
AD-A235 832 TATION PAGE Approved
_P IT TIONPAGEOPM No. 0704-0188

p 111111II~i11111111 I~t~ lii 1111 111 ii ur per resporw, including the timre for reviewing instructions. searching esting data sources gattinn and maargthe dat
r a burden estimate or any other aped tof the collection ot information, including suggestions for reducing th birden to Washnt

H Jefferson Davi Highway, Suite 1204, Arlington. VA 22202-4302. and to the Office of Information and Regulatory Affairs. Office of
M

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Final: 09 Sept 90 to 03 Mar 93

4. TITLE AND SUBTITLE 5. FUNDINC NUMBERS

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, 80 Data 386/25 (Host
Target) 900909W1.11037

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-397.0491

Wright-Patterson AFB
Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I "' 10, SPONSORINGMONITORING AGENCY

Ada Joint Program Office A. o lo,, REPORT NUMBER

United States Department of Defense .LCTE
Pentagon, Rm3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, Wright-Patterson AFB, 80 Data 386/25 386/ix .0.6 (Host &
Target), ACVC 1.11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16_PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNICLASSIFIED
NSN 7540-01-280550 Standard Form 298, (Rev 2-89)

Prescribed by ANSI Std 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 09 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: 80 Data 386/25
386/ix 1.0.6

Target Computer System: 80 Data 386/25
386/ix 1.0.6

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11037 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

)Acoession For

_____ ____ ____ ____ ____ __ ?TIS GRA&
Ada Validation Facility DTIC TAB
Steven P. Wilson Unannounced EJ
Technical Director Justificatio
ASD/SCEL
Wright-Patterson AFB OH 45433-6503 B

Distribution/- 717 YAvailability
Codes

Ada Wl on Organization AvsilSancia r
Directo ,omputer & Software Engineering Division Dist Special
Institute for Defense Analyses
Alexandria VA 22311 /

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301 91-00777

91 5 29 113

AVF Control Number: AVF-VSR-397.0491
8 April 1991
90-07-23-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900909W1. 11037
Mpridian Software Systems, Inc.

Meridian Ada, Version 4.1
80 Data 386/25 => 80 Data 386/25

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 09 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: 80 Data 386/25
386/ix 1.0.6

Target Computer System: ON Daa 386/25
386/ix 1.0.6

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11037 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

iAda T'iijrtipn Org;anization

Director- .Cdmputer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.

Ada Valiation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: 80 Data 386/25
386/ix 1.0.6

Target Computer System: 80 Data 386/25
386/ix 1.0.6

Customer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarAed in the name of the owner's corporate name.

2Date:
Stowe Boyd. Vice Preside t of Research and Development
Meridian Software Systels, Inc.
10 Pasteur Street
Irvine, CA 92718

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90J against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90. A detailed description of the ACVC may be found in the current
ACVC User's Guide tUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard 't-ect
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTl3,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple. zcpwrt~i, compiled units. Errors
are expected at link time, and execution i- attempted.

In some tests of the ACVC. certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications. additional changes may be
required to remove unforeseen conflicts betv.een the tests and
implementation-dependent characteristic-. Th- m-difications required for
this implementation are described in S,,ic ,

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

da Th ?.-t of the c Lification budy which caLries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consizti:- -f one or more computers and
System associated software, that i- -mmon storage for all or

part of a program and alo for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation. including arithmetic
operations and logic operations: and that can execute
programs that modify themsel o- during execution. A
computer system may Io a ' tanrdl-ne unit or may consist of
several inter-connecte] '10-

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed,

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration IPro90.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 September 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026A C83026B
C83041A B85001L C97116A C98003B BA201A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1BO2B BD1BO6A ADlBO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C BD3006A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD51I1A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2119B CE2205B
CE2405A CE3111C CE3118A CE3411B CE3412B CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by IS() "-' AJP0 known as Ada
Commentaries and commonly referenced in t1- frvmt AI-ddddd. For this
implementation, the following tests xjel ,Vlrrl led to be inapplicable for
the reasons indicated: references to Ada (OMrmePlaLies are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L. .Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)
C45L41L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L..Y (14 tests) C46012L. .Z (15 tests)

C35702A, C35713B, C45423B, B86001T, and C86006H check for the
predefined type SHORTFLOAT.

C35702B, C35713C, B86001U, and C86006G check for the predefined
type LONGFLGAT.

C35713D and B86001Z check for a predefined floating-point type
with a name other than FLOAT, LONG FLOAT, or SHORT FLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation that range exceeds the safe numbers and must be
rejected. (See section 2.3)

C45423A, C45523A, and C45622A check that the proper exception is
raised when operations results lie outside of the range of the
base type if MACHINE OVERFLOWS is TRUE for various floating-point
types; for this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

C86001F recompiles package SYSTEM, making package TEXT 10, and
hence package REPORT, obsolete. For this implementation, the
package TEXTI0 is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than
DURATION.

CA2009C, CA2009F, BC3204C, and BC3205D instantiate generic units
before their bodies are compiled. This implementation creates a
dependence on generic units as a!b'" y by AI-O0008 and AI-00530
such that the compilation of the .enevi ,nit bodies makes the
instantiating units obsolete. '- 7etion 2.3)

LA3004A..B (2 tests), EA30C)4C..D (. tests), and CA3004E..F (2
tests) check for pragma INLINE for prorednlres and functions.

CD1O09C uses a representation clause specifying a non-default size
for a floating-point type.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use
representation clauses specifying non-default sizes for access
types.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE21OIH, EE2401D, and EE240IG use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

The tests listed in the following table are not applicable because
the given file operations are supported for the given combination
of mode and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL 1O
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT-IO

CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUTFILE DIRECT-IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

CE2107B..E (4 tests), CE2107L, CE2110B. and CE2111D attempt to

associate multiple internal file- "'-h the same external file when
one or more files is writing f-i --q,i-ntial files.

CE2107G..H (2 tests). CE2110D. and CEIllH attempt to associate
multiple internal files with the same e;-ternal file when one or
more files is writing for direct files. The proper exception is

raised when multiple access is attempted.

2-3

IMPLEMENTATION DEPENDENCIES

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation
does not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does
not restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to
associate multiple internal files with the same external file when
one or more files is writing for text files. The proper exception
is raised when multiple access is attempted.

CE3304A checks that USE ERROR is raised if a call to
SET LINE LENGTH or SETPAGELENGTH specifies a value that is
inappropriate for the external file. This implementation does not
have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST. For this implementation, the
value of COUNT'LAST is greater than 150000 making the checking of
this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CA2009C, CA2009F, BC3204C, and BC3205D were graded inapplicable by
Evaluation Modification as directed b, th- i Because this
implementation makes the units with inlttj~tifll ohsolete (see section
2.2), the Class C tests were rejected at linl time and the Class B tests
were compiled without error.

EAIOO3B was processed with the option "-fI" so that code would be
generated for all the legal units of this test file. Without this option.
the entire compilation would have been LeJected due to errors within only
some of the units (which is also an A(ceptabi' v ult).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Technical Support
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For a point of contact for sales information about this Ada implementation
system, see:

Jim Smith
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF I RESULTS

An Ada Implementa .)n passes a given ACVC "'ersi-n if it processes each test
of the customized est suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementatior fails the ACVc jPro90.

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

Total Number of Applicable Tests 3807
Total Number of Withdrawn Tests 74
Processed Inapplicable Tests 88
Non-Processed I/O Tests 0
Non-Processed Floating-Point

Precision Tests 201

Total Number of Inapplicable Tests 289

Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. All floating-point precision tests were processed
because this implementation supports floating-point precision to the extent
that was tested. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 289 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation In addition, the modified
tests mentioned in section 2.3 were also processed.

Magnetic tape containing the customized test suite (see section 1.3) were
taken on-site by the validation team for processing. The tests were loaded
onto a Sun 3 system (from a standard 1/2 inch, 9-track UNIX TAR tape) and
then transferred to a Compaq Deskpro 386 system via DOS floppy diskettes
created on a PC using NFS Ethernet connection.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command script- pr"ided bv the customer and
reviewed by the validation team. See App-,'i:: D for a complete listing of
the processing options for this implementr.ti-n. It also indicates the
default options. The options invoked e::pliciti': for validation testing
during this test were:

3-2

PROCESSING INFORMATION

Switch Effect

-fE Generate error file for the Ada listing utility
(alu).

-fI Ignore compilation errors and continue generating
code for legal units within the same compilation
file (for test EAlOO3B).

-fQ Suppress "added to library" and "Generating

code for" information messages.

-fw Suppress informative warning messages.

-c Produce continuous form Ada listings (no page
headers).

-p Obey PRAGMA PAGE directives within the program
even though the -c flag says not to generate
page breaks.

-s Output Ada listing to the standard output
file instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDI (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (1..V-l-V/2 => 'A') & 'I' & '"'

$BLANKS (1..V-,- '

SMAXLENINTBASEDLITERAL

& (1..V-5 => '0') & "ii:"

$MAXLENREALBASED LITERAL
"16:" & (1. .V- 7 => '0') & "F.E:"

SMAX STRING LITERAL '"' (1. ('7-" 'A') &

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SMAXINLEN 200

$ACC SIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483646

$DEFAULTMEMSIZE 1024

$DEFAULT STOR UNIT 8

$DEFAULTSYSNAME 180386

$DELTA_DOC 2.0**(-31)

SENTRYADDRESS 16#0#

SENTRY ADDRESS1 16#1#

SENTRYADDRESS2 16#2#

$FIELDLAST 2147483647

$FILETERMINATOR

$FIXED NAME NO SUCH FIXED TYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING ""

$FORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATERTHANDURATION
90000.0

$GREATERTHANDURATION BASE LA7T
1- -00nn

$GREATER THAN FLOAT BASE LAST
- - - 1.8E 308

$GREATER THAN FLOATSAFE LARGE
1.0E308

A-2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
1.0E308-

$HIGHPRIORITY 20

$ILLEGALEXTERAL-FILE NAME1

7NODIRECTORY/ FILENAME 1

$ILLEGAL EXTERAL-FILE NAME2

7NODIRECTORY/FILENAME2

S INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMA1 PRAGMA INCLUDE ("A28006D1.ADA")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147493647

$INTEGERLAST -PLUS 1 2147483648

$INTERFACELANGUAGE C

$LESSTHANDURATION -90000.0

SLESSTHAN DURTION-BASE FIRST

$LINETERMINATOR ASCII.LF

$LOWPRIORITY 1

$MACHINECODESTATEMENT

INSTi' (B=>16#90#);

SMACHINE CODE TYPE INSTi

$MANTISSADOG 31

SMAXDIGITS 15

$MAX-INT 214748364V7

$MAX INT PLUS 1 214748366P

SMINTNT 1 ,

A-3

MACRO PARAMETERS

$NAME ~ BYTEINTEGER

SNAME-LIST 180386

$NAMESPECIFICATIONi /usr/va1/X212OA

$NAMESPECIFICATION2 /usr/val/X2120B

$NAMESPECIFICATION3 /usr/val/X3119A

$NEG BASED INT 16#FFFFFFFE#

$NEWMEMSIZE 1024

$NEWSTORUNIT 8

$NEWSYSNAME 180386

$PAGETERMINATOR ASCII.LF & ASCII.FF

$REC'JRD DEFINITION RECORD Bi: UNSIGNEDBYTE; END RECORD;

$RECORD-NAME INSTi

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 1.0

$VARIABLEADDRESS FCNDECL.VARADDRESS

$VARIABLEADDRESS1 FCNDECL.VARADDRESS1

$VARIABLEADDRESS2 FCNDECL.VARADDRESS2

$YOUR PRAGMA NOSUCH PRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

MERIDIAN Ada COMPILER OPTIONS

-fD Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

-fe Annotate assembly language listing. The -fe option
causes the compiler to annotate an assembly language.
output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -S option must also
be specified; otherwise, the annotated file is not emitted.

-fE Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is smple.err. The error log file is
placed in the current working dirczt?: In the absence
of the -fE option, the error 1og in-,rm4tion is sent to
the standard output stream.

-fI Ignore compilation errors and continue generating code
fut legal units within the same compilation file.

-fL Generate exception location informarion. The -fL option
causes location information (noli-v fil- names and line
numbers) to be maintained for in-t ,n heVs. This

B-i

COMPILATION SYSTEM OPTIONS

information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not
used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

-fN Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division check and overflow check. These checks are
described in section 11.7 of the LRM. This flag reduces
the size of the code.

-fQ Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

-fs Suppress all checks. The -fs flag suppresses all
automatic checking, including numeric checking. This
flag is equivalent to using pragma suppress on all checks.
This flag reduces the size of the code, and is good for
producing "production quality" code or for benchmarking
the compiler. Note that there is a related ada option,
-fN to suppress only certain kinds of numeric checks.

-fU Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

-fv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK]".

-fw Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
pragmas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LRM.

-g The -g option instructs the compiler to run an additional
optimization pass. The optimizer "r ommon
sub-expressions, dead code and ,n-te:eir iumps. It
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option. the
compiler deletes internal form files folloing code
generation.

B-2

COMPILATION SYSTEM OPTIONS

-imodifiers

Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by

default contains a header on each page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

p Obey pragma page directives. Specifying -ip is only
meaningful if -1c has also been given. Normally -lc
suppresses all pagination, whereas -lcp suppresses
all pagination except where explicitly called for
within the source file with a pragma page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .1st, as in simple.lst from
simple.ada. Specifying -ls causes the listing file
to be written to the standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error messages and warning messages.
Specifying -lt causes the compiler to list only the

source lines to which error messages or warning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .1st. For example,

the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to be produced, as with the -fE option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program I.'

-N No compile. This option causes t,- -id. *-mimand to do a

"dry run" of the compilation prncers. The command

invoked for each processing step ic printed. This is
similar to the -P option. but no actual prcessing is
performed.

B-3

COMPILATION SYSTEM OPTIONS

-P Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

MERIDIAN Ada LINKER OPTIONS

-A Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which piagma inline
has been specified are inlined.

-c compiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances an
appropriate library configuration is normally used
instead.

-f Suppress main program generation step. The -f option
suppresses the creation and adAJi*:-' eneiation
steps for the temporarv main r: ' ,- V, . The -f option
can be used when a simple ,-hanvr 1 ... , made to the
body of a compilation uiti . if .ii.i . tifon order
is changed, or if the specifi,ati-n of i ,,nit is changed,
or if new units are added. then rhi- pp',i'n should not be
used.

-g Perform global optimization -111. T 1), ptinn causes
bamp to invoke tho global np i'. pi,,ram.

B-4

COMPILATION SYSTEM OPTIONS

Compilation units to be optimized globally must have been
compiled with the ada -K option.

-G Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

-I Link the program with a version of the tasking run-time
which supports preemptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

-o output-file-name

Default: file

Use alternate executable file output name. The -o option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bamp command
to print out the actions it takes r0 geierate the
executable program as the action: prformed.

-v Link verbosely. The - option , th- bamp command to
print out information about -hat viti-n- it takes in
building the main program.

-W Suppress warnings. This option alln.Sv' -j to suppress
warnings from the optimizer.

B-5

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portionz of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

type LONGINTEGER is range -2147483648 .. 2147483647;

type SHORTINTEGER is range -32768 .. 32767;

type BYTE INTEGER is range -128 .. 127;

end STANDARD;

C-i

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation-dependent characteristics of Meridian Ada. Note that there are no pre-
ceding appendices. This appendix is called Appendix F in order to comply with the Reference Manual for
the Ada Programming Language* (LRM) ANSI/MIL-STD-1815A which states that this appendix be named
Appendix F.

Implemented Chapter 13 features include length clauses, enumeration representation clauses, record repre-
sentation clauses, address clauses, interrupts, package system, machine code insertions, pragma inter-
face, and unchecked programming.

F.1 Pragmas

The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5.
interface See section F.l.1.
list See the LRM Appendix B.
pack See section F. 1.2.
page See the LRM Appendix B.
priority See the LRM Appendix B.
suppress See section F.1.3.
inl1ne See the LRM section 6.3.2. This pragrna is not actually effective unless you compile/link

your program using the global optimizer.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled optimize system name
shared storageunit
memory_size

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the compiler issues a warning message rather
than an error, as required by the Ada language definition. Refer to the LRM Appendix B for additional infor-
mation about the pre--defined pragmas.

F.1.1 Pragma Interface

The form of pragma interface inMeridian Ada is:

pragma interface (language, subprogram [, "link-name"]):

where:

language is the interface language, one of the names assembly, builtin, c, or internal. The names
builtin and internal are reserved for use by Meridian compiler maintainers in run--time sup-
port packages.

subprogram is the name of a subprogram to which the pragma interface applies.

link-name is an optional string literal specifying the name of the non-Ada subprogram corresponding to
the Ada subprogram named in the second parameter. If link-name is omitted, then link-

*All future refcrences to the Reference Manual for the Ada Programming Language appear as the LRM.

249 Meridian Ada Compiler User's Guide

Appendix F

name defaults to the value of subprogram translated to lowercase. Depending on the lan-
guage specified, some automatic modifications may be made to the link-name to produce the
actual object code symbol name that is generated whenever references are made to the corre-
sponding Ada subprogram.

It is appropriate to use the optional link-name parameter to pragma interface only when
the interface subprogram has a name that does not correspond at all to its Ada identifier or
when the interface subprogram name cannot be given using rules forconstructing Ada identi-
fiers (e.g. if the name contains a '$' character).

The characteristics of object code symbols generated for each interface language are:

assembly The object code symbol is the same as link-name.

builtin The object code symbol is the same as link-name, but prefixed with two underscore charac-
ters ("_ _"). This language interface is reserved for special interfaces defined by Meridian
Software Systems, Inc. The builtin interface is presently used to declare certain low-level
rur-time operations whose names must not conflict with programmer-defined or language
system defined names.

c The object code symbol is the same as link-name, but with one underscore character (_')
prepended. This is the convention used by the C compiler.

internal No object code symbol is generated for an internal language interface; this language inter-
face is reserved for special interfaces defined by Meridian Software Systems, Inc. The inter-
nal interface is presently used to declare certain machine-level bit operations.

No automatic data conversions are performed on parameters of any interface subprograms. It is up to the pro-
grammer to ensure that calling conventions match and that any necessary data conversions take place when
calling interface subprograms.
A pragma interface may appear within the same declarative part as the subprogram to which the pragma
interface applies, following the subprogram declaration, and prior to the first use of the subprogram. A
pragma interface that applies to a subprogram declared in a package specification must occur within the
same package specification as the subprogram declaration; the pragma interface may not appear in the
package body in this case. A pragma interface declaration for either a private or nonprivate subprogram
declaration may appear in the private part of a package specification.

Pragma interface for library units is not supported.
Refer to the LRM section 13.9 for additional information about pragma interface.

F.1.2 Pragma Pack
Pragma pack is implemented for composite types (records and arrays).
Pragma pack is permitted following the composite type declaration to which it applies, provided that the
pragma occurs within the same declarative part as the composite type declaration, before any objects or com-
ponents of the composite type are declared.
Note that the declarative part restriction means that the type declaration and accompanying pragma pack
cannot be split across a package specification and body.
The effect of pragma pack is to minimize storage consumption by discrete component types whose ranges
permit packing. Use of pragma pack does not defeat allocations of alignment storage gaps for some record
types. Pragma pack does not affect the representations of real types, pre-defined integer types. and access
types.

F.1.3 Pragma Suppress

Pragma suppress is implemented as described in the LRM section 11.7, with these differences:

Meridian Ada Compiler User's Guide 250

Appendix F

" Presently, division check and overflow-check must be suppressed via a compiler
flag, -fN ; pragma suppress is ignored for these two numeric checks.

" The optional "ON =>" parametername notation for pragma suppress is ignored.

" The optional second parameter to pragma suppress is ignored; the pragma always
applies to the entire scope in which it appears.

F.2 Attributes

All attributes described in the LRM Appendix A are supported.

F.3 Standard Types

Additional standard types are defined in Meridian Ada:

" byte_integer

* short_integer

" long_integer

The standard numeric types are defined as:

type byteinteger is range -128 .. 127;

type short-integer is range -32768 .. 32767;

type integer is range -2147483648 .. 2147483647;

type long_integer is range -2147483648 2147483647;

type float is digits 15
range -2.24711641857789e+307 .. 2.24711641857789e+307;

type duration is delta 0.0001 range -86400.0000 86400.0000;

F.4 Package System

The specification of package system is:

package system is
type address is new integer;

type name is (i80386);
systemname : constant name := i80386;

storageunit : constant 8;
memory_size : constant := 1024;

- System-Dependent Named Numbers

min int : constant :=-2147483648;
max-int : constant 2147483647;
max_digits : constant : 15;
max mantissa : constant 31;
finedelta : constant : 2.0 ** (-31);
tick : constant : 1.0;

- Other System-Dependent Declarations

251 Meridian Ada Compiler User's Guide

Appendix F

subtype priority is integer range 1 .. 20;
The value of system. memory_s ize is presently meaningless.

F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses

A size specification (t' size) is rejected if fewer bits are specified than can accommodate the type. The
minimum size of a composite type may be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g. 8 for the range 0.. 255. However, because of requirements
imposed by the Ada language definition, a full 32-bit range of unsigned values, i.e. 0.. (2**32) -1, cannot
be defined, even using a size specification.

The specification of collection size (t ' storagesize) is evaluated at nm-time when the scope of the type
to which the length clause applies is entered, and is therefore subject to rejection (via storageerror)
based on available storage at the time the allocation is made. A collection may include storage used for run-
time administration of the collection, and therefore should not be expected to accommodate a specific number
of objects. Furthermore, certain classes of objects such as unconstrained discriminant array components of
records may be allocated outside a given collection, so a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (t' storage_size) is evaluated at nm-time when
a task to which the length clause applies is activated, and is therefore subject to rejection (via st orage er-
ror) based on available storage at the time the allocation is made. Storage reserved for a task activation is
separate from storage needed for any collections defined within a task body.
The specification of small for a fixed point type (t' small) is subject only to restrictions defined in the LRM
section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an enumeration representation clause must
be in the range of standard. integer.
The value of an internal code may be obtained by applying an appropriate instantiation of un-
checkedconversion to an integer type.

F.5.3 Record Representation Clauses
The storage unit offset (the at staticsimple_expression part) is given in terms of 8-bit storage units and must
be even.

A bit position (the range part) applied to a discrete type component may be in the range 0.. 15. with 0 being
the least significant bit of a component. A range specification may not specify a size smaller than can accom-
modate the component. A range specification for a component not accommodating bit packing may have
a higher upper bound as appropriate (e.g. 0.. 31 for a discriminant string component). Refer to the inter-
nal data representation of a given component in determining the component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle 16-bit word boundaries.
The value of an alignment clause (the optional at mod part) must evaluate to 1, 2, 4, or 8, and may not be
smaller than the highest alignment required by any component of the record.

F.5.4 Address Clauses
An address clause may be supplied for an object (whether constant or variable) or a task entry, but not for a
subprogram, package, or task unit. The meaning of an address clause supplied for a task entry is given in sec-
tion F5.5.

Meridian Ada Compiler User's Guide 252

Appendix F

An address expression for an object is a 32-bit segmented memory address of type system. address.

F.5.5 Interrupts

A task entry's address clause can be used to associate the entry with a UNIX signal. Values in the range 0. .31
are meaningful, and represent the signals corresponding to those values.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means of type conversion.

F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implementation-dependent components.

F.7 Unchecked Conversions

There are no restrictions on the use of unchecked conversion. Conversions between objects whose
sizes do not conform may result in storage areas with undefined values.

F.8 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

* In calls to open and create, theform parameter must be the empty string (the de-
fault value).

e More than one internal file can be associated with a single external file for reading
only. For writing, only one internal file may be associated with an external file; Do
not use reset to get around this rule.

* Temporary sequential and direct files are given names. Temporary files are deleted
when they are closed.

* File I/O is buffered; text files associated with terminal devices are line-buffered.

* The packages sequential io and directio cannot be instantiated with un-
constrained composite types or record types with discriminants without defaults.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited to 200 characters in length.

253 Meridian Ada Compiler User's Guide

