
User's GuideCMU/SEI-90-UG-1

AD-A235 740 SD.90.VR-5
I 1C Carnegie-Mellon University

\ --- "Software Engineering Institute D GTEI

Hartstone Benchmark User's
Guide, Version 1.0

Patrick Donohoe
Ruth Shapiro

Nelson Welderman
March 1990

N N\

S \\

\-- -\ \,. \ee

"NN

F>Npove,,d fory,,;,. ...p-

/ 2 itiobutio Unlimited K

91-00322 N l5 22I/l//ll/ilil//lllll/i/Ill/B/,6 8,
I I I I

User's Guide
CMU/SEI-90-UG-1

ESD-90-TR-5
March 1990

Hartstone Benchmark User's Guide,
Version 1.0

Patrick Donohoe
Ruth Shapiro

Nelson Weiderman
Real-Time Embedded Systems Testbed Project

IDTIC TAB (
Uznannovnctd 1
justification eo

Di str ib~t~i o /

Avatil blilty C(,Iell

1AvaJ.]. dlor'i . I .Spec-- il -

SponialApproved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

4Cares J7yan,ajor USA-F
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyrght © 1990 by Carnegie Mellon University.

This document Is available through the Defense Technical Information Cente. DTIC provides acoss to and transfer of
sdentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For lnform3lon on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Sp*field VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the right of the trademark holder

Table of Contents
1. Introduction 1

2. Periodic Harmonic Test Series 3
2.1. Periodic Tasks 3
2.2. Hartstone Experiments 4
2.3. Overall Benchmark Structure and Behavior 6

3. Hartstone Portability 9

4. Running Hartstone Experiments 11

5. Understanding Hartstone Results 13
5.1. Format of Results 13
5.2. The Baseline Test 14
5.3. What the Results Mean 15
5.4. Factors Affecting Hartstone Performance 17
5.5. Unexpected Results 19

6. Future Work 23

Bibliography 25

Appendix A. Sample Results for XD Ada VAX/VMS - MC68020 27
A.1. Host-Target Configuration 27
A.2. Experiment 1: Summary of Results 28
A.3. Experiment 2: Summary of Results 33
A.4. Experiment 3: Summary of Results 37
A.5. Experiment 4: Summary of Results 41

Appendix B. Supporting PIWG Results 47
B.1. Calendar.Clock Resolution 47
B.2. Delay Statement Resolution 47
B.3. Procedure Call Overhead 48

Appendix C. Obtaining Hartstone Source Code and Information 49

Appendix D. Hartstone Ada Code for PH Series 51

CMU/SEI-90-UG-1

S

0

0

0

0

0

0

CMU/SEI*90*UG-1

S

List of Figures
0 w Figure 2-1: H-artstone Dependency Diagram 7

CUSE90U-

Hartstone Benchmark User's Guide, Version 1.0
Abstract: The Hartstone benchmark is a set of timing requirements for testing a
system's ability to handle hard real-time applications. It is specified as a set of proc-
esses with well-defined workloads and timing constraints. The name Hartstone derives
from HArd Real Time and the fact that the workloads are presently based on the well-
known Whetstone benchmark. This report describes the structure and behavior of an
implementation in the Ada programming language of one category of Hartstone require-
ments, the Periodic Harmonic (PH) Test Series. The Ada implementation of the PH
series is aimed primarily at real-time embedded processors where the only executing
code Is benchmark and the Ada runtime system. Guidelines for performing various
Harth me experiments and interpreting the results are provided. Also included are the
source code listings of the benchmark, information on how to obtain the source code in
machine-readable form, and some sample results for Version 1.0 of the Systems
Designers XD Ada VAX/VMS - MC68020 cross-compiler.

1. Introduction
The Hartstone benchmark comprises a series of requirements to be used for testing the ability of
a system to handle hard real-time applications. Its name derives from Hard Real Time and the
fact that the computational workload of the benchmark is provided by a variant of the Whetstone
benchmark [Cumow 76], [Harbaugh 84], [Wichmann 88]. "Hard" real-time applications must meet
their deadlines to satisfy system requirements; this contrasts with "soft" real-time applications
where a statistical distribution of response times is acceptable [Liu 73]. The rationale and opera-
tional concept of the Hartstone benchmark are described in [Weiderman 89]; in particular, live
test series of increasing complexity are defined and one of these, the Periodic Harmonic (PH)
Test Series, is described in detail.1

This user's guide describes the design and implementation of the PH series in the Ada program-
ming language [LRM 83]. The overall structure and behavior of the benchmark programs are
described, implementation-dependent aspects of the design are noted, and guidelines for per-
forming the experiments described in [Weiderman 89] and interpreting their results are provided.
Source code for the benchmark and .'ample results for the Systems Designers XD Ada VAX/VMS
to Motorola MC68020 cross-comp,ier, Version 1.0, are included as appendices, as well as infor-
mation on how to obtain machir..-readable copies of the Hartstone source code and supporting
documentation.

This Ada implementation of the Hartstone PH test series is aimed primarily at real-time em-
bedded or "bare-board" target systems. It is assumed that on such systems the only executing
code is the Harlstone code and the Ada runtime system. Hartstone can be used to gauge the
performance of the Ada runtime system and its ability to handle multiple real-time tasks efficiently.
As this guide explains, Harts;one is not a simple benchmark that produces just one number

1This document is recommended reading for people wishing to gain a broader understanding of the issues that
motivated the concept of the Hartstone benchmark.

CMU/SEI-90-UG-1 1

representing the 'score" of the runtime system. The output from all Hartstone expnments must
be considered, as well as the characteristics of the target processor, when drawing conclusions
based on Hartstone results.

2 CMU/SEI.90.UG.1

2. Periodic Harmonic Test Series

2.1. Periodic Tasks
The Periodic Harmonic (PH) Test Series is the simplest of the five test series defined
in [Weiderman 89] for the Hartstone benchmark. The Ada implementation (the "Delay/ND" de-
sign discussed in [Weiderman 89]) consists of a set of five periodic Ada tasks that are inde-
pendent in the sense that their execution need not be synchronized; they do not communicate
with each other. Each periodic task has a frequency, a workload, and a priority. Task fre-
quencies are harmonic: the frequency of a task is an integral multiple of the frequency of any
lower-frequency task. Frequencies are expressed in Hertz; the reciprocal of the frequency is a
task's period, in seconds.

A task workload is a fixed amount of work, which must be completed within a task's period. The
workload of a Hartstone periodic task is provided by a variant of the well-known composite syn-
thetic Whetstone benchmark [Cumow 76] called SmalL.Whetstone [Wichmann 88].
SmallWhetstone has a main loop which executes one thousand Whetstone instructions, or one
Kilo-Whetstone. A Hartstone task is required to execute a specific number of Kilo-Whetstones
within its period. The rate at which it does this amount of work is measured in Kilo-Whetstone
instructions per second, or KWIPS. This workload.rate, or speed, of a task is equal to its per-
period workload multiplied by the task's frequency. The deadline for completion of the wo.,doad
is the next scheduled activation time of the task. Successful completion on time is defined as a
met deadline. Failure to complete the workload on time results in a missed deadline for the task.
Missing a deadline in a hard real-time application is normally considered a system failure. In the
Hartstone benchmark, however, processing continues in order to gather additional information
about the nature of the failure and the behavior of the benchmark after deadlines have begun to
be missed. Therefore, in the Ada implementaton of the PH series, if a task misses a deadline it
attempts to compensate by not doing any more work until the start cf a new period. This process,
called load-shedding, means that if a deadline is missed by a large amount (more than one
period, say) several work assignments may be cancelled. Deadlines ignored during load-
shedding are known as skipped deadlines. The reason for load-shedding is that "resetting" of-
fending tasks and letting the test series continue allows more useful information to be gathered
about the failure pattern of the task set. The conditions under which the test series eventually
completes are discassed in Section 2.2.

Task priorities art. assigned to tasks according to a rate-monotonic scheduling discipline [Liu
73], [Sha 89]. This means that higher-frequency tasks are assigned a higher priority than lower-
frequency tasks. The priorities are fixed and distinct. The rate-monotonic priority assignment is
optimal in the sense that no other fixed-priority assignment scheme can schedule a task set that
cannot b scheduled by the rate-monotonic scheme [Liu 73]. In the Hartstone task set, priorities
are statically assigned at compile time via the Priority pragma. Task 1 has the lowest priority and
task 5 has the hightst. The main program which starts these tasks is assigned a priority higher
than any task so that it can activate all tasks via an Ada rendezvous.

CMU/SEI-90-UG.1 3

0

A task implements periodicity by successively adding its period to a predetermined starting time
to compute its next activation time. Within a period, it does its workload and then suspends itself
until its next activation time. This paradigm, based on the one shown !n Section 9.6 of the Ada
Language Reference Manual[LFRMv 83], was adopted because of its portability, portability being
one of the major objectives of the Hartstone benchmark. The implications of using this paradigm
are discussed in Section 5.4.

2.2. Hartstone Experiments
Four experiments have been defined for the PH series, each consisting of a number of tests. A
test will either succeed by meeting all its deadlines, or fall by not meeting at least one deadline.
The Hartstone main program initiates a test by activating the set of Hartstone tasks; these per-
form the actual test by executing their assigned workloads, periodically, for the duration of the
test. A test will always run for its predefined test duration. When a test finishes, the results are
collected by the main program and a check is made to see if the test results satisfy a user-defined
completion criterion for the entire experiment. If they do, the experiment is over and a summary
of the entire experiment is generated; if not, a new test is initiated and the experiment continues.
Experiment completion criteria are defined later in this section.

Each new test in an experiment Is derived from the characteristics of the preceding test. The first
test, called the baseline test, is the same for all experiments: activate the initial set of Hartstone
tasks (called the baseline task sel) and collect the results from them. As an example, the base-
line test below has a total workload rate of 320 Kilo-Whetstone Instructions per second (KWIPS) 2

allocated as follows:

Task Frequency Kilo-Whets, Kilo-Whets
No. (Hertz) per period per second

1 2.00 32 64.00 0
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00

320.00

2This baseline test is different from that of [Weiderman 891; the frequencies and workloads have been doubled, This
doubling was done initially to cause deadlines to be missed after fewer iterations, so that experiments would complete in a
shorter time. The original task set proved to be too low a starting point for the cross-compiler and target us6d in Hartstone
prototype testing, the Systems Designers XD Ada compiler, and a 12.5 MHz Motorola MC68020 target processor. During
subsequent testing on a number of different cross-compilers, stronger reasons for increasing or decreasing the fre- •
quencies and workloads of the baseline task set emerged. A more detailed discussion of desirable properties of the
baseline task set appears in Section 5.2.

4 CMU/SEI-00-UG-1

The four experiments are:

Experiment 1: Starting with the baseline task set, the frequency of the highest frequency task
(task 5) is Increased for each new test until a task misses a deadline. The frequencies of the
other tasks and the per-period workloads of all tasks do not change. The amount by which the
frequency increases must preserve the harmonic nature of the task set frequencies: this means a
minimum Increase by an amount equal to the frequency of task 4. For the previous example, this
sequence increases the task set's total workload rate by 32 KWIPS (16 Hertz, the frequency
increment, times task 5's per-period workload) at a time and tests the system's ability to handle a
fine granularity of time (the decreasing period of the highest-frequency task) and to switch rapidly
between proces.*,s.

Experiment 2: Starting with the baseline task set, all the frequencies are scaled by 1.1, then 1.2,
then 1.3, and so on for each new test until a deadline is missed. The per-period workloads of all
tasks do not change. The scaling preserves the harmonic frequencies; it is equivalent to multiply-
ing the frequencies of the current test by 0.1 to derive those of the next test. As with experiment
1, this sequence increases the total workload rate in the above example by 32 KWIPS. By
contrast with experiment 1, the increasing rates of doing work affect all tasks, not just one.

Experiment 3: Starting with the baseline task set, the workload of each task is Increased by 1
Kilo-Whetstone per period for each new test, continuing until a deadline is missed. The fre-
quencies of all tasks do not change. This sequence increases, the total workload rate in the
example by 62 KWIPS at a time, without increasing the system overhead in the same way as in
the preceding experiments.

Experiment 4: Starting with the baseline task set, new tasks with the same frequency and work-
load as the "middle" task, task 3, of the baseline set are added until a deadline is missed. The
frequencies and workloads of the baseline task set do not change. This sequence increases the
total workload rate in the example by 64 KWIPS at a time and tests the system's ability to handle
a large number of tasks.

When the computational load, plus the overhead, required of the periodic tasks eventually ex-
ceeds the capability of the target system, they will start to miss their deadlines. An experiment is
essentially over when a test misses at least one deadline. For the purpose of analysis, it may be
useful to continue beyond that point; thei'efore, tests attempt to compensate for missed deadlines
by shedding load, as described previously. A Hartstone user has the choice of stopping the
experiment at the point where deadlines are first missed or at some later point. The completion
criteria for an experiment are largely defined in terms of missed and skipped deadlines. An.
experiment completes when a test satisfies one of the following user-selected criteria:

* Any task in the task set misses at least one deadline in the current test.

* The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set limit.

* The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set percentage of the total number of deadlines. This
criterion is an alternative to specifying an absolute number of missed and skipped
deadlines.

CMU/SEI-90-UG-1 5

" The workload required of the task set is greater than the workload achievable by the
ben'hmark in the absence of tasking. This is a default completion criterion for all
experiments.

" The default maximum number of extra tasks has been added to the task set and
deadlines still have not been missed or skipped. This is a default completion crite-
don for experiment 4. If this happens, the user must Increase the value of the
parameter representing the maximum number of tasks to be added.

2.3. Overall Benchmark Structure and Behavior
The Ada implementation of the PH series consists of three Ada packages and a main program. A
Booch-style diagram illustrating dependencies between these Hartstone units is shown in Figure
2-1. The arrows represent with clauses. The Workload package contains the SmallWhetstone
procedure that provides the synthetic workload for Hartstone periodic tasks. The Periodic_.Tasks
package defines the baseline set of tasks, and a task type to be used in the experiment where
new tasks are added to the baseline set. The Experiment package provides procedures to initial-
ize experiments, get the characteristics of a new test, check for experiment completion, and store
and output results. It also defines the frequencies and workloads to be assigned to the baseline 0
task set, as well as the experiment completion criteria. Initialization of an experiment includes a
"calibration" call to Small_Whetstone to measure the procedure's raw speed; this is why the
dependency diagram shows a dependency of package Experiment on package Workload. The
main Hartstone program controls the starting and stopping of tasks, and uses procedures pro-
vided by the Experiment package to output results of individual tests and a summary of the entire •
experirr ant.

The compilation order of the packages and main program is as follows:

package Workload
package PeriodicTasks
package Experiment
procedure Hartstone

Tasks obtain the starting time, duration, frequency, and workloads of the test from a rendezvous
with the main Hartstone program and then proceed independently. On completion of a test, the
results are collected by the main program in a second rendezvous, and may optionally be written
at that point. The main program then starts the next test in the experiment a,%i the experiment
continues until it satisfies the user-defined completion criterion. On completion of the experiment,
a summary of the entire experiment is generated. Details of the output produced by Hartstone
tests are given in Section 5.1.

6 CMU/SEI-90-UG-1

* 0s
.0

0

* I

X cc

00
0 06

01

Figure 2-1: Hartstone Dependency Diagram

7

CML/SE90UGl1

0

0

0

0

0

0

0

0

0

8 CMU/SEI~9O.UG-1

0

3. Hartstone Portability
The Ada version of the Hartstone benchmark for the PH series is written entirely In Ada and is
Intended to be portable over a wide range of Ada compilation systems. However, it does have
certain implementation-dependent features which can be classfied in two broad categories: fea-
tures affecting the portability of the source code and features affecting the runtime performance of
Hartstone executable code. The principal portability issues are Hartstone's use of mathematical
library functions and predefined types. These also influence the performance, of course, but a
discussion of performance factors will be deferred until Section 5.4.

Mathematical Libraries. The SmallWhetstone benchmark (and the full Whetsone benchmark,
from which it is derived) performs computations involving transcendental functions; these func-
tions are typically provided by a mathematical library package supplied with the Ada compilation
system. The names used by vendors for mathematical libraries vary greatly, so a user will need
to ensure that the correct library name for the system is being used in the with and use clauses
in the body of package Workload wherein SmallWhetstone is encapsulated. Also, the names of
some of the functions in these libraries may vary: ior example, in some libraries, the natural
logarithm function is named "Log," while for others it is named "Ln." An additional problem is
caused by the fact that "Log" Is used, in some libraries, to designate the base 10 logarithm
function. The SmallWhetstone procedure requires the natural logarithm function for its calcula-
tions to be correct, so inadvertent use of a base 10 function will cause a runtime exception. This
exception is typically either a ConstrainLError or an exception defined within Small_Whetstone
that is raised when Small_Whetstone's internal self-check fails. The Hartstone package Work-
load is commented with guidelines for dealing with several vendors' mathematical library names
and function names. By default, it renames the natural logarithm function as "Log," the name
proposed by the WG9 Numerics Rapporteur Group [WG9 89].3

Pre-Defined Types. The predefined types Integer and Float are used within Hartstone on the
assumption that most implementations of these types provide sufficient range and accuracy for
Hartstone needs. The counts of met and missed deadlines computed by Hartstone, for example,
are expected to be much less than the maximum integer value of a 16-bit machine, and a
floating-point type with 6 digits of accuracy provides one-microsecond accuracy for Hartstone
timing calculations performed in floating-point. However, before running the Hartstone, the user
should check the Digits attribute of the integer and floating-point types to ensure that they meet
these range and accuracy assumptions.

3The WG9 (Working Group 9) proposal defines the specification of a generic package of elementary functions ar'1 a
package of related exceptions. Its content derives from a joint proposal of the association for computing Machinery
(ACM) SIGAda Numerics Working Group and the Ada-Europe Numerics Working Group. Draft 1.1 (October 1989) of the
proposal has been submitted for consideration as an international standard.

CMU/SEI-90-UG-1 9

0

0

0

0

S

0

6

0

0

S

10 CMU/SEI-90-UG-1

0

4. Running Hartstone Experiments
The Hartslone benchmark is primarily for embedded real-time target processors that are con-
nected to a host system from which the executable Hartstone code is downloaded. Because of
this, and for portability, it is assumed that the only code executing on the target system is the
Hartstone code and the Ada runtime system. The Hartstone benchmark makes no explicit calls
to Ada runtime system functions or to any kernel operating system layer interposed between it
and the Ada runtime system. Additionally, and in particular, no assumptions are made about the
Ada runtime system support of host-target file I/O or interactive screen I/O. Therefore, all exper-
iment characteristics (e.g., test duration, task set characteristics, experiment number, experiment
completion criterion, etc.) must be known at compile time: in this implementation they cannot be
entered interactively or read from a host file. Similarly, the benchmark does not attempt to open
any file on the host for output of results. At a minimum, it is expected that the output procedures
of the TextlO package will be capable of writing output to a terminal connected to the target
processor. In the SEI host-target environment, the serial ports of the various targets are con-
nected to corresponding serial ports on the VMS host. Output from the targets is displayed in a
window on the host console as It arrives at the host serial port. Some cross-compilers provide
the capability to capture such host input automatically In a file; for those that do not, the /LOG
qualifier of the VMS DCL command SET HOST/DTE/LOG <port_D> will create a log file of all
input arriving at the host serial port.

A user of Hartstone performs one experiment per download. The benchmark is not set up to do
multiple experiments per download; the idea is that each separately downloaded experiment
begins with the runtime system in the same Initial state. To choose an experiment to perform, a
user modifies one line in the body of the Experiment package. The criterion for stopping the
experiment (for example, stop after a total of 50 deadlines have been missed) may also be set in
the next line. By default, the experiment outputs the results of each test in an experiment as the
test completes. This is useful for monitoring the progress of an experiment. The user may
disable this "full output" option in favor of simply producing a summary of the entire experiment
when the experiment completes. Instructions for making these changes are provided as com-
ments in the body of the Experiment package in a section clearly marked as the user-modifiable
section. This section also defines two string variables that should be Initialized by a user to

* provide a brief description (e.g., name, version number, target CPU type) of the compiler and
target processor. Following these modifications, the package body must then be re-compiled,
and the Hartstone benchmark re-linked to produce a new executable module for the chosen.
experiment.

The default duration of a Hartstone test is 10 seconds, with a 5-second lag before the first test of
an experiment begins. If full output is enabled (i.e., if complete test results are to be output as
soon as the test completes) and nothing has happened 20 seconds, say, after the start of an
experiment, then either Hartstone is broken or there is a host-target communication problem. Of
course, if full output is disabled (i.e., no output is produced until the experiment finishes), a user
should be prepared to wait a relatively long time to see the summary results.

CMU/SEI-90-UG-1 11

0

0

0

S

S

S

0

S

0

S

12 CMU/SEI-9O~UG-1

5. Understanding Hartstone Results

5.1. Format of Results
By default, the Hartstonb benchmark outputs the results of every test of an experiment as each

* test completes. It then prints a summary of the results of the entire experiment. The two-part
output from a single test, including the characteristics of a test and its results, is shown below.

Experiment: EPERIENT 1

Completion on: Miss/skip 50 deadlines

* Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

0 1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %

960.00 85.55 %

Experiment step size: 2.85 %

Test 21 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (maec)
1 500.000 0 7 13 626.683
2 250.000 40 0 0 0.000

0 3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.841 3520 0 0 0.000

* The raw speed of the benchmark is the number of Kilo-Whetstone instructions per second
(KWIPS) achieved by the SmallWhetstone procedure. This calibration test is performed by the
Experiment package when an experiment is initialized. The resultant non-tasking workload rate
will always be better than that achievable by splitting the same workload among the five
Hartstone tasks; it provides a metric against which the performance of the Hartstone task set can
be measured. Both the raw speed calibration test and a Hartstone task include the overhead of
calling the SmallWhetstone procedure. The performance requested of Hartstone tasks is ex-
pressed as a percentage workload utilization, which is computed as the ratio of the requested

CMU/SEI-90-UG-1 "" 13

task speed (in KWIPS) and the raw benchmark speed. The raw speed is assumed to represent
100% utilization. The utilization required of the entire task set is the sum of the individual task 0
utilizations. Successive tests In an experiment Increase the requested utilization to the point
where deadlines are not met.

The step size'of an experiment is an indication of the extra work required of the task set when the
next test in an experiment Is derived from the current test. Like the workload utiization, it is
expressed as a percentage of the raw speed. As an example, for experiment 1 the extra work for
the task set comes from Increasing the frequency of the highest-frequency task, task 5. The
additional work required of task 5 is its workload multiplied by the frequency increment defined for
task 5 in experiment 1 (in the above example, it is 2 Kilo-Whetstones times 16 Heitz, giving 32
KWIPS). This KWIPS figure, expressed as a percentage of the raw speed KWIPS figure, is the
step size for the experiment. It varies from experiment to experiment but remains constant for a
specific experiment. The sum of the total requested utilization and the step size for the current
test is equal to the next test's total requested utilization. The step size is the granularity, or
resolution, of an experiment.

The sum of the met, missed, and skipped deadlines for a task should, in general, be equal to the
task's frequency multiplied by the test duration (i.e., the expected number of activations for that
task). The case where they do not add up will be discussed later. The average late figure for a
task is the average amount by which the task missed its deadlines during the test. It is the sum of
the amounts by which individual deadlines were missed, divided by the number of missed dead-
lines. For lower-priority tasks, it is an indication .of the amount of preemptiorr by higher-priority,
tasks. Skipped deadlines do not influence this figure; they are simply part of the process of
"resetting" a task whose lateness is already known.

The summary output produced at the end of an experiment consists of four test results similar to
those shown above. The four tests are: the first test in the experiment (the baseline test), the
test with the highest utilization and no missed/skipped deadlines (the "best" test), the test which
first experienced missed/skipped deadlines, and the final test performed. Example summary
results for all four experiments are given in Appendix A.

5.2. The Baseline Test
To get meaningful results from the Harlstone benchmark it is important to define an appropriate
starting point for Hartstone experiments. This starting point is the baseline task set and it must
first be "tuned" for a user's cross-compiler and target before Hartstone can be used effectively.
At a very basic level, "tuning" ensures that the baseline workloads and frequencies are such that
an experiment neither runs hundreds of tests before completing, nor completes after running just
a few tests. More importantly, a badly-chosen baseline test can lead to unexpected results
(discussed later) that undermine the usefulness of the benchmark. This section will provide some
guidelines for choosing an appropriate baseline test.

To determine if the characteristics of the baseline task set need to be modified, a user must run a
Hartstone experiment "as is" and examine the output of the baseline test. The numbers to check

14 CMU/SEI-90-UG-1

are the total workload utilization and the experiment step size. Every experiment first runs the
baseline test, so the total utilization of the baseline test is the same for all experiments. The total
utilization should be in the range of 10 percent to 30 percent, so that an experiment commences
with a workload rate that is neither too low nor too high (a 50% utilization for the task set in the
very first test, for example, would be considered too high). in the example shown in Section 5.1,
the total workload utilization of the baseline task set is 28.50 percent (5 times 5.70%). If utili-
zation falls outside the recommended range, the user must edit the task frequencies and/or
workloads in the body of package Experiment to bring them into line. If total utilization falls below
the range, the task set frequencies and/or workloads must be increased; if it falls above, they
must be reduced.

The experiment step size, which represents the resolution of the total utilization, should also be
within a range that ensures that the transition from one test to another does not cause either a
very large or a very tiny increase in the total resolution. A step size of around 2 or 3 percent
seems to be adequate. Step size depends on the parameters controlling the transition from one
test to the next. It remains constant for a specific experiment, but varies among different experi-
ments. For experiment 1, it depends on the frequency increment for the highest-frequency task;
for experiment 2, it depends on the scale factor applied to all frequencies; for experiment 3, on
the workload increment; and for experiment 4, on the frequency and workload of the extra task
added for each new test. In the example, the step size is 2.85 percent (task 5's frequency
increment times task 5's workload is 16 times 2, which is 32 KWIPS; this is divided by the raw
speed, 1122.19 KWIPS, and multiplied by 100 to give 2.85). In general, adjusting the total utili-
zation of the task set will also yield a reasonable step size, so the user should not need to modify
the step size parameters.

When making adjustments to the baseline test, the user must be careful to keep the task fre-
quencies harmonic, and must ensure, for example, that the frequency increment of experiment 1
also preserves the harmonic nature of the task set. Workloads must be integral values (the
SmallWhetstone benchmark does not permit fractional workloads), so , task cannot be assigned
a workload lower than one Kilo-Whetstone per period. By convention, workloads are such that
the workload rate (in Kilo-Whetstones per second) of each task in the baseline set is the same.

It is possible for a baseline task set to be within the guidelines just descrined and yet still fail to
run the baseline test successfully. Sections 5.4 and 5.5 provide some answers to this problem.

5.3. What the Results Mean

For any experiment there is no single number which best .represents the result of the experiment.
The nature of the experiment and the performance of the various Hartstone tasks must be taken
into account when formulating a conc'usion about the outcome of an experiment. Additionally,
the results from all four experiments must be considered when the benchmark is used to evaluate
the performance of an Ada runtime system.

The !est result of most interest to a user of the Hartstone benchmark is the one representing the
highest achieved utilization for an experiment, with no missed or skipped deadlines. In the cases

CMU/SEI-90-UG.1 15

where the experiment is allowed to continue until a predefined number of deadlines have been

missed or skipped, the resut, of the final test run is also of interest because it will show whether or
not tasks missed their deadlines in the expected manner for harmonic tasks: the lowest-priority
(lowest-frequency) task missing deadlines first, then the next-lowest-priority task, and so on up to
the highest-priority (highest-frequency) task.

In each experiment, the step size for that experiment Is very significant. The maximum achiev-
able total utilization is represented with a granularity equal to the the experiment step size. Ex-
periments 2 and 3, which affect all 5 tasks, tend to have larger step sizes than experiments I and
4, which affect only I task.

Once the effect of the step size on the experiment results is understood, the three most important
numbers for a test are the total number of task activations, the raw speed, and the total utilization.
The total number of activations (equal to the sum of the met plus missed plus skipped deadlines
for the task set) is an indication of the amount of task switching overhead required of the runtime
system. The total utilization is a measure of the useful work performed, while the raw speed is an
upper bound on the amount of useful work capable of being performed.

For experiment 1, the utilization achieved by the highest-frequency task is imp)rtant since it
dominates the overall result (the utilization of the other tasks remains constant throughout the
experiment). The maximum frequency achieved by task 5 is of considerable interest since it is
the primary indication of the amount of overhead required of the runtime system. As task 5's
period decreases, runtime overhead consumes an increasing percentage of the task's period. It
Is expected that the total utilization for experiment I will be lower than that of experiments 2 and 3
because task switching is the predominant factor.

For experiment 2, the utilization of each task is the same for a given test and increases uniformly
from one test to the next as all the task frequencies are scaled up. The scaling has the effect of
also increasing all task workload rates (as measured in Kilo-Whetstones per second).

For experiment 3, the highest-frequency task's utilization is again of interest because increasing
the actual workload, while keeping the frequency constant, means that the workload consumes
an increasingly large percentage of this task's period. This, of course, is true for all tasks in this
experiment, but the effect is greatest for the highest-frequency task. Experiment 3 should, in
general, have better total utilization than the other experiments, since only the workloads increase
while the tasks' switching overhead remains the same. A large step size, however, may cause
experiment 3's best *-st result to occur at a lower utilization level: the increase in requested
utilization, in the tra,,sition from success to missed deadlines, may hide the fact that a smnaller
increase could have resulted in success at a higher level.

For experiment 4, the utilization of each task remains constant throughout the experiment, but the
number of tasks, and hence the total utilization, increases. Of primary interest is the count of
extra tasks added to the baseline set. This provides an indication of the runtime system's ability
to handle a large number of tasks efficiently.

16 CMU/SEI-90-UG-1

5.4. Factors Affecting Hartstone Performance

The princip,! factors affecting the performance of Hartstone PH tests are

* The Implementation of task periodicity

e The resolution of the delay statement

0 * The resolution of Calendar.Clock

* The accuracy of the fixed-point type Duration

* The implementation of mathematical library functions

* Floating-point precision

* Miscellaneous overhead factors

Task Periodicity. The implementation of task periodicity In the Hailstone benchmark is based
on the paradigm exhibited in Section 9.6 of the Ada Language Reference Manual [LRM 83], a
version of which is shown below.

declare
use Calendar;
-- Period is a global constant of type Duration
Next-Start : Time :- Clock + Period;

begin
loop

NextDelay :- Next-Start - Clock;
delay NextDelay;
-- do som work
Next Start NextStart + Period;

end loop;
end;

This is a highly portable method of implementing periodic tasks in Ada. It is, of course, very
dependent on how well the Ada runtime system implements Calendar.Clock and the delay state-
ment. At a basic level, the performance of the Hartstone benchmark is a reflection of the perfor-
mance of these two features of the Ada language. The Issues arising from the implementation of
these two features are discussed separately below. The other major issue associated with the
above paradigm is the possibility of preemption of the task between the reading of the Clock and
the start (.1 the delay statement, resulting in an actual delay that Is longer than the requested
delay. It can be shown that this is not a problem for the periodic harmonic task sets used in the
Hartstone benqhmark.

Delay Statement Resolution. The resolution of the delay statement is how closely an actual
delay matches a requested delay. A requested delay of one millisecond that is actually imple-
mented as a ten or twenty millisecond delay will cause periodic tasks to start missing deddlines
earlier than expected. It has also been implicitly assumed that the expiry of the delay statement
is preemptive, i.e., that a lower-priority task currently executing will be preempted by a higher-
priority task whose delay has expired. A non-preemptive delay statement will likely cause results
that are at least as poor as, and probably worse than, those for a coarse delay statement resolu-
tion. Implementations using non-preemptive delays are technically non-conforming, but the cur-
rent Ada Compiler Validation Capability (ACVC, Version 1.10) does not adequately test this.

CMU/SEI-90-UG-1 17

0

Calendar.Clock Resolution. The resolution of Calendar.Clock is the time period between suc-
cessive ticks of the clock. A Hartstone task performs arithmetic involving Calendar.Clock to
determine the time remaining in its period upon completion of its workload. It then suspends itself
by delaying until its computed "wakeup" time--the next scheduled activation time. A coarse
Calendar.Clock resolution means that a coarse value will be used as the expression in the delay
statement, thereby resulting in a flawed implementation of task periodicity. Also, a coarse clock
resolution may cause variations in the calibrated raw speed of the SmallWhetstone procedure.
There are large differences in the resolution of Calendar.Clock in current Ada cross-compilers,
ranging, in those tested at the SEI, from 61 microseconds to 100 milliseconds. The ACM SIGAda
Performance Issues Working Group '(PIWG)4 benchmark suite contains tests to measure the
resolution of Calendar.Clock and the delay statement. These resolutions should always be
checked by users of Hartstone. (Note that, in general, the value of System.Tick is not the same
as the resolution of Calendar.Clock; a test should always be performed to determine the actual
resolution.) Sample results of these two tests, for the XD Ada MC68020 cross-compiler, are
included in Appendix B.

Type Duration. The accuracy of type Duration can be determined by examining the value of
Duration'Small. For many implementations, this value is 2.14 seconds, or approximately 61
microseconds. For some implementations, however, the value is 1 millisecond. In an attempt to
minimize the cumulative errors possible in fixed-point Duration arithmetic, a Hartstone periodic
task actuaiiy performs all arithmetic involving the types Time and Duration in floating-point. This
i,; done by using floating-point variables to compute NexLStart and NextDelay and converting
NextDelay to type Duration in the actual delay statement. The value returned by 0
Calendar.Clock is of the private type Time and so cannot be converted directly. Instead the
Calendar.Seconds function is used to extract the seconds portion of the Time value; this value is
of the non-private type DayDuration and so is amenable to direct conversion.5

Mathematical Library. The raw non-tasking speed measurement of the SmallWhetstone pro-
cedure is another important factor since it is the basis for the utilization figures and the exper-
iment step size. The raw speed will depend on how efficiently the SmallWhetstone computa-
tions are performed. For example, the computations involve trigonometric, logarithmic, and ex-
ponential functions whose efficiency depends on whether they are implemented wholly in soft-
ware on the main processor, or by special instructions on a co-processor, if one is present on the
target board. Testing at SEI has shown that most mathematical libraries do take advantage of an
on-board co-processor, but that even when they do, the differences in the performance of
Hartstone's SmallWhetstone (and the PIWG full Whetstone benchmark) on the same target

board are striking.

4The name, address, and telephone number of the current PIWG chairperson and other officers may be found in Ada
Letters, a bimonthly publication of the ACM Special Interest Group on Ada (SIGAda)

5Because the seconds portion of the time value be'vmes zero after twenty-four hours, you should not run Hartstone
through a midnight boundary. Depending on how Calendar.Clock is initialized, "midnighr for the target system may bear
no relation to midnight as measured by a wall clock (which in turn may be different from time as measured by the host
system).

18 CMU/SEI-90-UG-1

Floating-Point Precision. The current implementation of Hartstone uses the type Float for all
floating-point computations. Of the 8 Ada cross-compilers at the SEI, 7 implement type Float with
6 decimal digits of precision (Float'Digits - 6) while 1 Implements it with 15. Rather than defining
a machine-dependent package that simply contains a type Har._Float, say, Hartstone uses the
type Float on the assumption that it will always provide at least 6 digits of precision. Doing the
computational workload of Hartstone (the SmalLWhetstone procedure) in a higher-precision

0 floating-point type may, of course, take longer. The user must be aware of this when comparing
Hartstone results from different Ada implementations. For consistency, a floating-point type with
6 digits of precision should be used; this will usually be the predefined type Float, but, for some
cross-compilers, may be Short_Float.

Miscellaneous Overhead Factors. Calling the SmallWhetstone procedure from within a
Hartstone task is another factor affecting performance; the overhead of the call may be zero if
In-lining is used and non-zero otherwise. Again, the PIWG suite provides tests to measure this
overhead. Harlstone contains an Inline pragma for SmallWhetstone; the user should check the
compilation listings to see if the compiler is accepting or rejecting it. Even when the pragma is
accepted there may still be a performance factor attributable to the location and the even/odd
word alignment of the copies of the code in different areas of memory.

There are other sources of overhead which undoubtedly influence Hartsto'ne but are difficult for
users to measure. These include, but are not limited to, the tasks' switching time, time spent in
the clock interrupt handier, time spent managing delay and ready queues upon expiry of a delay,
cache hit/miss rates, time to switch between the processor and co-processor, and, possibly, peri-
odic garbage collection. Highly-specific, fine-grained benchmark tests, or hardware timing capa-
bilities such as those provided by a logic analyzer, are needed to detect and measure the effect
of such items on Hartstone's performance.

5.5. Unexpected Results
In normal circumstances, a Hartstone experiment proceeds from the baseline test through a num-
ber of intermediate tests to a point where a test meets the predefined completion criterion for the
experiment. The results of the experiment can then be examined to determine the overall utili-
zation and the failure pattern when tasks began to miss their deadlines. Sometimes the results
can be quite different from what the user expected. This section attempts to characterize a
sample set of such results; it is based on actual results encountered during testing of Hartstone
on various Ada cross-compilers and target processors.

Baseline Test Failure. As discussed earlier, one reason for this may be the fact that the baseline
task set utilization is outside the recommended range. However, even when it is within range,
other factors may cause missed deadlines in the baseline set. A non-preemptive delay state-
ment, or one with poor resolution, means that the actual implemented frequency of a task is much
less than the requested frequency. Since a task's period and activation times are computed as a
function of the requested frequency, an Implemented frequency that is lower will cause a task to
delay needlessly and miss its scheduled activation times. Even a reasonable delay statement

CMU/SEI-90-UG-1 19

0

resolution can still be overwhelmed when used in combination with a Calendar.Clock with poor
resolution to implement task periodicity. The user's only recoureg is to scale back the fre-
quencies of the baseline task set (keeping them harmonic) and re-run the experiment. A rule of
thumb: the benchmark is already in trouble if the period of the highest-frequency baseline task is
less than the period between successive ticks of Calendar.Clock. For example, if the highest-
frequency baseline task's frequency is 32 Hertz and the resolution of Calendar.Clock is 100
milliseconds, the task's requested 31.25-millisecond period will never be realized. The outcome
may well be that Hartstone cannot manage a successful run of even the first test without scaling
back the baseline task set. One possible, but highly machine-dependent solution to the problem
is to use a high-resolution programmable timer (if one Is available on the target system) as a
source of periodic interrupts. A dispatcher program could field these interrupts and dispatch
tasks at their assigned frequencies in the manner described in [Borger 89].

Excess Task Activations. When a periodic task runs at a fixed frequency, measured in task
activations per unit time, in a test whose duration is a multiple of the unit time, then the number of
times the task can be expected to activate is the product of the task frequency and the test
duration. In the Hartstone benchmark, the outcome of any one run of a Hartstone periodic task
will be a met, missed, or skipped deadline; therefore the sum of all such met, missed, and •
skipped deadlines reported by the task in a single test will equal the actual count of activations for
that task. Testing has shown that, for the highest-frequency task of experiment 1, the actual
activation count sometimes exceeds the expected activation count. The reason has to do with
the way periodic tasks, in this implementation, keep track of time. A task starts at its assigned
starting time, performs its assigned workload, and determines its next activation time by adding
its period to the starting time. Each time around the task's main loop, the new activation time is
compared with the test's finishing time (pre-computed by adding the test duration to the starting
time) and the task executes for another cycle if the finishing time has not been reached. If the
successive additions of the task's period to the starting time eventually yield a value exactly equal
to the finishing time then the test finishes without extra activations. Because of rounding effects,
however, the task may complete its "expected" number of activations and still manage one or
more runs before the finishing time occurs. It is also possible that a coarse Calendar.Clock
resolution will allow extra activations; since there is no external timing source in this version of
Hartstone (e.g., peric "!c interrupts from a programmable interval timer, a highly implementation-
dependent, non-portable solution), there is no way to cut tasks off at exactly the end of a test.

Inverted Task Set Breakdown Pattern. Because of the priority structure of the task sei
(highest-frequency task has highest priority, lowest-frequency task has lowest) one expects the
lower-frequency tasks to be preempted by the higher-frequency tasks. Thus the expected break-
down pattern for the task set is that task 1 (lowest priority) will miss deadlines first, then task 2,
and so on. Tests have shown that this is not always the case. In experiment 1, the frequency of
the highest-frequency task is incremented for each new test, with the result that the task-
switching overhead becomes an increasingly significant percentage of the task's period. Even-
tually, the rapid switching required of the task leaves no time for useful work, and the highest-
frequency task starts missing deadlines before any of the other tasks start missing theirs. The
eifect of this breakdown pattern is that the total workload utilization for the task set may be poor,
despite the fact that the highest-frequency task may have been driven to a very high frequency

20 CMU/SEI-90-UG-1

before it started to miss deadlines. Tests have shown that the Inverted breakdown pattern
usually occurs if the total utilization of the baseline task set is less than 10 percent. The user
should scale up the baseline characteristics (remembering to keep the task set frequencies
harmonic) to overcome the problem.

Inverted Summary Results. During testing of Hartstone, the highest-frequency task of exper-
iment 1 would sometimes miss a single deadline, but then meet all its deadlines in the next
several tests. The experiment would continue normally until the task set began missing deadlines
In the expected fashion, at which point the experiment would terminate. This situation can be
detected by examining the summary reports produced at the end of an experiment. One of the

summaries is the output of the "best" test-the one achieving the highest utilization with no
missed deadlines. Another summary is the output of the test where deadlines were first missed.
The test number of the "best" test normally precedes that of the "first missed" test; however, in
the case where a test with missed deadlines is followed by one or more tests that do not miss
deadlines, the test number of the "best" test is consequently higher than that of the "first missed"
test. This phenomenon is still under investigation; preliminary testing with a logic analyzer in-
dicates that the highect-frequency task may be blocked for varying amounts of time by runtime
system activities such as delay queue management and Calendar.Clock updating. Depending on
the amount of queue re-organization required, and whether or not the clock also needs servicing,
the highest-frequency task may occasionally be blocked just long enough to miss a deadline.

Exceptions. The SmallWhetstone procedure raises an exception if it fails an internal check on
the result of its computation. Two reasons for such a failure have been encountered during
testing. The first was when the link-time memory layout parameters did not allow enough stack
and heap space in the target board's memory for Hartstone. A simple readjustment of the
parameters took care of the problem. The second reason was more subtle, involving different
interpretations of the name "Log" as used in vendor mathematical libraries to denote a logarithm
function. The logarithm function used within the SmallWhetstone procedure is intended to be
the natural logarithm function (base e), not the base 10 function. Some vendors denote the
former by "Ln" and the latter by "Log"; others use "Log" for natural logarithms and a name such
as "LoglO" for base 10 logarithms. If base 10 logs are used inadvertently (i.e., the user did not
modify the SmallWhetstone procedure correctly for the mathematical library being used) the
compilation will succeed but the computation performed by Small-Whetstone will produce a run-
time exception.

Other ex.eptions, such as StorageError, car arise if not enough code space has been allocated
for Hartstone (again, modifying the file that describes the target memory layout solves the
problem), or if the runtime system provides support only for a default number of tasks .(possibly

*D defined by a user-modifiable link parameter) and this default is exceeded by the extra tasks
created in experiment 4.

CMU/SEI-90-UG-1 21

0

0

0

0

0

0

0

0

0

0

22 CMU/SEI*90*UG-1

0

2

6. Future Work
It is expected that this report will be sufficient to enable a Hartstone user to run a series of
experiments against a particular Ada compiler on a particular architecture. The sample outputs
show what experiment results look like and some initial guidance on interpretation of results has
been provided. However, in order to be a truly useful tool, it is necessary to be able to compare
different implementations and provide a deeper analysis of results. Work is under way at the SEI
to do just that. The Hartstone benchmark will be used to generate results for several different
embedded systems cross-compilers. A subsequent report will describe these results and the
analysis required to draw from them conclusions about the usability of the cross-compilers for
hard real-time applications. The purpose of the report will not be to "rate" the various cross-
compilers, but to show Hartstone users how to draw their own conclusions when evaluating the
hard real-time characteristics of their own Ada compilers.

CMU/SEI-90-UG-1 23

0

0

0

0

0

0

0

0

0

0

24 CMU/SEI-90-UG-1

0

Bibliography
[Borger 89] Borger, M., Klein, M., Veltre, R.

Real-Time Software Engineering in Ada: Observations and Guidelines.
Technical Report CMU/SEI-89-TR-22, Software Engineering Institute, Came-

gie Mellon University, Pittsburgh, PA 15213, September, 1989.

[Curnow 76] Curnow, H.J. and Wichmann, B.A.
A Synthetic Benchmark.
Computer Journal 19(1):43-49, January, 1976.

[Harbaugh 84] Harbaugh, S. and Forakis, J.
Timing Studies using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[Liu 73] Liu, C.L. and Layland, J.W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-

ment.
Journal of the Association of Computing Machinery 20(1):46-61, January,

1973.

[LRM 83] United States Department of Defense.
Reference Manual for the Ada Programming Language
American National Standards Institute, New York, 1993.

[Sha 89] Sha, L. and Goodenough, J.B.
Real-Time Scheduling Theory and Ada.
Technical Report CMU/SEI-89-TR-14, Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA 15213, April, 1989.

[Weiderman 89] Weiderman, Nelson.
Hartstone: Synthetic Benchmark Requirements for Hard Real-Time

Applications.
Technical Report CMU/SEI-89-TR-23, Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA 15213, June, 1989.

[WG9 89] ISO-IEC/JTCl/SC22/WG9 (Ada) Numerics Rapporteur Group.
Proposed Standard for a Generic Package of Elementary Functions for Ada
WG9 Numerics Rapporteur Group, 1989.

[Wichmann 88] Wichmann, B.A.
Validation Code for the Whetstone Benchmark.
Technical Report DITC 107/88, National Physical Laboratory, Teddington, Mid-

dlesex, UK, March, 1988.

CMU/SEI-90-UG-1 25

0

.0

0

S

0

0

S

0

0

S

28 CMU/SEI-90-UG-1
S

Appendix A: Sample Results for XD Ada VAX/VMS ->

MC68020

A.1. Host-Target Configuration

The following is the host-target configuration used for generating the results reported here:

HOST: DEC MicroVAX II running VAX/VMS, Release 5.1-1

CROSS-COMPILER: Systems Designers XD Ada, Version 1.0, ACVC 1.10

TARGET: Motorola MVME133:12.5 MHz MC68020 CPU with 12.5
MHz MC68881 Floating-Point Co-processor; one waft
state; 1Mb RAM; 256-byte on-chip instruction cache

Full optimization (the default) was specified for all compilations. No checks were suppressed.
The summary output for the four Hartstone experiments is shown in the next four sections.

CMU/SEI-90-UG-1 27

A.2. Experiment 1: Summary of Results
HARTSTONE BENCHMARK SUMMARY RESULTS 0

Baseline test:

Experiment: EXPERIMENT 1

Completion on: Miss/skip T0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

320.00 28.52 %

Experiment step size: 2.85 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in miecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

28 CMU/SEI-90-UG-1

Last test with no missed/skipped deadlines:

Experiment: EXPERIM1NT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 20 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 336.00 2 672.00 59.88 %

928.00 82.70 %

Experiment step size: 2.85 %

Test 20 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (rsec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.'000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.976 3360 0 0 0.000

CMU/SEI-90-UG-1 29

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 1

Completion on: Kiss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 21 characteristics:

Task Frequen-y Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %

960.00 85.55 %

Experiment st e aia,%: 2.85 %

-------------- ---------------------------------------

Test 21 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in rsecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 0 7 13 626.683
2 250.000 40 0 0 0.000
3 125.000 80 3 0 0.000
4 62.500 1-60 0 0 0.000
5 2.841 3520 0 0 0.000

30 CMU/SEI-90-UG-1

Final test performed:

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19

Test 22 characteristics:

Task Frequency Kilo-Whets Kilo-Whets 1equested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 368.00 2 736.00 65.59 %

992.00 88.40 %

Experiment step size: 2.85 %

----- --

Test 22 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (maec)
1 500.000 0 6 14 1095.724
2 250.000 0 20 20 103.137
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.717 3680 0 0 0.000

CMU/SEI-90-UG-1 31

Benchmark : Hartstone Benchmark, Version 1.0 0
Compiler : Systems Designers XD Ada 1.0 VAX/VKS -> MC68020
Target : Motorola ZMVE133 (12.5 Nz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for thin experiment:
(no missed/skipped deadlines)

Test 20 of Experiment 1

Raw (non-tasking) benchmark speed in IPS: 1122.19

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization W PS

5 366.00 82.70 % 928.00

Highest-frequency task:

Period Deadlines Task Task 0
(maec) Per Second Utilization KIPS
2.976 336.00 59.88 % 672.00

Experiment step size: 2.85 %

MD OF ARTSOIZ BENCHMARK SUMIWAY RESULTS

32 CMU/SEI-90-UG-1

A.3. Experiment 2: Summary of Results
HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

320.00 28.52 %

Experiment step size: 2.85 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in mecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

CMU/SEI-90-UG-1 33

0

Last test with no missed/skipped deadlines:

Experiment: EXPERINENT 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KNIPS): 1122.10

Test 23 characteristics: •

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period Per second Utilization
1 6.40 32 204.80 18.25 %
2 12.80 16 204.80 18.25 %
3 25.60 8 204.80 18.25 %
4 51.20 4 204.80 18.25 %
5 102.40 2 204.80 18.25 %

1024.00 91.26 %

Experiment step size: 2.85 %

Test 23 results:

Test duration (seconds): 10.0 0
Task Period Met Missed Skipped Average

No. in msacs Deadlines Deadlines Deadlines Late (msec)
1 156.250 64 0 0 0.000
2 78.125 128 0 0 0.000
3 39.063 256 0 0 0.000
4 19.531 512 0 0 0.000
5 9.766 1024 0 0 0.000

34 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10

Test 24. characteristics:

Task' Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 6.60 32 211.20 18.82 %
2 13.20 16 211.20 18.82 %
3 26.40 8 211.20 18.82 %
4 52.80 4 211.20 18.82 %
5 105.60 2 211.20 18.82 %

1056.00 94.11 %

Experiment step size: 2.85 %

Test 24 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 151.515 0 33 33 55.840
2 75.758 132 0 0 0.000
3 37.879 264 0 0 0.000
4 18.939 528 0 0 0.000
5 9.470 1056 0 0 0.000

CMU/SEI-90-UG-1 35

Final teat performed:
See preceding tu-nary of test 24

Benchmark : Hartstone Benchmark, Version 1.0
.Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 23 of Experiment 2

Raw (non-tasking) benchmark speed in KIPS: 1122.10

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 198.40 91.26 % 1024.00

Highest-frequency task:

Period Deadlines Task Task 0
(msec) Per Second Utilization KWIPS
9.766 102.40 18.25 % 204.80

Experiment step size: 2.85 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

36 CMU/SEI-90-UG-1

A.4. Experiment 3: Summary of Results
HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

320.00 28.52 %

Experiment step size: 5.53 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

CMU/SEI-90-UG-1 37

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 44 88.00 7.84 %
2 4.00 28 112.00 9.98 %
3 8.00 20 160.00 14.26 %
4 16.00 16 256.00 22.82 %
5 32.00 14 448.00 39.93%

1064.00 94.84 %

Experiment step size: 5.53 % 0

-Test 13 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000 0
5 31.250 320 0 0 0.000

3

38 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 45 90.00 8.02 %
2 4.00 29 116.00 10.34 %
3 8.00 21 168.00 14.97 %
4 16.00 17 272.00 24.24 %
5 42.00 15 480.00 42.79 %

1126.00 100.37 %

Experiment step size: 5.53 %

Test 14 results:

Test duration (seconds): •10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (rsec)

1 500.000 0 10 10 248.639
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

CMU/SEI-90-UG-1 39

Final test performed:
See preceding samary of test 14

Benchmark : Hartstone Benchmark, Version 1.0 •
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 13 of Experiment 3

Raw (non-tasking) benchmark speed in KWIPS: 1121.88

Full task set:

Total Deadlines Task Set Total 0
Tasks Per Second Utilization KNIPS

5 62.00 94.84 % 1064.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
31.250 32.00 39.93 % 448.00

Experiment step size: 5.53 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

0

40 CMU/SEI-90-UG-1

A.5. Experiment 4: Summary of Results

In the summaries that follow, the characteristics (frequencies, workloads, and utilizations) of the
extra tasks added to the baseline set are all Identical; therefore, some have been edited out for
brevity. Similarly, some of the Identical results produced by these extra tasks have also been
omitted. Such omissions are indicated by ellipses.

HARTSTONZ BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test . characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %

320.00 28.52 %

Experiment step size. 5.70 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 .0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

4

CMU/SEI-90-UG-.1 41

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 12 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %

16 8.00 8 64.00 5.70 %

1024.00 91.26 %

Experiment step size: 5.70 %

Test 12 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000

16 125.000 80 0 0 .0.000.

42 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %

17 8.00 8 64.00 5.70 %

1088.00 96.96 %

Experiment step size: 5.70 %

Test 13 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 10 10 247.742
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31,250 320 0 0 0.000
6 125.000 80 0 0 0.000

17 125.000 80 0 0 0.000

CMU/SEI-90-UG-1 43

Final test performed:

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11

Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %

18 8.00 8 64.00 5.70 %

1152.00 102.66 %

Experiment step size: 5.70 %

Test 14 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 4 16 2002.884
2 250.000 0 20 20 124.420
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000

18 125.000 80 0 0 0.000

44 CMU/SEI-90-UG-1

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVMEI33 (12.5 MHz MC68020 G 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 12 of Experiment 4

Raw (non-tasking) benchmark speed in KWIPS: 1122.11

Full task t,.t:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

16 150.00 91.26 % 1024.00

Highest-frequency task:

Period Deadlines Task Task
(masec) Per Second Utilization KWIPS
31.250 32.00 5.70 % 64.00

Experiment step size: 5.70 %

END OF HARTSTONE BENCBMARK SUM4MARY RESULTS

CMU/SEI-90-UG-1 45
S.

0

0

0

0

0

0

0

0

0

0

46 CMU/SEI*90*UG-1

Appendix B: Supporting PIWG Results
0 The following are the results of some ACM Performance Issues Working Group (PIWG)

benchmarks for XD Ada 1.0 on the Motorola MVME133 board. The tests come from the Decem-
ber 12, 1987 release of the benchmarks. All compilations had full optimization in effect and no

checks were suppressed.

B.1. Calendar.Clock Resolution

Test Name: A000090
Clock resolution measurement running

Test Description:
Determine clock resolution using second differences
of values returned by the function CPUTimeClock.

Number of sample values is 12000
Clock Resolution = 0.000122070312500 seconds.
Clock Re.olution (average) - 0.000122070312500 seconds.
Clock Resolution (variance) = 0.000000000000000 seconds.

B.2. Delay Statement Resolution
The delay values shown are in seconds.

0 Y000001 Measure actual delay vs commanded delay
Commanded Actual CPU Iterations
0.0010 0.0013 0.0013 4096
0.0020 0.0023 0.0023 2048
0.0039 0.0042 0.0042 1024
0.0078 '0.0081 0.0081 512
0.0156 0.0159 0.0159 256

0 0.0313 0.0314 0.0314 128
0.0625 0.0626 0.0626 64
0.1250 0.1252 0.1252 32
0.2500 0.2501 0.2501 16
0.5000 0.5000 0.5001 8
1.0000 1.0001 1.0001 4

* 2.0000 2.0002 2.0002 2
4.0000 4.0001 4.0002 2
8.0000 8.0001 8.0002 2

0

CMU/SEI-90-UG-1 47

0

B.3. Procedure Call Overhead
Test Name: P000005 Class Name: Procedure
CPU Time: 1.6 microseconds
Wall Time: 1.6 microseconds. Iteration Count: 1024
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in INTEGER

Test Name: P000006 Class Name: Procedure
CPU Time: 2.8 microseconds
Wall Time: 2.8 microseconds. Iteration Count: 1024 0
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, out INTEGER

0.

Test Name: P000007 Class Name: Procedure
CPU Time: 3.1 microseconds
Wall Time: 3.1 microseconds. Iteration Count: 1024
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in out INTEGER

4

0

48 CMU/SEI-90-UG----'

Appendix C: Obtaining Hartstone Source Code and
Information
Hartstone source code and supporting documentation can be obtained from the Real-Time Em-
bedded Systems Testbed (REST) Project at the Software Engineering Institute in a number of
different ways. Full details can be obtained by sending a request for information to the electronic
mail or postal address listed below.

Electronic mail requests should be sent to the following Internet address:

HARTSTONE-INFO@SEI.CMU.EDU

Electronic mail received at this address will automatically return to the sender instructions on all
available distribution mechanisms.

For people who do not have Internet access, thie address to send information requests to is:

REST Transition Services
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-7700

CMU/SEI-90-UG-1 49

0

0

0

0

0

0

0

0

0

0

50 - CMU/SEI-90-UG-1
0

K
Appendix D: Hartstone Ada Code for PH Series
The code in this appendix is listed in the order shown below.

Main procedure: Hartstone

Package spec: Experiment
Package body: Experiment

Package spec: Periodic_Tasks
Package body: Periodic_Tasks

Package spec: Workload
Package body: Workload

The actual compilation order is
Package spec: Workload
Package body: Workload

Package spec: Periodic_Tasks
Package bo'y: PeriodicTasks

Package spec: Experiment
Package body: Experiment

Main procedure: Hartstone

0

CMU/SEI.90-UG.1 51

-I-
-I
- I Hartatone Benchmark, Version 1.0

- I Unit Name: Hartatone
-I
- I Unit Type: Main Procedure Body-I
-I Description:
- I Controls a single Hartstone experiment. A Hartatone experiment consists
- I of a series of individual tests, with the tests being performed by a
- I set of tsks. The tasks are required to perform varying computational
-I loads within hard-real-time deadlines. (The name Hartstone comes from
- I HArd Real-Time and the fact that the computational load is provided by
-I a variant of the Whetstone benchmark.) This main program activates the
- I set of tasks and collects results from it.-I

I As each test completes, its results are stored and may optionally
I be output at that time. Abe, a check is made to see if the entire
I experiment has completed. If not, the next test in the series is

-I xarted. On completion of the experiment, a summary of the results
-I is output.-I
-I Authors:
- I Nelson Weiderman, Nel Altman, Patrick Donohoe, Ruth Shapiro,
- I Software Engineering Institute,
- I Carnegie Mellon University,
- I Pittsburgh, PA 15218.-I

- I References:
-I Weiderman, N.,
- IHartatone: Synthetic Benchmark Requirements
-I for Hard Real-Time Applications
- I Technical Report CMU/SEI-89-TR-23,
-I Software Engineering Institute, June 1989.

-I Donohoe, P., Shapiro, R., Weiderman, N.,
-I Hartatone Benchmark User's Guide, Version 1.0
-I Technical Report CMU/SEI-90-UG-1,
-I Software Engineering Institute, March 1990.

-I Distribution and Copyright Notice:

-I Copyright (C) 1989 by the Carnegie Mellon University, Pittsburgh, PA.
-I The Software Engineering Institute (SEI) is a federally funded research
-I and development center established and operated by Carnegie Mellon
-I University (CMU). Sponsored by the U.S. Department of Defense under
-I contractF196284-5-000, the SEI is supported by the services and
-I defense agencies, with the U.S. Air Force as the executive contracting
-I agent.

-I Permission to use, copy, modify, or distribute this software and its
- I documentation for any purpose and without fee is hereby granted,
-I provided that the above copyright notice appears in all copies and that
- I both that copyright notice and this permission notice appear in
- I supporting documentation. Further, the names Software Engineering
- I Institute or Carnegie Mellon University may not be used in advertising
- I or publicity pertaining to distribution of the software without
- I specific written prior permission. CMU makes no claims or
- I representations about the suitability of this software for any purpose.
- I This software is provided "as ii" and no warranty, expres or implied,
- I is made by the SEI or CMU, as to the accuracy and functioning of the
- I program and related program material, nor shall the fact of distribution

52 CMU/SEI-90-UG-1

- I constitute any such warranty. No responsibility is assumed by the SEI
- I or CMLI in connection herewith.

* with Experiment;
with PeriodicTasks;

* with Calendar;
use Calendar; - To gain visibility for-arithmetic operations on time
with System;

* procedure Hart stone is

pragma Priority (System. Priority' Last); - Higher than any Hartatone task

-Variables to hold test parameters

Test -Start Time :Calendar.Time;
Test Duration :Duration;
No O? Test-Repetitions :Natural;
FullOutput :Boolean;

Task Frequencies :Experiment.Frequency Array;
TaskWorkloads :Experiment.Workload_Array;
No Of ExtraTasks :Experiment.ExtraTasks Range;
Extra7Tasks7 : tay (1..Experirtent:.Ma3EExtraTasks)

of PeriodicTasks .New Task Pointer:

- The following constant is added to the start time of a test to
- allow for task elaboration etc., particularly when new tasks
- are being added to the basline set

SettlingTime : constant :- 5.0;

-Variables to hold test results

Met Deadlines :Experiment.Deadlines Array;
Misised Deadlines :Experiment.Deadlines7Array;
Skipped Deadlines :Experiment .Deadlines Array;
Cumulative-Late :Experiment.Cumulativi -Late Array;

procedure Start-Test is - Activate all tasks at a common starting time

begin
Periodic Tasks.Tl.Start (TestStartTime,

Test Duration,
Task Frequencies (1),

* Task Workloads (1));

Periodic Tasks.T2.Start (TestStartTime,
Test Duratilon,
Task -Frequencies (2),
Task Workloads (2));

*Periodic Tfasks.T3.Start (Test -Start 'Time,
TestDurati11on,
TaskFrequencies (3),
Task Workloads (3));

PeriodicTasks.T4.Start (TestStart Time,
Test DuratIon,

* Task Frequencies (4),
TaskWorkloads (4));

CMU/SEI-9O-UG-1 53

Periodic Tasks.TS.Start(Test Start Time,
Test-Duration,
TaskFrequencies (5),
Task Workloads (5)); 0

for I in 1..No Of Extra Tasks loop
ExtraTasks(Y)'.Start(Test Start Time,

Test-Duration,
TaskFrequencies(Experiment.No Of Basic Tasks + I),

and loop; TaskWorkloads (Experiment .NoOfBasicTasks
+ I));

end Start-Test;

procedure Stop_Test is - Retrieve task results on completion of a test
begin
PeriodicTasks. T1.Stop(Met Deadlines(l),

Missed Deadlines (1), •
Skipped Deadlines (l),
Cumulative-Late (1));

Periodic Tasks. T2.Stop(Met Deadlines(2),
MisiedDeadlines (2),
Skipped Deadlines (2),
CumulativeLate (2));

PeriodicTasks. T3.Stop (Met Deadlines (3),
Missed Deadlines (3),
Skipped Deadlines (3),
Cumulative Late (3));

PeriodicTasks.T4.Stop (Met Deadlines (4),
Missed Deadlines (4),
Skipped Deadlines (4),
Cumulative-Late (4));

PeriodicTasks.T5.Stop(Met Deadlines(5),
MisiedDeadlines (5),
SkippedDeadlines (5),
Cumulative Late (5));

for I in 1..No Of Extra Tasks loop
ExtraTasks(I).Stop(Met Deadlines(Experiment.No Of Basic Tasks + I),

MisiedDeadlines(Experiment-.No-Of Basic Tasks + I),
SkippedDeadlines (Experiment.N .Of Basic Tasks + I),
CumulativeLate(Experiment.No O2 Basic Tasks + I));

end loop;

end Stop_Test;

begin - Hartatone

- Get some basic experiment parameters common to all tests

Experiment. Initialize (Test Duration,
NoOfTestRepetitions,
FullOutput) ;

- Perform the tests of the experiment until a predetermined

- experiment-completion criterion is satisfied

loop

- Retrieve the current test parameters

54 CMU/SEI-90-UG-1

Experiment.GetTest (Task Frequencies,
Task-Workloads,
No O6_ExtraTasks);

- If the cturent experiment requires it, create a new task

if No Of Extra Tasks > 0 then
Extra Tasks (No_OfExtraTasks) :- new PeriodicTasks.NewTask;

end if;

- Repeat each test a pre-determined number of time.

for I in 1..NoOf Test.Repetitions loop

Met Deadlines :- (others -> 0);
Misied Deadlines :- (others -> 0);
Skipped Deadlines :- (others-> 0);
Cumulative Late :- (others -> 0.0);

TestStart Time :- Calendar.Clock + Settling Time;

Start Test;

- Delay the main program beyond the end of the test (add twice
- the longest period) so that the rendezvous calls to collect
- test results won't interfere with the tasks as they finish up

delay SettlingTime +
Test Duration +
2 * Duration(l.0 / TaskFrequencies(TaskFrequencies'First));

Stop_Test;

Experiment.StoreTestResults (Met Deadlines,
Mis7sed Deadlines,
Skipped Deadlines,
CumulativeLate) ;

if FullOutput then
Experiment. OutputTestResults; - Results of current test

end if;
end loop;

exit when Experiment.IsComplete;

end loop;

Experiment. OutputStumnary_Results; - Summary of entire experiment

end Hartstone;

CMU/SEI-90-UG-1 55

-1I Unit Name: Experiment
-1
- I Unit Type: Package Specification
-1
- I Description:
- I Provides the interfaces for retrieving the characteristics of
- I experiments and their constituent tests, storing and displaying
- I test and experiment resulta, and checking for experiment completion.

package Experiment is

- Exported constants, types, and subtypes

Benchmark :constant String :- "Hartstone Benchmark, Version 1.0";

No Of Basic Tasks : constant Natural :-5;
bM ExtraTasks : constant Natural :-100;
subtype Extra TasksRange is Integer range -1. .MaxExtraTasks;

subtype Task-Number Range is Natural
range 1. .NoOf Basic Tasks + Max Extra Tasks;

type FrequencyArray is array(Task Number Range) of Float;
type Workload Array is array(TaskNumber_:Range) of Natural;
type WorkRateArray is array(TaskNumberRange) of Float;
type Deadlfines-Array is array(Task Number-Range) of Natural;
type Cumulativie LateArray is array(TaskNkumberRange) of Duration;

-I Unit Name: Initialize

-I Unit Type: Procedure Specification
-1

-I Description:
-I Retrieves test parameters which are common to all tests in

- I the experiment.
-1
- I Parameters:
-1I Length..Of...Test: The duration of each test in the experiment,
- I measured in seconds.

-I NoS-Of-.Repetitions: The number of times the current test is run
-I before the next test in the series is started.

-I Mu]Output-.Requested: If false, only summary results are
-1I output at the end of the experiment. If true, results are
-1I also output as each test repetition completes.

procedure Initialize (LengthOf Test :out Duration;
No OfRepetitions : out Positive;
Full1_OutputRequested :out Boolean);

- I Unit Name: GetTest

I Unit 7ype: Procedure Specification
-1

-I Description:

56 CMU/SEI.90-UG-1

-I Retrieves the characteristics of the current test in a test series.
I

-I Parameters:
-I Frequencies: Each element of this array contains the frequency,
- in Hertz, of the corresponding Hartstone task.

-I Workloads: Each element of this array contains the workload,
-I expressed in thousands of Whetstone instructions, of the
-I corresponding Hartstone task.

- I Extra_.Tasks: The total number of extra tasks to be exectuted along
- I with the baseline set of Hartstone tasks, in a single test.

procedure GetTest(Frequencies : out Frequency_Array;
Workloads : out WorkloadArrayf
ExtraTasks : out ExtraTasksRange);

I

-I Unit Name: IsComplete

-I Unit Type: Function Specification

-I Description:
- I Checks the completion criterion established for the experiment in
- I progress. Returns a Boolean value indicating whether (true) or not
- I (false) the experiment is finished.

- I Parameters: None
-1

function IsComplete return Boolean;

- I Unit Name: StoreTestResults
-I
- I Unit Type: Procedure Specification
-1
-I Description:
- I Stores the results of the current test so that they may be used
- I to check for experiment completion and/or delivered as output.
-I
-I Parameters:
- I Met: Each element of this array contains the number of times during
-1 the test that the corresponding Hartatone task successfully
-1 completed its workload before its next scheduled activation time.
-1
- IMissed: Each element of this array contains the number of times during
-1 the test that the corresponding Hartatone task failed to complete
-1 its workload before its next scheduled activation time.

- I Skipped: Each element of this array contains the number of times during
- I the test that the corresponding Hartatone tank did not attempt to
-1 perform its workload for the scheduled activation time.
-1
-1 AmountLate: Each element of this array contains the sum of the
-1 amounts by which the corresponding Hartstone task was late when
- I it missed its deadlines.
-I

procedure StoreTestResults(Met : in Deadlines-Array;
Missed : in Deadlines-Array;
Skipped : in Deadlines-Array;

CMU/SEI-90-UG-1 57

Amount Late in CumulativeLateArray);

- I Unit Name: OutputTestResu]ts-1

- 1 Unit Type: Procedure Specification
-I
- I Description:
- 1 Outputs the results of the single teatjust completed.
-I
- I Parameters: None-I

0
pocedure Output_Test_Results;

-I
-I Unit Name: OutputSummaryResult- 1
- I Unit Type: Procedure Specification,
-I
-I Description:
- I Outputs a summary of the results of an entire experiment.
-1
- I Parameter: None
-I

-1 0procedure OutputSummaryesults;

end Experiment;

58
CMU/SEI-90-UG-1

-I UnitName: Experiment
-I

* ~- IUnit Type: Package Body
-[
-I Description:
-I The characteristics of four experiments for the Hartatone Periodic
- I Harmonic (PH) test series are defined here. Also provided are the
- I procedures and functions to retrieve individual test characteristics,
- I store and display test results, check for completion of an experiment,
- I and output a summary of the entire experiment.
-I
-I An experiment consists of a series of tests. The tests are performed
-I by a set of tasks. The transition from one test to the next in the
- series is achieved by increasing the computational load required of the
-I task set. The four experiments defined here are:

- Experiment 1: Increase the frequency of the highest-frequency task

-I Experiment 2: Scale up the frequencies of all the tasks

-I Experiment 3: Increase the workloads of all tasks

-I Experiment 4: Add new tasks to the baseline task set

-I When the computational load required of the periodic tasks exceeds the
-I processor's capability they will start to mis their deadlines. They
-I will shed load by skipping workload assignments in an effort to reach
-I a point where a workload may again be attempted Deadline ignored
-I during load-shedding are known as skipped deadlines. The completion
-I conditions for an experiment are largely defined in terms of missed
- I and skipped deadlines. An experiment completes when a test satisfies
- I one of the following user-selected completion criteriia:

-1 (a) Any task in the task set has missed at least one deadline
- I in the current test
- I (b) The cumulative number of missed and skipped deadlines in the
- I task set, for the current test, reaches a pre-set limit
- I (c) The cumulative number of missed and skipped deadlines in the

* - I task set, for the current test, reaches a pre-set percentage
- I of the total number of met + missed + skipped deadlines
- I (d) The workload required of the task set is more than it could
- I possibly achieve, i.e. when the requested workload is greater
- I than the workload achievable by the benchmark in the absence
- I of tasking. This is a default completion criterion for all
- I experiments.

* - i (e) The maximum number of extra tasks has been added to the task
- I set and deadlines still have not been missed or skipped. This
- I is a default completion criterion for experiment 4. If this
- I happens, the user should increase the value of the parameter
- I representing the maximum nu..ber of tasks to be added.

-I Since this benchmark is primarily for embedded targets, no assumptions
- are made about the availability of host-target file 1/0, or the ability
-I to provide parameters to the executing benchmark interactively. It is
-I assumed that the only code executing on the target system is the
-I Hartstone benchmark and the Ada run-time system. Thus the experiment
-I to be performed, the conditions under which It stop., and the
- I characteristics of tests within the experiment are all defined here
- I and are changed by manual editing of this package body. The part of
-I the package that needs to be modified by users is small and explicitly
- I indicated by comments. For any given experiment, the changed package
- I body must be re-compiled, and the Hartstone benchmark re-linked and re-

CMI J/SEI-90-UG-1 59

- I loaded into the target.
-I

with Workload;

with Calendar;

with Text_IO;

package body Experiment is

type ExperimentType is (Experiment 1, Experiment 2, 4,
Experiment_-3, Experiment-4);

type CompletionType is (OneUnmet Deadline,
Many._Unmet_Deadlines,
Percent_UnmetDeadlines);

<<< START OF USER-MODE9IABLE SECTION >>> -•

- Modify the next two string to describe your compiler and target

Compiler : constant String :-
OXXX Host System -> Target-System, release n.n";

Target : constant String :-
"Target System (m.n MHz)";

- Modi* only the next two values to implement a particular
- experiment using the default parameters

Which Experiment : constant Experiment-Type :- Experiment_1;
Completion-Criterion : constant CompletionType :-Many_Unmet Deadlines;

- Modify the parameters below ONLY if you wish to change the default

- characteristics of an experiment.

- Experiment characteristics:

NoOfTestRepetitions : constant :-1;
FullOutput : constant Boolean :- True; - False => only output a summary
TestDuration : constant Duration :- 10.0; -Seconds

- Experiment completion criteria parameters:

UnmetDeadlines Limit : constant :- 50;
Percent UnmetDeadlinesLimit : constant :-50.0;

- Task ast characteristics:

- Bear in mind that the harmonic nature of the PH test series must be
- preserved and tliLt rate-monotonic priorities for tasks depend on the
- task frequencies (higher-frequency task => higher priority, and vice
- versa). Also note that the frequency specified in the "others"
- choice must be the same as the third array element.
Initial TaskFrequencies : constant Frequency Array :

(2.0, 4.0, 8.0, 16.0, 32.0,
others -> 8.0);

- The set of initial workloads provides each task with the same
- workload per second (frequency x workload). The workload specified
- in the "others" choice must be the same as the third array element. 0
InitialTask_Workloads : constant WorkloadArray :-

60 CMU/SEI-90-UG-1

(32, 16, 8, 4, 2,
others -> 8);

- The frequency increment for the highest-fiequency task in the basic
- task set must be set equal to the frequency of the next-to-last task
- in order to preserve the harmonic nature of the PH series task set
Frequency Increment : constant Float :-

Initial Task Frequencies (NoOfBasic Tasks - 1);
Workload Increment : constant Natural :- 1;
Frequency ScaleFactor : constant Float :- 0.1;

-- «<< END OF USER-MODIFIABLE SECTION >>>

type Test State is
record

Test Number : Natural :- 0;
No_O Extra Tasks : ExtraTasksRange :--1;
Total NoOfTasks : Natural :- NoOf Basic Tasks;
Task Frequencies : Frequency Array :- Initial Task Frequencies;
Task Workloads : WorkloadArray :- Initial-Task-Workloads;
Met Deadlines : Deadlines Array :- (others--> 0);
Missed Deadlines : Deadlines Array :- (others -> 0);
Skipped Deadlines : DeadlinesArray :- (others -> 0);
Cumulative Late : CumulativeLateArray :- (others -> 0.0);
Task Work Rates : Work Rate Array :- (others -> 0.0);
TotalRateRequested : Float :-.0;
Total Rate Achieved : Float :-0.0;

end record;

Initial Test : Test State;
Current Test : Test State;
First Failed Test : Test State;
Last SuccessfulTest : TestState;

Total Met Deadlines : Natural :- 0;
Total-Unmet Deadlines : Natural :-0;
Raw-Speed : Float :- 0.0;
ExperimentStepSize : Float :- 0.0;

000

-I Unit Name: Compute.RwSpeed
-1
- I Unit Type: Procedure Body

- I Description:
- I This local procedure provides a "calibration" of the computational
-1 load required of Hartstone tasks. A synthetic workload for each task
-1 is provided by a variant of the Whetstone benchmark. This procedure
- I computes the raw speed of the SmalLWhetxtone benchmark, in the
-1 absence of tasking, by determining how many thousands of Whetstone
-1 instructions (Kilo-Whetatones) per second it can execute. Raw
-1 speed is expressed in Kilo-Whetstone Instructions Per Second (KIPS).
- I The performance of the Hartatone task set will be measured against
- I this non-tasking computation.

-1 The accuracy of this timing measurement will depend on the resolution
- I of Calendar.Clock.

procedure Compute RawSpeed is

use Calendar; - To achieve visibility of operations on Time values

CMU/SEI-90-UG-1 61

Iterations : constant -10_000; -Thousands of Whetstone instructions
StartTime : Calendar.Time;
FinishTime : Calendar.Time;

begin

- The number of loop iterations depends on the desired timing accuracy
- and the accuracy of Calendar.Clock. For example, to achieve an
- accuracy of one microsecond with a ten-millisecond Clock, the loop
- should iterate 10000 times. Note that to achieve a constant overhead
- the SmallWhetetone procedure is called repeatedly with a value of 1,
- representing one KiloWhetatone. This is also how Hartatone tasks do •
- their workloads; the overhead of the procedure call is part of a
- taxks overall execution time.

Start Time :- Calendar.Clock;
for I-in 1..Iterations loop

Workload.SmallWhetstone (1);
end loop;
Finish Time :- Calendar.Clock;
RawSp-eed :- Float(Iterations) / Float (FinishTime - Start-Time);

end ComputeRaw_Speed;

000-Io

-I Unit Name: Initialize

-1 Unit Type: Procedure Body
-I
- I Description:
- I Retrieves the basic test parameters common to all tests in an
- experiment, i.e. the duration of a test, the number of times
- tIie same test is to be repeated, and whether or not the results
- I of a test should be output when the test completes. (A summry
- I of the entire experiment will always be output.) Also computes
- I the raw (non-tasking) speed of the benchmark and the step size
-1 of the experiment.

procedure Initialize(LengthOfTest : out Duration;
No Of Repetitions : out Positive;
Full OutputRequested : out Boolean) is

begin

- "Calibrate" the Hartatone benchmark by measuring the speed
- of the synthetic workload in the absence of tasking

ComputeRaw_Speed;

- Determine the step size of the experiment. "Step size- is a measure
- of the extra work requested of the task set when the next test in
- a series is derived from the current tesL It is expressed as a
- percentage of the raw speed. It varies from experiment to experiment
- but remains constant for a specific experiment.

case WhichExperiment is

when Experiment 1 ->

- The step size of Experiment 1 is equal to the amount of extra
- work given to the highest-frequency task divided by the raw speed

62 CMU/SEI-90-UG-1

Experil.ent_StepSize .= 100.0 * (Frequency-Increment *
Float (InitialTaskWorkloads (NoOfBasicTasks))) / RawSpeed;

when Experiment 2 =>

- The step size of Experiment 2 is equal to the amount of extra
- work given to all the tasks divided by the raw speed

for I in 1..No Of BasicTasks loop
Experiment StepSize -:- ExperimentStep Size +

100.0 * (FrequencyScaleFactor * InitialTaskFrequencies (I)
Float (InitialTask Workloads(I))) / Raw_Speed;

end loop;

when Experiment 3 ->

- The step size of Experiment 3 is equal to the amount of extra
- work given to all the tasks divided by the raw speed

*or I in 1..No Of Basic Tasks loop
ExperimentStep-Size T- Experiment Step Size +

100.0 * (Floait(Workload Increment) * Initial TaskFrequencies(I))
Raw Speed;

end loop;

when Experiment 4 ->

- The step size of Experiment 4 is equal to the amount of work
- performed by a new task divided by the raw speed.

ExperimentStepSize :- 100.0 *
(Initial Task Frequencies (No Of Basic Tasks + 1) *

Float (Initial_TaskWorkloads (NoO£ BasicTasks + 1))) / Raw-Speed;

end case;

Lngth Of Test :- Test Duration;
No Of Repetitions :- No Of Test Repetitions;
Full_OutputRequested :- Full Output;

end Initialize;

000

-I
- I Unit Name: Get_Test

-I Unit Type: Procedure Body

-1 Description:
- I Retrieves the frequencies and workloads to be assigned to the Hartstone
- I task set for the current test. Also retrieves a count of the number
-1 of extra tasks to be executed along with the baseline set (if required
- I by the experiment) in the currer t test. It is this procedure which
-I manages the transition from one test to the next in an experiment.

* -1

pzocedure GetTest(Frequencies : out Frequency Array;
Workloads : out Workload Array;
ExtraTasks : out ExtraTasksRange) is

begin

- Update paramete for this test, in accordance with current experiment

CMU/SEI-90-UG-1 63

@0

case WhichExperiment is

when Experiment 1 ->

-Increment frequency of highest-frequency basic task

CurrentTest.TaskFrequencies (NoOfBasic-Tasks) :
Initial T ask Frequencies (NoOfBasic Tasks) +

Float (Current Test. Test Nu-mber) *frequencyIncrement;

whom Experiment 2 ->

- Scale up frequencies of all basic tasks

for I in 1. .No Of Basic Tasks loop
current Test.taskFrequencies (1)
InitialTaskFrequencies(I.4 + Float (CurrentTest.Test Number)*

Frequency Tcale Factor * InitialTaskFrequencies (I);

end loop;

when Experiment 3 -

- Increment workloads of all basic tasks

for I in 1. .NoOfBasic Tasks loop
CurrentTest.Tas3kWor~loads (1) : - Initial Task Workloads (1) +

Current_-Test.Test Number * Workload Inc remenit;
end loop;

when Experiment 4 -

- For each test, add a new task (dynamicilly
- created in the main program) to the task set

Current Test.No Of Extra Tasks :-CurrentTest.No OfExtraTasks + 1;
CurrentTest.Tota7No_ OfTasks : NoOfBasicTasks3 T

Current Test.NoOf Extra Tasks;

end case;

Current Tpst.Test Nmer :- Current Test.TestNumber + 1;

- Return task characteristics for current test

Frequencies :Current Test.Task Frequencies;
Workloads :-Current -Test.TaskWorkloads;
Extra-Tasks :-Current-Test.NoOfExtra-Tasks;

end Get-Test;

-- -0

-I Unit Name: Is..Complete

-I Unit T ype: Function Body
-1
- I Description:
-1I Checks the completion criterion established for the experiment in
-1I progress. Returns a Boolean value indicating whether (true) or not
- I (false) the experiment is finished. The completion criteria are
-1I defined in terms of the maximnum allowed number of unmnet deadlines
-1I for the Hartatone task set.

64 CMUISEI-90-UG-1

function IsComplete return Boolean is

begin

- Check the default completion criteria. These are: stop any experiment
- when the work rate requested of the task set exceeds that achievable
- by the non-tasking benchmark (raw speed), and stop Experiment 4 when
- the maximum number of extra tasks hsave been added, whether or not
- deadlines have been missed.

if Current Test.Total Rate Requested >- RawSpeed or
Current _est.NoOfExtra Tasks - Max Extra Tasks then
return True;

end if;

- Check the user-specified completion criterion

case CompletionCriterion is

when One Unmet Deadline ->

return-Total-Unmet Deadlines >- 1;

when ManyUnmetDeadlines ->
return Total UnmetDeadlines >- UnmetDeadlinesLimit;

when PercentUnmet Deadlines ->

return (Float(Total Unmet Deadlines) /
Float (Total Met Diadlines + TotalUnmetDeadlines)) * 100.0 >-

Percent_U-nmet_-DeadlinesLimit;

end case;

end IsComplete;

00

- Unit Name: StreTestResults

- Unit Type: Procedure Body
-1
-1 Description:
-1 Stores the results of the current test so that they may be used
- I to check for experiment completion and/or delivered as output
- I Also saves the results of the highest test in the series with no
- I missed or skipped deadlines, the results at the time deadlines
-1 were first missed or skipped, and the results of the first test
-1 in the series.

procedure StoreTestResults (Met : in Deadlines-Array;
Missed : in Deadlines Array;
Skipped : in DeadlinesArray;
Amount-Late : in CumulativeLateArray) is

begin

- Store the results provided in the call

Current Test.Met Deadlines :-Met;
Current Test.Misied Deadlines :- Missed;
Current-_Test.Skipped_Deadlines :- Skipped;
CurrentTest.CumulativeLate :- Amount_Late;

CMU/SEI-90-UG-1 65

0

- Derived results

CurrentTest .TotalRateRequested = 0.0; - Task set's requested work rate
CurrentTest.TotalRateAchieved := 0.0; -Task st's achieved work rate
Total Met Deadlines :Z 0;
Total-Unmet Deadlines :- 0;

for I in 1..CurrentTest.Total NoOfTasks loop

- Calculate the rates at which tasks are required to do their workloads

Current Test.Task Work Rates(I) :- (CurrentTest.TaskFrequencies(I) *
Float(CurrentTest.TaskWorkloads (I)));

- The task et's requested work rate is the sum of the tasks' work rates

CurrentTest.TotalRateRequested :- CurrentTest.TotalRateRequested +

CurrentTest.Task Work Rates(I); 0

- Calculate the rate at which the task sets workload was actually done

Current Test.Total Rate Achieved :- Current Test.TotalRate Achieved +
(FloaT(CurrentTest.Miet Deadlines(I) * -
Current Test.TaskWor kloads (I)) / Float (TestDuration));

Total MetDeadlines :- Total Met-Deadlines +
Current_Test.Met Deadlines (I);

Total Unmet Deadlines :- TotalUnmetDeadlines +
CurrentTest.Skipped Deadlines (I) +
CurrentTest.Missed Deadlines (I);

end loop; 9

- If the current test hasn't mised/lskipped any deadlines yet
- then record its state as the oest result s6 far, otherwise,
- if the current test is the first to miss/skip deadlines,
- record the state of the task set at the time of the miss/skip.

if Total Unmet Deadlines - 0 then 0
Last Successful Test :- Current Test;

elsif First Failed Test.Test Number - 0 then
FirstFailedTest :- Current_Test;

end if;.

- Save the initial (baseline) test results for the summary

if Current Test.Test Number - 1 then
InitialTest :- Current Test;

end if;

end StoreTestResults;

000
-I
-I Unit Name: PutResults-I
-I Unit Type: Procedure Body
-i
-I Description:
- I For the given test, outputs the name of the experiment, the
- I completion criierion, the characteristics of the task set (its
-I frequencies, workloads, and utilization) and the result.

66 CMU/SEI-90-UG-1
0

-1I achieved by the task set (met, missed, and skipped deadlines).
- I Also ouputs the raw (non-tasking) speed and the experiment
- I step size. Utilization is defined as the workload execution
- I rate expressed as a percentage of the raw speed. The step

*- I size is the increase in utilization required of the task set
- I when performing the successor to the current test. It is
- I the "resolution" of the workload utilization.
- I

procedure Put Results(Test :in Test-State) is

*package Flt 10 is new Text_10.FloatIO0(Float);
package IntlO0 is now Text_I0.Integer_I0(Integer);
package Duration_10 is new Text IO.Fixed 10(Duration);
us* Text_10;

begin

New-Line;
PutLine ("

New-Line;
Put Line ("Experiment: "& ExperimentType' Image (WhichExperiment));

Put ("Completion on: ");
case Completion Criterion is

* when One UnmetE Deadline ->
Put Line("Mi-ss/skip at least one deadline");

when Many Unmet Deadlines ->.
Put Line("miss/skip" & integerImage(Unet Deadlines Limit) &

" deadlines");
when Percent Unmet Deadli.nes -

Put ("Miss/ikip ");
* Fit I0.Put(Float(Percent Unmet Deadlines-Limit), 3, 1, 0);

Put-Line(" percent of deidliines");-
end case;

New-Line;
Put ("Raw speed in Kilo-Whetstone instructions Per Second (KWIPS):)
FltI0.Put (RawSpeed, 4, 2, 0);

*New Line;

New Line;
Put Line("Test" & Integer'Image(T!est.TestNumber) & " characteristics:");
New Line;

Put Line (" Task Frequency Kilo-whets Kilo-Whets Requested Workload");
Put Line(" No. (Hertz) per pe-riod per second Utilization");

for I in 1. .Test.TotalNo Of Tasks loop

-Tank number
SetCol(5);
ItI0. Put (1, 2);

* - Task frequency
Set Col(ll);
FitI0.Put (Test.Task Frequencies()*, 4, 2, 0);

- Kilo Whetstones per period
Set Col (25);
IntIO.Put (Test.TaskWorkloads (I), 4);

10Kio Whetstone Instructions Per Second
SetCol(37);

CMU/SEI-90-UG-1 67

FitIO. Put (Test. TaskFrequencies (1) * Float (Test. TaskWorkioads(1)),r 4, 2, 0);

- Requested KWIPS as a % of the raw speed
Set Col (53); .
Fit IO.Put((100.O Test.TaskWorkRates(l) /RawSpeed), 3, 2, 0);
Put-Line(" V");

end loop;

Set -Col (37);
Putr (------- W);
SetCoi (53);
Put Line("---------
SetCol (37);
FitIO.Put(Test.TotaiRateRequested, 4, 2, 0);
SetCoi(53);
FitIO.Put((i0O.0 * Test.Totai Rate Requested /RawSpeed), 3, 2, 0);
PutLine("%)

New Line;0
Put ("Experiment step size:)
FitIO.Put (Experiment StepSize, 3, 2, 0);
Put-Line (" V")

New-iine;
Put Line(---
New7 Line;
PutLine("Test" & IntegerImage(Test.TestNumber) &"results:");

New Line;
Put ("Test duration (seconds):)
Duration IO.Put (Test Duration, 3, 1, 0);
NewLine;,

New Line;
Put -Line(" Task Period met Missed Skipped Average");
PutLine C" No. in msecs Deadlines Deadlines Deadlines Late (msec)");

for I in 1. .Test.TotaNoOfTasks loop

Set Coi(5);
int-IO.Put(I, 2); -Tasknumber

SetCol(i1);
FitIO.Put((1000.O / Test. Task-Frequencies (1)l 4, 3, 0); -Taskpeiiod

Set Coi(23);
IntIO0.Put (Test.Met Deadlines (I), 5);

Set Col(35);
Int_1O.Put (Test.MissedDeadlines (I), 5);

Set Col(47);
int-IO.Put(Test.Skipped-Deadlines(I), 5);

Set Col(58);
if TTest.Missed Deadlineszl > 0) then

FltIO0.Put(iO-0.O * Float(Test.CumulativeLateCI))/

elefloat (Test. Mis sedDeadlines (I)), 5, 3, 06); -Averagelate amount

Flt IO.Put(1O00.O * Float(Test.Cumuiative Late~i)), 5, 3, 0);

end if;
New-Line;

end loop;

68 CMUISEI-90-UG..i

New line;
Put Line ("= =

New_-Line;

end PutResults;

-I Unit Name: OutputTestj_.Results
* -1

- I Unit Type: Procedure Body
-1
- I Description:
- I Output the results for the test just completed.

procedure OutputTestResults is

begin

Put Results(CurrentTest)f;

end Output Test Results;

000

-I
- I Unit Name: OutputSummaryResults
-I
- I Unit Type: Procedure Body
-I
- Description:
- I Outputs a summary of the results of an entire experiment. The summary
- I includes the results of the first test, the best test with no missed
- I or skipped deadlines, the test where deadlines were first missed, and
-i the final test run.
-I

procedure OutputSummary_Results is

package Flt IO is new TextIO.FloatIO(Float);
package Int_IO is new TextIO.IntegerIO(Integer);
use Text_10;

Test : TestState; - For output of overall summary of best test result

begin

if FullOutput then
NewPage;

end if;

New Line(2);
0 Put-Line(" HARTSTONE BENCHMARK SUMMARY RESULTS");

New-Line;

- Output the results of the key tests. Because some run-time systems
- have problems outputting the volume of summary data, a delay has
- been inserted between each summary to slow down the output.

delay 5.0;

New Line;

CMU/SEI-90-UG-1 69

Put Line("Baseline test:)
PutResults (Initial Test);
New_ Page;

delay 5.0;

New-Line (2);
Put Line("Last test with no missed/skipped deadlines:)
if LastSuccessfulTest.TestNumber > Initial Test.Test-Number then

Put Results (Last Successful_ Test);
New Page;

elsi-iast Successful Test.Test Number - Initial Test.Test Number then
Put Line(" See piceding suiiimary of test" &

Integer'Image(Initial Test.TestNumber));
NewLine(2);

else
PutLine(" Not applicable");
New_-Line(2);

end if;

delay 5.0;

New-Line (2);
PutLine("Test when deadlines first missed/skipped: 1);
if First Failed Test.TestNumber > Initial Test.Test Number then

PutResgults (First Failed Test) ;
New-Page;

elsif First Failed Test. Test Number - Initial Test. TestNumber then
Put Line(" See preceding summary of test" &
1nteger'Image(XnitialTest.TestNumber));

New Line(2);
else

Put-Line C" Not applicable");
New Line(2);

end ife;

delay 5.0;

NewLine(2);
Put 'Line("Final test performed:)
if CurrentTest.Test Number - Initial Test.Test Number or

Current Test.Test NRumber - Last Successful Test.TestNumber or
CurrentTest.Test Number - First FailedTest.Test Number then

PtLne(Se receding summary Of test" &
Integer' Image (CurrentTest .TestNumber));

NewLine(2);
alse

PutResults(Current Test);
NewPage;0

end if;

- Output "executive summaaiy" of the best result for the dompier & target

delay 5.0;

New Line(2);
PutLine("-

New Line;
Put Line ("Benchmark : 0 & Benchmark);
Put Line("Compiler : w & Compiler);
PutLine("Target : " & Target);

New-Line;0
Put Line ("Cl~aracteristics of best test for this experiment:)

70 CMU/SEI-90.UG-1

PutLine(" (no missed/skipped deadlines)");
New Line;

Test :- LastSuccessful -Test;
if Test.TestNumber -O0then

*Put_-Line(" Not applicable");
else

Put(" Test" & Integer'Image(Test.TestNumber) &"of Experiment)
case WhichExperiment is

when Experiment 1 -
Put Line("l"),

when Yxperiment 2 -
* Put Line("2"),

when 'Experiment 3 -

Put-Line ("3") ,
when Experiment 4 =

Put Line("4");
end case;

New Line;
Put-(* Raw (non-tasking) benchmark speed in KWIPS:)
Fit -IO.Put(Raw Speed, 4, 2, 0);
New-Line;

New-Line;
Put Line(" Full.task set:");
New Line;

*Put-Line(" Total Deadlines Task Set Total");
Put-Line(" Tasks Per Second Utilization KWIPS");

-Total tasks = no. of baseline tasks + any extra tasks
Set Col(8);
Int-IO.Put(Test.TotalNoOfTasks, 3);

* - Total deadlines per second is indicator of task switching overhead
Set Col(19);
declare

Sum :Float : - 0.0; - Total deadlines per sec is sum of fr-equencies
begin

for I in 1. .Test.Total No OfTasks loop
Sum :- Sum + Test.Task_'Fre-quencies(I);

end loop;
Flt IO.Put(Sum, 4, 2, 0);

end;

- Task set utilization
Set Col(34);
Flt-IO.Put((lOO.O * Test.TotalRateReqruested IRawSpeed), 3, 2, 0);
Put(ft 46") ;

- Task set workload rate in Kilo-Whetstone Instructions Per Second
Set Col (48);
Fit IO.Put (Test.TotalRateRequested, 4, 2, 0);
NewLine;

New-Line;
*Put Line(" Highest-frequency task:");

NewLine;
Put-Line(" Period Deadlines Task Task)
PutLine(" (msec) Per Second Utilization KWIPS");

- Task period
Set Col(6);

* Fit IO.Put (1000.0 /Test.Task Frequencies (NoOfBasicTasks), 3, 3, 0);

CMU/SEI-90.UG-1 71

- Total deadlines per second
Set Col(19);
Flt_-IO.Put (Test.Task_Frequencies(No OfBasicTasks), 4, 2, 0);

- Task utilization 0
Set Col (34);
FltIO.Put((100.0 *
Test.TaskWorkRates(No_Of Basic Tasks) / RawSpeed), 3, 2, 0);

Put(" %");

- Task speed in KWIPS
SetCol (48) ; •
FltIO.Put(Test.TaskWorkRates(NoOfBasicTasks), 4, 2, 0);
New_-Line;

New-Line;
Put(" Experiment step size: ");
Flt IO.Put(ExperimentStep_Size, 3, 2, 0);
Put Line(" %V);

end if;

New-line;
Put-Line(" .)

New Line (2);
Put-Line(" END OF HARTSTONE BENCHMARK SUMMARY RESULTS");
New_-Line;

end Output SummaryResults;

end Experiment;

72 CMU/SEI-90-UG-1

-I

-I Unit Name: Periodic_Tasks

-1 Unit Type: Package Specification
-1

- I Description:
- I This is the basic set of independent periodic tasks that performs a
- I test in a Hartstone test series. Each task has a specific frequency
- I and workload. The goal of each task is to complete its workload within
- I its period. The deadline for completion of the workload is the next
- I scheduled activation time of the task. For any given period, a task
- I will either meet or miss its deadline; at the end of the test each task
- I will report the total number of deadlines it met and missed, together
- I with the cumulative late amount by which deadlines were missed. To
- I enable a task to continue past the point at which deadlines are first
- I missed, tasks "reset" themselves by skipping one or more workload
- I assignments until they reach a point where a workload may again be
- I attempted. This process, called load-shedding, allows the failure
- I pattern of tasks to be studied when the task results are collected.
-I
- I Each task is assigned a priority according to the rate-monotonic
- I scheduling algorithm: higher-frequency tasks are given higher
- I priorities than lower-frequency tasks. Because Ada task priorities
- I are statically assigned, each task in the baseline Hartstone task
- I set with a unique priority is explicitly named.
-I
- I One of the Hartstone experiments requires the addition of new tasks.
- I These all have the same characteristics as a single specified task in
-I the basic task set. In particular, they will all have the same priority,

I so a task type definition, provided below, can be used to define them.

I References:
I Liu, C. L, and Layland, J. W.,
I Scheduling Algorithms for Multiprogramming
I in a Hard-Real-Time Environment.
I Journal of the Association for Computing Machinery,
I Vol. 20, No.1, January 1973, pp. 4641.

I Sha, L., and Goodenough, J.,
I Real-Time Scheduling Theory and Ada.

-I Technical Report CMU/SEI-89-TR-14,
-I Software Engineering Institute, April 1989.

with System;

with Calendar;

package Periodic-Tasks is

Task Workload Failure: exception; - Raised if Small_Whetstone fails

- T1 = lowest-priority task
Tl Priority : constant System.Priority :- Syste.Priority'First;
T2_Priority : constant System.Priority :- TI Priority + 1;
T37Priority : constant System.Priority :: TlPriority + 2;
T4 Priority : constant System.Priority :- Ti Priority + 3:
T5 Priority : constant System.Priority :- TI-Priority + 4;
- T5 = highest-priority task

NewTask Priority : constant System.Priority :- T3_Priority;

CMU/SEI-90-UG-1 73

0

-I Unit Name: T1 .. TS
-1
-Unit Type: Task Specification 0
-I
I Description:
I Periodic task to perform an assigned workload at a specific frequency.

-I
I Parameters:
I Entry Start: Provides the input tnst parameters.

Test_9tarL*Time: The time at which the task starts performing 0
- its requested workload
-I
- I TestDuration: The length of the test, in seconds.
-I

- I TaskFrequency: The number of times per second the teak is
- I required to perform its requested workload.
o-I
- I TaskWorkload: The amount of work required of the task, expressed
- I as a number of Kilo-Whetstone instructions. A variant of the
- I Whetstone benchmark provides thocomputational load for the task
-I

- I Entry Stop: Allows the caller to retrieve test results from the task.
-I
-I Task.Met_Deadlines: The number of times during the test that the 0
-I task successfully completed its workload before its next scheduled
- I activation time.
-I
- I Taskissed_Deadlines: The number of times during the test that the
- I task failed to complete its workload before its next scheduled
- I activation time.

- I TaskSkippedDeadline: The number of scheduled activation times
- I which were not performed because of a previously missed deadline.
-I
- I TaskCumulativeLate: The sum of the amounts by which the task was
- I late when it missed deadlines.

task T1 is
pragma Priority (Tl Priority)

entzy Start (TestStartTime : in Calendar.Time;
Test Duration : in Duration;
TaskFrequency : in Float;
Task_Workload : in Natural);

entry Stop(Task Met Deadlines : out Natural;
Task-Missed Deadlines : out Natural;
TaskSkipped Deadlines : out Natural;
TaskCumulative Late : out Duration);

end TI;

task T2 is
pragma Priority(T2_Priority);

entry Start(Test Start Time : in Calendar.Time;
Test-Duration : in Duration;
Task Frequency : in Float;
TaskWorkload : in Natural);

74 CMU/SEI-90-UG-1

entry Stop(Task Met Deadlines : out Natural;
Task-Missed Deadlines : out Natural;
TaskSkippedDeadlines : out Natural;
TaskCumulative Late : out Duration);

end T2;

task T3 is
pragma Priority(T3_Priority);

entry Start(TestStartTime : in Calendar.Time;
TestDuration : in Duration;
Task-Frequency : in Float;
Task Workload : in Natural,;

entry Stop(Task Met Deadlines : out Natural;
TaskMissed Deadlines : out Natural;
TaskSkipped_Deadlines : out Natural;
Task Cumulative Late : out Duration);end T3;

-0c

task T4 is
pragma Priority (T4_Priority);

entry St..rt (Test Start Time : in Calendar.Time;
Test-Duration : in Duration;
Task Frequency : in Float;
TaskWorkload : in Natural);

entry Stop(Task Met Deadlines : out Natural;
TaskMissed Deadlines : out Natural;
Task-Skipped Deadlines : out Natural;
Task-CumulativeLate : out Duration);

end T4;

task T5 is
pragma Priority(TSPriority);

entry Start (TestStartTime : in Calendar.Time;
Test-Duration : in Duration;
Task Frequency : in Float;
TaskWorkload : in Natural);

entry Stop(Task Met Deadlines : out Natural;
Task Missed Deadlines : out Natural;
Task Skipped Deadlines : out Natural;
Task CumulativeLate : out Duration);

end T5;

task type New Task is
pragma Priority(NewTask Priority);

entry Start(TestStartTime : in Calendar.Time;
Test Duration : in Duration;
Task Frequency : in Float;
TaskWorkload : in Natural);

entry Stop(TaskMetDeadlines out Natural;

CMU/SEI-90-UG-1 75

Task -Missed-Deadlines : out Natural;
TaskSkipped Deadlines : out Natural;

Task-CumulativeLate : out Duration);
end NewTask;

type NewTaskPointer is access NewTask;

end PeriodicTasks;

76 CMU/SEI-90-UG-1

-I- IUnit Name: Periodic_.Tasks

-I Unit Type: Package Body

-I Description:
-I See the description in the package specification and the description
-I of the local procedure below.

-I Because Ada priorities are assigned statically, the unique prioriies
- of the baseline task set are assigned to explicitly-named tasks via the
-I Priority pragma in the tasks' specifications. It is not possible, for
-I example, to define an array of baseline tasks whose elements are of a
-I single task type, and whose priorities can be assigned at run-time.
-I For similar reasons, a generic u:-aplate is also not an option. Thus the
-I five tasks in the baseline set are ta3k objects with distinct names and
-I priorities, hence the "duplication" of code below. The amount of text
-I duplicated is reduced somewhat by putting actions common to all tasks in
-I a procedure.

with Workload;

with Calendar;

package body Periodic-Tasks is

-t
- I Unit Name: DoWork
-I
- I Unit Type: Procedure Body
-I
-I Description:
-I Local procedure to do the work of a Harttone task. Task periodicity
- I is implemented using the delay statement (expiry of a delay is assumed
- I to be pre-emptive) and Calendar.Clock. The SmallWhetstone procedure,
- 1 a variant of the composite synthetic benchma-rk, provides the task
- I computational workload. The workload is expressed in thousands of
- I Whetstone instructions (Kilo-Whetatones) and the rate of doing work
-1 is measured in Kilo-Whetstone Instructions Per Second (KWIPS).
- I The deadline for completion of the workload during a task's period is
-1 the next scheduled activation time of the task. Late completion of
- I the workload is defined as a missed deadline. Tasks continue to run
-1 alter deadlines are missed by skipping workload assignments until
-1 they reach a point where a workload may again be attempted. This
- I process is called load-shedding and any deadlines ignored during it
- I are recorded as skipped deadlines.
-I
-1 This procedure is based on the drift-free periodic procedure exhibited
- I in section 9.6 of the Ada Language Reference Manual. To avoid problems
- I of cumulative error with the fixed-point type Duration, computations
- I are performed in floating-point arithmetic and only converted to
- I Duration in the aetual delay statement. Calculations involving the

* - I type Time are also done in floating-point, by extracting the seconds
-1 portion of the Time value (a private type) returned by Calendar.Clock
-1 and converting it from DayDur'ion to Float. Because only the seconds
- I portion is used, the test duration should not cross a midnight
- I boundary; the DayDuration value returned by Calendar.Seconds becomes
-1 zero after 24 hours.
-[

* - I A number of implementation-dependent features are resent in this
- 1 procedure: the accuracy of the Duration expression used in the delay

CMU/SEI-90-UG-1 77

0

- I statement (depends on Duration'Small), the resolution of the delay
- I statement itself (the actual delay may be much larger than the
- I requested delay), and the resolution of Calendar.Clock (a coarse
- I resolution means that a coarse value will be used as the expression
- I in the delay statement, thereby resulting in a flawed implementation
- I of task periodicity).

procedure Do Work(Test Start Time : in Calendar.Time;
Test Duration : in Duration;
Task-Frequency : in Float;
Task Workload : in Natural;
Task Met Deadlines out Natural;
Task-Missed Deadlines : out Natural;
Task-Skipped Deadlines : out Natural;
Task Cumulative Late out Duration) is

use Calendar; - Make operators for Time and Duration calculations visible

Finish Time : Float :- Float (Calendar.Seconds (Test Start Time +
Test-Duration));

Period : Float :- Float(l.0 / TaskFrequency);
Next Start : Float :- Float (Calendar.Seconds (Test Start Time));
Next-Delay : Float :- 0.0;

Met Deadlines : Natural :- 0;
Missed Deadlines : Natural :-0;
Skipped Deadlines : Natural :-0;
Cumulative Late : Float - 0.0; -Sum of missed deadline late amounts

Now : Float :- 0.0; -Willbeusedduringloadshedding

Old Met- Deadlines : Natural -0; Will be used during load shedding

begin - Do-Work

while NextStart < Finish-Time loop

Next-Delay :- Next-Start - Float (Calendar.Seconds (Calendar.Clock));

if Next Delay >- 0.0 then

- A positive delay computation means either that the task completed
- its last workload on time or that the load-shedding to compensate
- for the last missed deadline was successful

delay Duration(NextDelay);
for I in 1..TaskWorkload loop
Workload.SSmall-Whetstone(1);

end loop;

- Assume that the task has completed this workload on time;
- if not, the count of met deadlinwe will be adjusted later

Met Deadlines :- Met Deadlines + 1;
Next Start :- Next Start + Period;

else

- A negative delay value means that either the workload wqs
- completed late (i.e. a deadline was missed, requiring load
- shedding to reset the task's next activation time) or that
- the load-shedding operation was somehow delayed long enough
- to cause the task to miss itos next scheduled activation time.

if MetDeadlines > OldMetDeadlnes then

78 CMU/SEI-90-UG-1

- A difference between the current number of missed deadlines
- and the last recorded value prior to load shedding indicates
- a missed deadline. Record the current missed deadline, adjust
- the met deadline count, and record the amount by which the
- task was late.

Missed Deadlines :- Missed Deadlines + 1;
Met Deadlines : Met Deadlines - 1;
Old-Met Deadlines : Met Deadlines; -Save until needed again
CumulativeLate :- CumUlativeLate + (- Next-Delay);

- Shed load by finding the current time (i.e. the time
- the last workload actually completed) and advancing the
- next starting time until it exceeds the current time,
- counting the number of deadlines skipped in the process

Now :- Next Start + (- NextDelay);
while Next Start < Now and Next Start < Finish Time loop
Next Start :- Next Start + Period;
Skipped Deadlines : SkippedDeadlines + 1;

end loop;

else

- No difference between the current number of missed deadlines
- and the last recorded value indicates that while shedding load
- to catch up the task was delayed long enough to miss its next
- scheduled activation time. So, advance its activation time and
- skip one more deadline.

NextStart :- Next Start + Period;
SkippedDeadlines - SkippedDeadlines + 1;

end if;

.end if;

end loop;

- Check to see if the final deadline was missed

NextDelay :- NextStart - Float(Calendar.Seconds(Calendar.Clock));

if NextDelay < 0.0 and Met Deadlines > Old Met Deadlines then
Missed Deadlines :- Missed Deadlines + 1;
Met Deadlines :-Met Deadlines - 1;
CumulativeLate :- Cumulatire Late + (- Next-Delay);

and if;

- Return the results

Task Met Deadlines :- Met Deadlines;
Task-Missed Deadlines :- Misied Deadlines;
Task_-Skipped Deadlines :- Skipped Deadlines;

* Task CumulativeLate :- Duration (Cumulative Late);

exception - Raised if SmalLWhetstone fails its internal self-check
when Workload.WorkloadFailure -> raise TaskWorkloadFailure;

end DoWork;

* pragma Inline (Do-Work); - Some implementations may ignore this

CMU/SEI-90-UG-1 79

-I
-I Unit Name: T1.. T5

-I Unit Type: Task Body

-I Description:
-I Performs the requested workload at the given fiequency. The task
-I will begin at the specified starting time and continue for the
- I requested duration. On completion, information concerning the
- I ability of the task to perform the requested work is provided.
- I to the calling program.
- 1

task body Tl is

StartTime : Calendar.Time;
LengthOfTest : Duration;
Frequency : Float;
Workload Natural;

Met Deadlines : Natural;
Missed Deadlines : Natural;
SkippeE Deadlines : Natural;
CumulativeLate : Duration;

begin
loop

select
accept Start (Test Start Time : in Calendar.Time;

TestDuration. : in Duration;
Task-Frequency : in Float;
Task Workload : in Natural) do

Start Time :-TestStartTime;
LengthOf Test :- Test Duration;
Frequency : Task-Frequency;
Workload :M Task-Workload;

end Start;

DoWork(StartTime; Length Of Test, Frequency, Workload, Met Deadlines,
Missed-Deadlines, Skipped-Deadlines, CumulativeLateT;

accept Stop(Task Met Deadlines : out Natural;
Task-Missed Deadlines : out Natural;
Task-SkippedDeadlines : out Natural;
TaskCumulative Late : out Duration) do

Task Met Deadlines :- -Met Deadlines;
Task-is7sed Deadlines :- Misied Deadlines;
Task-Skipped_Deadlines :- SkippedDeadlines;
Task Cumulative Late :- Cumulative Late;

end Stop;

or
te=minate;

end select;
end loop;

end Ti;

task body T2 is

Start Time : Calendar.Time;
Length_Of_Test : Duration;

80 CMU/SEI-90-UG-1

Frequency : Float;
Workload : Natural;

Met Deadlines : Natural;
Missed Deadlines : Natural;
Skippe'_Deadlines : Natural;
CumulativeLate : Duration;

begin
loop

select
accept Start (Test Start Time : in Calendar.Time;

TestDuration : in Duration;
Task-Frequency : in Float;
TaskWorkload : in Natural) do

Start Time :- Test Start Time;
Length Of Test :- Test Duration;
Frequency :- Task_-Frequency;
Workload :- TaskWorkload;

end Start;

Do Work(Start Time, Length Of Test, Frequency, Workload, Met Deadlines,
Missed_Deadlines, Skipped Deadlines, Cumulative Late);

accept Stop(Task Met Deadlines : out Natural;
Task Missed Deadlines : out Natural;
Task-Skipped Deadlines : out Natural;
Task Cumulative Late : out Duration) do

Task Met Deadlines :- -Met Deadlines;
Task-Misied Deadlines :- Misged Deadlines;
Task-SkippedDeadlines :- Skipped Deadlines;
Task Cumulative Late :- CumulativeLate;

end Stop;

or0 0~tezrminate;

end select;
end loop;

end T2;

* - _ _ _

task body T3 is

Start Time : Calendar.Time;
Length_Of_Test : Duration;
Frequency : Float;

• Workload : Natural;

Met Deadlines : Natural;
Missed Deadlines : Natural;
Skipped- Deadlines : Natural;
Cumulative Late : Duration;

* begin
loop

select
accept Start(Test Start Time : in Calendar.Time;

TestDuration : in Duration;
Task-Frequency : in Float;
Task-Workload : in Natural) do

StartTime :- Test Start Time;
Length Of Test :- Test Duration;
Frequency :- TaskFrequency;

CMU/SEI-90-UG-1 81

Workload :- Task-Workload;
end Start;

DoWork(Start Time, Length Of Test, Frequency, Workload, MetDeadlines,
Missed Deadlines, Skipped Deadlines, Cumulative Late);

accept Stop(Task Met Deadlines : out Natural;
Task -Mised Deadlines : out Natural;
Task_-Skipped Deadlines : out Natural;
TaskCumulative Late : out Duration) do

Task Met Deadlines :- Met Deadlines;
Task-Missed)eadlines :- Misied Deadlines;
Task-Skipped Deadlines :- Skippea Deadlines; 0
Task_CumulativeLate :- Cumulative Late;

end Stop;

0=

teminate;

end select;
end loop;

end T3;

task body T4 is

Start Time : Calendar.Time; •
LengthOf Test : Duration;
Frequency : Float;
Workload : Natural;

Met Deadlines : Natural;
Missed Deadlines : Natural;
Skipped Deadlines : Natural;
CumulativeLate : Duration;

begin
loop

select
accept Start(Test Start Time : in Calendar.Time;

Test Duration : in Duration;
TaskFrequency : in Float;
Task_Workload : in Natural) do

StartTime :- Test Start Time;
Length OfTest :- TestDuration;
Frequency :- TaskFrequency;
Workload :- TaskWorkload;

end Start; 0

Do Work (Start Time, LengthOf Test, Frequency, Workload, Met Deadlines,
Missed_Deadlines, Skipped_Deadlines, Cumulative Late);

accept Stop(Task Met Deadlines : out Natural;
Task Missed Deadlines : out Natural;
Task-Skipped Deadlines : out Natural;
Task-Cumulative Late : out Duration) do

Task Met Deadlines :--Met Deadlines;
Task-Mis7sed Deadlines :- Missed Deadlines;
Task-Skippea Deadlines :- Skipped Deadlines;
Task-CumulativeLate :- CumulativeLate;

end Stop;

or8Utezminate ;

82 CMU/SEI-90.'G-1

end select;
end loop;

end T4;

00c

task body T5 is

StartTime : Calendar.Time;
Length_ OfTest : Duration;
Frequency : Float;
Workload : Natural;

Met Deadlines : Natural;
Missed Deadlines : Natural;
Skipped Deadlines : Natural;
CumulatIveLate : Duration;

* begin
loop
select

accept Start(Test Start Time : in Calendar.Time;
Test Duratton : in Duration;
Task Frequency : in Float;
Task Workload : in Natural) do

Start Time :- TestStart Time;
LengthOf Test ::a TestDuration;
Frequency :- Task-Frequency;
Workload Task-Workload;

end Start;

DoWork(Start Time, Length_Of Test, Frequency, Workload, Met Deadlines,
MissedDeadlines, Skipped-Deadlines, CumulativeLate);

accept Stop(Task Met Deadlines out Natural;
Task-Misied Deadlines out Natural;
Task-Skipped Deadlines out Natural;
Task-Cumulatlve Late out Duration) do

Task Met Deadlines :- Met Deadlines;
Task-Mis7sed Deadlines :- Misied Deadlines;
Task-Skipped Deadlines :- Skipped Deadlines;
Task Cumulative Late :- CumulativeLate;

end Stop;

or

terminate;

end select;
end loop;

end T5;

task body NewTask is

Start Time : Calendar.Time;
LengthOfTest : Duration;
Frequency : Float;
Workload : Natural;

Met-Deadlines : Natural;
* Missed Deadliz:is : Natural;

SkippedDeadlines : Natural;

CMU/SEI-90-UG-1 83

Cumulative-Late Duration;

begin
loop

select.0
accept Start (Test_-Start Time :in Calendar.Time;

Test Duration :in Duration;
Task Frequency :in Float;
Task Workload :in Natural) do

Start-Time :-Test -Start -Time;
Length Of Test :-Test Duration;
Freque*jacy : Task -Frequency;
workload :-TaskWorkload;

end Start;

Do-Work (Start Time, Length _Of Test, Frequency, Workload, Met Deadlines,
Missed-Deadlines, Skipped Deadlines, Cumulative Late)j;

accept Stop(TaskMetDeadlines : out Natural;
Task MKissed Deadli.nes :out Natural;
Task-Skipped Deadlines out Natural;
Task Cumulative Late : out Duration) do

Task met Deadlines :s Met Deadlines;
Task Missed Deadlines :mMissed Deadlines;
Task Skipped Deadlines -Missed Deadlines;
Task Cumulative Late :-Cumulative Late;

e0d Stop;0

or
te-4inat*;

end select;
end loop;

end NevTask;

end PerziodicTasks;

84 CMU/SEI-90-UG-1

-I Unit Name: Workload

-1 Unit Type: Package Specification
-1
- I Description:
-1 Encapsulates the synthetic computational workload of a Hartatone task.
- I The actual computation is performed by the SmallWhetstone procedure,
- I a variant of the Whe+one benchmark program. The amount of work
- I requested is expressed in thousands of Whetstone instructions, or
- I Kilo-Whetstone. An internal consistency check is performed on the
- I workload computation within Smal!_Whetatone; if it fails, an exception
-I is raised.

package Workload is

WorkloadFailure : exception; - Raised if SmaLWhetatone self-check fails

-I
-I Unit Name: SmallWhetstone
-1
- I Unit Type: Procedure Specification
-I
- I Description:
- 1 Performs the computational workload of a Hartone task. The
- I computation is a scaled-down version of the one performed by the
-I full Whetstone benchmark program. An exception is raised if the
- I computation fails to satisfy an internal consistency check. This
- I procedure does not return any "result" from its computation; its
-I sole function is to give a Hartstone task something to do.

- I Parameters:
- I Kilo_Whets: The number of Kilo-Whetatone instructions to be performed
- I by the procedure. A value of 1 means one thousand Whetstone
- 1 instructions will be executed as the computational load.
-I

procedure Small_Whetstone(KiloWhets : in Positive);

pragma Inline (Small_Wetstone); - Some implementations may ignore this

end Workload;

CMU/SEI-90-UG-1 85

-I

-I Unit Name: Workload
-I 0
- I Unit Type: Package Body
-I
- I Description:
- I See the description in the package specification and the description
-I of the SmallWhetstone procedure below.
-I
- I The Sma]lWhetatone procedure requires an implementation-dependent
-I mathematical library. Refer to the explanatory comments in the
-I procedure for details.
-I
-I-

- IMPLEMENTATION-DEPENDENT library name; se examples below
with Float Math Lib;
use Float Math-Lib;

package body Workload is

- IMPLEMENTATION-DEPENDENT subtype definition; see comments below
subtype Whet-Float is Float;

- Iustantiate the math library here, if necessary; se comments below 0
- YMPLEMENTATION-DEPENDENT hlbrry & function names; see examples in
- comments below
function Log(X : in Whet Float) return Whet-Float

enmes Float athLib:.Log;

-I

- I Unit Name: SmallWhetatone
-I

- I Unit Type: Procedure Body
-I

-I This version of the Whetstone benchmark is designed to have an inner
-I loop which executes only 1000 Whetstone instructions. This is so that
-I smaller units of CPU time can be requested for benchmarks, especially
-I real-time benchmarks. The parameter "KioWhets" determines the number
-I of loop iterations; a value of 1 means the loop will execute 1000
-I Whetatons Instructions. A Whetstone Instruction corresponds to about
- 1.S machine instructions on a conventional machine with floating point.
-1
-I SmsllWhetstone was developed by Brian Wichmann of the UK National
-I Physical Laboratory (NPL). The Ada version was translated at the
-I Carnegie Mellon University Software Engineering Institute from the
-I original standard Pascal language version (see references below).
-I This Hartatone version has been adapted from the Ada standard
-I version by making the KliloWheta variable a passed parameter, and
-I by raising an exception, rather than printing an error message, if
-I the benchmars intmernal consistency check fails.
-1
-I SmallWhetstone uses the following mathematical functions, which are
- listed here using the ISO/WG9 Numerics Rapporteur Group proposed
-I standard names for functions of a GenericElementaryFunctions library
-I (Float-Type is a generic type definition.

-I function Co. (X: FloatType) return Float-Type;
-1 function Exp (X: loatType) return Floatfype;
- I function Log (X: FloatType) retum Float-Type; - Natural lop
- I function Sin (X: Float-Type) return Float-Type;

86 CMU/SEI-90-UG-1

-I function Sqrt (X: FloatT'pe) return FloatType;
I i

-I The name of the actual mathematical library and the functions it
-I provides are implementation-dependent. For Sm&iLWhetatone, the
-I function name to be careful of in the natural logarithm function;
-I some vendors call it 'Log" while others call it "Ln". A renaming
-I declaration has been provided to rename the function according to
-I the ISO/WG9 name.
-I Another implementation-dependent area is the accuracy of floating-
-I point types. One vendor's Float is another's LongFloat, or even
-I Short_Float. The subtype Whet_Float is provided so that the change
-I can be made in a single place; users should modify it as necessary
- to ensure comparability of their test runs.

- .Examples of some vendor mathematical library and log function names,
-I and the values of the 'Digits attribute for the floating-point types
-I are provided in the comments below. The ONLY changes a user should
-I make to run SmallWhetstone are (a) the library name, (b) the log
-I function name, if necessary, and (c) the definition of the subtype
- WhetFloat, if necessary. Any changes should be documented along
-I with reported results.

-I References:
- I The first two apply only to the full version of Whetstone. The
- I first includes a listing of the originsl Algol version. The second
- I includes an Ada listing. The third reference also deals mostly with
- I the full Whetstone benchmark but in addition contains a brief
- I rationale for the SmallWhettono benchmark and a listing of its
-I standard Pascal version.-I
- I Curnow, H.J., and Wichnumn, B.A.
-I A Synthetic Benchmark
- I The Computer Journal, Vol. 19, No. 1, February 1976, pp. 43-49.
-I

S-I arbaugh, S., and Foraks,
-I Timing Studies Using a Synthetic Whetstone Benchmark
-I Ada Letters, VoL 4, No. 2,1984, pp. 23-34.
-I
-I Wichmann, BA,
- I Validation Code for the Whetstone Benchmark
- I NPL report DITC 107/88, March 1988.

O - I National Physical Laboratory,
-I Teddington, Middlesex TW1l OLW, UK.
-I
-I

- Math library for TeleSoft TeleGen2 VAX/VMS-> MC68020:

- with MathLibrary,

- package Math is new MathLibrary(Whet_Float)
- use Math,

- Natural logs (base e) f In(x) base 10 logs = Log(x).
O - There is also a pre-instantiated library called FloatMathLibrary.

- FloatVigits = 6; Longloat'Digts = 15

- Math library for Verdix VADS VAX/VMS -> MC68020:

- with GnericElemntaryFunctions;

O - package Math-is new GenericElementary_Functions(WhetFloat);
-use Math-

CMU/SEI-90-UG-1 87

N0

- Natural logs (base) = Log(x; base 10 logs = Log(x, Base => 10).

- Short_Float'Digits = 6; Float'Digits = 15

- Math library for DEC VAX Ada:

- with FloatMathLib;
- use floatMatbIjb;

- Natural logs (base.)= Log(x; base 10 logs = LoglO(x).

- FloatDigits a 6; Longloat'Digits a 15; Long_LongFloatDigita =33

- Math library for Alsys Ada VAX/VMS -> MC68020:

- with MathLib;

- package Math is new Math_flKbhbtFloat)
- use Math,

- Natural logs (bas e) = Log(x) base 10 logs = LoglO(x).

- If using the 68881 Floating-Point Co-Processor, the Math_._M68881
-package can be used.

- FloatMigits = 6; LonILFloatigits - 15

- Math library for DDC-I Ada (DACS-80386PM) VAX/VMS -> i80386:

- with Meth.Pack
- use MathPa*k

- Natural logs (base.) = Ln(x); bae 10 logs = Log(%, 10.0).

- Float'Digits = 6; LongLFloatDigtsa =15

- Math hlbay for Systems Designers X) Ada VAX/VMS -> MC68020:

- with FloatMathLib;
- use FloatMathLib;

- Natural logs (base e) = Log(x); base 10 logs = LoglO(x).

- Float'Digits = 6; Long-Float'Digits = 15; LongLong. loatDigits = 18

procedure Small Whetstone(KiloWhets : in Positive) is

T : constant :-0.499975; -ValuesfromtheoriginalAlgol
T1 : constant :-0.50025; - Whetstone program and the
T2 : constant - 2.0; - Pascal SmallWhetstone program

N8 : constant :- 10; -Loopiterationcountformodule8

N9 : constant :- 7; - Loop iteration count for module 9

Value : constant :- 0.941377; -Valuecalculatedinmainloop
Tolerance : constant :-0.00001; -Determinedbyintervalaithmetic

I : Integer;
IJ : Integer :- 1;
IK : Integer :- 2;
IL : Integer :- 3;

Y : Whet-Float : 1.0; -Constant within loop

88 CMU/SEI-90-UG-1

Z : WhetFloat;
Su= : Whet-Float :-0.0; -.Accumulates value of Z

subtype index is integer rang. 1. .N9; -Wastyp in thPacalverion
* El :array (Index) of WhetFloat;

procedure Clear-Array is
begin

for Loop Var in El'Range loop
ElILoopVar) :- 0.0;

end loop;
end Clear-Array;

procedure P0 is
begin

.El(IJ) :El(IK);
El(IK) :El(IL);

end PO);

procedure P3(X : in Whet-Float;
Y : in Whet Float;
Z :in out Whet Float) is

Xtenp: Whet Float :T * (f + X);
Ytemp: Whet Float :-T * (Xtemp + Y);

begin
* Z :- (Xtemp + Ytemp) / T2;

end P3;

begin - Small-Whettone

for Outer Loop Var in 1. .Kilo Whets loop

Clear-Array;

-Module 6: Integer arithmetic

IJ :(1K - IJ) *(IL - IK);
IK :-IL - (ZR IJ);
IL :-(IL - ZR) 4 (IK + IL);

* EIUL - 1) :-Whet Float(IJ + IK + IL);
El (1K - 1) :-Sin(WhetFloat(IL))

- Module 8: Procedure calls

Z :- E1(4);
* for Inner LoopVar In 1. .N8 loop

P3(Y * Whet Float (InnerLoop_Var), Y + Z, Z)
end loop;

-Second version of Module 6:

*IJ:IL - (IL-3) * IK;
IL :-(IL - K) *(IK - IJ);
IK : (IL IX1) * K;
EI(IL - 1) :-Whet -Float (IJ + 1K + IL);
El(IK + 1.) :-bs C0o(Z))

* - Module 9: Array references

- Note: In thePascverionthe globalvaiable i ued asboth

CMU/SEI-90-UG-1 0

- the control variable of the for loop and an array index
- within procedure PO. Because the for-loop control variable
- of Ada is strictly load, this translation uses a while loop.

while I <- N9 loop
P0;
I :- I + 1;

end loop;

- Module 11: Standard mathematical functions

- Note: The actual name ofthe natural logarithm function used here
- is implemntation.dependent. See the comments above.

Z :- Sqrt(Exp(Log(El(N9)) / T1));

Sum :- Sum + Z;

- Check the curent valueof the loop computation

if Ahb(Z - Value) > Tolerance then
Sum :- 2.0 * Sum; -Foram errorat end
IJ :m IJ + 1; -Preventsoptimization

end if;

end loop;

- Self-validation check

it IA (Sum / Whet Float (KiloWhets) - Value) >
Tolerance * Whet Float(KiloWhets) then
raise Workload Failure;

end If;

end Small-Whetstone;

end Workload;

90 CMU/SEI-90-UG-1

UN LI tIEl..IHC!ASS 7 E Ifl
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ii REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2s SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A" APPROVED FOR PUBLIC RELEASE
2b. CECLASSIFICATION/DOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-90-UG-1 ESD-90-TR-5
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

(If applicablel

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b,.AOORESS (City State and ZIP d dI l .

CARNEGIE MELLON UNIVERSITY . ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731 N

* S. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER
ORGANIZATION (If applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO. NO. N.

PTTTSBURCH, PA 15213 N/A N/A N/A
11. TITLE (Include Security ClmaUIicationl

Hartstone Benchmark User's Guide, Version 1.0
12. PERSONAL AUTHORIS)

Patrick Donohoe. Ruth Shanrn.WN1qn, Wo4Ao.-mon,
13a. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr. Mo.. D.uy) 15. PAGE COUNT

FINAL I FROM _ TO , March 1990, 190
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue an reverje if necessary and identify by block numbqr)

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necesaary and identify by block numberi

The Hartsone benchmark is a set of timing requirements for testing a system's ability
to handle hard real-time applications. It is specified as a set of processes with well-
defined workloads and timing constraints. The name Hartstone derives from Hard Real Time
and the fact that the workloads are presently based on the well-known Whetstone benchmark.
This report describes the structure and behavior of an implementation in the Ada
programming language of one category of Hartstone requirements, the Periodic Harmonic (PH)
Test Series. The Ada implementation of the PH series is aimed primarily at real-time
embedded processors where the only executing code is the benchmark and the Ada runtime
system. Guidelines for performing various Hartstohe experiments and interpreting the
results are provided. Also included are the source code listings of the benchmark,
information on how to obtain the source code in machine-readable form, and some sample
results for Version 1.0 of the Systems Designers XD Ada VAX/VMS-MC68020 cross-compiler.

20 0ISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEOIUNLIMITEO KI SAME AS RPT. 0 OTIC USERS I UNCLASSIFIED, UNLIMITED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(lnclude 4 'ea Code)

KARL SHINGLER (412) 268-7630 SEl JPO

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

