
AD-A235 911

NUMERICAL IJTIC
OPTIMISATION i.......), M A Y2 2 1$9 9

CENTREC

Optimisation Algorithms for Highly
Parallel Computer Architectures.

L. C. W. Dixon
R. C. Price

December 1990

91-00180 91

AD 1990

OPTIMISATION ALGORITHMS FOR HIGHLY

PARALLEL COMPUTER ARCHITECTURES

DRAFT FINAL REPORT

BY r~~t~

L. C. V. DIXON

r t
R. C. PRICE V %A.~'~~

DECEMBER 1990 it

UNITED STATES ARMY

EUROPEAN RESEARCH OFFICE OF THE ARMY

LONDON, ENGLAND

CONTRACT NUMBER DAJA45-87-C-0038

HATFIELD POLYTECHNIC

Optimisation Algorithms for Highly Parallel

Computer Architectures

by

L. C. V. Dixon and R. C. Price

December 1990

Abstract

In this paper we consider the design of optimization algorithms to run
efficiently on highly parallel computer architectures. Most efficient
optimization algorithms require the calculation of first and possibly
second derivatives of the objective function and vhere present the
constraints. This task normally dominates all other tasks undertaken in
solving a large sized problem. The other main task is usually the solution
of a set of linear equations.

In this paper ve describe our experience of solving these tvo tasks on
parallel computer architecture. A sparse forvard implementation of doublet
and triplet automatic differentiation is described that enables both the
gradient and hessian of objective functions to be accurately and cheaply
solved. It is shown that vhen the function is partially separable this can
be performed very effectively on a parallel machine.

The effect of solving sets of linear equations on a parallel system is also
described, and the tvo then combined in effective algorithms for both
unconstrained and constrained optimization.

Keywords

Automatic differentiation, unconstrained optimisation, nonlinear
programming, parallel optimization, truncated Newton, preconditioned
conjugate gradients.

Table of Contents

1. Introduction Page 1

2. The Calculation of Derivatives " 5
2.1 Gradient and Hessian of a function f(x) " 5
2.2 Jacobian of a vector function sk 15
2.3 Conclusions "19

3. The effect of Parallel Computation " 20
3.1 Experience using the ICL/DAP 20
3.1.1 The Modified Newton Algorithm " 21
3.1.2 The parallel conjugate gradient algorithm " 22
3.i.i The Truncated Newton Algorithm " 27
3.2 More thoughts on calculating the search direction " 32
3.2.1 The Truncated Newton Method with Automatic

Differentiation " 32

3.2.2 Accurate Arithmetic " 34
3.2.3 Maany's Test set " 35

3.3 Results using the Sequent Balance System " 39
3.4 Results using a Transputer Net " 41
3.5 Concurrent Developments in Parallel Optimization " 44
3.6 Conclusions " 48

4. Constrained Optimization " 49
4.1 Theoretical Considerations " 49
4.2 Results " 54
4.3 Conclusions " 58

5. Pure Speculation? " 59

6. Conclusions " 67

7. Acknowledgements " 68

8. References " 68

List of Figures

Fig. 1 Graph of Rosenbrock's Function Page 6
Fig. 2 A Partially Separable Function " 7
Fig. 3 Reverse Differentiation of Rosenbrock's Function " 18
Fig. 4.1 Performance of the Conjugate Gradient Codes " 24
Fig. 4.2 Performance of Sequential and Parallel Codes " 25
Fig. 5 Performance of Parallel and Sequence Conjugate

Gradient Codes " 27

Fig. 6 Task Graph of Rosenbrock's Function " 59
Fig. 7 Reverse Task Graph for the Gradient Vector " 60
Fig. 8 A Direct Task Graph for the Gradient Vector " 60

Fig. 9 Task Graph for the Directional Second Derivative " 61
Fig.10 The Hessian Task Matrix of Rosenbrock's function " 62
Fig. 11 Augmented Hessian Task Matrix for Rosenbrock's

Function " 63

Fig.12 The Resorted Form of the Newton Task Graph Equations
of Rosenbrock's Function " 66

List of Tables

Table 1.1 Operations Count of the Helmholtz Energy Function Page 11
" 1.2 Revised Operations Count " 12
" 2 The Relative ost of Calculating Vf by Sparse

Doublet and 'f by Sparse Triplet to the cost
of calculating f " 13

" 3 Reverse Automatic Differentiation " 15
" 4 Performance of Sparse Doublet Automatic

Differentiation " 16
" 5 Performance of the Parallel Newton Method " 22

6 Comparison of the Truncated Newton Code (TRUNEW)
with a Conjugate Gradient (OPCG), variable metric
(OPVM) and Modified Newton Code (E04KDF). " 29

" 7 Performance on the Navier Stokes Equation 32
8 Comparison of Structured and Sparse Triplet

Automatic Differentiation " 33
" 9 The Effect of Accurate Arithmetic " 35
" 10.1 The Truncated Newton Method and Automatic

Differentiation on the Haany Problem " 36
" 10.2 The Truncated Newton Method and Automatic

Differentiation on the Maany Problem.
Effect of Preconditioning. " 37

" 11 The Effect of using the Conjugate Gradient
Algorithm from the ABS Family on Iterations
and Computer Time. " 37

" 12 Use of the ABS/LLT Code " 38
" 13 Parallel Sparse Automatic Differentiation " 39
" 14 Parallel Matrix Vector Multiplication " 40
" 15 REAL 64 Matrix-vector Multiplication " 41
" 16 Parallel Jacobi's Method on Network of Transputers 42
" 17 Accuracy of Model Predictions " 42
" 18 Parallel Conjugate Gradient " 43
" 19 Sparse Conjugate Gradient with Matrix of

Distinct Eigenvalues " 44
" 20 A Comparison of Success Rates " 51
" 21 The Relative Performance of Various Codes " 52
" 22 Comparison of OPALOP and MINISH " 56
* 23 Comparison of OPALOP and MINISH (4 Transputers) " 57
" 24 Comparison of OPALQP and MINISH (14 Transputers) " 57
" 25 The Performance of the Echelon Method on the

Grenoble Test Set " 64
* 26 A Comparison of the Relative Performance of a

number of Codes on the Symmetric Grenoble Problems " 65

1. Introduction

For many years the scale of optimization problems that can be solved

has been limited by the sequential nature of available computers. The

availability of highly parallel architectures will significantly

increase the size of problems that can be solved. Indeed this is

already true of the limited parallel architecture systems now

available. The solution of such problems is of course necessary for

the SDI programme.

However, because all existing optimization software designed before

1983 was essentially designed for sequential computers, the design of

parallel algorithms must be radically different and so the initial

search on algorithm design for parallel computers can be undertaken on

relatively small parallel systems.

Simultaneously with the move towards highly parallel architectures,

the language ADA has become available including the features of user
defined data types, operator overlay and parallel (concurrent)

tasking.

The project aimed to utilise these features of ADA to design efficient

optimization codes for use on highly parallel architectures.

Specifically the following four areas have been considered.

(1) To investigate the effect of the availability of user defined

data types and operator overlay on the design of optimization

software, bearing in mind the ultimate goal of use on a highly

parallel computer architecture.

(2) To investigate the relative efficiency of ordinary direct and

indirect Iterative methods for solving Ax - b, x e Rn on a parallel

computer system with P processors for various ratios of P:n. And to

compare the efficiency of these methods with those based on interval

arithmetic.

(3) To investigate the design of algorithms for solving the

unconstrained optimization problem

-1-

Min F(x); x c Rn (1.1)

(4) To investigate the design of algorithms for solving the

constrained optimization problem

Min F(x)

s.t. ei(x) =0 1 1, ...,I E x e R" E < n

h (x) 0 j -1, ..., H (1.2)

The project commenced by defining the data types vector and matrix,

and then redefining the values of the operators +, -, *, so that the

computer automatically performed the normal operations of linear

algebra.

This implied that if the operation

y - A*x (1.3)

was requested in the code, where A was of type matrix and x of type

vector, then the computer produced the correct vector y with no

further commands.

It was soon realised that this enabled the computer code for the

conjugate gradient algorithm to be virtually identical to the

mathematical statement as all the "do" loops that so clutter a

FORTRAN program rapidly disappeared.

It was immediately apparent that It was just as possible to define

data types, "sparse matrix" and "sparse vector", and define associate

operators so that the operation

y = A*x

still gave the correct vector and made full use of the sparsity of the

matrix when doing the arithmetic.

Codes written in this way are far easier to understand and check than

the equivalent codes written in FORTRAN.

-2-

In a similar way a data type "interval" can be defined and its related

operators implemented so that rounded interval algebra is performed to

any precision. The realisation of the potential of such computer

algebras led to the award of further funding from the NAB research

initiative.

The current state of the software developed under that initiative is

described in Bartholomew-Biggs (1990). which includes the calculation

of accurate dot products and of matrix vector products accurate to the

last significant place in the mantissa.

Once the concept of defining new algebras in ADA became accepted we

realised that it was possible to define the algebra of doublets and

triplets to calculate the gradients and hessians of objective

functions and constraints. Our implementation is outlined in Section

2 where it is demonstrated that especially for partially separable

functions this gives an accurate and fast method of calculating all

such gradient vectors. Ve can regularly obtain the Jacobian of a 5000

x 5000 set of O.D.E.s in less than 50 times the cost of a function

evaluation.

In our first interim report, Dixon (1987), a review was given of

parallel methods for solving sets of linear equations and their

application within optimisation algorithms.

In that report two different approaches to the design of parallel

optimisation software were identified.

Approach A

The calculation of each objective function value F(x) is divided into

P parallel tasks. An approach which leaves the responsibility for the

efficient use of parallelism in the hands of the user, and,

Approach B

An algorithm is designed so that it can accept P values of F(x) or

VF(x) simultaneously. An approach which leaves the responsibility for

the efficient use of parallelism in the hands of the user.

- 3 -

Algorithms for both approaches are described in Section 3.

Our experience using interval methods to solve sets of linear

equations was very disappointing (Parkhurst (1987)) and after

performing the comparison between direct and indirect methods given in

Tables 28 and 29 of Section 5 (Dixon & Maany (1987)) we tend to use

preconditioned conjugate gradient algorithms for symmetric matrices

and after considerable additional testing (Parkhurst (1990)), the

preconditioned CGS method (Sonneveld(1986)) for nonsymmetric matrices.

In our third interim report (Dixon & Maany (1988)) our implementation

of a truncated Newton code using Automatic differentiation, and matrix

and vector packages in ADA was compared with a FORTRANN implementation

of the same nominal algorithm. This demonstrated that our ADA

implementation was only three times more expensive than the FORTRANN,

even on problems of 3000 dimensions.

In the fourth interim report, Dixon, Maany and Mohseninia (1989a),

further results were given for the sequential ADA code and the first

results for the parallel implementation on the Sequent Balance. This

is also discussed in Section 3.

The fifth interim report contained three papers presented at the IFAC

Symposium on "Dynamic Modelling and Control of National Economies".

In the first of these Dixon, Maany and Mohseninia (1989B) further

developed the algebras of automatic differentiation and their

inclusion in an unconstrained optimization algorithm. In the second

Bartholomew-Biggs (1989) gave the first presentation of the use of

automatic differentiation in a constrained optimization algorithm,

whilst in the third Mohseninia (1989) described the use of parallel

automatic differentiation to solve Navier Stokes equations by a finite

element method on the Sequent Balance Multi processor machine. These

results were described in more detail in the sixth interim report

Dixon & Mohseninia (1990) in which a closer examination of the results

indicated that whilst the parallel automatic differentiation was

performing effectively the parallel linear equation solver was

suffering due to the dominance of communication costs.

All our experience indicates that the ratio of the time required to

-4-

pass a floating point number between processors to the time required

to multiply two floating point numbers is a critical parameter in the

design of parallel software. The codes described in Section 3 on both

the Sequent Balance and the transputer net would perform much better

if the communication speed had been ten times faster.

Section 2 of this report is therefore devoted to a decription of

automatic differentiation and Section 3 to our experience using

unconstrained optimization algorithms on parallel processing systems.

Section 4 is devoted to constrained optimization, while section 5

contains some speculations on future developments.

Some conclusions are given in Section 6.

2. The calculation of derivatives

2.1 Gradient and Hessian of a function f(x)

If we return first to the unconstrained optimisation problem (1.1); we

will assume that the objective function f(x) is computable and that it

can be expanded as a series of elementary operations of one or two

variables

Fi(x ,xk).

So the objective function Is given by

For i w n+1, ..., n+M

x- F±(xJ,xk) J,k < i (2.1)

next i.

f x X- n

The elementary operations consist of addition, subtraction and

multiplication of two variables supplemented by functions of one

-5-

variable i.e. sine, cosine, log, exponential, power, reciprocal etc.

Any computable objective function can be expanded into such a form if

Boolian switches are ignored. For the purpose of this paper such

switches will be ignored.

If we consider the well known Rosenbrock function

f(x) - 100(x1
2- x2)

2+ (1-x1)
2 (2.2)

This could be expanded as

2
x 3 M XI

x4 X 3 - X2

2
X 5 x 4

x - lOOx s (2.3)
X7 1-X,

2x 8 m x

f - x 9 X 6 + x

So we see that this simple two dimensional problem contains seven

operations. It is not unusual that for many practical problems M>n 2 or

even n . This example also indicates that the order of the operations

is often flexible and that the calculation may be indicated by a graph,

which connects each operation with its data and emphasises any parallel

computation possibilities in its calculation.

Xe
X8 X4

Figure 1. Graph of Rosenbrocks function

-6-

This graph emphasizes that the operations labelled 7 and 8 could have

been undertaken at any stage in the calculation without altering the

result. It also indicates that at most two processors could be used

and that at least five sequential steps are required.

If we now consider any least squares problem

K
f(x) E sk (x) (2.4)

k=1

then each subfunction sk(x) could have a graph like Rosenbrock's

function and the subfunctions could be performed as independent

calculations and the graph only linked at the end.

Sl S2 S 3 S 4

s12S
2
2s32 s42

f

Figure 2

Any function with a number of parallel subtrees will be termed

partially separable following Grievank and Toint (1981). Frequently

but not necessarily each of the subfunctions sk will depend upon a

relatively small number of the independent variables xi i-1, ..., n.

Nov suppose we wish to find the gradient vector Vf. How should we

proceed? There are at least four alternative approaches.

-7-

X1 Analytic Differentiation; The formula for the gradient vector are

derived analytically and entered into the computer. This was the

method usually adopted by practitioners until quite recently. For

Rosenbrock's function this is fairly simple as n-2 and the gradient

vector is given by

400 x1 (x 2- x:) - 2(1-x,)

Vf W (2.5)
f -200(x12

- x 2)

but as n and M increase this becomes increasingly tedious and mistakes

are liable to occur.

K2 Numerical Approximation; One sided or central difference formula

may be used to estimate the derivatives i.e. the approximation

Vf,= (f(x+hi1) - f(x))/h (2.6)

could be adopted.

This is of course simple to program and is often successfully used, it

is however expensive as calculating Vf now requires at least nM

operations and is also dependent on choosing a suitable value of h.

M3 Symbolic Differentiation; Many mathematical aids such as MACSYMA

will accept a FORTRAN listing of an objective function and produce a

FORTRAN listing of the gradient. The difficulty of this approach is

that such symbolic codes often produce inefficient FORTRAN and to date

are often very restrictive on the complexity (M) of the problem that

can be tackled. Griewank(1988) gives the listing of the gradient of

the Helmholtz energy function given by MACSYMA. Such a listing then

has to be evaluated at each iterative point x , and when the formula

is lengthy it is not clear that this has any advantages over automatic

differentiation.

-8-

ff4 Automatic Differentiation; A full description of automatic

differentiation is given in Rall(1981). Automatic differentiation is

essentially the computer implementation of a new algebra, which is

implemented by defining a new data type and overwriting the meaning of

operators for that data type. The simplest such data type, the

doublet, consists of the n+1 numbers U-(u,Vu). Then given one or two

doublets the meaning of the elementary operations is overwritten so, we

obtain:-

V U U+V 4 (u+v, vu+W)

V - U-V 4 (u-v, Vu-Vv)

V a U*V 4 (u-v, uVV+vu)

V a U2 4(u2 ,2uu)
(2.7)

W U-1 4 (u - 1, -u- 2 VU)

V logU 4 (logu, u- Vu).

As each of the operations in 2.1 is of this form we can obtain the

derivatives by forward automatic differentiation in terms of doublets:-

For i n+1, ..., M+n
(XiVXd) - Fj((XjVXj),(XVXX)) J,k < t

next i

(f,Vf) - (X m+n,9x+)

This approach is accurate but is bounded above by (2n+l)H operations

due to the fact that a full vector 9W is created at each step even

though Vw is usually sparse.

M4.1 Sparse Doublet and Sparse Triplet Arithmetic; An efficient

implementation in ADA is described in Dixon, Maany, Mohseninia(1989)

where the vector 9Vw is stored in sparse form i.e. (Number of nonzero

elements, position, value) so Vx, - (1,1,1) even if n-1000.

This method can be readily extended to the calculation of the second

-9-

derivatives by introducing the algebra of sparse triplets in which

T - (u, Vu, Vu) and both VU and V2u are stored in sparse form. We

will illustrate this by showing the calculation for Rosenbrocks

function and then the Helmholtz energy function. As n-2 for

Rosenbrock's function the illustration will ignore sparsity.

xi (x1 ; 1,0; 0,0,0)

x 2 (x2 ; 0,1; 0,0,0)

y " x 1 (x 1
2 ; 2x1 ,O; 2,0,0)

x4= X3 -x 2 (x4; 2x,,-1; 2,0,0)

x5 M x4 (x,; 4xlx 4, -2X4; 4x4+ 8x1 ,2,-4x,)

x6- 10Ox5 (all multiplied by 100)

x 7 -xI (x 7; -1,0; 0,0,0)

x a x7 (xs; -2x7,0; +2,0,0)

x9a x 6 + xe (x,; 400xx 4 -2x 7 ,-200x 4 ;

400x4 +800x 2 , +2,200,-400xl)

which is the correct solution.

It will be noted that even on this very simple problem 19 of the 54

entries in the 9 triplets calculated are zero.

The Helmholtz energy function introduced by Grievank(1988) as a

standard example for automatic differentiation is given by:-

n xi xT Ax l+(l+2)bTX
f = RT 2 xi1log - log T (2.8)im1 1-b x ASb X +(1-vf2)b x

This can be divided into certain subfunctions, and in Table 1 we list

the number of operations involved in the calculation of f, Vf and V2 f

in sparse doublet and sparse triplet arithmetic.

- 10 -

Function Operations in F VF VF

bx 2n n 0

1-bTx 1 0 0

1+(l+v"2)bTx 4 n 0

1+(1-/2)b~x 4 n 0

1/(1-b x) 1 n+2 n 2+3

1/1+(1-/2)bTx 1 n+2 n2 +3

xi/(1-b x) 1 3n 6n2

log xi/(1-bTx) log 2n 3n2

times x, log x,/(1-bTx) 1 3n 6n2

So the sum becomes (2 log)n (8n)n (15n 2)n

xTAx 3n2 4n2 n2

1/bTx 1 n+2 n2+3

x Ax/bx 1 3n 6n2

log() log 2n 3n2

x Ax/bTx 1 3n 6n2

log ()

other 3 3n 3n2

Total (approx) (n+l)log+ 3n2 12n 2+ 17n 15n 3+ 22n 2

Table 1.1

From the Table 1.1 we can see that very many terms contribute 0(n
2)

operations to V2F but that the term X Ax dominates F, whilst the term

- 11 -

n

xi log x1 /(l-b x)i-I

dominates V2F and appears to make it an 0(n3) operation. As Haany

observed when performing our tests in ADA, this term can be rearranged

as

n n
xi log xi/(1-blx) E xi(log xi - log(I-bTx))

i-i i-I

-(fx 1 log - (xi log (1-bTX)

and when performing these operations in this order we have the

following operations:

log xi log 1 1

xi log xi I 1 1

So 2xi log xi n n n

Exi n n 0

log(1-bTx) log 2n 3n2

(Exi)log(l-b x) 1 3n 6n2

So the sum becomes (n+l)log + 3n 9n 9n2 + 3n

& the overall total (n+l)log + 3n2 4n2 + 26n 31n 2

Table 1.2. Revised operations count

We note that the n3 term in the calculation of V2F no longer occurs and

all three calculations are now dominated by order n2 terms.

We may first conclude from this that the order in which a function

calculation is performed can dramatically effect the cost of

- 12 -

calculating the derivatives by sparse doublet and sparse triplet

methods.

We may note too that as reported by Dixon, Maany and Mohseninia (1989)

and shown below, the times taken by the ADA implementation confirmed

the constant nature of the ratios of the number of operations required

to evaluate f, Vf and 7f; the difference in the actual ratios

-)btained do however imply that the cost of the index operations in the

.Link lists cannot be ignored.

Dimension Sparse Sparse

Doublet Triplet

5 1.68 33

10 3.20 49

20 5.27 46

30 5.55 41

40 5.69 46

50 5.95 48

60 6.23 48

200 7.23

500 8.15

Table 2. The relative cost of calculating Vf by sparse doublet and V2f
by sparse triplet to the cost of calculating f.

M 4.2 Reverse Automatic Differentiation; In Griewank (1988) a proof

is given that by using reverse automatic differentiation whenever f can

be calculated in M elementary operations then Vf can be calculated in

less than 5M elementary operations whatever the dimension n.

Recalling the notation for calculating f given in (2.1), reverse

- 13 -

automatic differentiation is simply:

For i - 1, ..., n

Rim 0

For i - n+1, ..., n+M

x£U F(xj,Xk) J,k < i

=0

f x n+-

FE n='1.

For i = n+M, ..., n+1

VFi -

k k a Xi

Vfi. R. i-i, ... , n.

This reduction in the number of operations required to calculate Vf in

reverse rather than forward automatic differentiation is balanced by

the need to store the computational graph so that it is available for

the reverse sweep.

One of my colleagues, Bruce Christianson (1990) has written an

implementation of this in ADA as a standard "subroutine" compatible

with our ADA optimisation codes. His results for the Helmholtz energy

function are given in the following table 3. The method can be readily

extended to obtain the product 72f.u for any given direction and these

results are also given

- 14 -

Helmholz Energy f f Vf V2 fu

Function ordinary by graph by graph by graph

n - 20 - 7 8 16

50 11 53 52 120

100 40 320 300 660

Times in Seconds

Table 3 Reverse Automatic Differentiation

2.2 Jacobian of a vector function sk (x)

As vell as needing to calculate the gradient and Hessian of a scalar

function f(x) we often need to calculate the Jacobian of a vector

function sk. This occurs in constrained optimisation where sk could be

the vector of active constraints, in ordinary differential equations

or in the least squares minimisation of

k
f(x) - sk2(x).

kul

When each sk is a separate calculation then we can use either sparse

doublet or reverse automatic differentiation to efficiently calculate

the gradient of each sk. The sparse doublet form is particularly

effective when each sk only depends on a few variables (i.e. the

Jacobian is sparse).

This is the case for the Lokta-Volterra predator prey function

described in Byrne and Hindmarsh (1987).

Using the sparse doublet implementation in ADA, Parkhurst obtained the

following results:

Evaluation of (f, J) using Sparse Doublets
ri a

Evaluation of (f) using ordinary arithmetic

- 15 -

Evaluation of (f) using Sparse Doublets
r 2 -

Evaluation of (f) using ordinary arithmetic

Dimension 50 200 800 1800 3200 5000

r. 52.39 54.10 51.14 50.42 49.67 50.19

r2 5.05 4.74 4.73 4.75 4.72 4.77

Table 4. Performance of Sparse Doublet Automatic Differentiation

Preliminary results with Christianson's implementation of reverse

automatic differentiation indicate that this implementation gives a

value of r. of approximately 19. If we assume that the sk are separate

calculations and that the total number of operations in calculating sk

is Mk, then the total operations for calculating VSk is q~k (where q is

theoretically less than 5 for reverse automatic differentiation).

Now as M = EMk then the total number of operations for J < I qM k= qM.

However, assuming that the sk are separate calculations is not always

fair as frequently there will be common strands in the calculations.

If we drew a computational tree for the calculation of sk such common

strands must commence at the start of the tree and will probably

involve a subset NELC of the variables and lead into a subset K. of the

subfunctions and will involve M. elementary operations. Let us assume

the common strand ends with a value x . There can of course be more

than one common strand.

In sparse doublet arithmetic we would proceed forward through this

common strand once and would use less than q x NELC x M. operations to

obtain Vx .C

In reverse automatic differentiation we would reverse through the
common strand Kc times and would thus appear to possibly need q x K, x

Kc operations. This destroys the simple bound relating the operations

involved in the calculation of s with those required by the calculation

of J.

- 16 -

However suppose now we identified the common strand, and it would have

to be identified if it is to be utilised in the calculation of s, then

we could start reverse differentiation at the end of the strand and

calculate Vx by one pass in q M. operations.

Nov suppose we calculate back in reverse mode for the gradient of sk we
ask

will reach a value i-c and have c - and can update those ii i<nax
C

contained in NELC by ii. xi+ (Vxc)ixc.

This linking operation involves (NELC)(KC) elementary operations, so we

have replaced q KCMC operations by qM¢ + (NEL)(KC) operations. There

is therefore a saving provided

q(KC-1)M¢ > (NEL¢)(KC)

which will frequently be true.

Similar considerations apply in the calculation of the Hessian matrix

of a function. If we consider the calculation of the gradient of

Rosenbrock's function by reverse differentiation it is simply

x9- 1

x8m 9 x6 WX9

x.7 2x7i

xl- -K,

x5- 100i6

i- 2x 4 i

x3 " x4 x2 = -x4

X-a i,+ 2x IX3

The last step illustrates that not all the operations generated by

reverse differentiation are elementary and we strictly need to divide

this into two steps

- 17 -

RI =2xIi 3

x 1 1 RII

The combined tree for the function and gradient calculation is

therefore that given on the left

x 1 2

X I

x 4 X xx
2

x X ./ \i e d th a 4

I 1 9

7, 1 5 .,

Figure 3

We may make the output a scalar, the directional derivative
Vf Td = l I+ 2 d 2
by adding an extra node at the bottom and then apply reverse

differentiation again to obtain V2fd. However we now need to reverse

back from x, x2 to x1, x2 and we note that this can only be done

through the dotted lines linking the two graphs i.e. the nonlinear

operations. This observation allows us to drastically reduce the tree

as shown on the right and even now we have the common subtree in the
calculation of x2, ii namely that from x1 , x2 + x4" We may note too

that the graph is symmetric about a horizontal line passing through the

nonlinearities. This is a general result for all such "Hessian"

graphs. Whether this approach to the Hessian calculation has any

advantage over that described and implemented by Christianson still

needs to be determined.

2.3 Conclusions

In this section we have demonstrated that two automatic methods now

enable us to compute partial derivatives efficiently. In particular

the sparse doublet/sparse triplet approach gives efficient methods for

calculating the gradient and Hessian of partially separable scalar

functions and of the Jacobian of vector functions.

The reverse differentiation approach requires the storage of the

computational tree but then provides a very efficient way of

calculating the gradient of any scalar function and the Jacobian of

vector functions that do not contain significant subtrees. The method

also provides a very efficient means of calculating 72 f u for given u.

A method of handling common subtrees in reverse differentiation has

been suggested above which should be used whenever qHM > NELC.

Some interesting conjectures have been made on the reduction of the

computational trees for Hessian calculations.

- 19 -

The contrasting values for sparse forward and backward calculation are

Reverse Sparse Forward

Vf/f q NEL

V2 f/f q2 %NEL(NEL+I)

J/f qk* NEL

V2fu/f 2q (ref[13]) 2.NEL.

q < 5

where NEL is the average number of nonzeros in the gradient vector VX,

I > n during the calculation, if the function is partially separable

NEL is less than the number of variables in each subfunction.

* We have however shown that a better bound for J/f by reverse

automatic differentiation exists.

3. The effect of Parallel Computation

3.1 Experience using the ICL/DAP

At Hatfield Polytechnic our investigation into the benefits of using

parallel computation commenced with the study of Kanu Patel who

implemented unconstrained optimisation algorithms on two very different

parallel processing machines - the Neptune machine at Loughborough

University and the ICL-DAP at Queen Mary College. The ICL-DAP was an

SIMD machine with 4096 processors, the Neptune an MIND machine with

four processors. His work on the Neptune was mainly concerned with the

solution of small dimensional multi-extremal problems and is not

particularly relevant to this paper.

As the DAP is an SIMD machine, each of the 4096 processors must either

perform an identical arithmetic operation or be turned off. On this

basis he chose to perform function evaluations in parallel and to then

approximate the gradient and Hessian by difference formula, and thus

implemented a parallel modified Newton algorithm, Patel (1982).

- 20 -

3.1.1 The Modified Newton Algorithm

Patel's Parallel Modified Newton Algorithm

Step 1 Initial guess x(0), step h, tolerance C

Step 2 Calculate f(x ± hai ± ha) all j > i where ai is a unit

vector along ith axis. This is an obvious parallel

calculation.

Step 3 Calculate Vf and V2f by central differences. He showed this

could be performed in parallel on an SIKD machine.

Step 4 Solve the set of linear equations

(V2f + UI)p = -Vf (3.1)

He used the standard DAP equation solver.

Step 5 Perform a 4096 grid search in the two dimensional space

spanned by p and -Vf which sensibly replaces the line search

given that 4096 evaluations take the same time as 1.

Step 6 x k+) Arg min f(x1) i = 1, ... , 4096

using the very fast DAP "min" operation

Step 7 Return to 2 with k - k+l.

Essentially this algorithm uses P - n2 processors and calculated f, 7f,

V2 f in M steps and solved the Newton equations in 0(n 3/p) steps.

At the time when the relative speed of calculating 4096 parallel

function evaluations on the DAP was 20 times faster than evaluating

them sequentially on a DEC 1091, the comparison times to solve five 64

dimensional problems were obtained. Standard Modified Newton, Variable

metric and Conjugate gradient codes were run on the DEC 1091 and the

parallel Newton on the DAP.

- 21 -

Sequential Variable Conjugate Parallel

Problem Newton Metric Gradient Newton

Ouadratic 16.60 2.10 1.18 0.966

Extended Rosenbrock 140.98 80.78 11.36 36.626

Extended Powell 134.97 41.28 11.06 1.500

Trigonometric 2604 455 78.68 17.57

Extended Box 7196 1263 354.0 202.37

Table 5 Performance of the Parallel Newton Method

From these results it is easily seen that the parallel Newton algorithm

greatly outperformed the sequential Newton code, often by far more than

the natural value of 20. However, it was also obvious that on these

functions the conjugate gradient code also outperformed the sequential

Newton code and that a comparison of its times with those of the

parallel code was not particularly encouraging.

Two decisions were made at that time which have greatly influenced our

subsequent development. The first was that as the functions we were

interested in at that time possessed considerable structure this should

be used in the evaluation of f and in the solution of the set of

equations. The second was that we needed to consider conjugate

gradient type algorithms and problems with dimensions greater than 64.

3.1.2 The parallel conjugate gradient algorithm

The first problem studied was a quadratic function derived from Stones

set of heat conduction problems namely:-

f fj K. (T) + K (R)'- 20T dA (3.2)

To solve this problem Ducksbury (1984) split it into rectangular

elements and approximated T in each element by the standard bi-linear

mapping.

- 22 -

The function can now be expressed in the form

K
f 2 Sol

elements

where

S Jj K. 2 +~ 2 20T dA (3.3)
element

and so, is a function of 4 variables, the values of T at the corners of

the elements.

If Me, is the number of operations needed to evaluate so,, then the

total operation count for f is simply C Mol where C is the number of

elements and is slightly less than n.

Again Vf - Vse1
el

el

where Vs.1 only has four nonzeros and esel 16 nonzeros.

The resulting set of linear equations was solved on the DAP using the

conjugate gradient algorithm. The decision was taken to allocate each

element to its natural processor on the DAP grid and to distribute the

search direction p over the processors so each processor held the four

components that influence its value of f. Given the conjugate gradient

formula this only required data passing between neighbouring processors

thus reducing the communication costs, the conjugate gradient code then

only needs the calculation of

y 72 f P E V2 sI Pei= Y. (3.4)

el el

- 23 -

* DEC - 1091
* ICL - DAP

3

Log time
(secs)

2

0I
0 32 64 95 128

Grid Size (N x N)

Figure 4.1 Performance of the Conjugate Gradient Codes

and for each element/processor this is simply 16 operations. In

practice the scalar products rTr, yT p, pTp were also calculated using

partial vectors distributed over the processors.

This problem is equivalent to the heat conduction problem tested by

Stone who introduced a number of different cases based on the

distribution of Kx and KY.

The simplest case with K, - KY - 1 leads to a well conditioned problem

and the performance of the conjugate gradient codes on this problem are

shown in Figure 4.1, where the log of the CPU time is plotted against

the grid size.

- 24 -

Other distributions lead to less yell-conditioned problems but the

relative performance of the sequential and parallel codes is unaltered

as shown in Figure 4.2.

* ICL-DAP

+ DEC-1091

3

2

Log time
(secs.)

1

0
0 5 10 15 20 25 30 35 40 45 50

GRID SIZE

Figure 4.2 Performance of Sequential and Parallel Codes

The time required on the sequential machine precluded running the test

for all the grid sizes, but there was a speed-up of over 100 even when

only using a small part of the DAP.

This work was extended to the nonlinear domain by considering the

differential equation

- 25 -

a u u Ru = 0 (3.5)
a2 2 a

vith boundary values such that the analytic solution vas

6x,
U a Rx 2 2

and converting it to a three dimensional map by introducing

au b au

and minimising

f - Jf (a- ax) a (W + 5;7 (- Rua)dA (3.6)

Again the function and gradient evaluations were distributed over

rectangular elements so that for a 64 x 64 grid there were 3 x 4096

unknovns before the specification of the boundary condition. This

implies that the Hessian matrix is now a combination of 12 x 12 blocks.

Again a parallel version of the Fletcher Reeves algorithm vas used.

A typical result is shown in figure 5(overpage), vhere the number of

processers used P - (grid size) 2
. It appears that the

function/gradient cost is proportional to the (grid size)2 sequentially

and is therefore constant for the parallel machine and that the number

of iterations is approximately linear in the grid size.

- 26 -

So the sequential CPU a (grid size)
3

parallel CPU a (grid size).

700

600

500

400
CPU

(secs.)
300

200

100

0 I I I I

0 3 6 9 12 15 18 21 24 27 30

Grid Size

* ICL DAP
+ DEC 1091

Figure 5 Performance of Parallel and Sequence Conjugate Gradient Codes

3.1.3 The Truncated Nevton Algorithm

Before 1983 most existing optimisation routines that used the Nevtons

equation

r - V f(xk)d + Vf(xk) - 0

solved the equation as accurately as possible even though the current

iterate vas far from the optimal solution. For large problems a major

part of the computing cost can be attributed to the solution of these

equations.

- 27 -

The fact that it is not necessary to solve these equations accurately

when far from the solution, was reported by Dembo, Eisenstat and

Steihaug (1982, 83). They introduced the idea of calculating an

approximate solution when far from the solution and suggested

solvingthe equations by the conjugate gradient method and also

truncating the iteration before an accurate solution is obtained.

In our implementations at Hatfield this inner conjugate gradient

iteration was terminated if

i)r~ T r < Vf~ T f * min(.1 VfT Vf)

where Vf is calculated at the kth iterate of the outer iteration and rJ

at the jth iterate of the inner iteration or

(ii) d J+1T dJ+1 > D
2

a trust region imposed to limit the size of the step taken in the inner

iteration

The conjugate gradient method has the property that

dJ T dJ+1 > d T dj

so this limit will be reached and terminate the inner iteration unless

the solution is within the trust region

or;

(iii) d JT Vf > -.1JldJ1I 1I7fll

which ensures that the resultant direction satisfies Wolfes first

condition for finite termination.

These conditions when combined with an Armijo style line search that

satisfies Wolfes Conditions II and III ensure that the truncated Newton

method has finite termination to the neighbourhood of a stationary

point.

- 28 -

Code Problem N No.F No.G EFE's C.P.U.

TRUNEW Wood 4 103 229 1019 0.48
OPCG Wood 4 384 155 1004 0.80
OPVM Wood 4 128 77 436 0.90

EO4KDF Wood 4 54 202 862 0.42

TRUNEW Ext. Powell 4 39 82 367 0.28
OPCG Ext. Powell 4 96 40 256 0.45
OPVM Ext. Powell 4 9 31 173 0.46

E04KDF Ext. Powell 4 18 90 378 0.31

TRUNEW Ext. Powell 60 33 90 5433 1.27
OPCG Ext. Powell 60 117 48 2997 1.87
OPVM Ext. Powell 60 341 194 11981 59.85

EO4KDF Ext. Powell 60 42 1302 78162 15.31

TRUNEW Ext. Powell 80 31 95 7631 1.81
OPCG Ext. Powell 80 216 93 7656 3.79
OPVM Ext. Powell 80 439 251 20519 134.71

EO4KDF Ext. Powell 80 43 1643 131483 32.84

TRUNEW Ext. Rosenbrock 10 41 59 631 0.34
OPCG Ext. Rosenbrock 10 99 33 429 0.54
OPVM Ext. Rosenbrock 10 133 83 963 2.00

EO4KDF Ext. Rosenbrock 10 41 181 1851 0.53

TRUNEW Ext. Rosenbrock 20 49 71 1469 0.56
OPCG Ext. Rosenbrock 20 139 40 939 1.00
OPVM Ext. Rosenbrock 20 198 113 2447 6.27

EO4KDF Ext. Rosenbrock 20 52 312 6292 1.21

TRUNE Ext. Dixon 80 21 148 11861 2.16
OPCG Ext. Dixon 80 ;36 87 7146 3.04
OPVM Ext. Dixon 80 201 102 8361 31.14

EO4KDF Ext. Dixon 80 28 929 66268 13.54

TRUNEW Ext. Powell 2000 41 109 218041 24.98
OPCG Ext. Powell 2000 125 49 98125 50.13

TRUNEW Ext. Dixon 2000 29 851 1702029 206.42
OPCG Ext. Dixon 2000 1064 520 1041064 393.47

Table 6 Comparison of the truncated Newton code (TRUNEW) with a
con ugate gradient (OPCG) variable metric (OPVM) and modified Newton
code (EO4KDF).

Our first results comparing this algorithm with the standard

optimisation codes were reported in Dixon & Price (1986, 88) and

confirmed the evidence reported by Dembo, Eisenstat and Steihaug that

- 29 -

this method was much more efficient than Modified Newton, Variable

Metric or Conjugate Gradient codes over a wide range of dimensions.

For convenience these results are shown in Table 6.

In this code the matrix vector product

V9 fp

required in the truncated Newton method, was obtained by a difference

approximation

V2fp - (Vf(x+hp) - Vf(x))/h

as suggested by Dembo et al.

Ducksbury (1984) then implemented a parallel version of the

Dembo-Steihaug Truncated Newton algorithm on the DAP and compared the

relative performance of the parallel conjugate gradient algorithm with

the parallel truncated Newton method on a large number of probles

including ones based on the partial differential equation (3.5).

He noted that the Truncated Newton method consistently outperformed the

conjugate gradient algorithm.

A typical result is one in which the sequential conjugate gradient code

required in excess of one hour to solve a 39 x 39 grid (4111 unknowns)

and the parallel conjugate gradient code on the DAP just 34 sees, this

being a speed up of 104 over the DEC 1091 at a point where only 3/8 of

the processors of the DAP were in use.

For a finer grid of 64 x 64 processors (12036 unknowns) the conjugate

gradient code on the DAP required 50.76 secs while the truncated Newton

method only required 13.21 secs.

Turning now to the Navier Stokes problem,

u V u - + vu2

1r ax 2 C 1 R

- 30 -

aVU + v - 1. 2Vxi ax2 axx2

au av

ax I + g2 0

This was converted into a set of 6 first order equations by introducing

the fields

a- u; b a a

d - v ; e - ; f - and pax1 a 2

and noting that as the continuity equation is simply b + f - 0 the

variable f can be eliminated.

The equations become

1 (8b ac +ael= ab + cd - ab+ az a+

e2 - ae + df - (b + Sc +

e 3 -b+f

e aa b

4 "a - b

e ae- "=a - c
5 x2

Sde6 -- ' - e
e. ax1

Sd

7 x2
and the objective function is

I - Min ek dA

- 31 -

The minimization is carried out over the field variables and as the

integrand only contain first derivatives the theory of the calculus of

variables provides natural boundary conditions that will be satisfied

on the boundary if any of the seven fields are not fully specified.

As we now have seven unknowns at each node point the storage

requirement for VI,, for each finite element increases to 28 x 28 for

the truncated Nwvton method and this was not available on the DAP when

these tests were in.

3 x 3 5 x 3 9 x 9 17 x 17

Value of I 0.2037 0.080917 0.03533 0.01730

CPU 2:56 5:39 14:11 13:51

Total CPU 36:37

Iterations 82 164 417 389

Table 7 Performance on the Navier Stokes Equation

3.2 More thoughts on calculating the search direction

3.2.1 The Truncated Newton Method vith Automatic Differentiation

Our first results obtained combining the concept of automatic

differentiation with the truncated Newton algorithm used a crude

Fortran implementation and were reported in Dixon & Price (1986,89).

In that paper it was noted that the vector matrix product V2f p could

be obtained in two ways,

(1) Sparse triplets

First form Vf and then form the sparse matrix vector product Vlfp

- 32 -

(2) Structured triplets

Modify the definition of a triplet to be

(f, Vf, V fp)

and alter the basic algebra appropriately.

It is important to notice that a structured triplet simply consists of

two sparse vectors and a scalar and therefore requires far less store.

Mohseninia implemented both versions in ADA and found that the

structured version is much slower.

Structured
Problem Dimension Sparse Triplets Sparse Triplets

Extended 2 .81 .62
Rosenbrock

20 41.12 4.48

40 98.61 11.66

80 420.08 39.64

Extended 4 .75 .57
Powell

20 27.89 3.36

40 112.3 9.02

80 760.7 33.42

Extended 2 .19 .13
Dixon

20 26.06 2.96

40 103.51 12.6

80 546.13 42.31

Table 8 Comparison of structured and sparse triplet automatic

differentiation.

Ve have therefore not pursued the concept of structured automatic

differentiation further. It does however require far less store when

this is important.

- 33 -

3.2.2 Accurate Arithmetic

While these results vere fairly conclusive in implying that sparse

triplets vere preferable to structured triplets. They vere vorrying in

that they implied that the codes were not behaving theoretically

correctly on these extended functions.

These functions have the property that as their dimensions increase the

number of distinct eigenvalues remain constant.

In 1974 Dixon had conjectured that for such extended problems the

number of iterations of variable metric and conjugate gradient

algorithms should be independent of n.

This vas proved in Spedicato (1976)

It vas hovever clearly not occurring in the above results. The reason

appears to be that vhile theoretically the value of the scalar product

n

aib i
i=1

is independent of the ordering of the elements in most computer

languages this is not true and this breaks the symmetry of the

calculations in the variable metric algorithm.

Dave Mills (1990) wrote a simple sort to make the scalar product

independent of the order and probably more accurate and obtained

results that reflected the theoretical result.

A typical result obtained using the variable metric algorithm on the

extended Powell problem is given overpage.

- 34 -

Number of iterations Number of iterations
Dimension using double precision using sorted dot

arithmetic products

4 39 39

8 64 39

16 25 39

32 67 39

64 52 39

128 165 39

Table 9. The effect of accurate arithmetic

Due to the result of this experience I would urge people to be very

careful how they calculate scalar vector products, and matrix vector

products to ensure that the arithmetic does not destroy the symmetric

structure of the problem.

It is essential in the design of BLAS software for general purpose use

that accuracy is not sacrificed for speed.

3.2.3 Haany's Test set

To overcome the problems with the extended functions so often used to

test algorithms in large dimensions Maany (1989) (TR210) introduced a

new family of test problems.

f(x) = 1.0 + n 0.5(-) x2
i=1

n-1 2N
+ 3(xixi+1 +xixi +1 2 2+ 6 xi x

i=1 i=1

N i

i-i

- 35 -

Here the dimension n = 3N, and the family contains three parameters 0,

6, K.

With K - 0 the eigenvalue pattern is similar to that in an extended

family but for other values of K this property is lost and the family

gets more ill-conditioned as K increases.

If 0 & = 0 the problem is quadratic and diagonal, when 1 A 0 the

diagonals on either side of the main diagonal are introduced and 6 A

introduces four wide diagonals.

Maany tested the truncated Newton code including sparse triplet

automatic differential on twelve cases drawn from this family for a

range of dimensions up to n - 3000.

His results indicated the robustness of the truncated Newton code and

the efficiency of the dynamic data structure used in ADA.

Three sets of his results on badly conditioned problems are detailed

below:

No Preconditioning n - 3000

I 6 K No. of iter. CPU time X in

AD

Case 10 1/16 1/16 2 8498 19001 12

Case 11 1/8 1/8 2 6482 15461 15

Case 12 0.26 0.26 2 17211 38072 11

Table 10.1. The truncated Newton Method and automatic differentiation
on the Maany problem.

These results indicated that the percentage of time being spent in

conjugate gradient code dominated that spent in automatic

differentiation.

The results were therefore repeated using a diagonal pre-conditioner.

- 36 -

Diagonal Preconditioning n - 3000

8 K No. of iter. CPU time % in
AD

Case 10 1/16 1/16 2 31 1220 84

Case 11 1/8 1/8 2 31 1226 84

Case 12 0.26 0.26 2 31 1318 84

Table 10.2. The truncated Newton Method and Automatic Differentiation
on the Maany problem. Effect of preconditioning.

These results indicated that it was essential to use a preconditioner

but that when doing so the calculation of the gradients even with a

sparse automatic differentiation routine could dominate. We therefore

wished to go on a parallel computing system to see how these results

would improve.

Before doing so however it is appropriate to mention the results of

Vespucci (1990) who has shown that if the conjugate gradient algorithm

was replaced by that equivalent algorithm from the

Abaffy-Broyden-Spedicato family which theoretically generates the same

sequence of points x", then the number of outer and inner iterations

is greatly reduced.

Two typical results one for a 40 dimensional modified extended Wood

function with a complete set of distinct eigenvalues and one for a

member of the Maany family with n - 150 and K - 3 indicate this

effect.

Maj. It. Min. It. Time

Modified
Extended CG 412 14962 16.1
Wood ABS/CG 137 3218 7.5
n - 40

Maany CG 222 30082 400
Function ABS/CG 32 1519 47
n - 150

Table 11. The effect of using the conjugate gradient algorithm from

the ABS family on iterations and computer time

- 37 -

These results emphasise the need for accurate arithmetic in CG

algorithms. The results are not strictly comparable as the ABS/CG

method stores a full set of n x n matrices Hi and it is indeed

remarkable that the cost of updating such a matrix is dominated by the

effect of rounding error in increasing the number of major and minor

iterations.

In her paper she advocates replacing the conjugate gradient algorithm

by a truncated LL iteration implemented within the ABS class but

using the sparsity of matrix Hi.

A few of her results with this code are given in the following table:

Modified Extended Wood

n - 40 CG 412 14962 16.1
ABS/CG 137 3218 7.5
ABS/LLT 73 1967 1.8

n - 100 CC failed to converge in 1000 it.
ABS/CG 303 11704 161
ABS/LL 130 7917 36

Maany Function

n - 150 K - 3 CG 222 30082 300
ABS/CG 32 1519 47
ABS/LLT 51 1651 15

n - 300 K = 3 CG 198 52601 115
ABS/LL 75 6405 35

n - 900 K = 3 CG 138 116620 595
ABS/LL 83 8149 41

Table 12 Use of the ABS/LLT code

Because of the sparsity of Hi for the LLT algorithm no difficulty was

experienced in storing the matrix and the effectiveness of the new

approach is obvious.

Analysis of the results does however indicate that if the use of

accurate arithmetic reduced the number of iterations used by the CG

algorithm to the number required by the ABS/CG algorithm then the time

needed by the CG algorithm would be lowest.

- 38 -

3.3 Results using the Sequent Balance System

To obtain results using automatic differentiation on a parallel

processer we needed to have access to a parallel machine that could

run ADA and supported concurrent tasks. The Sequent Balance fulfilled

this criteria and Professor Delves allowed us access to his machine at

Liverpool University.

Mohseninia (1989) implemented automatic differentiation (sparse

triplets) and the truncated Newton method on this system. As the

Sequent Balance contains far fewer processors than the DAP a number of

elements needed to be allocated to each processor. Again as the

processors are not allocated so that only nearest neighbour

communication is possible, the effect of data communication is more

obvious.

Typical times for the sparse triplet evaluation of f, Vf, V2f on the

Sequent Mohseninia (1989) are shown below for the Olsen square cavity

problem.

Number of Processors Used
Elements

1 2 3 4 5 6 7 8 9 10

8 37 20 12 10 11 12 13 8 - -

32 156 85 62 44 38 35 26 22 24 26

128 670 352 227 175 146 124 107 92 87 81

Table 13 Parallel Sparse Automatic Differentiation

These results were really very satisfactory and indicated that dividing

automatic sparse triplet differentiation into concurrent tasks is

effective.

The effect of data communication becomes even more obvious however when

considering the operations required within the truncated Newton code.

The dominant operation of this part of the computation is the product

- 39 -

of the sparse matrix V2f with the search direction p, and the cost of

this multiplication for dimensions 512 and 1107 within the cavity

driven flow problem on the Sequent Balance were

Number of Processors
Time

1 2 3 4 5 6 7 8 9 10

n-512 3.80 2.40 2.20 2.10 2.08 2.10 2.11 2.12 2.2 2.4

1107 9.50 6.00 5.00 4.5 4.5 4.3 4.1 4.4 4.4 5.2

Table 14 Parallel Matrix Vector Multiplication

These results are really quite disappointing and indicate that

communication costs cannot be ignored when performing linear algebra on

parallel systems.

However calculating 72fp is much less expensive than forming 92f and

using the figures given in the previous section and assuming P - 8 we

have as an overall effect

P - 1 P = 8

Time in AD on sequential machine .84 .12

Time in linear algebra .14 .07

Other time .02 .02

1.00 .21

Giving an overall speed up of approximately 5.

- 40 -

3.4 Results using a Transputer Net

At about this time the Polytechnic took delivery of a small transputer

network and we began tests to discover its capabilities and to

construct a model of its behaviour.

As the parallel linear algebra had proved disappointing on the Sequent,

Jha began his investigation in this area and demonstrated that the

operation Av could not be performed effectively in parallel if A had to

be downloaded into the system (see table 15 below). In this table the

measured times are given on 1, 2, 4 and 8 transputers and the expected

time on 8 transputers using Jha's model of the communication time and

computation time of the network.

Number of Transputers

Dim. 1 2 4 8

Act. Exp. Act. Exp. Act. Exp. Act. Exp.
Time Time Time Time Time Time Time Time

16 1 - 2 - 3 - 4 -

32 5 - 7 - 14 - 17 -

64 22 - 30 - 54 - 66 -

83 34 - 46 - 84 - 103 -

96 50 - 67 - 120 - 147 -

128 88 89.6 119 118.49 213 206.06 255 233.01

Table 15 REAL 64 Matrix-vector Multiplication

Calculation of expected timings in milliseconds

However, when the matrix vector multiplication was embedded within

Jacobi's iterative algorithm

x .(I - A) x' b Aii - I

An effective speed up was obtained (see table 16).

- 41 -

Number of Transputers

Dim 1 2 4 8

No. of Time Time s.up Time s.up Time s.up
itr.

16 36 49 52 0.94 30 1.63 25 1.96

32 39 193 197 0.98 109 1.77 75 2.57

64 43 819 625 1.31 431 1.90 262 3.13

80 42 1236 832 1.46 610 2.03 384 3.22

96 42 1768 1097 1.61 760 2.33 549 3.23

128 46 3904 2039 1.92 1248 3.13 839 4.66

Table 16. Parallel Jacobi's Method on Network of Transputers.

The difference being mainly due to the fact that A only had to be down

loaded once. The results obtained were again in agreement with the

constructed model, it should perhaps be stressed that the model

predictions are dominated by the communication requirements and not by

the computational time.

Number of transputers

1 2 4 8
Dim

Time Model Time Model Time Model Time Model

128 3904 3894 2039 2096 1248 1220 839j 3

Table 17.

Similar good speed ups were obtained when a parallel conjugate gradient

code was applied to a full matrix with distinct eigenvalues (see table

18), but no speed up could be obtained by implementing a sparse matrix

code in parallel as the much smaller amount of computation at each

iteration was dominated by the communication costs.(Table 19).

- 42 -

Number of Transputers

IMatrix 1 2 , I , I
Sig* V r ; -- - - - -r I T-

Tin* IXtr Time & .up itr Time &-up itr * ..up tr I

16 45 26 27 1.67 26 19 2.37 26 19 2.37 26

32 358 63 198 1.81 63 116 3.09 62 91 3.93 62

64 3416 167 2013 1.70 167 976 3.50 166 621 S.50 163

80 8937 253 4669 1.91 2S6 2438 3.67 279 1269 7.042 234

96 17786 355 9128 1.95 355 4242 4.10 347 2829 6.29 388

128 39461 449 21483 1.84 479 i10754 3.7 513 6168 6.377 513
L ___I___ I....... .1 I I ,* II

Full code version

For matrix ATA

* Tine. are in milliseconds

Table 18. Parallel Conjugate Gradient

- 43 -

Dim No. of No. of Number of transputers
NNZ iter.

1 2 4

Time Time s. up Time s. up

16 74 15 21 22 0.95 25 0.84

32 154 25 70 69 1.01 75 0.93

64 314 38 212 202 1.05 214 0.99

80 394 43 300 283 1.06 298 1.01

96 474 47 394 369 1.07 387 1.02

128 634 55 614 572 1.07 599 1.07

IN FULL MATRIX CODE

128 1 634 55 5131 1 2745 1 1.87 1498 3.43

Table 19. Sparse Conjugate Gradient vith Matrix of distinct
eigenvalues

Eigenvalue to 1, ..., n, so CN - N.
Sparse code.
* Time in milliseconds

From our experience we would stress the difficulty of getting speed up

for the solution of sparse linear equations on parallel systems, and

the necessity to model the communication time carefully when predicting

the performance of parallel algorithms.

3.5 Concurrent Developments in Parallel Optimization

In this section an attempt will be made to put the methods described in

the previous context into perspective alongside those undertaken

elsewhere.

In one of the earliest reviews of the subject of parallel computing in

optimization, Schnabel (1984), identified two classes of optimization

problems that would benefit from parallel processing, namely,

- 44 -

(1) large problems with dimensions of more than 100

(2) the multi-extremal global optimization problem.

In this study we are concerned with the former problem.

Turning first to the classic situation of unconstrained optimisation in

1984. There were four established classes of sequential algorithms.

(1) Modified Newton methods in which the Hessian matrix G was

calculated and then a modified Newton equation of the form

(G + uI)d a -g

solved by Choleski decomposition. If M was the number of steps needed

to calculate the function value then each iteration in the days before

automatic differentiation involved approximately

%(n)(n+l)M + 1/6n3

operations.

(2) Variable metric methods in which either an approximation B to the

Hessian matrix G was updated using one gradient evaluation or an

approximation H of the inverse was used. As methods for updating the

Choleski decomposition were known both versions could be performed in

(n+l)M + cn2

operations.

As it was found that these methods rarely required n times the number

of iterations than the modified Newton this was usually preferred if n

> 5.

(3) Conjugate gradient methods of the Fletcher-Reeves (1963) or Polak

Ribiere (1971) type that had the property that they would minimise a

quadratic function in a number of iterations equal to the number of

distinct eigenvalues.

- 45 -

At each iteration these methods only need

(n+l)M + c2n operations

and became standard for n > 100.

(4) Direct search methods vhere the gradient or Hessian vere not

evaluated or estimated. The most successful of these was undoubtedly

the Nelder and Head (1965) Simplex algorithm vhich regrettably

frequently converges to an incorrect point if n > 5.

(5) As mentioned earlier in this paper this situation vas dramatically

altered by the advent of the truncated Nevton method vhich contained

tvo types of iteration.

An outer iteration requiring

%n(n+l)H operations

and a much more frequent inner iteration essentially dominated by NNZ

operations vhere NNZ is the number of nonzero in G.

This method was usually more efficient than any of the others, but

naturally each still has its advocates and parallel versions of each

have been investigated.

For instance in Lootsma (1986) a similar approach to Patel's parallel

modified Newton method is described, in Straetter (1973) a parallel

variable metric algorithm is given, while many authors have noted that

the vector operations in the conjugate gradient algorithms are Ideally

suited for implementation in parallel. Chazan and Miranker (1970)

described an early parallel direct search method based on parallel

directions, an idea extended in Sutti (1983).

The parallel modified Newton methods typically estimated the Hessian

matrix by performing %n(n+l) parallel function evaluations or n

parallel gradient calculations so that the parallel operation count

became

S+ c3n 2 operations.

- 46 -

This requirement for exactly P - %n(n+l) or P - n processors is however
very restrictive so Byrd, Schnabel and Shultz (1988) consider methods

that used parallel gradient evaluations with 2 < P < n or parallel

function evaluations with 2n+1 < P < (u2 + 3n)/2. In their paper they

argued in favour of using the unfactored inverse H form of the variable

metric algorithm and divided its rows between the P processors, and

either updated it P times per iteration for the P gradient calculations

Nerformed, or formed P correct columns of the matrix using this

information; further details of this method are also given in Schnabel

(1988).

Van Laarhoven (1985) applied Straetters ideas for parallel variable

metric algorithms to the larger Huang class of updating formula. He

showed that the rank one update is the only one which provides a

parallel extension with the property of quadratic termination, in the

sense that n updates using linearly independent directions di produce a
matrix that is equal to the Hessian or its inverse. This approach was

first tested on large problems by Dayde (1989), it was discussed

further in Dayde, Lescrenier and Toint (1989) who conclude that

Newton's method using finite differences of the gradient to estimate

the Hessian is much more efficient.

The problem of designing a direct search method for use on parallel

computers has been resolved by the research of Torczon (1989). She

showed first that the Nelder & Mead algorithm can and does frequently

fail on large dimensions, then showed how to design a sequential direct

search method that theoretically and practically converges in large

dimensions and finally constructed a parallel version that has a

relative speed up as P increases (i.e. speed up > P). This result is

of considerable theoretical importance. It is the only method that

effectively utilises P > n2 processors, but has the disadvantage that

even for small n it is very much more expensive than parallel gradient

methods. Further developments of this research are given in Dennis and

Torczon (1990).

All the above research was carried out before automatic differentiation

became available. Using sequential automatic differentiation the costs

of all four gradient classes reduce.

- 47 -

Before With

Modified Newton %n(n+l)M + 1/6n 3 qnM + 1/6n3

Variable Metric (n+l)M + en2 qM + cn 2

Conjugate gradient (n+l)M + c2n qM + c2n

Truncated Newton outer %n(n+1)M qnM

inner NNZ NNZ

Again our experience is that the truncated Newton method is by far the

most effective. In this report we have described many implementations

where the parallelism is used within the function evaluation

effectively reducing M to

M

the alternative (approach B) use of parallelism is to perform the n

gradient calculations in parallel effectively reducing n to

n

This has been implemented by Sofer and Nash (1990) who also give a new

parallel equation solver thus reducing the cost of the inner

iterations.

Both codes are very effective. Essentially P in the Sofer-Nash

approach is limited to n and the Dixon-Maany-Mohseninia approach to K a

number determined by the partially separable nature of the function.

However, the two parallelisms are complementary and if sufficient

processors were available on a system both could be utilised on Kn

processors.

- 48 -

4. Constrained Optiisation

In this section we will consider the solution of constrained

optimization problems on parallel processing systems.

The problem under consideration is therefore,

Min f(x) x s Rn
s.t. ej(x) - 0 i -11 ...,f E (4.1)

hi(x) > 0 j 1, ..., J

An early approach to these problems involved the introduction of

penalty or barrier functions. The simplest penalty function being

defined as

1I (E 2 j2'Pl(x,r) - f(x) + r 2 e(x) + E(h (x))I) (4.2)
imi J-1

where the ()_indicates that the term is only included when hi(x) < 0.

A barrier function method is restricted to inequality constraints and

requires a feasible starting point. The barrier function is usually

defined as

B(x,r) - f(x) -r log(+hJ(x)) (4.3)j

In the original algorithms Fiacco and McCormick's S.U.H.T. method was

used in which P,(x,r) or B(x,r) was minimised for a sequence of

reducing values of r. The starting point for the next value of r was

determined using the solution at previous values, so that the change in

x needed, decreased rapidly with r.

It was later realised that minimising the Penalty (or Barrier) function

exactly at each value of r was unnecessary and then recursive

(sequential) quadratic programming codes became popular. These utilise

a quadratic approximation to the Hessian of the Lagrangian and linear

approximations to the constraints and decrease r at each (most)

iterations. In most of these codes the quadratic approximation to the

Hessian is updated using the variable metric principle so they require

- 49 -

accurate estimates of gradient of the function and the Jacobian of the

constraints. Three popular algorithms of this type are

OPXRQP (Bartholomew-Biggs(1975))

VMCON (Powell (1977))

VMCVD (Chamberlain et al (1982))

These algorithms continue to perform as expected if analytic first

derivatives are replaced by doublet automatic differentiation (Price

(1987)). At about the same time we were experiencing difficulty

solving space satellite trajectory optimization problems with these

codes as the constraints were so nonlinear, so Brown (1986) devised a

series of test problems with highly nonlinear constraints. On these

problems the recursive quadratic programming codes consistently failed

but an ODE method based on the implicit Euler algorithm (CONIMP) was

consistently successful. This used the exact second derivatives of

both objective function and constraints.

Given the success of the truncated Newton method at solving

unconstrained problems. Price (1987) experimented with solving these

problems by applying that algorithm to the Di Pillo and Grippo (1979)

exact penalty function

P(x,X) = f - XJe + I e e + v vTV

where v - NX- N Vf (4.5)

and N,= ae / xj .

This penalty function has the property that its mininum occurs at the

solution of the equality constrained problem for all r small enough and

0 big enough. He showed that if the Hessian of the term vTv is

approximated in the least squares sense by 2VTV

Vi avi/ax J

then the Hessian of P(x,X) can be adequately calculated from the second

derivatives of the functions and constraints. He used a crude early

form of automatic differentiation to obtain his results but the

- 50 -

algorithm LARDPG solved all of the eight highly nonlinearly constrained

problems tested.

Code Success Fail

LARDPG 8 0

CONIMP 3 0

OPXRQP 3 5

VMCON 3 5

VMCVD 3 5

Table 20. A Comparison of Success Rates

A typical problem of this type on vihich the RQP methods fail is :

Objective function

7 72 2 2+2

F(x) 1 0 1O0(x,+,-x, + (1-x,) + 90(x, 3-x, 2) +i-1

(1-x1+2)
2+1O.1[x +1 -1)

2+ (x, 3-1)
2] + 19.8(x,+1-1)(xi 3-1)

Constraints

x x2 - 1.0

xxl2x 3x 4 - 1.0

XIX 2X3X4X5 x6 - 1.0

Ix 2 x3 x4 S 6 7 a - 1.0

x x2x3x4x5x6x7xgxox10 1.0

Initial Point

?0- (-2, -', 3, 1/3, -4, -', 5, 1/5, -6, -1/6)
T

Solution

x* - (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
T

F(x") - 0.0

- 51 -

The detailed results of these five algorithms on this problem are given

below. Here NF is the number of function/constraint evaluations and

NGF the number of(second)derivative evaluations. FV the function value

at the final point and VC the constraint violation.

Code NF NGF FV VC CPU

LARDPG 60 38 6.8x10'- 9x10 -12 110.53

CONIMP 56 332 4.5x10-27 2x10 - 17 2.03

OPXRQP 34 04 3.13x105 5x10- 2 0.54

VMCON 68 02 3.13x10' 3.10- 1.60

VMCWD 06 06 1.24x105 9x10' 1.17

Table 21. The Relative Performance of Various Codes

The automatic differentiation of the function and constraints could now

be performed with sparse triplet arithmetic or even by reverse

differentiation and the Hessian calculations could then benefit by both

being performed in parallel and using the partially separable nature of

P(x,X) (4.5), so the results of the LARPDG algorithm would be very much

faster.

As a consequence of these results Bartholomew-Biggs devised an

algorithm OPALOP (1987) as an improvement on OPXROP, this is based on

the function

P(x,r) - f(x) + (e±(x) - 2' \ Min (hi(x) - r X]

(4.6)

where X denotes the current estimate of the Lagrange Multipliers. This

algorithm works very well for small problems and is based on the

- 52 -

iteration

Ax B- 1(A7p - Vf)

(4.7)

where I + AB-A p - AB-1 Vf - c + r X

An analysis of the behaviour of this algorithm shoved that as the

problem size increased 90Z of the computational effort within the

algorithm was spent in each iteration in forming the product AB-A t

which requires 2En2 operations. This is a large overhead as the

dimension increases and one that can not really be speeded up by doing

parallel operations on our transputer network, due to the large amount

of communication between processors that would be required. It has

been our experience that it takes 3.7 times as long to send one

floating point number between processors than to perform one numerical

operation, it was therefore decided not to attempt to run OPALOP in

parallel on that system. It would of course be a very efficient

operation to do in parallel on a machine on which the communications

were faster, relative to the arithmetic, as demonstrated by Conforti

(1989).

Having rejected OPALQP for implementation on the transputer network, we
looked for a variant designed to run on larger problems and selected

MINISH Gould (1986) this uses the simplest penalty function (4.2) and

applies the S.U.M.T. approach.

In particular given r0 and rain s.t. 0 < r*in < r.

set r = r0 then UNTIL r < r...

Solve Min P(x,r)

Set r - r x 10-2

with default values of r0 and rmin being 10- 1 and 10- 12 respectively

and the minimisation of P(x,r) being terminated when IIVPII 2 S 10-"/r.

To obtain the results given later this terminated criteria was changed

to IJVP,1 2 < 10- 1 /r.

The minimisation Is performed by Newton's method. The equations we

solved were

- 53 -

(B A' (Vf:+ X) (4.8)

which is of course larger in dimension than that used in OPALOP, but

does not involve the large matrix multiplication. In our

implementation we used the BFGS variable metric method to update B

dividing this by rows over the transputer network and replaced the

direct equation solver suggested by Gould by the iterative CGS method

of Sonneveld (1986) which does not depend on the matrix being symmetric

or positive definite and only uses the matrix within matrix/vector

products that can be performed in parallel.

Our network contained up to 14 transputers and was configured as a tree

containing one transputer directly connected to the root, three

transputers in the next level and nine in the final level2 As each

transputer only has four links It can only communicate v th four other

transputers and in our tree this is one transputer at the higher level

and three at the lower. It is therefore logical to perform experiments
with P - 4 and 14.

4.2 Results

Both OPALQP and MINISH were implemented in 3L parallel FORTRAN and run

on a network of 14 T800 transputers. Both algorithms were run on two

test problems:

Problem 1

k-2
Min Z (xk+ i~l -x k ,)2

i=1

Subject to xk+ i- xi+ 1 + x i - 0 i - 1, ... , k-1
a, x, S C' 1 t - 1 , ... ,9 k

0.4(o+2- ad) Xk+i 0.6 (i+2-) i 1, ... , k-1

where a, - 1.0 + 1.011- , I < i < k+1

- 54 -

k No. of Var's No. of Const.

10 19 47

20 39 97

30 59 147

Problem 2

k
Min f(x,y,u) - x t 2

t-0

Subject to xt+,- xt + 0.2yt

Yt.l - Yt- O.OlYt2- 0.O04xt+ 0.2ut

-0.2 <u t <0.2

yt > -1.0

x0- 10, Yo' 0, Yk' 0 for t 0, ... , k-1

k No. of Var's No. of const.

10 32 53

20 62 103

30 92 153

- 55 -

The following results are for each algorithm run in a sequential

fashion on a single transputer.

Problem 1 NF NG F Time (Secs)

OPALQP k-10 15 13 1.639x1O-13 3.07

k.20 30 28 3.080x10-14 34.69

k=30 66 45 1.729x10-19 152.839

MINISH k-10 37 27 2.846X10-1 8.64

k-20 58 43 7.833X10-19 110.08

kW30 149 71 2.616x10- 0 813.15

Problem 2

OPALQP k-1O 28 28 550.0 42.83

k-20 53 46 1050.0 484.82

k=30 61 55 1550.0 2121.36

MINISH k-10 54 29 550.0 108.79

k=20 81 34 1050.0 847.32

kW30 95 51 1549.9 4872.36

Table 22. Comparison of OPALOP and MINISH

From these results it can be seen that OPALOP solves the test problems

in around a third of the time that MINISH takes. No doubt due to the

fact the MINISH adopts the S.U.M.T. strategy. However as explained

earlier MINISH has more scope for speed up when adapted for use on a

transputer network. It was not felt that significant improvement could

be gained by parallelising OPALOP but it was hoped that parallelising

MINISH would make it more competitive, particularly for larger

problems.

MINISH was therefore adapted to perform the BFGS update and to solve

the Newton equations in parallel on a network of four and then 14

transputers. These adaptations gave the following results.

- 56 -

Problem 1 NF NG F Time (Secs)

k-10 33 27 1.050xlO-2 3 6.94

k-20 58 43 7.844x10'- 61.29

k-30 149 71 2.616x10- 0 379.30

Problem 2

k=10 54 29 550.0 62.31

k=20 84 35 1050.0 475.05

k=30 95 51 1549.9 2317.56

Table 23. (4 Transputers)

Problem 1 NF NG F Time (Secs)

k-10 33 27 2.819x10"- 9.24

k-20 59 43 8.248x10-1 74.43

k-30 149 71 2.616x10- 0 342.62

Problem 2

k-10 54 29 550.0 100.21

k-20 81 34 1050.0 512.14

k-30 95 51 1549.9 2179.43

Table 24. (14 Transputers)

By comparing the results in Tables 1 and 2, it can be seen that there

was a speed up factor of around 2 when going from a single transputer

to 4 transputers on both problems.

However unfortunately when the times for HINISH on four transputers are

compared to the times for OPALOP on a single transputer given in Table

1, OPALOP was still quicker on each version of the problems.

- 57 -

On a 14 transputer network for values of k.1O and 20, both problems

were too small for any advantage to be gained from parallelisation. In

fact the amount of communication required to send one fourteenth of the

data around the network, out-veighed any savings in the computation.

This resulted in slower times on 14 transputers than on 4 transputers,

on both problems, except when k-30, when a minor speed up was achieved

on both problems.

4.3 Conclusions

The modified version of MINISH described above would work very

effectively on a parallel processing machine on which communication

time for moving floating point numbers between processors is

considerably faster than the time needed to perform an arithmetic step.

The same might be true of a modified version of OPALOP that also

utilised CGS and performed the calculation AB-1 AT z in three stages-I

u ATz, y . B , v - Ay with B-I updated not B. Each of these

multiplication could be performed efficiently in parallel on a machine

with fast communications.

If the problem has very nonlinear constraints then the minimisation of

4.5 is preferable as it overcomes the difficulties due to the

nonlinearities and can be done effectively by the truncated Newton

method.

In each case automatic differentiation can be performed to obtain the

necessary derivatives. This can utilise both the parallelism due to

partial separability and if the second derivatives are used the

parallelism in the reverse differentiation stage.

- 58 -

5. Pure Speculation?

In section 2 we have shown that any function calculation may be

represented by a task graph and illustrated this concept vith the

graph for Rosenbrock's function. We then shoved that the operations

needed for reverse automatic differentiation were representable by a

mirror image of the same graph. Again we noted that these graphs were

linked by the nonlinearities in the objective function and that a

reduced graph could be used to link the coordinate values with the

gradient values and that by extending this to Vfd and reversing this

graph we obtain a graph for V2fd.

The proposal that this graph might be used to calculate the Newton

step without forming the Hessian appears in Grievank (1989b).

Let us consider what might be involved.

We have seen that for Rosenbrock's function the operations and the

task graph are as given in Figure 6.

2

x = x

22

x5
X

f - x 9 , 6+ Xea

Figure 6. Task graph of Rosenbrocks Function

and that using reverse differentiation we can calculate the gradients

as shown in Figure 7.

- 59 -

x$ x 9 X X
-6 9

x7 n 2x 7 x 5 1i 6

2x 42-2x5

S3 X 4 g 2 X 2 -X 4

g, M X 1 -X + 2x 33

i mdii +d 2 R 2

Figure 7. Reverse task graph for the gradient vector

It will be noted that the elementary operations of add, subtract and

multiply appearing in f contribute a fork in Vf while those x.
appearing nonlinearly in f also appear in Vf. We note that until

these x, appear in the gradient tree the i, are constant and

independent of x.

Now linking these two graphs together through the nonlinearities we

obtain Figure 8.

X 4 - - 2

4 2x4xis (isrn100)

(i S M1) i 7 -2x 7 i x3 x 4 92 X2 -- X4

g, i -i7 + 2xi 3c

Figure 8. A direct task graph for the gradient vector

This emphasises the symmetric nature of the graph.

- 60-

If we nov perform reverse differentiation on this graph extended to

x0 M dIx + d2 2 and representing the variables in the graph of Vfd

by y1 and wj when it corresponds to xi and xi respectively we obtain

Figure 9.

-Y7 l x - x3 2 191

y4 y3 -Y2

Y7 2 y4 -iX

3 P3 y4 y2 -Y4

YI- 2X35Y1 -Y7 + 2x, Y3

Figure 9. Task graph for the directional second derivative

where Y,) 72Vf di](Y2)(d 2 .

We note that the structure for this graph is identical to that for Vf

but that the operations at the nodes are slightly different. In

looking for the Newton step of this problem we may treat any xi , xi

remaining in the calculation as constants and can now represent the

graph as a sparse matrix. By ordering the variables as

Y1 y2 y3 y4 Y97 Y7 Y4 Y3 Y2 yl

we obtain the sparse system.

- 61 -

y, di
1 - d2

I

-2x1 1 y3 0

+1 -11 4 0

+1 1 0 0

-2i 1 y0 0

-2x- 1 Y4 0 I

13 0-1 1 Y3 0

+1 1Y2 0

-2i3 +1 -2x, 1 y, 0

Figure 10. The Hessian Task matrix of Rosenbrock's function

This representation stresses the lover triangular form of the sparse

matrix and its symmetry about the antidiagonal which appears to be a

property of all "Hessian Task" matrices.

The forward calculation is:-

given d calculate the value of V2fd - (YIY 2)"

This is obviously straight forward from the above matrix.

The Newton calculation in contrast is:-

given y, - -g, and Y2 ' -g2 ;

calculate the values of di and d2.

To formulate this calculation in matrix terms it is easiest to augment

the above matrix with a further n rows and columns (so remembering

n - 2 for Rosenbrock's function) we obtain the matrix shown in Figure

11.

- 62 -

I -iY , 0

1-1 Y2 0

-2x 1 1 I3 0

+1 -1 1 4 0

1 1 I 0

-2i 8 1 y 0

-2R5 Y4 0

-1 1 yI 0

1 Y2 0

-2i3 1 -2x, 1 Y, 0
E(-1] di g,

El { -1 I d 2 g2

Figure 11. Augmented Hessian Task matrix for Rosenbrock's function.

This matrix is an echelon form, with echelon index (EI) of n - 2,

which we may vrite as

L B v

C 0 d g

i.e. Lv + Bd 0 v = -L-Bd

Cv -g

4CL- Bd = -g

So by implication V2f CL-1 B i.e. the Hessian Matrix is the Shur

Complement of the augmented matrix.

In Dixon & Maany (1987) the operations needed to solve an echelon

matrix of this type were analysed and shown to be dominated by

EI(NNZ) + 1/6(EI)3

- 63 -

the first term being the calculation of the Shur complement by El

parallel steps and the second the solution of the Shur Complement

equation which by definition is symmetric. If El - n this operations

count is precisely what would be expected to first form and then solve

the Hessian matrix.

However if we could sort the augmented matrix into an echelon form

with El < n the operational cost would be greatly reduced. Dixon &

Maany (1987) also describe a heuristic sort aimed at finding an

equivalent matrix with a low El.

In that paper they applied their echelon method to the non-symmetric

Grenoble matrices in the Harwell set obtainable from lain Duff and

found that the echelon indices obtained were remarkably small.

Grenoble n 115 185 216 343 512 1107

Matrices El 31 58 18 49 32 83

The formation of the Shur complement for these sorted matrices

followed by solving the equations using its inverse was very

efficient. A comparison was performed against a conjugate gradient

algorithm with and without diagonal preconditioning, and also with

MA28 and FO4QAF.

Nonsymmetric
Grenoble Echelon
Problem CG PCG MA28 FO4QAF Method

115 3 3 0.4 3 0.8

185 29 28 2.3 32 2.6

216 A 11 12 1.8 9 0.8

216 B 87 F 86 F 1.4 F 0.9 F 0.9 F

343 27 28 4.1 15.6 3.28

512 54 56 10.3 32.4 3.38

1107 521 F 519 F 133 F 684 F 20.97

Table 25. The performance of the echelon method on the Grenoble test
set.

- 64 -

Ve were quite excited with these results but unfortunately the method
need not always be stable (Duff & Reid, private communication).

Indeed our results indicated it was always unstable if the original

matrix is symmetric and positive definite. It did indeed fail on all

the symmetric versions of the Grenoble problem; we did however

complete our tests on these problems and for interest the results are

given below.

Symmetric
Grenoble ILU/
Problem CG PCG CG MA28 F040AF

115 1.61 1.64 1.51 0.88 1.11

216 11.27 6.77 4.04 5.2 5.47

343 13.57 9.39 7.38 26.24 7.19

512 24.90 15.80 12.01 64.3 12.77

1107 59.15 37.64 31.55 S 25.04

Table 26. A comparison of the relative performance of a number of
codes on the symmetric Grenoble problem

Here S indicates that too much store was required for the system being

used.

Returning now to the task matrix of Rosenbrock's function the natural

form of which already has an EI - 2, we found to our surprise that our

echelon sort found an ordering with EI - 1.

- 65 -

Y1 -1

1Y2 -g2

1 12x-1 Y

-1 di

i l Y7

-2F6 1 Y7

Y4 0

1 1 i I 02i5 1I

-11I d2

1 1 Y3

1 -2i3 1 -2x1 Y3

Figure 12. The resorted form of the Newton Task graph equations of

Rosenbrock's function

We note that if we solve this by the Shur Complement method we reduce

both parts of the cost. We note too that it is unstable near x1 - 0.

Effectively this matrix implies that if we take y3 as the independent

variable then we can compute all the variables and are left with one

equation, that at node yl, to determine 93. Note we could interchange

the last two rows of the permutated matrix and end with node y.

determining the value of 3 which seems to preserve the symmetry

better.

Preliminary investigation indicates that an echelon sort can reduce

the echelon index of the augmented task graph below n and thus reduce

the cost of solving the task graph below that of forming and solving

the Hessian matrix.

- 66 -

6. Conclusions

In this report we have demonstrated

(1) that the use of defined data types and operator overlays in Ada

allows optimisation codes to be written so that they reflect the basic

algorithm.

(2) that introducing sparse doublet and sparse triplet data types
enables both the gradient and Hessian of partially separable objective

functions to be calculated very efficiently. This result extends

naturally to the Jacobian of constraints and if necessary to their

Hessians.

(3) that the use of automatic differentiation combines naturally with

the truncated Newton method to efficiently solve large unconstrained

optimization algorithms.

(4) that the use of "accurate" dot products and matrix vector

products greatly speeds up large scale optimization.

(5) that automatic differentiation of partially separable functions

can be performed effectively using concurrent tasking in Ada on the

Sequent Balance.

(6) that to perform the linear algebra within the truncated Newton

algorithm effectively, in parallel, requires a machine with faster

communications relative to computation than that available on the

Sequence Balance or the transputer network.

(7) that the linear algebra and truncated Newton method performed

effectively on the ICL/DAP machine with 4096 processors.

(8) that automatic differentiation combines effectively with ROP

algorithms for the sequential solution of contrained problems.

(9) that when the constraints are too nonlinear for RQP algorithms to

be effective automatic differentiation combined with a truncated

Newton algorithm can obtain the solution when applied to the Di Pillo

Grippo exact penalty function.

- 67 -

(10) that the linear algebra within Gould's MINISH algorithm can be

simply divided into parallel tasks and should be effective on a

machine with a faster communication time than our transputer network.

(11) that the use of reverse differentiation should be even faster

than sparse forward automatic differentiation for calculating first

derivatives, and can be performed in parallel to calculate second

derivatives, and may lead to techniques that can calculate the Newton

step cheaper than the Hessian matrix.

7. Acknovledgements

This report includes results funded from a number of sources. In

particular we would like to acknowledge support from

(1) US Army Contract No.DAJA45-87-C-0038 and the British

National Advisory Board that together funded the research

of Maany and Mohseninia 1987-1989 and Price 1990.

(2) SERC which funded the research of Patel, Brown, Ducksbury

and Mills.

(3) British Gas which funded the research of Parkhurst.

(4) The Italian CNR which funded the research of Vespucci

all of which featured within the report.

Additional financial support for related research was received from

CEC IT task force, British Aerospace, British Council and Rolls Royce.

8. References

1. Bartholomev-Biggs, M. C., (1975), "An improved implementation of
Recursive Quadratic Programming Methods for Constrained
Optimization", Hatfield Polytechnic, NOC, TR105.

2. Bartholomew-Biggs, M. C., (1987), "Recursive Quadratic
Programming Methods based on the Augmented Lagrangian",
Mathematical Programming Study, 31, pp 21-41.

3. Bartholomew-Biggs, M. C., (1990), "An Introduction to Numerical
Computation using Ada", Hatfield Polytechnic, NOC TR235.

- 68 -

4. Bartholomev-Biggs, M. C., (1989), "Automatic Differentiation and
Constrained Optimization", from "Three papers on Automatic
Differentiation presented at the IFAC Symposium on Dynamic
Modelling & Control of National Economies, July 1989, Edinburgh,
Scotland", Hatfield Polytechnic, NOC TR223.

5. Brown, A. A., (1987), "Optimisation Methods involving the
Solution of Ordinary Differential Equations", Hatfield
Polytechnic, PhD Thesis.

6. Byrd, R. H., Schnabel, R. B., Shultz, G. A. (1988), "Parallel
Quasi Newton Methods for unconstrained optimization", University
of Colorado, CU-CS-396-88.

7. Byrne, G. D. & Bindmarsh, A. C. (1987) Review Article: "Stiff ODE
Solvers: A Review of Current and Coming Attractions", Journal of
Computational Physics 70, 1987, pp 1-62.

8. Chamberlain, R. M., Powell, M. J. D, Lemarachel, C. & Pedersen,
H. C., (1982), "The Watchdog Technique for Forcing Convergence in
Algorithms for Constraint Optimization", Mathematical Programming
Studies 16.

9. Chazan, D., & Miranker, W. L. (1970), "A nongradient and parallel
algorithm for unconstrained minimization", SIAM Journal on
Control 8, 207-217.

10. Christianson, B.,(1990), "Automatic Hessians by Reverse
Accumulation", NOC, Hatfield Technical Report No.TR228, April
1990

11. Conforti, D., (1989), "Performance of Nonlinear Programming
Algorithms in Parallel Computing", Eds. Evans, D. J., Joubert,
FG. R., Pelcro, F. J., North Holland, 1990.

12. Dayde, M. (2989), "Parallel Algorithms for Nonlinear Programming
Problems", JOTA 61(1), 23-46.

13. Dayde, M., Lescrenier, M. and Toint, P.L., "A Comparison between
Straetters parallel variable metric algorithm and parallel
discrete Newton methods", University of Namur, 89/16.

14. Dembo, R., Eisenstat, S. C., and Steihaug, T., (1982), "Inexact
Newton Methods", SIAM Journal of Numerical Analysis, Vol 19,
1982, pp 400-408.

15. Dembo, R. and Steihaug, T., (1983), "Truncated Newton Methods for
Large Scale Optimisation", Mathematical Programming, Vol.26,
1983, pp.190-212.

16. Dennis, J. E. & Torczon, V. J. (1990), "Direct search methods on
parallel machines", presented at Parallel Optimisation 2,
Madison, 1990.

17. Dixon, L. C. V., (1974), "Nonlinear Optimisation: A Survey of
the State of the Art", Hatfield Polytechnic, NOC TR42, 1973.
Published in Software for Numerical Mathematics, Academic Press,
pp 193-219, ed. D. J. Evans, 1974.

18. Dixon, L. C. V. and Maany, Z. A., (1987), "The Echelon Method for
the Solution of Sparse Sets of Linear Equations". Hatfield
Polytechnic, NOC TR177, February 1987.

19. Dixon, L. C. V., (1987), "A Review of Parallel Methods for
Solving Sets of Linear Equations and their Application Within
Optimisation Algorithms", presented at the International
Symposium on "Vector and Parallel Processors for Scientific
Computation II" held by IBM at Rome, September 1987.

20. Dixon, L. C. V. & Maany, Z. A., (1988), "The Performance of the
Truncated Newton, Conjugate Gradient Algorithm in Fortran & Ada",
The Third Interim Report, US Army Contract No. DAJA45-87-C-0038,
Hatfield Polytechnic.

21. Dixon, L. C. W., Maany, Z. A. & Mohseninia, M., (1989),
"Experience using the Truncated Newton Method for Large Scale
Optimization", The Fourth Interim Report, US Army Contract
No.DAJA45-87-C-0038, Hatfield Polytechnic.

- 69 -

22. Dixon, L. C. W., Maany, Z. A and Mohseninia, M. (1989,1990)
"Automatic Differentiation of Large Sparse Systems", presented at
IFAC Symposium on Dynamic Modelling & Control of National
Economies, Edinburgh, July 1989. Paper 1, Hatfield Polytechnic,
NOC TR223. Published in Journal of Economic Dynamics & Control
No.14(2), 1990.

23. Dixon, L. C. V. and Price, R. C., (1986,1988), "Numerical
Experience with the Truncated Newton Method". Hatfield
Polytechnic, NOC TR169, May 1986. Published in JOTA, Vol.56,
No.2, pp 245-255, February 1988.

24. Dixon, L. C. V. and Price, R. C., (1986,1989), "The Truncated
Newton Method for Sparse Unconstrained Optimisation using
Automatic Differentiation", Hatfield Polytechnic, NOC TR170,
October 1986; Published in JOTA, Vol.60, No.2, pp 261-275,
February 1989.

25. Dixon, L. C. V. and Mills, D., (1990), "The Effect of Rounding
Error on the Variable Metric Method", Hatfield Polytechnic NOC
TR229, April 1990.

26. Dixon, L. C. V. and Mohseninia, M., (1987), "The use of the
Extended Operations Set of Ada with Automatic Differentiation and
the Truncated Newton Method", Hatfield Polytechnic NOC TR176,
April 1987.

27. Dixon, L. C. V. and Mohseninia, M., (1989), "Concurrent
Optimisation on the Sequent Balance 8000". Hatfield Polytechnic
NOC TR226, September 1989.

28. Ducksbury, P. G., (1984), "An Investigation of the Relative
Merits of Optimisation Algorithms on the ICL-DAP", Hatfield
Polytechnic PhD Thesis, October 1984.

29. Fiacco, A. V. & MacCormick, G. P., (1968), "Nonlinear Programming
Sequential Unconstrained Minimization Techniques", John Wiley &
Sons, New York.

30. Fletcher, R. and Reeves, C., (1963), "Function minimization by
conjugate gradients", The Computer Journal 6, 163-168.

31. Gould, N. I. M., (1986), "On the Accurate Determination of Search
Directions for Simple Differentiable Penalty Functions", IMA JNA,
6, pp 357-372.

32. Griewank, A., (1988), "On Automatic Differentiation", in
Mathematical Programming 88, Kluwer Academic Publishers, Japan.

33. Griewank, A., (1989), "Direct Calculation of Newton Steps without
accumulating Jacobians", Preprint MCS-P132-0290, Argonne National
Laboratory.

34. Grievank, A. and Toint, Ph.L., (1981), "On the Unconstrained
Optimization of Partially Separable Functions", in Nonlinear
Optimization 1981, ed. M. J. D. Powell, Part 5, pp 301-312.

35. Jha, Manoranjan, (1990), "Preliminary Results on some Parallel
Linear Algebra Applications on Transputer Networks", Hatfield
Polytechnic, NOC TR231, April 1990.

36. Lootzma, F. A. (1986), "Parallel Algorithms for unconstrained and
constrained nonlinear optimization", Bergamo University 1986,
No.5.

37. Maany, Z. A., (1989), "The Performance of the Truncated Newton
Conjugate Gradient Algorithm in Fortran and Ada", Hatfield
Polytechnic NOC TR210, 1989.

38. Mohseninia, M., (1989), "Parallel Automatic Differentiation in
Ada Applied to the Navier Stokes Equations", from "Three papers
on Automatic Differentiation presented at the IFAC Symposium on
Dynamic Modelling & Control of National Economies", July 1989,
Edinburg, Scotland, Hatfield Polytechnic TR No223.

39. Nelder, J. A. and Mead, R., (1965), "A Simplex method for
function minimization", The Computer Journal 7: 308-313.

- 70 -

40. Parkhurst, S. C., (1989), "Some Experiences using Rounded
Interval Analysis vhen Solving Sets of Linear Equations",
Hatfield Polytechnic TR No217.

41. Parkhurst, S. C. (1990), "The Evaluation of Exact Numerical
Jacobians using Automatic Differentiation", Hatfield Polytechnic
NOC TR224, December 1990. Presented at The Eleventh Conference
on Differential Equations, Dundee University, July 1990.

42. Patel, K. D., (1982), "Implementation of a Parallel (SIMD)
Modified Newton Algorithm on the ICL DAP", paper presented at the
Progress in the use of Vector and Array Processors Workshop,
University of Bristol, September 1982.

43. Polak, E. & Ribi~re, G., (1969), "Note sur la convergence de
methodes de directions conlugu~es", Rev. Francaise Informat.
Recherche Op~rationelle, s Annie, No.16, pp.35-43; (1.2).

44. Powell, M. J. D., (1977), "A Fast Algorithm for Nonlinearly
Constrained Optimization Calculations", Lecture Notes in
Mathematics 630, Ed. Watson, G. A., Springer Verlag.

45. Price, R. C., (1988), "Sparse Marix Optimization using Automatic
Differentiation", Hatfield Polytechnic PhD Thesis, January 1988.

46. Rall, L. B., (1981), "Automatic Differentiation: Techniques and
Applications", Springer-Verlag, Berlin, Germany, 1981.

47. Schnabel, R. B., (1988), "Sequential & Parallel Methods for
unconstrained optimization", University of Colorado,
CU-CS-415-88.

48. Sofer, A. & Nash, S., (1990), "General-purpose Parallel Algorithm
for Unconstrained Minimization", Presented at SIAM Annual
Meeting, Chicago, July 1990.

49. Sonneveld, P., (1986) CGS, "A Fast Lanczos-Type Solver for
Nonsymmetric Linear Systems", SIAM Journal Sci. Stat. Comp.,
Vol.10, No.1, pp36-52, January 1986.

50. Spedicato, E., (1976), "On a Conjecture of Dixon and other Topics
in Variable Metric Methods", University of Bergamo, Italy, 1976.

51. Straeter, T. A. (1973), "A parallel variable metric optimization
algorithm", NASA, TN D-7329, Langley Research Centre, Virginia.

52. Sutti, C., (1983), "Nongradient Minimization Methods for Parallel
Processing Computers", JOTA 39, 465-488.

53. Torczon, V. J. (1989), "Multi-directional search; A direct
Search Algorithm for Parallel Machines", Rice University, PhD
Thesis, TR 90-7.

54. Van Laarhoven, P. J. M. (1985), "Parallel Variable Metric
Algorithms for Unconstrained Optimisation", Mathematical
Programming 33, 68-81.

55. Vespucci, M. T., (1990), "The Use of the ABS Algorithms in
Truncated-Newton Methods for Nonlinear Optimisation", University
of Bergamo. Presented at NATO Summer School, Il Ciocco, Italy,
September 1990.

- 71 -

