability a specific airman wiil
reenlist, the value of each characteristic for that airman is multiplied by its respective weight. For
exampie Length of Service is multipiied by W, and Dependents is multiplied by W,. These
products are then summed to produce s as shown in the left half of the circle in the figure. If we
stopped here, this would simply be a linear equation. However, in logit analysis we ara looking for
a result between zero and one. This result can then be interpreted as a probability of reealistment.
So, the linear sum s is passed through & nonlinear transfer function, the logit function, which
constrains the output (a) to be between zero and one. The logit curve as a function of the linear sum
8 is written in the right half of the circle, and its graph is shown in the box labeled Logit Function
on the arrow exiting the circle. As can be seen, the logit function transforms the sum s, which may
range between positive and negative infinity, to a value between zero ar.d one. As mentioned above,
this result is then interpreted as the probability the airman will reenlist.

7 - =)
A More Complete
Different View of Logit

N
|

Logit Function

| = Inputs a = Qutput
.

/

Figure 9. Schematic of logit analysis.

In logit analysis the coefficients W, through Wy are chosen by presenting all of the known
results to the algorithm. That is, the characteristics and actual result (reenlist or separate) for each
airman are presented to the algorithm. The set of coefficients which maximizes the likelihood that
the actual decisions would have been observed is then chosen. This usually involves the application
of a second-order "hill climbing" technique, such as Newton’s method, with likelihvod as the objective.

10
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An Artificial Neuron

In Figure 10, we are looking at a typical artificial neuron, again as a black box. As with logit
analysis, an individual airman’s characteristics are shown on the left. The neuron processes the
inputs to produce a predicted reenlistment probability. At this level, the neuron performs the same
function as logit analysis. Terminclogy is the only difference. In this case, the process of converting
the inputs into a reenlistment probability is referred to as feed-forward mode. The actual output of
the neuron, which we interpret as a reenlistment probability, is referred to as the activation of the
neuron.

a )
Artificial Neuron
as a Black Box

Inputs Activation

_/

Figure 10. An artificial neuron viewed as a black box.
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Figure 11 shows a the computational details for a typical artificial neuron. Again, this figure
looks almost identical to the Figure 9. In fact, in feed-forward or prediction mode, the two operate in
exactly the same manner. The coefficients W, through Wy, from the logit analysis are now referred
to as weights. The logit function is'now called a sigmoid activation function. This is merely a change
in terminology, the two functions are identical. If the weights for the -1euron could be chosen properly,
it would implement logit analysis. The key difference in the neural network paradigm entails applying
several neurons to the same problem.

@ )
A More Complete
Artificial Neuron

— s B

Sigmoid Activation

1 = lnputs

\. ' Y

a = Activation

Figure 11. Schematic of an artificial neuron.
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V. TWO ARCHITECTURES AND THEIR TRAINING

Widrow-Hoff Learning

The method a neuron employs to determina its weights has yet to be discussed. We will start
with a fairly straight-forward method known as Widrow-Hoff or Least Mean Square (LMS) learning.
The process of choosing and adapting weights in a neural network is typically referred to as learning.
We will continue to use the reenlistment example; and, to simplify the exposition, only two inputs
(length of service and number of dependents) will be used (see Figure 12).

As the name implies, the goal of the learning procedure is to minimize the squared error of the .
predicted reenlistment probability. Training(the process of applying the learning procedure) proceeds
as follows. The Length of Service and Dependents for an airman are presented to the neuron and
the neuron produces a guess at the probability of reenlistment. This guess is compared against the
actual outcome for the airman (reenlist or separate) and the neuron adjusts itself to produces a better
guess (closer to the actual decision).

a =)
Widrow-Hotff Learning
Least Mean Squares

Length of
Sorvice
(LOS)

ﬁ= Rasnlistmant

Dependents
(DEP)

= J

Figure 12. A simple feed-forward network capable of Widrow-Hoff
learning,
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The process can be seen more explicitly in Figure 13, This neuron preduces its guess by taking
the product of W, with Length of Service and summing this result with the product of W, with
Dependents. As can be seen on the Sum is Activation line in the figure, this neuren simply forms
a linear function of its two inputs. If the goal were to correctly predict this one decision, either W, or
W, could be adjusted to completely correct the prediction. However, the goal is to minimize the
squared error over all of the airmen in a sample. Toward this end, the weights are adjusted by the
Weight Adjustment equations in the Figure 13. A factor known as the learning rate (a small
number between zero and one) is employed to determine the distance the weights move relative to the
error of a given prediction. If the learning rate is small enough, this learning rule actually
implements a first order gradient descent or hill climbing algorithm with the sum of square errors as
the optimization criterion. Note that this is an adaptive process and many passes through the sample
data are required before the weights converge.

a A\
More Widrow-Hoff Learning
Least Mean Squares

Length of
Service W
(LOS) !

A
R= Reenlistment

Dependents w,

(DEP}

Sum i3 Activetion: R = W.LOS « W,DEP

Error: E xR - ﬁ

Weight Adjustment: AW, = L(R - AILOS

AW, = LR - RA)DEP

Learning Rate: 0 « L << 1, Usuaily ~.00%

N —/
Figure 13. Computations for Widrow-Hoff learning in a feed-forward

network.
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Convergence

Given the goal (minimum squared error) used in the learning procedure, it should come as no
surprise that the weights produced by the Widrow-Hoff method approach ordinary least squares (OLS)
regression coefficients. If the two methods are applied to the same data, the Widrow-Hoff weights
{provided the learning rate is small enough) will asymptotically approach the coefficients produced by
OLS regression. This can be seen in the Figure 14 which represents actual results from a sample of
500 airmen making reenlistment decisions, Starting from zero (the initial choice of weights in
Widrow-Hoff learning is irrelevant), the Widrow-Hoff weights move toward the QLS regression
coefficients shown at the bottom of the columns. After ten complete passes through the entire training
set (all observations), the Widrow-Hoff weights have the same signs as the OLS coefficients. As
training proceeds, the Widrow-Hoff weights draw continually closer to the OLS coefficients.

e )
Convergence of
Widrow-Hoff Learning
Passes W,
Through Length of W,
Data Service Dependents
a -.000 .000
.10 -033 .163
20 -.188 274
30 -321 .366
50 -533 505
100 -852 893
150 -1.001 769
200 -1.070 .801
250 -1.101 814
300 -1.118 820
0is
Cosfficlents  -1.134 842
\S —/

Figure 14. Convergence of Widrow-Hoff
learning.

Characterigtics
We can nete several characteristics of this learning process. First, as just seen, the Widrow-
Hoff weights approach OLS squares regression coefficients. Second, since the process is nearly

eq}xivalent to OLS, it can only solve problems which are linearly separable in the inputs. This was
Minsky and Papert’s complaint in 1969. Third, and again because the neurons are iinear, adding
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multiple layers to this process adds nothing. Any series of linear sums, can be condensed into a single
linear equation. Fourth, and the only difference with respect to regression, the process is adaptive.
If the inputs are not stationary (ie. the environment is continually changing), Widrow-Hoff learning
can continually adapt the weights to reflect changing patterns in the input-cutput mapping.

This adaptive aspect is taken advantage of in an application listed earlier, the adaptive
channel equalizer. This device searches for the best frequencies to transit information using high
speed modems over phone lines. Toward this end, the Widrow-Hoff neuron is the most prolific of
current artificial neurons; there is one in every high speed modem.

Comparison of Terminology

At this peint it might be useful.to compare the terminology of regression analysis and neural
networks (at least as it applies the models discussed thus far). The terms on the left of Figure 15 are
typically employed in regression analysis and their analogues in neural network terminology are listed
on the right. The coefficient vs. weight, output/result vs. activation, and logistic curve vs, sigmoid
curve are direct analogues in the two domains. There is also a great amount of similarity in solving
a regression equation and the feed-forward processing in a neural network. Likewise estimation and
training are processes that work toward a similar end. Stretching the analogies a bit, a neuron (at
least at some times) can be considered a function and a neural network composed of neurons can be
considered a system of equations.

7 3
' Comparison
of Terminology

Logit/Regression Neural Network
coafficlent ) walght
outputresult L o activation
solving &> teeding forward
logistic curve Frud sigmoid curve
estimation QoD training
function =) neuron
system G neural network

N Y

Figure 15. Comparison of neural network and regression
terminology.
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Back Propagation
The Training Algorithm

We now proceed to a learning mechanism similar to Widrow-Hoff but more powerful. This
method, back propagation, is used in about one-third of current research and perhaps three-quarters
of current applications. Sticking with the reenlistment example, the two inputs (Length of Service
and Dependents) can be seen at the far left of Figure 16. Both of these inputs are now fed into two
neurons and each neuron produces an activation (output).

— 3

Back Propagation

Length of
Service

(LOS) ‘c
Dependents ‘o

(DEP)

& by

Figure 16. First layer of a simple feed-forward network to be trained
by back propagation.

Looking at this process in more detail (Figure 17), these two neurons (N1 and N2) are seen
to be identical to the first neuron we examined. Specifically, neuron 1 (N1) forms a sum (8y,) which
is just a linear combination of the two inputs using the weights W, and W to form the combination.
This linear relationship is shown in the Sum line. The sum is then passed through the non-linear
sigmoid activation function to produce an activation (Ay,) between zero and one for the neuron.
Neuron 2 (N,) performs exactly the same computation using weighis W, and W, to ferm the linear
combination of Length of Service and Dependents.
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More Back Propagation
Longth of
sﬁ‘g‘; Ay = A:g::;l:‘l; of Nevcan 1
Dependents Anz s Activation of Neuron 2
(DEM) (output)
Sum: 8 a W.LOG « W, DEP
Activation: Ay s "
IR Y
\S Y

Figure 17. Computations in the first layer of a feed-forward network
trained with back propagation.

As seen in Figure 18, the activations or outputs of these two neurons are fed into a third
neuron (N,) which uses them as its inputs. This third neuron produces its activation using the same
process as the first two neurons—N,; and N,. It sums the products of its two inputs with their
respective weights (W and W) and passes this linear sum through the sigmoid activation function.
The resulting activation or output is then interpreted as a reenlistment probability. We have now put
mere than one neuron to work on one problem.

@ )
Stlil More Back Propagation

R = Reenilstment

s )

Figure 18. Output layer of a simple feed-forward network.
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Putting the entire process together in Figure 19, we can see that the two inputs
(characteristics of an airman) feed forward into neuron 1 and neuron £. These two neurons each
produce an activation which is fed forward into the third neuron who also produces an activation.
This final activation is interpreted as a reenlistment probability (R-hat), The first two neurons are
collectively referred to as the hidden layver.

G )

Most of Back Propagation
Langth of
Setvice
(LOS)
ﬁ= Reeniistment
Dependants
(DEP)
Error: E = R .R
Sum: S 3 Wik + Wil Adj Error: Eeq = ER(1-A) |
A 1
Activagon: R = TR Weight Update: AW, = LE, Aw
& Lesrning Aate: 0 « L «« 1 4

Figure 19. Computations for the output layer of a feed-forward
network trained with back propagaticn.

This brings us to the problem of determining the weights (W, through Wy used in the feed-
forward process. Back propagation uses a variant of the Widrow-Hoff rule presented earlier to adapt
the weights in the network. Again, the goal is to minimize the squared error of the predicted
reenlistment probabilities over all of the observations (airmen in this case). The weights normally
start the training process as small random values. Their actual values are unimportant, but training
will fail if they all start at the same value. The characteristics of the first airman are applied to the
network; and, through the feed-forward process deseribed in the previous two figures. Using the

arting weights, a predicted reenlistment probability (R-hat) is produced.

As shown in the Error equation, this predicted probability is compared against the airman’s
actual decision (separate = 0, reenlist = 1) to produce an error tor the prediction. This error is then
used to adjust the weights on neuron 3 as shewn in the Adj Error and Weight Update equations.
As in the case of Widrow-Hoff learning, this process just implements a first order gradient descent
method with the sum of squared errors as the eriterion. The computations are somewhat more
involved because of the neuron's nonlinear transfer function. The Weight Update equation shows
the change in weight 5; weight 6 is adjusted in exactly the same manner with Ay, substituted for Ay,
in the equation.

Thus far, the learning process can only adjust weights 5 and 6 as neuron 3 is the only neuron

for which an error can be directly calculated. This is knowa as the credit assignment problem. To
assign credit, the third neuron essentially places some of the blame for its error on the two neurons
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who supplied it informaticn (N1 and N2). It propagates some of its error back to the two neurons in
the hidden layer (hence the name back propsgation). The third neuron uses the weight connecting
it with the hidden neuron to back propagate this error. As seen in Figure 20, the error for N, is just
the adjusted error (E,,) computed earlier for N, muitiplied by the weight (W,) connecting the two
neurons. Now that N; has an error, it can adjust the weights on its inputs (W* and W*) in precisely
the same manner the third neuron adjusted its weights. The second neuron (N,) adjusts its weights
likewise (using W, to compute its error). This whole process utilizes the chain rule of derivatives to
perform first order, gradient-descent search in weight space.

7 )

Rest of Back Propagation

Eh'Euw-

Langth of
Service
(LRS)

ﬁ = Reanliistinant

Dspandents
(DEP)

N b

Figure 20. Backward propagation of the error signal in a feed-
forward network.

The rule was developed by Paul Werbos in his 1972 Harvard Dissertation thesis Beyond
Regression. New Tools for Predictions and Analysis in the Behavioral Sciences and was subsequently
rediscovered in 1984 by David Rumelhart, Geoffrey Hinton, and Ronald Williams.
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Back Propagatiocn Capabilities

The back propagation method contributed greatly to the resurgence of interest in neural

networks for one primary reason. It overcomes the problems of linear neurons deseribed by Minsky
and Papert in 1969. Specifically:

Feed-forward neural networks (trainable by back propagation) with
non-linear transfer functions (sigmoid activation functions) and one

hidden layer (N1 and N2) can approximate any arbitrary continucus
function of inputs.

. This capability is critical, because it means a feed-forward net can be used as a universal function
approxirnator.

(r

\N

Feed forward neural networks with non-linear
transfer functions and one hidden layer
approximate any arbitrary function of inputs.

\

Figure 21. Unique capability of a feed-forward network.
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VI. APPLYING NEURAL NETWORKS

Some Example Applications

"Universal” Approximation with Back Propagation

To demonstrate this capability, we will work with a well-behaved (but highly non-linear)
function—the saddle curve. The X-Y-Z triplets listed on the left of Figure 22 represent points on the
saddle curve. The function which provides the Z value for any X-Y pair is shown in the center of the
figure.

7 )
“"Universal" Approximation with
Back Propagation
The Sacdle Function
2=X-Y
Saddl
XY 2 adee
2 1 3
-1 -2 3
0 2 4
L ] | ] [ ]
[ ] o [ ]
[ ] [} [ ]
\ )

Figure 22. Approximating the saddle function with a feed-forward
network trained with back propsagation.

The X-Y-Z pairs are provided one at a time to a neural network which uses the back
propagation method to train itseif to the inputs. The network is shown at the center of the figure.
In this case there are eight hidden neurcns instead of the two from the earlier example. The network
takes a single X-Y pair and feeds it forward through the 8 hidden neurons and then the output neuron
to produce a guess at the Z value. The actual Z value is compared to the guess and the network
weights are adjusted as discussed earlier. Multiple training passes are made through all of the X-Y-Z
pairs until the network converges and the weights cease to change.

After training is completed, a set of X-Y pairs are presented to the network which then
produces "guesses” at the corresponding Z values. If we plot these "guesses,’ as we have at the right
of Figure 22, we see that the network has learned to reproduce a saddle function. It has found this
form with no prior hints as to the structure of the underlying function.
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Looking at a different function, the hat function, the same experiment can be performed.
Generate a set of X-Y-Z triplets on the function. Train the network to this data. Supply the network
r with X-Y pairs. Let the network predict Z values and plot the results. We can see that the network
$ now reproduces the hat function. It is important to note that this could be exactly the same network
i we started with when the saddle function was learned. In fact, we could have taken the final network
which reproduced the saddle function and trained it to the hat function data triplets. The network

'L would have "forgotten” the saddle function and learned to reproduce the hat function.
v (a A\
"Universal” Approximation with
Back Propagation
The Hat Function
sin(|/5(§ + Yo
| XY z
1-; 2 1 .787
f -1 -2 787
0 2 .988
¢ L] [ ] L ]
o L} e
® [ J [ ]
\ & -/

Figure 23. Approximating the hat function with a feed-forward
network trained with back propagation.
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Back Propagation and Reenlistment Decisions

We can demcnstrate the flexibility of back propagation on some actual data. For the sake of
exposition, and to keep the problem easy to visualize, we will again look at enlisted airmen
reenlistment as & function of length of service and number of dependents. The data for this example
is taken from the actual decisions of all Air Traffic Controllers from fiscal year 1976 to fiscal year
1986. The plot labeled Logit in Figure 24 represents the separation of the airmen into reenlisters and
separators by logit analysis, given only length of service and dependents as inputs. Those airmen in
the dark grey region are classified as reenlisters by logit analysis and those in the white are classified
as separators. The graph demonstrates that logit forms strictly linear classification boundaries of its
inputs. As noted, logit correctly classifies 64.2% of the decision makers. This means that 35.8% of
those in the dark grey region actually separated or those in the white region actually reenlisted.

The second plot shows the classification regions found by back propagation on the same data.
As can be seen, the regions formed are much more complex (back propagation can form arhitrarily
complex classification regions). Back propagation correctly classifies 69.5% of the decision makers
which appears to be marginal improvement over logit. The real differences between the two
approaches becomes apparent if we divide the input data into cohorts.

~ 3
Reenlistment Decision Region
for AFS 272x0

Logit Back Propagation

® P
2 L2
> | Separastors 2 | Separators
e ]
(] %]
s K]
E L
-3 o
c [
o i -]
- -~ N o
Dependents Dependents
I
. i
* Linear separation '« Arbitrary separation
* 64.2% corrgelly classiliad 1+ 69.5% correctly classified

o b)

Figure 24, Reenlistment decision regions formed by logit analysis
and a back propagation network,
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Figure 25 displays the actual and predicted (logit and neural network) reenlistment rates by
cohort. The cohorts are based on a two-way separation acrass number of dependents and length of
service (in vears). For example, the actual reenlistment rate for air traffic controllers with {our years
of service and one dependent was .33; that is to say, one third of these airmen reenlisted, 1t can ke
seen in the table that the predicted reenlistment rates from the neural network are much closer to the
actual rates than those produced by logit analysis. The average predicted error by logit analysis
across all of the cohorts is .093 while the average error for the neural network is .02. In fact, the
largest cohort error for the neural network is only .07 while in the fifth year of service with one
dependent logit analysis is off by .32. Looking at the critical fourth year of service, when most
decisions are made, the average cohort error for logit is .15 while the neural network is always within
.02 of the actual rate.

s =

Comparison of Logit and
Neurai Network
Predicted Reenlistment Rates by Cohori

Length Number of Dependents
of
Setvice 0 1 2 3 4

Actual Rates

3 .56 .69 75 .82 .93

4 A7 .33 46 .58 70

5 .52 .67 75 75 .82
Predicted Aates using Logit Analysis

3 47 .61 .73 .83 .91

4 34 47 61 74 .84

5 23 .35 48 .62 .74
Predicted Rates using Neural Network

3 .57 .68 .78 .82 .86

4 .19 .32 .46 .59 .70

5 .51 .61 .72 .80 .83

\ J

Pigure 25. Reenlistment projections of logit
and back propagation by cohort.
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This comparison can be made even more dramatic by plotting the reenlistment rates by cohort.
Looking at the graph in the upper left hand corner of Figure 26, the length of service and number of
dependents form the bottom twe axes with the reenlistruent rate plotted on the upright axis. The
surface shown follows the actual reenlistment rates observed for air traffic controllers. As can be seen
in the middle graph, logit analysis misses the shape of the relationship altogetber. Without prior
knowledge of the structure of the relationship, which would have to be encoded into the input
variables, logit was doomed to form a near-planer relationship. On the other hand, as seen in the
bottom graph, the neural network captures the relationship almost perfectly.

@ Predicted Reenlistment Rates by ﬁ
Length of Service and Number of Dependents

Predicted rates
using
loglt analysis

A

Predicted rates
using
neural network

N J

Figure 26. Reenlistment rate surfaces produced by logit and back
propagation.

26

. —

-3

I




Clagsification Capabilities

In general, the complexity of the decision region a feed-forward neural network can form
depends on the number of layers of neurons in the network. A single layer, as depicted at the top of
Figure 27, forms a linear decision region (or hyperplane in the case of multiple inputs). In effect, &
single neuron performs a very close analogue of a logit analysis. A network with two layers of
neurons, as ¢een in the middle of the figure, can form any convex surface. As shown at the bottom
of the figure, a network with three layers of neurons can form any arbitrary decision region. The
region can form any shape and even be disjoint. It is also possible for two layer networks {o form non-
convex and discontinuous surfaces. However, they are not guaranteed to be capable of reproducing
any possible non-convex or discontinuous surface.

@ ; =)
Classification Capabilities

One Layer
Hyper-plane

:>o @« ®

Two Layers
Convex Surfaca
X

X,
Three Layers
X, Arbitrary
x' —~

Figure 27. Classification capabilities of
feed-forward neural networks.

Steps in Applying Neural Networks

Continuing with the analogy between neural networks and regression analysis, we can
compare the normal steps involved in carrying out an analysis using these techniques. {In the case
of neural networks, we are really only addressing a subset neurzal network architectures.) As seen in
Figure 28, both tachniques require the identification and categorization of the output. What arc we
interested in producing and is it binary, continuous, cardinal, or some other form? Identification of
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the inputs or determinants is also required by both techniques. Only regression requires specification
of an exact functional model. To a certain extent the number of neurons and layers of neurons in the
network determine the complexity of the relationships it can capture. However, this is nct nearly as
stringent a requirement as development of a specific functional form. Both techniques also require
the estimation or training of the meodel. In both cases, it is also common to validate the resulting
model against data not used during training or estimation. In the case of regression analysis, it is
usually possible to evaluate the statistical significance of the estimated parameters, assuming the
errors follow some well-defined and specified distribution. The primary differences are the inherent
flexibility of the neural network and the inability (in general) to test the statistical significance of a
neural network model.

(7 A\

Steps in Applying Neural Networks
and Regression Analysis
Neural
Regression  Network
1. Identlty required output. s/ v
2. Kentlly Inputs or determinants, v v
3. Develop a spacific functional model. 7
4. Estimats or train the model to known
cbservations. v v
5. Evaluate the statistical significance 7
of the modei's paramaetoers
6. Validate the model agalnst data not v 7
used during training
& )

Figure 28. Comparison of the steps in applying neural networks and
regression analysis,

QOther Architectures

In this primer, we have really only addressed two specific neural network architectures
(Widrow-fioff and back propagation) and these two are highly related (both use error correcting
learning methods). The network architectures that have been documented in the literature number
somewhere in the 40s with many architectures having multiple variants. Some employ slightly
different neurons and there are many approaches to learning. While the two networks discussed here
barely scratch the surface of a very broad field, most other architectures share major features with
the two discussed and all share the three characteristics outlined at the beginning. They all use
simple processing elements connected into a network and all working in parallel.
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An Fxample Back Propagation Training Path

Figure 29 demonsirate some stages in learning of the saddle function discussed earlier. The
network’s process of adapting to the saddle function can be clearly seen in the progression of training
snapshots. For this example, a back propagation network with twelve hidden neurons in one layer
was trained on a set of 120 evenly spaced X-Y-Z triplets. The X-Y pairs were evenly distributed
between -2 and 2 which causes the Z value to vary from -4 to 4. (A linear transfer function was used
on the output neuron to allow for a range beyond 0 to 1.) The graph in the upper left corner shows
the Z values produced by the network for each X-Y pair before any training has occurred. Essentially,
these Z values are just small random values centered around zero. The graph (after 35 training runs)
shows a more uniform Z surface, but still does not look much like the saddle function. After 40
training passes through all of the X-Y-Z triplets (lower left corner), some shape begins to emerge. And,
after 90 training runs, the network is reproducing the saddle function with very little error. This
ability to adaptively capture underlying relationships directly from observed behavior is one of the
primary capabilities of neural networks.
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Back Propagatlon Approximailon
of the Saddle Function
0 Training Runs Through the Data Set

Figure 29. Back propagation networks performance on the saddle
function at various stages of training.
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Back Propagation Approximation
of tha Saddls Functlon
40 Training Runs Through the Data Set
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Back Propagation Approximation
of the Saddie Function
90 Training Runs Through the Data Set
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VII. CONCLUSION

While the field is still relatively young, artificial neural networks currently offer personnel
researchers and policy makers several powerful facilities for analyzing both individual decisions and
rroup behaviors. As seen in the elementary reenlistment example, the ability of networks to extract
..onlinear information from noisy and conflicting examples of individual actions can allow researchers
to better model complex behavior patterns. Particularly in areas traditionally addressed by regression
and other functional based techniques, neural networks provide a more flexible format for model
development. Several network architectures aliow the underlying and potentially nenlinear form of
the model to.be determined directly from the observed behavior of a system ¢r sample of individuals.
This ability should prove important in personnel analysis and lies at the heart of the recent success
neural networks have demonstrated in areas ranging from sonar classification to system control.
While artificial neural networks will not supplant traditional statistical methods in the near future,
they provide some very powerful alternate techniques for data analysis and model building.
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