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ABSTRACT

This thesis contains a method which positions tactical units in a def.nqive postum.

against an enemy force. The positioning criterion used is one which minimizes the ratio

of enemy force to friendly force. Across the battle area this method minimizes the sum

of all ratios of enemy to friendly forces.

The problem of matching units to oppose each other is one of particular importance at

the Division and Corps level. Here, as part of the military planning process, staffs

analyze different dispositions of friendly forces for the commander. Currently neither the

staff nor the commander formulate an option which best minimizes the ratio of forces.

One possible reason to avoid this type of formulation is that the mathematics required for

solution is not simple. Ironically, though, this ratio of force weighs heavily on the

decision of which option to implement. This thesis offers a simple method that nearly

minimizes the ratio of forces. The method maximizes the differential between potential

force ratios that could result should units be assigned to oppose each other. A very good

solution results in as many iterations as units to be assigned.

As a result of using this method, the commander could choose an option which

incorporates the critical decision criterion of force ratio in its formulation. With this

course of action as a standard, the commander and his staff can further identify

potentially critical flaws in defenses.

Uli
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Chapter 1

BACKGROUND AND ANNOTATED BIBLIOGRAPHY

This thesis is centered around two problems. The first problem is the military

problem. Simply put, this problem is the determination of which friendly units should be

assigned opposite which enemy units so that the ratio of forces is minimized. The second

problem is the mathematical one which underlies the military one. The mathematical

problem can be formulated using integer programming. Integer programming is

sometimes used as a mathematical tool to optimize decision making. As it turns out,

integer programming itself cannot be directly applied to the military problem. Instead,

fractional integer programming is required to properly capture the military problem with

a mathematical decision means.

1.1 Military Literature Review

First, some background on the military problem. Interestingly, at the unclassified

level, no previously published research is available. In the summer of 1990 this problem

was researched for several weeks at the Command and General Staff College's Combat

Arms Research Library (CARL) at Fort Leavenworth, Kansas. The pursuit for related

research included on-line subject, topic, and key word searches in the following data

bases: the Defense Technical Information Center (DTIC) which includes over 2 million

Department of Defense (DOD) documents; the National Technical Information Service

(NTIS) which includes over 200,000 technical documents; and DIALOG which is mostly

an applied science data base. Most references found in this search related to studies of

simulation results from JANUS (an interactive simulation model currently used by the
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Army) and results of full scale force-on-force battles at the National Training Center

(NTC). Statistical in nature, none of these studies related to the problem statement

considered here. Additionally, several card catalogs at CARL were examined, which

refer to information not available on any national on-line data base. These references

included a general book collection of over 116,000 military works; a specialized

reference collection of military theses, dissertations, student papers, contract studies, and

past research efforts; historical military documents from World War II, Korea, and

Vietnam; the Combined Arms Center and Command and General Staff College archive

collection which contains documents dated before the Civil War; and Army

administrative publications (both current and obsolete). In fact, absolutely no information

related to the problem of minimizing the ratio of forces prior to conducting a simulation

or full scale battle was found in this search.

The problem was also posed to several senior officers at the Army's think tank of

subject matter experts at the Center for Army Tactics. One officer, Lieutenant Colonel

Pamperl, a senior tactics instructor at the Command and General Staff College, was able

to confirm what was becoming a growing suspicion. He stated that the Army has yet to

seriously address the problem of minimizing the ratio of forces prior to war fighting.

Several reasons may be cause for this. First, other, more significant factors, so it is

hypothesized, may be more critical to success or failure on the battlefield. Many times,

human factors may be more important than the number and disposition of tanks or tubes

or artillery on the battlefield. This is certainly valid considering the myriad of factors that

influence the outcome of battle. Second, the Army presently has a simple system that

works.
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The current system is outlined in the Command and General Staff College's text

CGSC ST 100-9, The Command Estimate. The doctrine outlined in this text calls for the

recommendation of the staff as to which of several proposed dispositions is the one the

commander should subsequently war game or possibly war fight. Mathematical

optimality may not exist in this set of proposed courses of action because each course of

action was derived using experience and other intangibles not related to a systematic

method of mathematical foundation. Given the enemy disposition, the proposed courses

of action are a best guess on friendly force alignment. The decision criterion of force

ratios is a tool only considered after the fact and not during course of action d',,elopment.

The final recommendation, however, is based on analyzing the relative combat power of

friendly versus enemy forces. This analysis is performed on Form 86-(F626)-3352 (see

Appendix B, Figure B-2). After determining the status and capabilities of units, the staff

uses this form to make the calculations for relative combat power and force ratios.

Army doctrine stresses that decisions should not be based on force ratios alone

(CGSC ST 100-9 [pg 3-2]). Analyzing relative combat power provides conclusions

about friendly and enemy capabilities relative to the operation being planned. The

comparison of forces provides the planner with a notion of "what to" (capabilities) and

not "how to" (operations) fight. The author based the mathematical problem on this

notion of "what to" fight. By so doing the force ratio criterion becomes part of the

development process for the course of action.

The mathematical problem was formulated as an integer assignment program.

Similar to traditional integer assignment problems, this problem seeks to determine which

units the commander could assign against which enemy units. Unlike traditional
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assignment problems, the objective in this problem is fractional. The fractions represent

the force ratios. The next research effort was aimed at optimizing a fractional integer

objective function subject to linear assignment constraints.

1.2 Mathematical Literature Review

Surprisingly, very little research was found in the area of fractional programming.

A search for all articles related to fractional programming in The Institute of

Management Sciences, OILMS.Ine, 1952-1987, was conducted. As many as ten or so

articles in various journals were written over the past 25 or so years, yet after reviewing

each, none were found related to the mathematical problem proposed. In every case, the

fractional programming technique discussed applied to linear variables and not integer

ones. Exploration of the School of Mines Library produced several titles relating to

discrete optimization methods, applied combinatorics, and integer programming but none

discussed fractional integer programming. Finally a search was conducted on an on-line

Colorado State Library System at four different universities within Colorado. These

were: the University of Colorado at Boulder, the University of Colorado at Denver,

Colorado State University, and the University of Denver. Several promising titles were

located in the Math and Business Libraries at UC Boulder. Unfortunately, none addressed

a method for solving the fractional integer program.

1.3 Summary of Research

In summary, the background research for this thesis was extensive and

exhaustive. No previously published research on this problem was discovered within the

scientific, mathematical, or military communities.
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Currently Army doctrine does not call for a mathematically optimal solution to

the force ratio alignment problem (CGSC ST100-9 [pg 3-4]). However, by analyzing

relative combat power as part of the course of action development process the staff could

provide the commander a feel for near minimal relative strength ratios as a basis and

standard for possible force alignment.
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Chapter 2

PROBLEM DEFINITION AND SOLUTION TECHNIQUE

2.1 Problem Background and Discussion

Commanders and staff officers on today's battlefield are faced with an extremely

complex environment. The ever-changing technologies serve to make every thought,

action, decision, and disposition of each unit vital. Indeed, the unit that is led and served

by the best commanders and staff has the advantage from the outset. When time permits

and before men and equipment are committed to a particular strategy, commanders and

staffs war game different options for aligning units.

This war gaming is simply a process of thinking systematically about various

courses of action and the ensuing chain of events. Prior to beginning this war gaming

process, both the commander and staff each analyze the various proposed courses of

action for troop alignment. This analysis is known as the estimate of the situation. The

estimate is a critical procedural step in the military decision making process. The

estimate is normally performed by the staff officers and the commander of the unit. Each

section chooses the course of action that best aligns forces against an expected enemy

disposition. The decision tool currently used by the G2 (Division or Corps Intelligence

Officer) and the G3 (Division or Corps Operations Officer) relies heavily on the concept

of tactical force ratios. The tactical force ratio is determined by first assigning relative

combat power indices (a number quantifying combat power relative to a fixed standard)

to both friend and foe that the staff and commander feel will oppose each other at the

onset of the battle (CGSC ST 100-) fpg 3-3]). Simple division produces the force ratio.

When the calculations are finisheu ine staff draws conclusions about friendly and enemy
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capabilities and limitations. The force ratio calculations serve as a discriminating or

screening criterion for the staff. Courses of action with unfavorable force ratios are

possibly eliminated. Whereas courses of action with strong force ratios are favored and

given further consideration. Based, in part, on these ratios the G3 recommends a course

of action as the initial array of force to begin the war gaming process.

Historically a defender would need at least a ratio of 1 to 3 over an attacker to

expect to defend terrain successfully.

2.2 Assumptions

Several assumptions are necessary before a solution method is established. First,

an estimate of enemy force concentrations must be known. This in necessary to quantify

enemy potential along each of the avenues of approach. Second, the friendly mission is a

defensive one. Offensive operations do not directly apply the force ratio analysis in the

detail discussed in this thesis. Third, an equal importance is given to the defense of each

enemy avenue of approach. Otherwise, a weighting scheme is necessary. Finally, a

correlation exists between force ratio minimization and increased success on the

battlefield. Without this association these procedures are not applicable to decision

making.

2.3 Limitations

For the purpose of this thesis several limitations exist. First, only unclassified

information will be discussed and used. Classified sources are not necessary to develop

or validate the methods discussed in this thesis. Second, the solution methods discussed

in this thesis are of mathematical make-up. This is not an oversight or an omission of
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other, possibly more effective, analysis techniques. The objective of this thesis was to

identify mathematical methods and tools that could be used to assist staffs and

commanders in solving the problem of where to initially deploy units in the defense. The

decision criterion used was one of minimizing the ratio of force while adhering to limited

tactical prerequisites which will be discussed in chapter 3. The author cud nui: model

human factors which could be extremely relevant to the outcome of any battle. Nor did he

attempt to simulate a dynamically changing scenario. This author does not intend for the

method discussed in this thesis to replace the process currently used by staffs and

commanders. Instead, the product of this thesis can be used in conjunction with current

Army staff planning doctrine to produce a better, more informed decision.

2.4 Solution Methods

This thesis will focus on two mathematical methods for solving the military

problem. The first method formulates a fractional integer program which will determine

an optimal solution to the mathematical objective. Two features of this technique will

become apparent during its formulation. First, the procedure expends considerable time

and effort. Second, the procedure is beyond the expertise of the typical staff officer who

might be tasked to propose an array of forces. The second method discussed in this thesis

is simple, quick, and persuasive. Furthermore, this second method will determine a near

optimal course of action based on the tactical force ratio criterion in a fraction of the time

needed to determine optimality using the first method. Once this near optimal course of

action is determined, it could supplement the original courses and be analyzed further for

practicality. By so doing, the commander could consider a course of action that includes

the best available tactical force ratios as the basis for its formulation.
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2.4.1 Fractional Integer Programming Method

The problem of optimizing force alignments will be shown to be a fractional

integer programming problem. This program has an objective function that is the sum of

variable fractions (see eq. 2.1). In this formulation, the objective function would take the

form:

nki (2.1)
i=la i

Where the denominators a, are defined as:
m

for each i, I cx1 = a
J=l

Each term in the objective function represents the fractional ratio of force indices

for a particular location on the battle front known as an avenue of approach. The

numerators of each of the ratios in the objective function (see eq. 2.1) are constant. Each

of these constants represents the sum of the enemy combat power indices for a particular

avenue of approach. At feasibility, the denominators of these ratios are all non-zero and

represent a linear combination of the friendly combat power indices of units chosen to

oppose the enemy at a particular avenue of approach. The decision variables x# represent

the decision to assign a unit against an avenue of approach. These decision variables are

found in the denominators of the ratios of the terms in the objective function. Each

decision variable is constrained so that it may be used only once.

The constraints on the variables are similar to the traditional assignment or

transportation problem. Initially all the decision variables x, are 0-1. The variable is

equal to 1 if it is assigned to a term in the objective function (a particular avenue of

approach). The constraint set for this formulation is shown below.
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Subject to:
m

for eachi, Xx 1
j=i

for eachj, x,: = 1
i=1

Surprisingly enough, this type of problem is not an easy one to optimize using

known integer techniques or linear programs. Figure 2.1 illustrates the magnitude of the

solution set size for problems of varying sizes. The combinatoric analysis used to

determine each solution set size is ven in Appendix A, Table A-1.

Thousands
120

100

80

60

40

20

0.906 0.914 0.036 0. 5 1.56 5.88
0

2, 3 2, 4 3, 4 3. 5 4. 6 4, 7 5, 7 5. 8
# Avenues of Approach, # Friendly Units

Possible Solutions

Figure 2.1: Solution Set Sizes
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The difficulties in solving such a problem are two-fold. First, the objective

function is non-linear. Attempts to linearize the objective function create many new

variables and constraints. Second, many of the new variables introduced are not 0-1 like

the original variable set. In the end, the program includes not only 0-1 variables, but also

integer positive and strictly positive variables. This mixture limits the efficiency of

known methods. The time required to formulate and solve the military problem with a

fractional integer program may not always be practical. Depicted in Figure 2.2 is the

possible solution time for problems of varying sizes. This time does not include time to

formulate the problem. The solution times for the problems with four and five avenues of

approach were extrapolated from run times for smaller sizes.

Nevertheless, a detailed discussion for this fractional integer formulation and a

solution method is discussed in Chapter 3. If time and expertise are not available to

address the military problem with a fractional integer programming solution or if an

optimal solution is not absolutely necessary, then an approximately optimal result may be

preferable.
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Integer Solution
(run time*)

Minutes
160 I:4
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120
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0-
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# Avenues of Approach. # Friendly Units

*IBM 286, 12MHz

Figure 2.2: Integer Program Computer Run Times

2.4.2 The Near Minimal Algorithm

The algorithm presented in this thesis will determine a near minimum value for

the fractional programming problem of the type required to align defensive forces

optimally. The algorithm can assign as many as "m" friendly units in no more than "m"

iterations. The resulting solution is very close to the minimal value for the fractional

integer program. Figure 2.3 reveals the average solution time for problems of varying

sizes using the Near-Minimal Algorithm.
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Algorithm Solution
(run time*)

Seconds0.35 0.323 0." 29

0.3 0 0. 2 9

0.25

0.2
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0 97 0.1 0

0.05

2. 3 2,4 3,4 3, 5 4,6 4.7 5, 7 5. 8
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*IBM 286, 12MHz

Figure 2.3: Near-Minimal Algorithm Computer Run Times

Note the magnitude of difference in computer run time for each problem when the

algorithm run time is compared to the integer program solution time. The near-minimal

algorithm produces a very good solution in less than a half of a second. In contrast, the

optimal solution may take hours to determine. The time savings is even more apparent

when we consider the reality that the problem sizes here are smaller than those expected

to be solved by staffs of a Division or Corps. There, the actual size may be eight or more

avenues of approach and as many as 20 or so friendly units.

The efficiency of the algorithm is in its execution. Simply stated, the algorithm

maximizes the differential between a previous infeasible upper bound solution and a
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potential new upper bound solution which is also infeasible until the algorithm's final

iteration.

The algorithm proceeds by assigning variables to an appropriate term in the

objective function. The choice of which term is made by comparing the marginal

difference between the previous upper bound for that term and a new one should the

variable be assigned to that term. The greatest marginal difference earns the variable for

the term thereby eliminating it from being further assigned to another term. Each

iteration moves the objective function nnn-increasingly toward a newer and lower integer

upper bound which is equal to or less than the previous one. At the conclusion of the

algorithm, the final integer upper bound is feasible. This final upper bound is very near to

the least upper bound for the objective function. At conclusion, the algorithm

successfully assigns friendly units to locations where the sum of the resulting force ratios

is near-optimal.

2.5 Method Overview

In the pages that follow the reader will find two mathematical solution methods to

the same military problem. The first method will optimize the fractional integer

objective. This method is discussed in Chapter 3 and illustrated with an example in

Chapter 4. The second method will nearly minimize the same fractional integer

objective. This method is simpler than the first and is discussed in Chapter 3. Several

examples, contained in Chapter 4, will clarify this second method.
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Chapter 3

PROBLEM AND SOLUTION METHOD

In this chapter the military problem is presented. Then two mathematical methods

are discussed for solving the military problem. The first method uses a fractional integer

programming technique and requires extensive reformulation of the original problem.

This thesis assumes the reader has a basic understanding of integer programming. The

second method is an algorithm which produces a near optimal feasible solution. The

algorithm is presented in a manner that assumes the reader is solving the problem by

hand using a specially designed worksheet. However, a computer program written in the

C language, that implements this algorithm, is shown in Appendix E.

3.1 The Military Problem

Consider a military planning staff faced with the problem of determining where to

assign different units to defend against an enemy attack. The organization of each unit

varies. Some units may be equipped with modem technology and may be better trained

for the upcoming mission. Others may be reserve units which are incompletely manned

and pcory equipped. The role of each unit on the battlefield varies, too. Some may be

ground gainers such as armor and mechanized infantry. Others may deny access to terrain

such as artillery, combat engineers, or aviation assets. The big picture can become very

complex, very quickly. The problem is where to assign each unit to maximize friendly

combat potential against the enemy. Figure 3.1 illustrates a very simple scenario using

current conventional military graphics.
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Known Enemy Avenues of Approach

Infantry Battalion Mechanized Infantry Battalion Armor Battalion

Figure 3.1: Simplified Military Situation

Part of the current decision method in use by the Army is a basic and direct

method to capture the different potentials of different units. The Army does this by

assigning combat power indices (potentials) to each unit. The indices are relative to a

base unit of 1. For example, the more modem equipped American M I tank battalion may

be assigned an index of 3.5. The 3.5 means that this battalion is 3.5 times as lethal as the

base unit. Usually the base unit is the Soviet T-55 tank battalion assigned to an

independent tank regiment. These indices are arbitrary and subjective but do provide a
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simple way of quantifying potential.

With combat power indices now assigned to both friend and foe, the staff must

now determine assignments. One important assignment criterion is that of the force ratio.

It is believed that the lower the ratio, the better the chance for initial success. For

example a ratio of 2 (enemy potential) over 1 (friendly potential) is better than a ratio of 4

to 1. This first example matches relatively greater friendly potential to enemy potential.

So the staff analyzes different proposed alignments and determines the force ratios

associated with each. It is important to note that none of the proposed alignments were

formulated using the force ratio criterion. Instead the staff uses the force ratios to

evaluate proposed options. Consequently, the option with the ratio of indices that result in

the lowest fractions becomes a favored course of action by the staff. When coupled with

other decision criteria such as unity of command and simplicity of execution, this course

of action may gain approval by the commander for implementation. The formulation that

follows recruits the force ratio criterion as an objective function. The constraints ensure

that a unit is assigned in only one place and at least one unit is assigned to oppose every

known enemy avenue of approach. If the enemy were unopposed, he could exploit this to

his advantage. Therefore it becomes necessary to oppose every known enemy axis of

advance (avenue of approach) with at least one friendly unit. This unit could be a radar

unit which "listens" for activity or a combat unit which screens or engages and destroys

the enemy. Figure 3.2 expands Figure 3.1 to include relevant information for the

formulation of the military problem with fractional integer progamming. The combat

power potentials identified in this fl-ure will be utilized in the example of this method in

Chapter 4.
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0
avenue of 2
approach I:

min .7.2 + 4.1
al a2

2.0 2.3 3.0

friendly unit J: 1 2 3

Where: a, is the sum of friendly indices assigned to avenue i.

Subject to: Every avenue is opposed with a least one friendly unit.

Each friendly unit is assigned only once.

Figure 3.2: Expanded Military Situation
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3.2 The Integer Program Formulation

The general form of the fractional integer program can be written as follows:

Minimize:

ik_,
iai ai

Where the denominators a are defined as:

for each i, Xcjx. =a.
j=l

Subject to:

for each i, Xx.. 2 1 ensuring at least one unit is assigned to each avenue of approach.
j=

1

for each j, x x = 1 ensuring that each unit is assigned exactly once.
i=1

In this formulation, each term of the objective function represents a different

enemy avenue of approach. Each numerator ki represents the relative combat power of

enemy units located within avenue of approach i. The denominators ai each represent the

sum of relative combat power indices of friendly units that are chosen to oppose the

enemy units located in avenue of approach i. The force ratio for each avenue of

approach, then, is represented by its term in the objective function. Each term should be

minimized as much as possible but not at the expense of any other. The effect is that the

sum of the force ratios is minimized, which is represented by the objective function.

The decision variable x4 associates the decision to assign or not to assign friendly

unitj to avenue of approach i. The constant ki is the enemy's combat power index

associated with avenue of approach i. The constant cj is the friendly combat power index
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associated with friendly unitj. The subscript i tags the decision variable to a particular

avenue of approach. The subscriptj tags the decision variable to a particular friendly

unit.

3.3 The Integer Program Problem Solving Procedure

The steps for solving the fractional integer program are shown in a flow chart

(figure 3.3). The integer programming formulation described above is illustrated in

example 1 of Chapter 4. The following problem solving technique appears to capture the

objective of the military problem and uses 0-1 integer programming methodology. It

should be noted that one very basic result is not proved in this thesis (see Chapter 5). This

procedure relies, instead, on a conjecture. However, acceptance of this conjecture does

appear to optimize the decision of which units to assign opposite which avenues so as to

minimize the sum of the resulting force ratios.
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Stepl IRe write the objective function as a single]fraction having a common denominator J
Ii

Create two objective functions.On
Step 2 for the numerator and one for the

denominator.

The objective for the denominator

becomes a maximization. The ob-
jective for the numerator remains
a minimization.

Steps 3-7 apply to
the denominator only

Substitute all x., 's into the a
Step 3 cross product terms. Expand

expression.

Eliminate any cross product term
Step 4 with common J subscripting In two

or more xy.

Step 5 IFor the remaining terms rewrite each
cross product as a single. linear variable

subiect to linear constraints.

Step 6 Apply a branch and bound algorithm
to the redefined max problem.

Step 7 Determine the optimal basis from

Figure 3.3: Fractional Integer Program Flowchart
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Steps B-1I1 apply to1
the numerator only

Step 8 Rewrite the numerator in exactly
the same manner as step 3

From step 7. list the optimal basis for
Step 9 the max problem. Generate the nt

different optimal bases.

stpioIConstruct a constraint set which
Stepi10 bases of minproblem to the

optimal bases ofmax problem.

Apply a branch and bound algorithm
Step 11 to the redefined min problem.

Determine the optimal basis.

Figure 3.3 (Continued): Fractional Integer Program Flowchart
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Suppose the fractional integer objective function is:

3 k.
i=iai

Which expands to:

k, k2 +k 3

a, a 2 a 3

STEP 1: Rewrite the objective function over a single common denominator.

This gives a new objective function in the form:

kla2a3 + k2ala3 + k3ala2

a~a2a3

Go to step 2.

STEP 2: Create two objective functions, one for the numerator and one for the

denominator of the expression from step 1. In the steps that follow, we will first

maximize the denominator, then minimize the numerator. In this example, the numerator

objective becomes:

Minimize: kla 2a3 + kala3 + k3ala2

Similarly, the denominator objective becomes:

Maximize: ala2a3

Go to step 3.
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3.3.1 Maximizing the Denominator (Steps 3 thru 7):

STEP 3: Substitute all x4's and their coefficients into the ai cross product

expressions and expand the resulting denominator into a polynomial with cross product x4

terms only. For example suppose: cl = 2, c2 = 3, and c3 = 4. Furthermore, suppose each ai

is defined as:

a, = cjx, + c2x 2 + cx 3,

a2 = cIx2, + c2-x22 + c3x 23,

Therefore an a cross product expression becomes:

aa 2 = (2x,, + 3x12 + 4X13)(2X2] + 3X22 + 4X23)

Which expands to:

4XIIX2 1 + 6X,,X 2 2 + 8XlIX23 + 6X 2X2] + 9XI 2X2 2 + 12XI2X23 + 8XI3X21 + 12X,3 X22 + 16xx23

Go to step 4.

STEP 4: Eliminate any cross product term with commonj subscripting in two or

more xe's within the cross product. The assignment constraints cause these terms to

equal zero because friendly unitj can be assigned only once. In this example, the terms

containing x,,x2,, x,2x22, and x,3x3 would be eliminated. Go to step 5.

STEP 5: For the remaining terms, rewrite each decision variable cross product as

a single linear variable with combined subscripting. The fact that the new variable is

linear is of great importance because this limits the number of nodes that need to be

searched in the branch and bound algorithm. For instance x11x22 would become xI 22.

Next, introduce linear constraints that will cause the new variable to function like
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the original decision variable cross product. For each decision variable cross product

introduce the following constraint sets:

For the double product let xjxiy = xijij, subject to the constraints:

x. + xi, - x i , I

x9 - Xo ojj 0

Xi, )  - Xioiy- 0

Where the primed subscripting denotes a change in subscript values on the

decision variable. Table 3.1 lists the possible values forx0 and x. This table further

demonstrates the consistency of values for the cross product xixi. and the new linear

variable xj-, subject to the above constraint set,

Table 3.1: Double Product Truth Table

xii X4 .- i~ Xijv

1 1 1 1

1 0 0 0

0 1 0 0

0 0 0 0

For example the linear variable x1122 would be substituted for the cross product

xIIx22 and would then be subject to the constraints:
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x1) + x22  - x1122  < 1

xli - x1122  > 0

x 22  - x1122  0

In similar fashion, let the triple product xixij.xi,,, = xiji.,., be subject to the constraints:

xi + xe,. + Xi-,, - xuivj, : 2

x - xiJiyir,, _ 0

i-. - x ~i'j-ii,. _- 0

Xij, - _ie -" 0

Go to step 6.

STEP 6: Apply a branch and bound algorithm to the redefined objective function

and constraint set from step 6. Remember only the original xv's (e.g. x11) are defined as

0-1. The new variables (e.g. x1122) introduced after redefining the cross products are

linear and do not need to be defined as 0-1. In this example the redefined objective

function found in step 4 is:

Max 6 XIIX22 + 8XIIX 23 + 6X12X21 + l2X12X23 + 8x,3x 2, + 1 2X13 X22

Go to step 7.

STEP 7: Determine the optimal basis for the maximization of the denominator.

This optimal basis may not be the only basis that attains optimality for this objective.

Indeed, a degeneracy of sorts may exist. The branch and bound algorithm will determine

one optimum. However, there may be many optima which exist along parallel branches
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of the algorithm. It is this possibility of multiple optima (more than one set of decision

variables that achieve the same maximum) that leads to the minimization of the

numerator after fixing the denominator size at its maximum. Go to step 8.

3.3.2 Minimizing the Numerator (Steps 8 thru 11):

STEP 8: In exactly the same manner as in Step 3, rewrite the numerator of the

objective function. Likewise, redefine all cross products and introduce constraint sets in

exactly the same manner as step 5. Go to step 9.

STEP 9: From step 7 list the denominator's optimal basis from the branch and

bound algorithm. In this step, determine all bases that are optimal for the denominator

problem and constrain the numerator problem to include just one of these. This author

conjectures that one of these bases is optimal for the original fractional integer program.

First it is important to remember the meaning of the ij subscripting on each x.

The i represents the objective function term that the xo is being assigned to (a particular

avenue of approach). Whereas the j identifies the friendly unit index. It is possible to

attain the same optimal value for the denominator objective with a different feasible

combination of xijs equal to 1. In effect, we want to preserve the grouping of units to a

particular avenue of approach. Exactly which avenue will not be known until the

numerator is minimized. This can be performed by permuting the i (the avenue of

approach) subscripting across thej subscripting found in the optimal basis in Step 7.

For example, suppose the optimal basis in step 7 is x,,, x22 , and x23, where each of

these variables takes on the alue 1. Also suppose a, = c~x,, and a2 = cx22 + c3x 23.

Consequently, the cross product, ala 2, would then equal c(c 2+c3). Another optimal basis
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for the maximization objective could be x21, x12 and x13. Where a, = clx2l and a2 = c2x12 +

cx 3. The cross product, ala2, would also equal c,(c 2+c3) which is equal to the result of

the first basis. In fact, it is possible to find up to n! different optimal bases to the

maximization problem, so long as we preserve the grouping of j's (units) in the manner

discussed above. Now list the n! different optimal bases to the denominator problem. Go

to step 10.

STEP 10: This author conjectures that one of the bases in Step 9 will be optimal

for the numerator problem and the original objective function. In this step, construct a

constraint set of n! + 1 different constraints and introduce n! new variable "switches" yi

that will activate constraints to select the appropriate optimal basis. These new

constraints and variable switches will cause one of these sets of variables to be optimal in

the numerator problem. In effect, we are now combining the maximization of the

denominator and minimization of the numerator into one problem.

Let's revisit the example in Step 9 to illustrate how this is accomplished. We want

to choose either the basis x11, x22, and x23 or x21, x, 2 and x13 during the minimization

objective of the numerator. The following constraints will affect this choice:

xI + X22 + x 23 - 3y, = 0

X12 + X13 + X21 - 3Y2 = 0

YI + Y2 = 1

Both y, and Y2 are linear variables and do not need to bc defined as 0- 1. The fact that y,

and y2 are linear is of great importance because this limits the number of nodes that need

to be searched in the branch and bound algorithm. Go to step 11.
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STEP 11: Apply a branch and bound type algorithm to the redefined

minimization objective in step 8 subject to the constraint sets generated in Steps 8 and 10

and the original assignment constraints. I conjecture that the optimal basis from this

numerator objective is the optimal basis for the original fractional integer programming

problem. This ends the procedure.

3.4 Step-by-Step Procedure for the Near-Minimal Algorithm

The steps for establishing a near-optimal solution to the military problem are

shown in a flow chart (figure 3.5). The algorithm that follows is further illustrated in

example 2 in Chapter 4. The following procedure captures the objective of the military

problem and uses elementary, binary mathematics such as addition and division. The

worksheet in Appendix B should be used in conjunction with the procedure. The

underlying principle of the algorithm is to maximize the differential between two

numbers. The first number represents the current upperbound for an objective term (thc

current force ratio for avenue i). The second number represents a potentially new

upperbound for the same term should a unit be assigned there. In this way we identify

the so-called "greatest bang for buck." In so doing, each iteration of the algorithm moves

the objective function non-increasingly toward the minimum. Furthermore, each

iteration of the algorithm assigns a different friendly unit and corresponds to a different

row of Table 1 (see figure 3.4) of the worksheet.

In each row of Table I columns are designated for each avenue of approach or

term in the objective function. The value of box b represents the current value of the

denominator of each term (a) in the objective function (See Formulation Section 3.2).

The value of box c will contain the potentially new value of the denominator (a) should



T-4002 30

the unit listed in that row be assigned there. The value of box d will contain the current

force ratio for each term in the objective. The value in box e will contain the potential

force ratio should the unit listed in that row be assigned there. Finally, the value of box f

represents the marginal contribution for the unit listed in that row toward minimizing

each of the objective function terms. When circled, the entry in box f will represent the

greatest marginal contribution toward minimizing the objective. Tnis procedure

identifies the column (avenue of approach) with the greatest entry in box f for each

iteration and assigns the unit listed in that row to this column (avenue of approach).

Table 2 of the worksheet records the assignments and aids in calculating the resulting

force ratios. Feasibility is guaranteed through the selective incrementing of a counter in

column u of Table 1. The value in box m represents the maximum feasible number of

units that can be co-assigned to all avenues of approach. Any co-assignment of units to

the same avenue of approach increments u. Each iteration of the algorithm compares u to

m. When u becomes equal to or greater than m, then this indicates that each successive

iteration must assign remaining units to avenues without a unit initially assigned.

Otherwise, an avenue may be unopposed which violates tactical feasibility.
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Maximum number of units that can be co-assigned
Current number of units co-assigned
Enemy Combat Power Index for Avenue i

A7 B

Pow "Red"

C mu u k Blue

--- Friendly Combat Power Index for unit J

Current upperbound for objec tive term i

Current value of denominator a1
Potentially new upperbound for objective term I

Potential value of denominator a

Marginal contribuUon of unit J to objective term i

Figure 3.4: Exploded Worksheet Row

At the conclusion of this procedure, all friendly units are assigned according to

Army Doctrine (a feasible solution to the military problem) and the sum of the resulting

force ratios is very near the minimal value for the fractional integer program discussed

earlier.

For larger problems it may be helpful to use the analogous computer program

shown in A 2pendix E. This program is merely an automated worksheet. A tremendous

time savings is the major advantage for using the program. Problems of very large size

can be solved in less than half a second using the program. The manual method is

possibly prone to analyst error and may take 20 or more minutes to complete for larger

problems.
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Start

Step 1 Identify and record ecpi's
In row "red" of Table 1.

Step 2 identify and record fcpi's
in Column "blue" of Table 1.

Step 3 [Calculate and record value of "m."

Step 4 Let k=l. u=O.

Step 5 For row "k" apply Rulel. 4

:Is

Step 6 tApply Rule 2 (part1)

~yes
[Apply Rule 2 (part 2)

Step 7 [Circle largest entry in box f
of row "k" and apply Rule 3.

Step 8 For row k record entry of
column "blue" in Table 2.

Ise

Step 9 Table 2 for the lettere u=u+1

Figure 3.5: Near-Minimal Algorithm Flowchart
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STEP 1: Identify enemy avenues of approach. For each avenue of approach sum

the enemy combat power indices* (ecpi) in the enemy's first echelon and record each in a

separate column of row "red" of Table 1. Cross out all lettered columns without entries

in row "red." Enter the total number of avenues of approach in the "Total # Entries" box

to the right of row "red." Go to Step 2.

*Refer to page 3-3, CGSC ST 100-9, to obtain unclassified combat power indices for

different unit types.

STEP 2: Identify friendly units available for deployment. Assign each their

friendly combat power index* (fcpi). Arrange in non-increasing (decreasing) order.

Record them in order in column "Blue" of Table 1. Record the number of entries in

column "Blue" in the "Total # Entries" box at the bottom of Table 1. Go to Step 3.

*Refer to page 3-3, CGSC ST 100-9, to obtain unclassified combat power indices for

different unit types.

STEP 3: Subtract the value in the "Total # Entries" box to the right of row "red"

from the "Total # Entries" box at bottom of column "Blue." Record in the box marked m

at upper left of Table 1. Go to Step 4.

STEP 4: Let a Table 1 row counter "k" be set equal to 1. Let u--O. (Note that both

counters have columns labeled in Table 1 for recording their values throughout this

procedure.) Go to Step 5.

STEP 5: For row k of Table 1, apply Rule 1.
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RULE 1:

For each used column in row k:

Add the value of column "Blue" to the value in box b.

Record the result in box c.

Go to Step 6.

STEP 6: For row k in Table 1 apply Rule 2. Go to Step 7.

RULE 2:

For all used columns, divide the value in box c into the value in row "red".

Record in box e.

If the used column has a 0 in box b, then:

Subtract the value in box e from the value in row "red."

Record result in box f.

Else, divide the value in box b into the value in row "red."

Record in box d.

Subtract the value in box e from the value in box d.

Record in box f.

STEP 7: For the current row (row k), circle the largest value of all boxes marked

f. Apply Rule 3.
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RULE 3:

For the column with the circled entry Dil, add the value in column "Blue" of row k to

the value in box b.

Record in box b in next row (row k+1).

For all other capital lettered columns, copy the value in box b to box b of the next row

(row k+1).

Go to Step 8.

STEP 8: For the current row (row k), record the value in column "Blue" to the

same column of Table 2 as the entry circled in Step 7. Go to Step 9.

STEP 9: If more than one entry is now listed for the capital lettered column in

Table 2 from Step 8, then u=u+l. Otherwise u is unchanged. Record this new u in column

u of row k+1 of Table 1. Go to Step 10.

STEP 10: Is the value of u m? If so, cross out all capital lettered columns in

Table 1 with circled entries in boxes marked f. No further calculations are necessary for

these columns. Go to Step 11.

STEP 11: Is the number of rows filled in equal to the number of entries in column

"Blue?" If no, go to Step 12. If yes, go to Step 13.

STEP 12: Let k=k+1 and go to Step 5.
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STEP 13: For each capital lettered column of Table 2 sum its entries and record

in row "total" in Table 2. Divide this sum into the value in row "Red" of Table 1. Record

the result in row "Ratio" of Table 2. Go to Step 14.

STEP 14: Sum all entries in row "Ratio" of Table 2. This sum is the near minimal

value for the force ratio problem. Assign units with the combat power indices listed in

Table 2 to the Avenue of Approach corresponding to the lettered column they are listed.

This ends the procedure.
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Chapter 4

EXAMPLE PROBLEMS

This chapter illustrates both the fractional integer programming procedure and the

near-minimal algorithm with several examples. The first example is a fractional integer

program of meager size. However, notice the length and complexity of the problem

solving. All successive examples illuminate the near-minimal algorithm.

4.1 Example 1 (Using Fractional Integer Programming)

4.1.1 Problem Statement

Minimize the force ratios between 3 friendly units with combat power indices of

3, 2.3, and 2 and enemy units assigned along 2 avenues of approach with combat power

indices of 7.2 and 4.1. Figures 3.1 and 3.2 graphically illustrate this first example.

4.1.2 Fractional Integer Program Formulation

The fractional integer formulation was discussed in detail in Chapter 3. This

method will serve to choose the units for each avenue of approach to minimize the

expression below which, in effect, minimizes the sum of ratios of the enemy's combat

power indices to the units chosen to oppose it there. The fractional programming problem

which formulates the example above would look like the following:
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Minimize:

7.2 4.1
a, a2

Let xo = 1, if along avenue of approach i, friendly unitj is assigned. Otherwise x. =0.

Where:

a, = 3x,, + 2.3x 2 + 2x13

a2 = 3x 21 + 2.3x22 + 2x23

subject to:

X11+ X12+ X13  >1

x21 + x 22 + x 23 >1

x11 + X2=1

x12  + x22  =1

x13  + x2=1

4.1.3 Integer Programming Problem Solving Procedure:

STEP 1: By combining the objective function terms into a single fraction, the

objective function becomes:

min 7.2a 2 +4.1a, (4.1)

a1a2
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STEPS 2-3: From chapter 3, it was conjectured that the minimum of eq. 4.1 will

exist at a maximum of ala2. Expanding this expression yields:

Max ala2 =

9x,,x21 + 6.9 x 1 2l + 6x13x 21 + 6.9xx22 + 5.29x,2X22 + 4.6x,3x2 + 6x1,x2 + 4.6x12 + 4x 3x23

STEP 4: Since all xi 's are either 0 or 1 and subject to the assignment constraints

above, some terms can be eliminated which will equal 0 at feasibility. The Maximization

problem now becomes:

Max a~a 2 = 6.9x, 2 1 + 6x&3x, + 6.9x, x2 + 4.6x, 3x 22 + 6x 1x 23 + 4.6x19 23

STEP 5: Next it will be necessary to redefine each cross product in the objective

function as a new variable subject to additional linear constraints.

Let xvix , = xo i ,

Subject to the additional constraints:

xU + xiv - xijiv -51

xU - xuJ 0

xiv, - xi,: > 0

For this problem the above constraint types are formulated below:

X12  +X 21  - X1221  <=1

x12  - x1221  >=0

x2) - x1221  >=0

x13 +x21  - x1321 <=1

x13  - x1321  >=

x 21  - X 32 >--

1 ' +X 2 2 - X1122 <=1
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x11 - x 22  >-

+x22  - x1122  >-

X13  +X 22  - X1 322  <=1

X13 - x1322  >=0

x22  - x1322  >=0

Xi +X 23  - X112 3  <=1

xI! - X1123 >----0

X23  X 123 >=0

x12  +x23  - x1223  <=1

X12 - X1223 >-O

X23 x1223 >=0

STEP 6: Apply a branch and bound algorithm to this objective function and

constraints.

STEP 7: The optimal basis is: {xI1 , x22, x23}.

STEP 8: Examining the numerator as the minimization problem we have:

Min 7.2a 2 + 4.1a,

Expanding this expression after substituting the appropriate xij's for a, and a, we have:

Min 21.6x2, + 16.56x22 + 14.4x23 + 12.3x,, + 9.43x12 + 8.2x1 3

STEP 9: We can generate n! different solution sets which yield the same value

for the objective function. In this example n (section 3.2), the number of avenues of

approach, iq 2. This degeneracy of sorts is caused by the xij sums in the expressions a,
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and a2. Subject to the above constraints, each of these expressions can actually take on n

different combinations of these 0-1 variables in which the coefficients of the variables

equal to 1 maximize the expression al a2 . Figure 4.1 illustrates the two bases which

maximize the denominator expression ala2 found in eq. 4.1. The other optimal solution

to the maximization objective is (x12, x, x2 ). The minimization of the original objective

function will be the intersection between the solution space for the numerator and

denominator objectives. The information about the maximization function will now

constrain the minimization function to just these choices of decision variables. We can

now write additional constraints which will cause one and only one of these sets of

variables to be basic in the minimization objective. The numerator minimization

objective, properly constrained, will become the minimum for the original objective.
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0
avenue of 12
approach i:

Which Is mmin? 7. 2.0) + 4.1(2.3+3.0)

a1  7. 2.3+3.0 + 4.1 2.0 a2

2.0 2.3 3.0

friendly unit J: 12 3

Figure 4.1: Example 1 Degeneracy
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STEP 10: Three (n! + 1) new constraints would restrict the minimization

solution space to one of the maximization solutions. These constraints are:

xII +x22+x23-3yI =0

x12+x]3+x21 -3y2--0

yI+ Y2=1

The coefficient, 3, on y, and Y2 in th2 first two constraints causes y, and y2 to equal

either 0 or 1 depending on which set of xqs ae basic. Earlier it was stated either x,,, x22,

and x23 all equal 1 or x12, x13, and x21 all equal 1. Both sets of xijs cannot be chosen because

the third constraint causes either y, or Y2 to equal 1. Thus the y acts as a "switch" by

activating the decision variables contained in one the first two constraints to equal 1 at

feasibility.

STEP 11: The redefined minimization problem becomes:

Min 21.6x + 16.56x2, + 14.4x23 + 12.3x + 9.43x,2 + 8.2x1 3

Subject to:

x 1 + x12 + X13  >= 1

X21 + X22 + X23 >=1

xlI + x2l -1

x12  + X2=1

X1 3 + =1



T-4002 45

Additionally, from the maximization of the denominator problem:

x11 + X22 + X23 - 3y, = 0

x12 + X13 + x21 - 3Y2 = 0

Y1 + Y2 = 1

Now using a branch and bound minimization method, the above 0-1 formulation

yields the following solution: The optimal basis is [x12, x13, x2, }. These variables yield a

minimum objective value of 3.04 to the original objective function:

7.2 4.1
a, a2

4.1.4 Conclusions

Even though this problem is small, the procedure is lengthy. In fact there are only

six feasible solutions to this problem. To illustra:e the growing complexity of this

formulation, examine a slightly larger problem. Consider assigning five units opposite

just three avenues of approach. Table 4.1 lists the types and numbers of constraints and

variables generated in this kind of formulation.
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Table 4.1: Types and Numbers of Constraints and Variables

Form Type #

m+n assignment constraints 8

n ai equalities 3
m, double products with each double product having 3 constraints 75
m3  triple products with each triple product having 4 constraints 600

Total Number of Constraints: 686

mn assignment variables 15

m2  linear variable substitutions for double products 25

M3  linear variable substitutions for triple products 125

n! linear switch variables 6

Total Number of Variables: 171

This fractional integer programming formulation would have 171 variables and

686 constraints and is still not the size that military staffs would typically need to

analyze. A typical military problem found at division and corps level might contain 10 or

more avenues of approach and 20 or more units to assign. The problem with 10 avenues

would generate an overwhelming 10! linear switch variables. This problem, then, would

contain over three and a half million linear switch variables alone. Clearly, the fractional

integer program method may tax the limits of memory found in current day hardware and

may, indeed, not yield a solution in the time allocated for analysis. A better, possibly

more efficient, method is needed for larger problems. The Near-Minimal Algorithm

demonstrated in Example 2 is such a method.
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4.2 Example 2 (Use of the Near-Minimal Algorithm)

4.2.1 Problem Statement

Align, near optimally, friendly forces with combat power indices of 3.0, 2.1, 1.7,

3.5, and 2.3 against three known enemy avenues of approach with opposing combat

power indices of 14.1, 8.6, and 10.7. Figure 4.2 graphically illustrates this example.
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Known Enemy Avenues of Approach

0 0
Avenue of A BC
approach:B

min 14.1+ &610.7

21 3.0 3Z5 233L.7

Battalion Squadron Battalion Infantry Battery
Battalion

Friendly unit: 1 2 3 4 5

Figure 4.2: Example 2 Situation
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4.2.2 Problem Discussion

We will choose the units for each avenue of approach such that we minimize the

sum of ratios of the enemy's combat power indices to the units chosen to oppose it there.

We will use the procedure in Chapter 3. Using this procedure, we can find a feasible,

near-minimal solution in just five iterations of the algorithm. Each of the five iterations of

the algorithm assigns a friendly unit and corresponds to a different row of Table 1. Table

2 records the assignments and aids in calculating the resulting force ratios.

For this example the optimal sum of the force ratios is 7.89.

4.2.3 Application of the Near-Minimal Algorithm

Worksheet Preparation

(refer to figure 4.3)

STEP 1: The indices for each avenue of approach were given in the problem

statement. They are: 14.1, 8.6, and 10.7. These are recorded in row "red." The final two

columns D and E are crossed out. They are not needed for this problem. There is a total

of three avenues of approach in this problem. Record 3 in the "total entries" box.

STEP 2: Again, from the problem statement, we note the indices for the friendly

units, in non-increasing order as: 3.5, 3.0, 2.3, 2.1, and 1.7. These are recorded in column

"blue." This is a total of five friendly units. Record 5 in the "total entries" box.

STEP 3: Subtracting the two "total entries" establishes "m" as 2. Record 2 in box

m. This is the maximum number of units that can be co-assigned to all avenues.

STEP 4: Let "u" equal 0 and "k" equal 1.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #
A B C D E Entries

Row "Red'
so. 14.1 8.6 10.7 3

u k Blue I
-7 C- C C fbCIf

13.50

b c f b C f b c f b c f b c f

23.0 0

b f f b c f f b c f

3 2.3 7- e7 d e e

b c f b f b C f b c f b C f

4 2.1
dd d e d - d

b C f b C f b C f b C f b C f

5 1.7 .r 0 T- =

a - .- - ;-- -- .- - -"- - ;--

b f b c f b b C f b c f

6 o- 0 e

b f b c f b c f b c f b c f

Sd d 0 d e d ad -

b c r b C b c f b b c f

8 d e d 0 0 = 0-; I 1 ---

b f b c f b c f b c f b, c

7 d 0 d ---- d . .

b c f b C f b C f b C f b C f

10
* d *- 0 d

9 i.h d I IC• d

Total #Entries 5 Table 1

A B C D E

Total
Row Ratio

Table 2 Total

Figure 4.3: Algorithm Worksheet Preparation
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Iteration 1
Worksheet Row 1
(refer to figure 4.4)

STEP 5: Add the entry in column "Blue" (3.5) to the each column's entry in box

b and record in box c for each column.

STEP 6: Applying Rule 2, divide the entry in box c into the entry in row "red."

Record in box e. All entries in box b are 0. Therefore, subtract the entry in box e from

the entry in row "red" for each column. Record in box f.

STEP 7: Inspection of each entry in box f finds 10.08 as the greatest. Circle

10.08. The unit with potential 3.5 has its greatest marginal contribution toward

minimizing the objective if it were assigned to avenue C. For column A only, add 3.5

(entry in column "blue" for row 1) to 0 and record in box b of row 2. For columns B and

C record 0 (entry in box b of row 1) in box b of row 2.

STEP 8: We now record 3.5 (entry in column "blue" for row 1) in any box of

column A (the column with 10.08 circled) in Table 2.

STEP 9: Since only one entry is listed in column A of Table 2 the counter u is

unchanged. Record 0 in column u of row 2.

STEP 10: The value of u is still less than m. So we continue without violating

feasibility.

STEP 11: We still have rows with entries in column "blue" that remain unfilled.

So we continue.

STEP 12: Increment the row number by 1. We now work on row 2.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #
A B C D E Entries

Row "Red 14.1 8.6 10.7 3

u k Blue

3.5 0 3- O 2 03-5 6.15 0 7- 64 Id0 C d0 f-4.0 2.4 3.0O6
b c f b c f b c f b c f b c f

0 2 3 5 0 0

--b f b C f b C f b c f b C f

S2.3 - G

b C f b C f b c f b c f b C f

4 2.1 7_

b C f b c f b C f b C f b C f

5 1.7 7--- d v I I -" r- II-T-

b f b C f b C f b c f b c f
6 * 6 0 -6r - -

b f b C f b c f b C f b C f

7di '*- d • d • d •* d •

I I € b c- -r b c f b c f

b € b c fbc bc bc

9 * d d . d e d e

b c f b c f b c f b c f b C f

H- e CH Pi I =

Total # Entries 5 Table 1

A B C D E

3.5

Total
Row Ratio "'_

Table 2 Total

Figure 4.4: Algorithm Worksheet Iteration 1
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Iteration 2
Worksheet Row 2
(refer to figure 4.5)

STEP 5: Add the entry in column "Blue" (3.0) to the each column's entry in box

b and record in box c for each column.

STEP 6: Applying Rule 2, divide the entry in box c into the entry in row "red."

Record in box e. All entries in box b are 0 except column A. Therefore, for columns B

and C subtract the entry in box e from the entry in row "red" for each column. Record in

box f. For column A divide the entry in box b into the entry in row "red" and record in

box d. For column A only, subtract the entry in box e from the entry in box d. Record in

box f.

STEP 7: Inspection of each entry in box f finds 7.14 as the greatest. Circle 7.14.

The unit with potential 3.0 has its greatest marginal contribution toward minimizing the

objective if it were assigned to avenue C. For column C only, add 3.0 (entry in column

"blue" for row 2) to 0 and record in box b of row 3. For column A record 3.5 and for B

record 0 (entry in box b of row 2) in box b of row 3.

STEP 8: We now record 3.0 (entry in column "blue" for row 2) in any box of

column C (the column with 7.14 circled) in Table 2.

STEP 9: Since only one entry is listed in column C of Table 2 the counter u is

unchanged. Record 0 in column u of row 3.

STEP 10: The value of u is still less than m. So we continue without violating

feasibility.

STEP 11: We still have rows with entries in column "blue" that remain unfilled.

So we continue.

STEP 12: Increment the row number by 1. We now work on row 3.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #A B C D E Entries

2 0 1 3 .5 0 o~o L03. 5 6.5 is 3. 7.64 0 0

*-r d 7e

b c f b f b c b f b f

Tota 3. Enris5 0 ~ 1 31

A b CfF C D bE
3.5 0_ __ _ 3 . _ _ _ _ _ _ _

To0 3___ 2.3__ ______ 7____ a____$e

Ro RatioC C f b
T2.1 2 Total ;-- =

Fi5r 4.5: bloih Woksee ftrto b2c
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Iteration 3
Worksheet Row 3
(refer to figure 4.6)

STEP 5: Add the entry in column "Blue" (2.3) to the each column's entry in box

b and record in box c for each column.

STEP 6: Applying Rule 2, divide the entry in box c into the entry in row "red."

Record in box e. Only column B's entry in box b is 0. Therefore, for column B subtract

the entry in box e from the entry in row "red." Record in box f. For columns A and C

divide the entry in box b into the entry in row "red" and record in box d. For columns A

and C only, subtract the entry in box e from the entry in box d. Record in box f.

STEP 7: Inspection of each entry in box f finds 4.87 as the greatest. Circle 4.87.

The unit with potential 2.3 has its greatest marginal contribution toward minimizing the

objective if it were assigned to avenue B. For column B only, add 2.3 (entry in column

"blue" for row 3) to 0 and record in box b of row 4. For column B record 2.3 and for A

and C copy 3.5 and 3 (entries in box b of row 2) in box b of row 4 respectively.

STEP 8: We now record 2.3 (entry in column "blue" for row 3) in any box of

column B (the column with 4.87 circled) in Table 2.

STEP 9: Since only one entry is listed in column B of Table 2 the counter u is

unchanged. Record 0 in column u of row 4.

STEP 10: The value of u is still less than m. So we continue without violating

feasibility.

STEP 11: We still have rows with entries in column "blue" that remain unfilled.

So we continue.

STEP 12: Increment the row number by 1. We now work on row 4.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

A B C D ETEtries
Row "Red I_ l

M U. k BlueIII I I

135-5 03.5 03-5~4 0 0
o 2 3.5 0 OE 6.5r-L 7r4d

b c f b C f b C b C b C f
3558 02.3 03

0 4 2.01.6 - 57 - 71

5. 1.723 .

T 0a 4 Ent.e 5 Tabl 1

[ A f b f b C D E[ 3.1.330.7___

Tal 2 dTotald

Figure 4.6 c f b. Wcz e f b 'c b c f
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Iteration 4
Worksheet Row 4
(refer to figure 4.7)

STEP 5: Add the entry in column "Blue" (2.1) to the each column's entry in box

b and record in box c for each column.

STEP 6: Applying Rule 2, divide the entry in box c into the entry in row "red."

Record in box e. All columns have non-zero entries in box b. For all columns divide the

entry in box b into die entry in row "red" and record in box d. For all columns, subtract

the entry in box e from the entry in box d. Record in box f.

STEP 7: Inspection of each entry in box f finds 1.79 as the greatest. Circle 1.79.

The unit with potential 2.1 has its greatest marginal contribution toward minimizing the

objective if it were assigned to avenue B. For column B only, add 2.1 (entry in column

"blue" for row 4) to 2.3 (entry in box b for column B) and record in box b of row 5. For

column B record 4.4 and for A and C copy 3.5 and 3 (entries in box b of row 4) in box b

of row 5 respectively.

STEP 8: We now record 2.1 (entry in column "blue" for row 4) in any remaining

bbx of column B (the column with 1.79 circled) in Table 2.

STEP 9: Since more than one entry is listed in column B of Table 2 the counter u

is incremented by 1. Record 1 in column u of row 5.

STEP 10: The value of u is still less than m. So we continue without violating

feasibility.

STEP 11: We still have rows with entries in column "blue" that remain unfilled.

So we continue.

STEP 12: Increment the row number by 1. We now work on row 5.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #
A B C D E Entries

Row "Red'141 860.

m. u k BlueI II

13.5 0 - o 03.5-5 0 2.5 7604
c 0 fe e4.0 2.4 3.06

0 2 3.0 3 518 .471

3.5
f b -, b C f b C b 6

A C D E
3.5 2.3.e" 35.0_ _ _ _ ____

0 4__ 2.1 __ _ _ - 1.52 - 1.79 1.46

Figur 4.: Aloih3okhe trto
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Iteration 5
Worksheet Row 5 and Calculation of Force Ratios

(refer to figures 4.8 and 4.9)

STEP 5: Add the entry in column "Blue" (1.7) to the each column's entry in box

b and record in box c for each column.

STEP 6: Applying Rule 2, divide the entry in box c into the entry in row "red."

Record in box e. All columns have non-zero entries in box b. For all columns divide the

entry in box b into the entry in row "red" and record in box d. For all columns, subtract

the entry in box e from the entry in box d. Record in box f.

STEP 7: Inspection of each entry in box f finds 1.31 as the greatest. Circle 1.31.

The unit with potential 1.7 has its greatest marginal contribution toward minimizing the

objective if it were assigned to avenue A. For column A only, add 1.7 (entry in column

"blue" for row 5) to 3.5 (entry in box b for column B) and record in box b of row 6. For

column A record 5.2 and for B and C copy 4.4 and 3 (entries in box b of row 5) in box b

of row 6 respectively.

STEP 8: We now record 1.7 (entry in column "blue" for row 5) in any remaining

box of column A (the column with 1.31 circled) in Table 2.

STEP 9: Since more than one entry is listed in column A of Table 2 the counter u

is incremented by 1. Record 2 in column u of row 6.

STEP 10: The value of u is now equal to m. No further calculations are necessary

for columns A, B, and C (columns with circled entries in box f). Cross out the remaining

pordons of columns A, B, and C.

STEP 11: We have no rows remaining with entries in column "blue" that remain

unfilled. Skip Step 12 and go directly to Step 13.

STEP 13: We now shift to Table 2 for calculation of force ratios. Sum the entries
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for each column ir Table 2 and record in row "total." Divide each column's total into its

entry in row "red" of Table 1. Record the results, 2.71, 1.95, and 3.56 in row "ratio."

These are the near-minimal force ratio's for each avenue of approach.

STEP 14: Sum the entries in row "ratio." Record the result, 8.22, in box "total."

This sum is the near-minimal sum to the fractional integer programming problem. Assign

units with combat power indices of 3.5 and 1.7 to avenue of approach A. Assign units

with combat power indices 2.3 and 2.1 to avenue of approach B. Assign the unit with

combat power index 3.0 to avenue of approach C. Figure 4.9 illustrates the near-optimal

assignment of units. This ends the procedure.

4.2.4 Conclusions

Although the Near-Minimal Algorithm is simple, it is computation intense. The

worksheet can handle a problem with as many as five avenues of approach and 10 units

to assign. Example 3 demonstrates use of the worksheet for a problem with five avenues

and seven units.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #

Row "~Red' 1

m u k Blue II I

350 31- o*.15 03.570

b - b C f b I'- b C f

0 3.5 3. -5__ _

3.1. 6 2 . 7.14_ _ __ _ __ _

Tota 5.2 4.4 3 .0 3_______

Ro .3Ratio .7187.951.5 7 _ _ _ __ _ _82

abl 2 Tota
Fiur 448 Alorth Wokhe Itertio 5.9 14
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Avenue of
approach: A 

B I

min 1.1 + .6 +10.7

(1.7 + 3.5) (2.1 + 2.3) 3.0

Figure 4.9: Example 2 Final Assignments
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4.3 Example 3 (Summarized Use of the Near-Minimal Algorithm)

4.3.1 Problem Statement

Align, near optimally, friendly forces with combat power indices of 3.0, 2.0, 2.0,

3.0, 2.0, 2.0 and 2.0 against five known enemy avenues of approach with opposing

combat power indices of 4.9, 8.0, 3.5, 12.9 and 3.5. The graphic illustration for this

example is shown is figure 4.10.
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Avenue of0
Approach :A B C D E

4.9 & 3.5 2.3.5

2.0 3.0 2.0 2.0 3.0 2.0 2.0

Friendly Unit: 1 2 3 4 5 6 7

Figure 4.10: Examfples 3 and 4 Situation



T-4002 65

4.3.2 Problem Discussion

Again, we will choose the units for each avenue of approach such that we

minimize the sum of ratios of the enemy's combat power indices to the units chosen to

oppose it there. We will use the procedure and worksheet in Chapter 3. Using this

procedure, we can find a feasible, near-minimal solution in just seven iterations of the

algorithm. The completed worksheet for this problem is shown in figure 4.11.

4.3.3 Conclusions

The computations for these larger problems are repetitive, time consuming, and

tiresome. In fact, for problems larger than five avenues and 10 units another worksheet

would be necessary to record the necessary computations. Aside from this shortcoming,

an analyst could easily make an error during any one of the many calculations. Worse

yet, an incorrect decision may result concerning unit assignments. The computer

program demonstrated in the next example requires minimal input to define the problem

and completes the worksheet automatically and very quickly.
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

Total #
A B C D E Entries

Row "Red' 8 . 29 ~ T
- N 44 .. .51. 35 -

m u k Blue

203 3 0 3 0 3 03 3
3.3 .3 --- 2.3 06 2.83

*1.6 71.2 4..3 -1 1.2 1

02 3335.2.2. 1 23

2.4 1.2 2.7 1.6 . 7 .8 . . .75

282

0 ~ 4 2 -!42 3511 0 2 175 3 5 17 02 17

T 2-4 -2 3.1. 2.5 4 26 1759 7
24 3__ 214f7 5 ___2

2.4Rti 1.75 2.7 1.23 432.58 _775

Ta4fblce 3 2 Tota

Figue 4.1: xampe 3 ompetedWorkhee
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4.4 Example 4 (Using the Analogous Computer Program)

4.4.1 Problem Statement

Align, near optimally, friendly forc ,s with conbat power indices of 3.0, 2.0, 2.0,

3.0, 2.0, 2.0 and 2.0 against five known enemy avenues of approach with opposing

combat power indices of 4.9, 8.0, 3.5, 12.9 and 3.5.

4.4.2 Problem Discussion

This situation is identical to example 3 and is graphically illustrated in figure

4.10. However, in this example we will execute the algorithm with the aid of a computer.

The software will assign units foj each avenue of approach such that it nearly minimizes

the sum of the ratios of the enemy combat power indices over the sum of the friendly unit

indices chosen to oppose it. The C code for the computer program we will use is at

Appendix E. This program executes the exact procedure illustrated manually in

examples 2 and 3. Any IBM compatible computer that operates on MS-DOS can execute

the compiled version of the program. With the aid of this program, we can find a

feasible, near-minimal solution in less than half a second. The user and software

interfacing is shown in figure 4.12.
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User-Software Interface
,¢*ssssess**¢s*s**sss**s****,s*****S*****s****

This software aligns tactical forces
in the defense.

It can assign up to 20 friendly units
across 20 enemy avenues of approach.

$sssss*S**sss*ss*s*S*SSsSSS*t SSSS*S**SS*S***S8

How many enemy avenues of approach are known? (Please enter
an integer between 1 and 20) 5

Enter 5 enemy combat power indices. Separate each index
with a space or a <return>. The first one should correspond
with avenue of approach A; the second with B; etc.

4.9
8
3.5
12.9
3.5
The enemy combat power indices you read in are as follows:
4.90, 8.00, 3.50, 12.90, 3.50.

How many friendly units are available for deployment? _7___

Enter 7 friendly combat power indices. Separate each
with a space or a <return>. Each one should correspond
to a different friendly unit.

2 3 2 2 2 3 2
The friendly combat power indices you read in are as follows:
2.00, 3.00, 2.00, 2.00, 2.00, 3.00, 2.00.

A near-optimal alignment of friendly units is as follows:

Assign combat power index 3.00 to avenue of approach D.
Assign combat power index 3.00 to avenue of approach B.
Assign combat power index 2.00 to avenue of approach A.
Assign combat power index 2.00 to avenue of approach E.
Assign combat power index 2.00 to avenue of approach C.
Assign combat power index 2.00 to avenue of approach D.
Assign combat power index 2.00 to avenue of approach A.

The Force Ratios are:

A: 1.23; B: 2.67; C: 1.75; D: 2.58; E: 1.75;

a The near-optimal solution is 9.97. 0

Figure 4.12: Computer Program Example
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Chapter 5

CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

In order to fight the battle successfully the commander has to find out
what is going on, decide what to do about it, tell somebody what to do,
then keep track of how the battle is going...

General Starry 1981

5.1 Conclusion

It is in the decision process that commanders are most often called upon to

exercise their awesome responsibility. It is the commander who is given all available and

relevant information to the situation. It is the commander who mo;,, often decides what

to do. However, should time permit, his or her decision is often based on the analysis of

raw facts at some lower level. It is the commander's staff which gleefully dissects the

situation and presents the timely, pertinent facts necessary for the commander's decision.

Tactically, the decision of how to defend terrain is one of the most critical a commander

can make. A ground force must first establish an adequate defense before launching any

other type of operation. A defense is necessary to exist on the ground. In peacetime and

in wartime ground forces must defend themselves first. To fail in the defense could cause

disastro!.s consequences for a tactical force and possibly our nation.

This thesis is aimed at strengthening the staff's analysis of the defense. The

current method used in the Army is deficient in that it does not incorporate in its

formulation a critical evaluation criterion. Force ratios are important in the analysis of

defense but the defense is not formulated with a detailed inquiry as to what ratio of force
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is the best for the tactical situation. This thesis presents a method in which a detailed

assessment of force ratios can be affected very quickly.

It should be noted that a very good solution is obtained in less than half a second

of run time on an IBM 286 compatible running at 12MHz. This is especially significant

when compared to present integer methods which, after correct formulation, could run for

several hours or more. The algorithm presented in this thesis produces a substantial time

savings. It has also been shown in Appendix D that the time savings is at the expense of

very little mathematically. The solution is very near the minimal solution to the

fractional integer program.

After applying the algorithm, the resulting assignment of tactical forces could

function as a standard in which the staff could guide their own estimate of the situation.

As a result the scope of analysis is reduced. Coupled, too, with the substantial time

savings of the Algorithm, staff officers previously detailed to analyze force ratios are

freed to conduct other, possibly indispensable, planning functions. The critical nature of

the ensuing decision requires the staff to analyze the situation as best they possibly can.

This thesis tremendously enhances the analysis of a defensive situation for both the staff

and the commander.

5.2 Suggestions for Further Research

Although the method presented in this thesis is quick and dirty, some

improvements may be desirable. Specifically, the algorithm can be improved

mathematically and the packaging of the software is not as friendly as it needs to be for

general, unlimited use by occasional computer users.

At first, the reader may hypothesize that some obvious generalizations and
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shortcuts may be in order to shorten the rather repetitive manual method presented in

Chapters 3 and 4 of this thesis. The author cautions the reader against hasty inferences.

The reader should note that the examples in Chapter 4 are elementary sample problems

chosen for their simplicity and ease of illustration. Not all situations bear the seemingly

apparent generalizations that these examples tend to radiate. For example, it is not always

the case that the first n units are each assigned to a different avenue of approach. If this

were universally the case, then this procedure could be simplified. Further research may

be in order to appropriately simplify the manual proceduic without damaging the impact

of the logic contained within.

This author conjectured a result in Chapter 3 during formulation of the fractional

integer problem solving procedure which needs to be proved. In this procedure it was

believed that if the denominator of an objective fraction were fixed at a feasible

maximum, then the numerator searched for a feasible minimum, the resulting fraction is

the minimum for the fractional objective. This author worked numerous examples

applicable to this thesis and maintains this is a valid claim. However, the author presents

no formal mathematical proof of this result. The fractional integer method contained in

this thesis certainly should contain a proof of this result to legitimately claim optimality

from the method. This is a topic for further research.

Mathematically, there is a defect in the near minimal algorithm. Fortunately, this

defect will seldom, if at all, occur in practice because of the way the military problem is

defined. Under certain conditions the algorithm proceeds and reaches a solution which is

feasible but significantly removed from optimality. This situation can occur whenever

friendly units are assigned a combat power index of 1. Here's why: The essence of the

algorithm is the maximization of a differential between an original number (an enemy
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combat power index) and a new number derived from dividing a friendly combat power

index into this original number. When the number 1 is divided into any number the result

is the number itself. When this situation occurs, the difference between the original

number and the new number is 0. The assignment decision of this index to a particular

avenue of approach is built on choosing a maximum difference. Since it is this difference

which is being maximized, any other positive difference will always be greater. As a

result, we will not see an assignment of a unit with index 1 until feasibility is critical.

Under certain circumstances it is undesirable to assign a unit with index 1 so late in the

algorithm. The resulting sum to the fractional integer objective may not be near-minimal.

Fortunately and decidedly, the military problem is carefully developed by assigning the

index 1 to an enemy unit as the relative standard. The author does not consider this

potential deficiency a showstopper in any military application of this procedure. This is

an area which should be further researched.

Another area of further research is in the packaging of the analogous computer

program.. The author taught himself the C language and admits to any deficiencies in the

efficiency and friendliness of the code. Making the program more user friendly is

certainly worthwhile. Also of interest could be the output itself. Currently, graphics is

not used in presenting assignments of units or force ratios. Indeed, commanders and

staffs would be less intimidated by graphical output. Ideally the graphics could employ

current Army symbols and control measures and might even be a three-dimensional

representation of the battlefield itself.

Combining force ratios with other relevant decision criteria is of interest, too. For

example, integrating terrain limitations and lateral mobility potential for different units

would extend military practicality. Terrain limitations would add a set of binding
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constraints mathematically. Lateral mobility could be incorporated in a risk type analysis

before final assignments of units. Both of these additional criteria are important but not

addressed in this thesis. The decision to assign units to terrain is limited by geography.

Certainly, there is a limit to the number of units that can be assigned to particular terrain

(terrain limitations). Equally as important is how quickly we can displace to other terrain

should the situation require it (lateral mobility). Coupling these two additional criteria

with force ratios is an area for further research.

Finally, a weighting scheme that prioritizes the potential threat or its likelihood

could be useful. If this were performed, the resulting assignment of units may be more

reflective of the actual decision criteria. Rarely would an analyst consider the threat

equally likely across all avenues of approach. Interestingly, too, the current Army force

ratio calculation worksheet does not include a weighting scheme. Although the method in

this thesis emulates the current Army worksheet in this manner, further research could

benefit both procedures.



T-4002 74

SELECTED BIBLIOGRAPHY

Gottfried, Byron S. 1990. Programming with C.. Schaum Outline Series. New York:
McGraw-Hill Publishing Co.

Graduate School, Colorado School of Mines. 1987. "The Thesis Writer's Handbook."

Golden, CO.

Hu, T. C. 1982. Combinatorial Algorithms. Reading, Massachusetts: Addison-Wesley.

Long, Clyde L. Synchronization of Combat Power at the Task Force Level: Defining a
Planning Methodology. A Master's Thesis presented to the Faculty of the U.S. Command
and General Staff College, Fort Leavenworth, KS, 2 June 1989.

Megiddo, Nimrod. 1979. Combinatorial Optimization with Rational Objective Functions.
Mathematics of Operations Research. 4: 414-424.

Mott, Joe L., Kandal Abraham, and Baker, Theodore P. 1986. Discrete 4Vathematics for

Computer Scientists & Mathematicians. 2d ed. Englewood Cliffs, NJ: -rintice-Hall.

Pamperl, LTC, 1990. Private Communications.

Press, William H., Et Al. 1988. Numerical Recipes in C. The Art of Scientific
Computing. Cambridge: Cambridge University Press.

Shirron, W. Edward. An Optimum Method of Wargaming a Tactical and Operational
Course of Action as an Integral Part of the Corps Commander's and G3's Estimate of the
Situation in a Time Compressed Environment. A Master's Thesis presented to the
Faculty of the U.S. Command and General Staff College, Fort Leavenworth, KS, 1984.

Tucker, Alan. 1980. Applied Combinatorics. New York: John Wiley & Sons.

U.S. Army Command and General Staff College, Fort Leavenworth, KS. 1
Guide to the Application of the Estimate of the Situation in Combat Operations.
September, 1983.

_ ST 100-9. The Command Estimate. July 1989.

_ ST 100-3. Battle Book. 1 April 1989.

_ "School Example Division Operation Estimate. Preparation for Combat
Operations Exercise." Section II, Lesson 12: 95-140. July 1990.

U.S. Department of the Army, Washington, D.C. FM 100-2-1. The Soviet Army
Operations and Tactics. 16 July 1984.



T-4002 75

_______*FM 100-2-3. The Soviet Army Troops. Organization and Equipment. 16 July
1984.

Waite, Michael., Et Al. 1990. Microsoft Quick C Programming. 2d ed. Redmond, WA:
Microsoft Press.

____*1990. C: SpbyS. 2d ed. Carmel, IN. Howard W. Sams & Co.

Woolsey, R. E. D. Colorado School of Mines, Golden, CO, "Class Notes in Integer

Programming," January 1990.

_____ 1990. Private Communications.



T-4002 76

Appendix A

SOLUTION SET SIZES
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The table below lists the total number of solutions possible for different size problems.

Combinatoric occupancy theory was used to formulate the possible solution set sizes.

Table A-i: Combinatoric Solution Set Sizes

Avenues of Number of Possible
Approach Friendly Units Formulation Solutions

2 3 3) (1)Il 6

2 4 1  2  
142 4 3) (1) 1) + 2) '2) '2'j1

3 4 36

3 65.* J\) \JV\'\) /a ,q/1(1)¢l +2 (32) (1)l (l23) 1560

4 6 6)21 (753 14 1560

+74 2 )4 3) 5880;i (3 ()) (1)
(7 (5) 16800

8 4 2 )15 852 1
5 8 (8 ]t, kJ ,) 5 

+,J ,(4) ll+1)(1)( 5  92400

____________ ______________ ~) (~J) ( 38 2) _______
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Appendix B
BLANK FORMS
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A Worksheet for Near Optimization of Force Ratios
(in the defense)

TOtaW
A B C D E Entries

Row "Red'-

In U kBlue

0 1 b0Cf b0 0 0o 0 oCfb

d le d ee

b c f b c f b c f b C f b C f

b C f b C f k C f b f b. C f

3 7- eI e a e 1 7

b C f b t b c f b c b c f

b c f b C f b C f b C f b C f

5 [ b

b b C b c b I b C f

b f b C f b C f b C f b C f

+d d d ci d d -7

b C f b Q f be Cf b c f

b c I f I b I b C b C f10 7- e Id I e e I

Total # Entries Table 1

A B C D E

Total I _ _ _ _ _ _ _ _ _

Row Ratio -

Table 2 Total

Figure B-i: Near-Minimal Algorithm Worksheet
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ALLOCATION OF FORCES WORKSHEET

ALLOCATION STEPS: (All calculations rounded to nearest
tenth) Brigade Division Corps

allocates allocates allocates
A. Indicate avenue of approach letters. against against j against
8. Indicate threat echelons.__
C. Display situation temnplate. CFA
0. Calculate enemy battalion equivalents. 1:6/ Divisions 1st Echelon (DIE)
E. Array and adjust friendly forces, allocating against /1:3

enemy echelons. RgmnsAm~
F. Compute force ratios (FR). R tEimelnI Ayst eo

6 (RIE) _______ (AlE)

A Regiments Divisions Army's
1:3 Ist 92d lst 92d Ist &2d

IEchelon (RU2E) Echelon (DI2E) Echelon (AIME

Re Fronts
1:3 01E A12E lst &2d

Echelon (FI12E)

(42d Ech{ ...42d Ech
()t 1c st Ech

Ave Letter

CFA 1:6/1:3 ____________________

1:3

A 1:3

Vs(.... 1.?2. E

1-3

___ v(.....) 1. 2. E

(--JIE 1:

Figure B-2: FORM 86-(F626)-3352



T-4002 81

Appendix C

SAMPLE COMPUTER RUNS
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C:\QC2>aofa4

This software aligns tactical forces
in the defense.

It can assign up to 20 friendly units
across 20 enemy avenues of approach.

How many enemy avenues of approach are known? (Please enter
an integer between 1 and 20) 2

Enter 2 enemy combat power indices. Separate each index
with a space or a <return>. The first one should correspond
with avenue of approach A; the second with B; etc.
7.2
4.1
The enemy combat power indices you read in are as follows:
7.20, 4.10.

How many friendly units are available for deployment? 3

Enter 3 friendly combat power indices. Separate each
with a space or a <return>. Each one should correspond
to a different friendly unit.

3
2.3
2
The friendly combat power indices you read in are as follows:
3.00, 2.30, 2.00.

A near-optimal alignment of friendly units is as follows:

Assign combat power index 3.00 to avenue of approach A.
Assign combat power index 2.30 to avenue of approach B.
Assign combat power index 2.00 to avenue of approach A.

The Force Ratios are:

A: 1.44; B: 1.78;

* The near-optimal solution is 3.22. *
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C:\QC2>aofa4

This software aligns tactical forces
in the defense.

It can assign up to 20 friendly units
across 20 enemy avenues of approach.

How many enemy avenues of approach are known? (Please enter
an integer between 1 and 20) 3

Enter 3 enemy combat power indices. Separate each index
with a space or a <return>. The first one should correspond
with avenue of approach A; the second with B; etc.

14.1
8.6
10.7
The enemy combat power indices you read in are as follows:
14.10, 8.60, 10.70.

How many friendly units are available for deployment? ...__

Enter 5 friendly combat power indices. Separate each
with a space or a <return>. Each one should correspond
to a different friendly unit.

3 2.1 1.7 3.5 2.3
The friendly combat power indices you read in are as follows:
3.00, 2.10, 1.70, 3.50, 2.30.

A near-optimal alignment of friendly units is as follows:

Assign combat power index 3.50 to avenue of approach A.
Assign combat power index 3.00 to avenue of approach C.
Assign combat power index 2.30 to avenue of approach B.
Assign combat power index 2.10 to avenue of approach B.
Assign combat power index 1.70 to avenue of approach A.

The Force Ratios are:

A: 2.71; B: 1.95; #C: 3.57;

* The near-optimal solution is 8.23. *
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A:\C>

This software aligns tactical forces
in the defense.

It can assign up to 20 friendly units
across 20 enemy avenues of approach.

How many enemy avenues of approach are known? (Please enter
an integer between 1 and 20) 2

Enter 2 enemy combat power indices. Separate each index
with a space or a <return>. The first one should correspond
with avenue of approach A; the second with B; etc.
6.7 1.5
The enemy combat power indices you read in are as follows:
6.70, 1.50.

How many friendly units are available for deployment? .4___

Enter 4 friendly combat power indices. Separate each
with a space or a <return>. Each one should correspond
to a different friendly unit.

2.7 1.3 1.4 1.9
The friendly combat power indices you read in are as follows:
2.70, 1.30, 1.40, 1.90.

A near-optimal alignment of friendly units is as follows:

Assign combat power index 2.70 to avenue of approach A.
Assign combat power index 1.90 to avenue of approach A.
Assign combat power index 1.40 to avenue of approach B.
Assign combat power index 1.30 to avenue of approach B.

The Force Ratios are:

A: 1.46; B: 0.56;

* The near-optimal solution is 2.01. *

- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -
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C:\QC2>aofa4

This software aligns tactical forces
in the defense.

It can assign up to 20 friendly units
across 20 enemy avenues of approach.

How many enemy avenues of approach are known? (Please enter
an integer between 1 and 20) 3

Enter 3 enemy combat power indices. Separate each index
with a space or a <return>. The first one should correspond
with avenue of approach A; the second with B; etc.
7.2
4.1
11.3
The enemy combat power indices you read in are as follows:
7.20, 4.10, 11.30.

How many friendly units are available for deployment? 4

Enter 4 friendly combat power indices. Separate each
with a space or a <return>. Each one should correspond
to a different friendly unit.

3 2.3 2 2.7
The friendly combat power indices you read in are as follows:
3.00, 2.30, 2.00, 2.70.

A near-optimal alignment of friendly units is as follows:

Assign combat power index 3.00 to avenue of approach C.
Assign combat power index 2.70 to avenue of approach A.
Assign combat power index 2.30 to avenue of approach B.
Assign combat power index 2.00 to avenue of approach C.

The Force Ratios are:

A: 2.67; B: 1.78; C: 2.26;

* The near-optimal solution is 6.71. *
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Appendix D

ALGORITHM ANALYSIS



T-4002 87

Table D- 1 illustrates the effectiveness of the Near-Minimal Algorithm. The

following notes apply to Table D- 1:

ECPI is the Enemy Combat Power Index for each avenue of approach. The

Wichman and Hill psuedo-random number generator at appendix E was used to generate

numbers in the range 1 to 15. ECPIs will usually fall in this range.

FCPI is the Friendly Combat Power Index for each friendly unit. Again, the

Wichman and Hill psuedo-random number generator at appendix E was used to generate

FCPIs. The range of values were 1.5 to 3.5. FCPIs will usually fall in this range.

MIN is the minimal-feasible fractional integer solution to the sum of the force

ratio objective.

MAX is the maximum-feasible fractional integer solution :o the sum of the force

ratio objective.

ALG'M is the near-minimal, feasible, algorithmic solution to the fractional

integer force ratio objective.

% OPT is one minus the ratio of the absolute differences between ALG'M and

MIN, and between MIN and MAX.
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Appendix E

COMPUTER PROGRAMS
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1* ------------------------------------
This program applies the near-optimal force alignment algorithm
in the defense developed by Mark E. Tillman. It can analyze up to
20 enemy avenues of approach, and assign up to 20 friendly units.
The author of this program is Mark E. Tillman, Colorado School of Mines.

October, 1990
The Indexx.c function was taken from "Numerical Recipes in C" and
adapted to this program. The Sort.c function was taken from the
Waite group's "Microsoft Quick-C Programming."
I acknowledge the conceptual help of James Watson and Doug Hart. They
each provided valuable hints and help on pointer operations.

#iiiciude czstdiodti>
#include <malloc.h>
#define FIX 20 /* Problem size definition and limitation. *

void Sort(float vals[I, int flot);
void Indexx(int n, float anrinf, mnt indx[]);
maino

/* Declaration of variable types *
int c, i, j, s, index, size, flot;
mnt t[FIXI;
int *int-vector(int, int),
int *ind;
mnt status=1;
float ecpi[FIX], fcpi[FIX], delta[FLX], denom[7FIX];
float min=0O;
printf("****************************i~)
printf(" This software aligns tactical forces\n");
printf(" in the defense.\nrn");
printf(" It can assign up to %d friendly units\n", FIX);
printf(" across %d enemy ave-nues of approach.\n", FIX);
printf(" **************************")

printf("\n\n");
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/* Initialize arrays denom and t with zero values */

for(i=l; i<FIX+I; i++)
(
denom[i]--0;

t[i]--O;
}

/* Establish from user the # of avenues of approach */
printf("How ma.y ,,ic_-y avenues of approach are known? (Please entern");

printf(" an integer between 1 and %d) ___bbb", FIX);

scanf("%d", &size);

/* The tactical problem must have more than 1 avenue of approach */

while(size == 1)

p*intf(**n************************ Error **************************

printf('\n Please reenter your number. It must exceed 1.\bb'b");
scanf("%d", &size); /* User modifies input if error detected */
)

/* User may not specify more avenues than problem size limitation */
while (size > FIX)
{
printf('\n*********************** Error **************************

printf('\n Please reenter your number. It should not exceed %d.", FIX);

printf(" blb%");

scanf("%d", &size); /* User modifies input if error detected */
I

printf("\nEnter %d enemy combat power indices. Separate each index",size);

printf('Nn with a space or a <return>. The first one should correspond");
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printf("\n with avenue of approach A; the second with B; etc.\n");
for(index=-O; index < size; index++)

scanf("%f", &ecpi[index]); f* User inputs indices for each avenue ~

printf("The enemy combat power indices you read in are as follows:\n");

for(index=-O; index<size- 1; index++)
printf("%.2f, ", ecpi[index]);

printf("%.2f.\nM", ecpi[size-l]); /* System reads back input from user ~

/* Dynamic allocation of array ind to # of avenues specified by user *
ind = int-Vector( 1, size);

/* Initialize array ind with consecutive positive integers *
for(i= 1; i<size; i++)

indfiJ =i;

/* Establish the # of friendly units from user
printf("How many friendly units are available for deployment?");
printf("
scanf("%d", &flot);

/* Tactically, user must specify at least as many units as avenues ~

while(flot < size)

printf('\n********************** Error**************")

printf('\nYou must enter at least as many friendly units as avenuesfn");

printf("of approach. You have entered data for %d avenues", size);

printf(" of approach.\nPlease reenter the number of friendly units");

printf(" available fcf ndeployment. \-b\bfb");

scanf("%d", &flot); /* User modifies input if error detected ~
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/* User enters indices for each unit *
printf("\nEnter %d friendly combat power indices. Separate each\n", flot);
printf(' with a space or a <return>. Each one should correspond'n");

printf(" to a different friendly unit.\n");
for(index=0O; index < flot; index++)

scanf("%f', &fcpifindex]);

/* System reads back input from user *
printf("The friendly combat power indices you read in are as followsNn");
for(index=0O; index<flot-l; index++)

printf('%.2f, ", fcpi[index]);
printf("% .2f.\nrn', fcpi[flot- 1]);

/* Assign values to counter variables c and s. ~

c =flot - size;

S =0;

/* Sort array of friendly indices from high to low, altering the order *

Sort(fcpi, flot);
printf(" A near-optimal alignment of friendly units is as follows:\nfn");

1* Start algorithmic calculation with row 1 of worksheet *
foroj=flot-l1; j>=0O; --j)

for(i=l; i<size+I; i++) /* Calculate delta for each avenue ~

if(denomlli] == 0) /* If no units are assigned to avenue i, ~
delta[iI = ecpi[i-l1] - ecpi[i-lI]/fcpi~]; /* then delta equals this. *

if(denom[i] != 0) /* If a unit is assigned to avenue i, ~

if(~ ~ c 1 : and feasibiiiy is maintaneci, /
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/* then use this formula to calculate the delta. *
delta[i] = ecpi[i- li/denom~i] - ecpi[i- 1]/(denom[i] + fcpiUl);

if(s >= c) /* If feasibility will be lost, */I
delta[i] = -10000.0; Pd* then assign delta this value. ~

1* printfQ'The %dth delta is %.2tn", i, delta[i]); *

/* Sort all delta indices and preserve order ~
Indexx(size, delta, ind);
/* For the avenue with the greatest delta increment its position in array t *
t[ind[sizej]=t[ind[size]] + 1;

/* If this position is now greater than 1, increment the counter s ~

if(t[ind[size]] > 1)
s++;

/* Assign new value to denom position with greastest delta *

denom[ind[size]] += fcpiUl];

/* Change avenue of approach # to character output and print assignment *
printf(" Assign combat power index %.2f', fcpiU]);
printf(" to avenue of approach %cM\", ind[size]+64);

/* printf("The biggest. delta is %d\n", ind[size]); *

/* Calculate and print all force ratios ~
printf("\n The Force Ratios are:\njn");

for(i=1; i<size+l; i++)
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if(denomfiJ != 0) /* Prohibits division by zero, should that occur ~

printfC' %c: %.2f;, ",i+64, ecpi[i-1]/denom[i]);

/* Calculate and print near optimal sum ~

min += ecpilli- I1]/denom[i];

printf('Nnn--------------------------------- n)

printfC'* The near-optimal solution is %.2f. "'Vi", min);
printfC'----------------------------------\M)
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/* This function sorts an array of floats from high to low, order altered ~

void Sort(float vals[], int flot)

float temp;
for(i=flot- 1; i>O; --i)

I
foroj=O; j<i; ++j)

I
if(valsUI>valsU+I)

temnp =valsUl;

valsUl valsUj+1];
valsU+1] = temp;

/* This function sorts the indexing of an array, preserving order. *

void Indexx(int n, float arrinBj, int indx[I)

int 1, j, ir, indxt, i;
float q;
foro =l1; j <=n; j ++)

indxUl=j;
l=(n > 1) +1;
ir =n;
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for(;;)

I
ifQI> 1)

q=arrin[(indxt=indx[--I])];

else

q=arrin[(indxt=indx[ir])];

if(--ir==1

I
indx [ 1 ] =indxt;
return,

whileoj <= ir)

I
ifoj < ir && arrin[indxU]] < arrin[indxU+lII)

if(q < amrn[indxUI])

I
indx[i]--indxU];

j += (i=j);

else
j =ir+l;

indx[i]=indxt;
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1* This function allocates remory at run time (dynamically) *

int *int-vector(iflt low, int high)

int *vector;

vector = (nt*)malloc((high-low+l1)"'sizeof(int));

if (!vector)

I
printf("Error occurred in dynamic memory allocationNn");

exit(O);

vector -~ low;

return(vector);
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/* ---------- ---------- ---------- --------

This program is the random number generator proposed by Wichman and Hill.

The author of this program is Mark E. Tillnman, Colorado School of Mines.

October, 1990

* 1 - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -

#include <stdio.h>

#include <math.h>

#define MOD_1 30269

#define MOD_2 30307

#define MOD_3 30323

majn()

I

long int r[3];

void Rand(int n, long mnt r[]);
mnt i, n;

printf("Enter 3 different positive integers. These will be the seeds\n");

printf("for the Wichman and Hill random number generator.\n");

for(i=-0; i<3; i++)

scanf( t%d", &r[i]);

printfC'How many random numbers do you want to generate9\nV);

scanfC"%d", &n);
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for(i=-O; ikn; i++)

Rand (i, r);

void Rand(int n, long int r[])

float num, frac;

401] = (171 * r[0I) % MOD_1;

r[ I] = (172 * r( 1) % ?,IOD_2;

r[2] =(170 *r[2]) %MOD_3;

num =(r[0]130269.0) + (r[l]I30307.0N + (r[21/30323.0);

frac =num - floor(num);

printf("Random number %d is %.lIf\n ", n+l1, frac);
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/* This program explicitly enumerates all possible solutions for 5 different
sizes of fractional integer programming problems. Once enumerated the
program finds the minimum and maximum objective function value. The 5
different problems are:
2 avenues of approach, 3 friendly units,
2 avenues of approach, 4 friendly units,
3 avenues of approach, 3 friendly units,
3 avenues of approach, 4 friendly units,
3 avenues of approach, 5 friendly units.

*/
#include <stdio.h>
#include <function.h>

void Sort(float vals[], int c);

void F23(float f[], float e[]);

void F24(float f[], float e[]);

void F33(float f[], float e[]);

void F34(float f[], float el]);

void F35(float f[], float e[]);

main

int index, size, flot;

float ecpi[7], fcpi[71, max[7];

float x;

printf("How many enemy avenues of approach are known?");

printf(" (Please enter ankn integer between 1 and 7.)W");

scanf("%d", &size);

while (size > 7)

1
printf("Please reenter your number. Be sure it is no more than 7.\n");

scanf("%d", &size);
)

printf("Enter %d enemy combat power indices. The first one shouldf", size);

printf(" correspond with avenue of approach A; the second with B; etc.\n");

for (index--O; index < size; index++)

scanf("%f', &ecpi[indexl);
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printfQ'The enemy combat power indices you read in are as followsMn");

for (index=0O; index<size- 1; index++)

printf(t %.2f, ", ecpi[index]);

printf("%.2f.\,n~n", ecpi[size-1]);

printf("fHow many friendly units are available for deployment?\n");

scanf("%d", &flot);

printfQ'Enter %d friendly combat power indices. Each one shouldfn", flot);

printfQ' correspond to a different friendly unit.\n");

for (index=0O; index < flot; index ++)

scanf(' t%f', &fcpi[index]);

printf("The friendly combat power indices you read in are as follows.:\n");

for (index=0O; index<flot- 1; index++)

printfC'%.2f, ", fcpi[index]);

printf("%.2f.\nrn", fcpifflot- 1]);

if(size==2)

if(flot==3)

F23(fcpi, ecpi);

if(size==2)

if(flot==4)

F24(fcpi, ecpi);

if(size==3)

if(flot==3)

F33(fcpi, ecpi);

if(size==3)

if(flot==4)

F34(fcpi, ecpi);

if(size==3)

if(flot==5)

I
printf("My method will take me about 15 seconds. Please stand by ...MNn");

F35(fcpi, ecpi);
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if(size>3)

if(flot>5)

printf("Working on that problem ...An");

if(size<2)

printf("Please relook the problem. I don't see one here.\n");

if(size==flot)

if(size > 3)

if(flot > 3)

{
prnf(Ti is a straight-laced assignment problem. I am still working");

printf("on \nthis procedure. It is not as difficult to solve, though.\n");
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/* This function sorts an array from low to high values. *

void Sort(float vals[], int c)

I
int i, j;
float temp;

for(i=c; i>=0O; --i)

I
for0j=0; j<i; ++j)

I
if(valsUI>valsU+ 1])

temp =valsUjI;
valsU] =valsU+1];

valsUl+I = temp;

1* This function sums an array of floats. ~
float Sum(float addfl)

int i;
float total = 0;
for(i = 0; i<6; i++)

I
total += *add;

add++;

return total;

P* This function permutes the soin matrix for 3 units along 2 A's of A. *
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void F23(float Qf], float e[])

I
float a[31, s[i6];
int c;
a[0]=fIIO]+fI1]; a[ 1]=f[O]+f[2]; a[21=fl1]+f[2];

s[0]=e[OJ/a[0]+e[1]/f12]; s[l]=e[1]/a[OI+e[]/f1121; s[2]=e[0I/al+e[]/f~il];

s[3]=e[1]/a[1+e[0I/f[1J; s[41=e[O]/a[21+e[1]/f[0I; s[5]=e[1I/a21+e[O/f1lO];
C=5;
Sort(s, c);
printf("Enumeration finds the min soin to be %.2f.\Vi", s[O]);
printf("Enumeration finds the max soin to be %.2f.\n", s[5]);

I
/* This function permutes the soin matrix for 4 units along 2 A's of A. *
void F24(float f[ll, float e[])

I
float a[l10], s[ 14];
int c;
a[0]=fII0l+f[ 1I+f[2]; a[1]=f[0]+f[ 1]+f[3]; a[2]=fl +f[2]+f[1];
a[3]=f[O]+fjj2]+f[3]; a[4]=f[O]+fl1]; a[5]=f[2]+f[31; a[6]=f[0]+f[3];

a1171=f[ I +f[1; a[18]=f[O] -ef[3]; 4[9]=f[2]+f[3];
s[0]=e[0l/a[O]+e[l/f1131; s[l]=e[l]/a[O]+e[2]/f113); s[2]=e[O]/a[1]+e[l]/f12];

s[3]=e[l]/a[1l+e[lO]/f12]; s[4]=e[0l/a[2]+e[]/fIO]; s[5]=e[1]/a[2]+e[2]/f[0];

s[6]=e[O]/a[3]ie[1]/fll]; s[71=e[]/a[3+e[l/fll;
s[8]=e[0]a[4-ie[1]/a[5]; s[9J=e[1]/a[4]+e[0]/a[5]; s[l1]=e[0]Ia[6]+-e[1]Ia[7];
sf11 ]=e[1]/a[71+e[O]/a[6];s[12]=e[0]/a[8]+e[1]/a[9];s[13]=e[]/a[8]+e[]/a[9];
c=13;
Sort(s, C);

printf("Enumeration finds the min soin to be %.2f.\n", s[0J);

printf("Enumeration finds the max soin to be %.2f.\n', s[13]);

/* This function permutes the soin matrix for 3 units along 3 A's of A. *
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void F33(float fl], float e[])

float s[61;
int c;

s[0]=e[O1/flO]+e[hI/f~il]+e[21/f12]; s[1]=e[0]/fljO]-ie[1]/f12]+e[2]/f[l];
s[2]=e[O]/filJ+e[l]/f[0]+e[2]/f[2]; s[3]=e[0]Ifll]+e[1]1ql2]+e[2]/f[o];
s[4]=e[0]/f1+e[ 11/fillI+e[2/f[lO]; s[5]=e[0]/f1+e[ 1]/f[lO]-ie[21/f[ 1];
c=5;
Sort(s, c);
printf("Enumeration finds the min soin to be %.2f.\n", s[0]);
printfQ'Enumeration rinds the max soin to be %.2f.\n", s[5]);

/* This function permutes the soin matrix for 4 units along 3 A's of A. ~
void F34(float f[], float e[])

float a[61, s[36];
int c;
a[O1=fIO]+fl1]; a[l1 =f121+f113]; a[2]=fIIO]+f[2]; a[3]=fl1]+f[3]; a[41=fl1]+f[2];

a[51=f[0]+f[3];
s[0]=e[0]/a[01+e[1]/f[2]+e[2]/f131; s[l]=e[0]/a[01+e~ll]/f13]+e[21/f[2];
s[2] =e[0]/f[j2]+e[l1 /a[0]+e[2]/f[3]; s[3]=e[0]/f13]+e[l1 /alO] +e[2]/f[2];
s[4]=e[0]/f[3]ie[ 11/f12]-ie[21/a[0]; s[5]=e[0]/f12]ie[ l]/f[3]+e[2]/a[0];
s[61=e[01/a[l]+efhI/f[0]+e[2/fl]; s[7]=e[0I/a[l]+ehI/f[l]+e[2/fljOI;
s[8]=e[0]/f[0]+e[l]/a[1]+e[2/f[1]; s[91=e[01/f~l]+e[1]/a[11+e[2]/f[O];
s[1O]=e[0J/f[jO]+e[]/fl]+e[2]/a[1];s[1 1]=e[O]/fll+e[1]/f[O]+e[2]/a[l];
s[ 12]=e[0]/a[2]+e[ 1]/f[ l]+e[2]/f[3];s[ 13]=e[0]/a[2]+e[l1 /f13]+e[2]/fl 1];
s[141=e[]/f11]+e[I]/a[2]+e[2/f[3];s[15]=e[01/f[31+e[l]/a[2]+eL2]/fll];
s[16]=e[0]/f113]+e[l]/flh+e[2]/a[2];s[171=e[O/f[l]+e[l/f[3]+e[2]/a[2];
s[18]=e[0I/a[3]+e[1]/f[2]+e[2]/f[0];s[19=[]/a[3]+e[]/ffO]+e[2]/f[1;
s[201=e[01/f[01+e[I1/a[31+e[2]/f[2];s[211=e[1/f[2]+e[]/a[31+e[2]/fIO;
s[22] =e[0]/f[lO]+e[l1]/f[1]+e[2]/a[3] ;s[23]=e[0]/f[2] +e[l1 /f[OI+e[2]/a[3];
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s[241=e[0]/a[41 +e[I1/f[0I+e[21/f[3];s[251=e[0]/a[4] e[ I /f[31+e [2]/f[0I;
s[261=e[O]/flO]+e [1 )/a[4]+e[21/f[1];s[271=e[0]/f[1] +e [1 ]/a[4]ie[21/f[iO];
s[28] =e[0]/f[31+e[ II/f[0] +e[2]/a[4];s[291=e[O]/f[O] +e [ 1]/f13]+e[2]/a[41;
s[30]=e[0I/a 5+e[ 1/f112]+e[21/fI~lI;s[3 11=e[0]/a[5+e[ 1/f[ l]+e[2]/f1121;
s[32]=e[0]1q[2J+e [I]/a[5]+e[2]/f[ 1]; s[33] =e[0J/f[ 1] +e[IJ/a[5]+e[2]/f[2];
s1134]=e[OJ,'fl l]+e[1]/f1121+e[21/a[51;s[35]=e[0I/f[2]+e[1]/f[ 1] e[2]/a[51;
c=35;
Sort(s, c);
printf('Enumeration finds the min soin to be %.2f.\n't , silO]);
printf("?Enunrration finds the max soin to be %.2f.\n", s[35]);

/* This function permutes the soin matrix for 5 units along 3 A'.-, of A. ~
void F35(float ff], float e[])

float a[20], s[240];
int C;

a[O]=f[l]+fl1]; a[ 1I=flO]+f[2]; a[2=fjlO]+f131; a[3]=f[lO]+f[4]; a[4]=f[ 1]+tT2];
a[5J=f[ 1 +f[3]; a[6]=ff 1]+f[4]; a[7]=f[2]+f[4]; a[8]=f[2]+f1]; a[9]=f[3]+f14];
a[l0]=flO]+f~lI+f[2]; a[1 1]=fjlO]+f[1]+f[3]; a[12]=flIOII+fl]+f141;

a[ 13]=flO]+f1121+f[3]; a[ 141=f[l]+f121+f1141; a[ 15]=fjlOI+f13]+f[4];
a[1 61=f[ lJ+f[21-if[3]; a[17]=f[l]+f[2]+f[4]; a[1 8]=f[ 1I+f[3]+f[4];
a[ 19]=f12]+f13]+f[41;
s[0]=e[0]/a[O]+e[1]/a[8]+e[2]/f14]; s[l]=e[0]/a[0]+ie[2]/a[81+e[]/f14];
s[21=e[l]/a[0+e[2/a[8-ie[O/f14]; s[31=e[l]/a[0I+e[0]/a[8]+e[2]/f[4];
s[4]=e[2]/a[O] +e[I1 /a[8]+e[0]/f14]; s[5]=e[2]/a[0] +e[0]/a[8] +e[l1]/f[l4I;
s[61=e[0I/a[OI+e[ 1]/a[7]+e[2]/f[3]; s[7]=e[OI/a[O]+.e[2]/a[7]+e[]/f[3;
s[8]=e[]/a[]+e[2/a[7ie[]/f[31; s[91=e[1]/a[0I+e[0]/a[7]+e[2]/f[31;
s[10]=e[2]/a[0]+e[1I/a[71+e[O/f131;s[1 1]=e[2]/a[]te[0I/a[7]+e[]/f113];
s[12]=e[0]/a[0]+e[]/a[9+e[2]/f1121;s[13]=e[0]/a[0]+e[2/a[9+e[]/f[2];

s[ 14]=e[ 1]/a[O]+e[2]/a[91+e[O]/f12];s[15]=e[1]/a[0]+e[0]/a[9]+e[2]f[2];
s[161=e[2]/a[0I+e[]/a[9]ie[0]/f[21;s[17]=e[2]/a[0I+e[O]/a[9]+e[l]/f[12;
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s[1I8]=e[0]/a[1]j+e[ I]/a[5]+e[2]/f[4];s[ 19]=e[O]/a[ 1]+e[2]/a[5]+e[IJ/f[4];
s[20]=e[ 1]/a[ I]+e[2]/a[5]+e[O]/f[4];s[21]=e1I]/a[ 1]+e[]/a[5]+e[2]/f[4;
s[22]=e[2]/a[1)+e[ 1]/a[5]+e[]/f14;s[23]=e[2]/a[ 1 +e[]/a5]+e[ ]/f[4];
s[24]=e[OI/a[l]+e[ 1]/a[61+e[2]/f[3];s[25]=e[O/a[ 1]+e[2/a[61+e[1/f[3];
s[26J=e[~ I/a[ I +e[21/a[61+e[0/f1131;s[271=e[1I]/a[ 1]+e[0I/a[6]+e[2/f1131;
s[28]=e[2]/a[ 1]+e[ 1]/a[6]+e[O]/f[3];s[29]=e[2]/a[ 1]+e[O/a[6]+e[ 1]/f[31;
s[30]=e[O]/a[1]j+e[ 1]/a[9]+e[2]/flj I];s[3 1]=e[0J/a[ 1]-ie[2]Ia[9]+ef I]/f[l];
s[32J=e[ 1I/a[l]+e[21/a[9]+e[J/fl l;s[33]=e[ ]/a[ 1]+e[]/a[9+e[2]/f[ 1];
s[34]=e[2]/a[1]+e[]/a[9]ie[0]/f[1]l;s[35]=e[2]/a[ 1]+e[]/a[9+e[ I/f[ 1];
s[361=e[0I/a[2]+e[ 1]/a[7]+e[21/ffI ];s[371=eO]/a[2]+e[2]/a[7]+e[I ]/f[l];
s(381=e[ 1 I/a[21+e[21/a[71+e[Olff[ 1I;s[391=e[l]/a[2]+e[0I/a[7I+e[2/f11I;
s[40]=e[2]/a[2]+e[ 1]/a[7]+e[0]/fT l];s[41]=e[2]/a[2]+e[0]/a[71+e[1J/f[1];
s[42] =e[0]/a[2+e[]/a[4]+e[2]/f[4]; s[43] =e[]/a[2-ee[2]/a[4]+e[I /f[41;

s[46] =e[2I]Ia[2] +e[1 /a[4]+e[0]/ff 4] ;s[45]=e[21]/a[2]+e[0]/a[4]+e[21]If[4];
s[481=e[0I/a[21+e[ I ]Ia[6 2)[/f t2);s[47]=e[3Ia[2]+e[2)Ia[6)-ie[ 1]/f114];

s[4]=e[0]/a[3]+e[I a[4]+e[2]/f[3];s[55]ze[0]/a[3]+e[2]/a[4]+e 11/f[21;
s[50]=[1]/a[]+e[2/a[]+e[0/f[2];s[5 1 =e[]/a[21+e[O/a[]+e[2]/f[1;
s[58]=e[211a[3]+e[ I]1a[4]+e[]/f[3];s[53] =e[2]/a[]+e[]/a[4]+e[]/f[];
s[54] =e[I/a[3]ie[ 1 ]/a[81+e[2]/f[ 1]; s[55] ]=e[O]Ia[3]+e[2]fa[8]+e[ 1]/f[31];
s[56]=e[ 1]/a[31+e[21/a[8]+e[OI/f[1I;s[631=e[1I/a[31+e[0I/a[81+e[2/fllI;
s[64]=e[2]/a[3]+e[ I1]/a[8]+e[0]/f[ 1];s[5]=e[2]/a[3]+e[0]/a[8]+e[ 1]/f[31];
s[66] =e[0]/a[3] +e[ 1 ]/a[5]+e[2]/f[21];s[617]=e[0]/a[3]+e[2]/a[5]+e[ 1 ]/ff1]1;
s[68]=e[ 1 Ia[3] +e[2]/a[5]+e[0I/f[2]l;s[691=e[l1]/a[3-ie [0]/a[51+e[2]/f[21];

s[68]=e[2I a[3]+e[l]/a[5]+e[O]/f12];s[71]=e[2]/a[3]+e[0]Ia[5]+e[lIf[2];

s[72]=e[O]/a[4]+e[ 1 I/a[9]+e[21/f[OI;s[73]=e[O]/a[4]+e12]/a[9]+e[ 1 /f[0];
s[741=e[1I]/a[4] +e[2]/a[91+e[1/jIOI;s [751=e[1/a[4+e[1/a[91+e[21/ffOI;
s[76]=e[2]/a[41+e[ I]/a[9]+e[]/fIO];s[77]=e[2]/a[4]+e[]/a[9]+e[ 1]/f[0];
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s[78]=e[O]/a[4]+e[ I]/a[2]+e[2]/f[4];s[79]=e[O]/a[4]+e[2]/a[2]+e[1]/f[4];
s[80]=e[ 1]/a[4]+e[21/a[2]+e[0I/f[4];s[8 1]=e[1]/a[4]+e[0]/a[2]+e[2]/f[4];
s[82]=e[2]/a[4]+e[ 1]/a[2]+e[0]/f141;s[83]=e[2]/a[4]+e[]/a[2]+el]/f[4];
s[841=e[0]/a[4]ie[ 1]/a[3]+e[2]/f131;s[85]=e[0]/a[4]+e[2]/a[31+e[ 1 ]/f3];
s[86]=e[ 1]/a[41+e[2]/a[31+e[0]/fjI3I;s[87]=e[1I]/a[4]ie[O]/a[3J+e[2]/f[3];
s[88] =e[2]/a[4]+e[ 1 ]/a[3]-i-e[]/f[3];s[89] =e[2]/a[4]+e [0]/a[ 3]+e[ 1 ]/f[3];
s[90] =e[0]/a[5]-i-e[ 1]/a[ 1 ]+e[2]/f[4];s [91 ]=e[0]/a[5]+e [2]/a[1J]+e[ 1l]/f[4];
s[92]=e[1I]/a[5]+e[2]/a[ 1]+e[0]/f[4];s[93]=e[ 1]/a[5]+e[]/a[1IJ+e[2/f[4];

s[96]=e[0]/a[5]+e[ 1]/a[1+e[2]/f12];s[97]=e[0]/a[51+e[2]/a[31]+e[il]/f[2];
s[96] =eI[l]/a[5] +e[21 /a[3]+e[0I/f[2];s[991 =e[1]/a[5]+e[0]/a[3+e[ I]/f[2];
s[98]0]=e[]/a[5]-ee[ ]/a[3]-ie[]/f[2];s[11 =e []/a[5]+ 0]/a[3 ]+e[]/f[2];
s[ 102]=e[0]/a[5]+e[ 1]/a[]+e[2]/f[2];s[101 =e[]/a[5]-ie[2]/a7/I+e[1 ]/flO];
s[ 1041=e[ 1]/a[5]+e[21]/a[7]+e[0]/fiO];s[105]=e[1]/a[5]+e[0]/a[71I+e[2 ]/f 10];
s[ 104]=e[]/a[5]-ie[ 1]/a[7]+-e[0]/ftO];s [105] =e[2I]/a[5]+e [0]/a[7]+e[1/f[0];

s[ 108=[0]/a[5]+e[ I]/a[7]+e[2]/f[3];s[1091=e[2]/a[6]+e[2J/a[7]+e[ 1]/f[3];
s[ 10]=e[ lI/a[6]+e[2]I/a[1]+e[0]If[3];s[101 ]=e[1]fa[6]-ie[0]/a[1lJ+e[2]/f [3];
s[1 12]=e[21/a[6]+e[1]/a[1]+e[J/f[3];s[1 131]=e[]/a[6]-ie[]/a[1]ie[1]/f[3];
s[1I 141=e[I/a[6-ie[ 1]/a[8]+e[]/fI.I];s[1 15]=e[0]/a[6].e[2]Ia[81]+e[1]/f [0];
s[1 16]=e[1]/a[6]+e[2]a[8]+e[]/f[0];s[1I 17]=e[J/a[6]ie[0]/a[8]+e[2]/f[O];
s[1 18]=e[2]/a[6]+e[]/a[8]e[O]/fTO;s[1 19]=e[2]/a[6]+e[0]/a[8]+e[]/f[0];
s[ I10=e[]/a[6]se[1]/a[2]+e[2]/f[21;s[I121]=e[0]/a[6]+e[]/a[]+e[]/f[];

s[ 122]=e[1]/a[6]+e[ I]/a[2]+e[]/f[2];s[121]=e[J/a[6]+e[]/a[2+e[ ]/f[2];
s[ 122]=e[]/a[6]+e[]/a[2]ie[O]/f[2];s[123]=e[2I1/a[6]+e[]/a[2]+e[]/f[2];
s[ 126]=e[0]/a[7]+e[ I1]/a[2]+e[2]/f[3];s[ 127]=e[0]/a[7]+e[21/a[0]+e[ 1]/13];
s[ I128]=e[ 1]/a[7]+e[21]/a[0]+e[0]/f[3];s[ 129]=e[1]/a[7]+e[]/a[]+e[]/f[3;

s[ 1281=e[21]/a[7]+e[ 1]/a[0]+e[0]/f[3];s[13 1]=e[21]a[7]ie[0]/a[0]+e[l]/f[3];

s[ 132]=e[0]/a[7]+e[ 1]/a[]1+e[]/fljlI;s[ 13 1]=e[]/a[7]+e[]/a[]+e[]/f[];

s[1I34]=e[ 1]Ia[7]+e[2]/a[2]+e[]/f[ 1];s[1 35]=e[ 1]/a[7]+e[]/a[2]+e[2]f[];
s[1I36]=e[2]/a[7]+e[ I1]/a[2]+e[0]/f[ 1];s[1I37]=e[2]/a[7]+e[0]/a[2]+e[ ]/f[ I];
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s[ 138]=e[O]/a[7]ie[ 1J/a[5]-ie[2/fTO];s[139]=e[O]/a[7]+e[2]/a[5]+e[1]/f[O];
s[ 140]=e[ 1I/a[7]+e[2]/a[5]+e[O/IO;s[141]=e[1/a[7]+e[O]/a[5+e[2]/f[O];
s[ 142]=e[2]/a[7]+[1]/a[5]+e[O/f[O];s[ 143]=e[2]/a[7]+e[O]/a[5]+e1I /f[O];
s[ 144]=e[O]/a[8]+e[ 1]/a[OI+e[2]/f141;s[145]=e[OI/a[8]+e[2]/a[O+e[ 1]/f[4];
s[ 146]=e[ I /a[8]+e[2/a[O]ie[O]/f[4];s[ 147]=e[ I]/a[8]+e[O]/a[O]+e[2]/f4];
s[ 148]=e[2]/a[81+e[ 1]/a[O+e[O]/f[4;s[ 149]=e2/a[8]+e[O/a[O]+e[ 1]/f4];
s[ 1501=e[O]/a[81+e[Ij/a[4]+e[21/f[ 1];s[15 1]=e[O]/a[8]+e[2]/a[4]+e[1/f[ 1];
s[ 152]=e[1I]/a[8]+e[2]/a[4]+e[O/fll1];s[1I53]=e[ 1]/a[8]+e[O]/a[4]+e[2]/f[ I;
s[ 154]=e[2/a[8]+e[1]/a[4+e[O]/l 1J;s[155]=e[2]/a[8]+e[O/a[4]+e[1]/f[1I];
E[ 1 56]=e[O]/a[81+e[ l]/a[6]+e[2]/flO];sl 1 571=e[O]/a18]+e[2]/a[6]+e[ 1]/f[O];
s[ 158]=e[ 1/a[8+e[2]/a[6+e[O/flO];s1I59=el]/a[8]+e[O]/a[6]+e[2]/f[O;
s[ 160]=e[2]/a[8]ee[1J/a[6]+e[O]/flO];s[161]=e[2]/a[8]+e[O/a[6]+e[1/f[O];
s[f162]=e[O]Ia[9] ±e[ 1 1/afO]+e[2]1f[2];s[ 163]=e[O]/a[9]+e[21/a[0I+ef 1]/ft2];
s[ 164]=e[ 1l]/a[9]+e[2]/a[O]+e[O]/f12];s[ 165]=e[ 1]/a[9]+e[O]/a[O]+e[2]/f2];
s[ 166] =e[2]/a[9]+e[ 1]/a[O+e[O]/f[2];s[167]he[2]/a[9]+e[O/a[O]+e[ 1/f[2];
s[ 168]=e[O]/a[9]+e[ I /a[1]-ie[21/f[ l;s[I69j=e[O/af9]+e[2/a 1]+e[ 1]/f[1];
s[ 170]=e[ 1]/a[91-ie[2]/a[ I]+e[O]/fl];s[17 1]=e[1]/a[9]+e[O]/a[ 1]+e[2]/f[1];
s[ 172]=e[2]a[9]ie[ 1]/a[1J]+e[O]/f[ I1];s[ 173]=e[2]/a[9]-ie[O]/a[ 1]+e[ 1]/f[1];
s[ 1741=e[OI/a[91+e[1I/a[41+e[21/f[O];s[1751=e[O/a[91ie[21/a[41+e[1I/f[OI;
s[ 176]=e[1I]/a[9]+e[2]/a[4]+e[OJ/f[O];s[ 177]=e41]/a[9]+e[O]/a[4]+e[2/f[O];
s[ 178]=e[2]a[9]+e[ 1]/a[4]ie[O]/lIO];s[179]=e[2]/a[9]+e[O]/a[4]+el]/f[O];
s[ 180]=e[O/a[ 10]+e[ 1]/f[3]+e[2]/ff4];s[ 18 1]=e[O/a[ 1]+e[2/f[3]+e[I/f[4;
s[1I82]=e[ 1]/a[ 1OI+e[2/f13]+e[O/f[4;s[ 183]=e[ 1l/a[ 1]+e[O]/f[3]+e[2]/f4];

s[ 184]=e[2]/a[1OJ+e[ 1]/f[3]+e[O/f[4];s[ I85]=e[2]/a[ 1I+e[O]/f[3]+e[1/f[4];
sf1 86]=e[O]/a[ 1 1]-ie[ 1]/fl2]+e[2]/f[4];s[ 187]=e[OIa[ 11 ]+e[2]If[2]+e[ 1]/f[4];

s1190]=e[2]/a[1 I I +e[1I/f[2]+e[OI/f[4];s[1911=e[21/a[1I 1]+e[O]/ff21+e[1]/f[4];

s[ 192]=e[O]/a[ 1 2]+e[ 1 ]/f[2]+e12]/f[3] ;s[ 193]=e[OI/a[ 1 2]+e[2]/f[2]ie[ 1]/f[3];
s[ 194]=e[l1]/a[ 1 2]+e[2j~ ' ?1+e[OI/f[31;s[ 195]=e[l1]/a[ 12]-ee[O]/f[2]+e[2]/f[3];

s[ 196]=e[2]/a[ 12]+e[ 11/1 2]+e[O]/ff 3] ;s[ 197]=e[2]/a[ 12]-ie[OI/f12]+e[ 1]/f[3];
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s[ 198]=e401/al 131+e[ 1]/f[ 11+e[2]/f1141;s[ 1991=e[0]/a[ 131+e[2]/f[1]-ie[l]/141;
s[200]=e[ 1]/a[ 13]+e[2]/fI]+e[O]/f[41;s[20 1]=e[ 1]/a[ 131+e[O]/fll1]+e[2]/f[4];
s[202]=e[21/a[13]+e[1I]/fI]+e[1/f[4];s[203]=e[2]/a[ 13]+e[1/f[ lI+e111/f[4;
s[204]=e[OI/a[ 14]+e[ I1/f[ I]+e[2]/f[3];s[205]=e[]/a[ 14]+e[2/f[ 1]+e[ 1]/f[13];
s[206]=e[ 1]/a[14]+e[21/fllI]+e[]/f113];s[207]=e[ 11/a[ 14]+e[01/f[ I]+e[2]/f[31;

s[208]=e[2]/a[ 14]+ie[ 1]If[ I ]+e[O1/f[3] ;s[209j=e[2]Ia[ 1 4] +e[O1/f[ 1]-,e[ I]/tl3];
s[210]=e[O]/a[I5j-ie[I]/f[ l]+e[2]/f112];s[21 1]=e[O]/a[15]+e[211f[1]ie[1]/f[2;
s[212]=e[ 1]/a[15]+e[2]/f[ l]+e[]/f112];s[213]=e[1I]/a[ 15+e[]/f[ 1]+e[2]/f21;
s[214]=e[21/a[ 15+e[ 11/f Il-ie[O]/f[2];s[215]=e[2]/a[ 15]+e[]/f[ I]+e[]/f[2];

s[2161=e[O/a[I6]+e[ 1/f[OI+e[2]/f4;s[2171=e[]/a[I]+e[2/f[O+e[ 1]/f41;
s[21 8]=e 1]/a[16]-ie[2]/f[0]+e[0]/f[4] ;s[219]=e[ 11/a[ I6]-Ie[01/fjIO]+e[2]/f1L4j;
s[220]=e[2]/a[1I6]+e[ l]/f[O]+e[0]/f[4];s[221]=e[2]/a[ 16]+ie[O]/f[O]+e[I]/f[4];

s[222]=e[0]/a[I17]+e[ 1 ]/fIIOI+e[2]/fjI3] ;s[223] =e[0]/a[ 17] -ie[2]If[0]+e[ 1 ]/f[j3];
s[224]=e[ 1 J/a117]+e[2]/f[0]+e[O]/f[3] ;s[225]=e[ 1]/a[ 17]+e[Oyf[O]+e[2]/f[3];
s[226]=e[2]/a[ 17]+.e[ 1]/f[0]+e[O1/fj131;s[227]=e[2]/a[ 17]-ie[0I/f[0]+e[ 1]/f[13];
s[2281=e[01/a[ I181+e[ I /f[O1+e[2/fI2;s229=e[I0Va[ 18 ]+e[2]/fIIO]+ef 1]1/f[2];
s[2301=e[1I]/a[ 1 8+e[2]/f[0]+e[0I/f[2];s[23 1]=e[ 1/a[ 18]+e[O]/f[O]+e[2]/f[2];

s11232] =e[2]/a[ 1 8] +e[ 1 ]/fIIO]+e[O]/f12] ;s[233]=e[2]/a[ 1 8]+e[O]/f[0]+e[ 1 ]/f[2];
s[234]=e[O]/a[ 19]+e[ 1]/f[jO]+e[2]/fll;s[235]=e[]/a[ 19]+e[2/f[jO]+e[ 1]/ff 1];
s[236]=e[1lya[ 19]e[2]/fO]+e[O]/f[ l];s[237]=e[ 1]/a[ 19]+e[O]/f[O]+e[2]/f[ 1];
s[2381=e[2]/a[ 19]+e[ 1]IflO]+e[O]If[l ) ;s[239]=e[2]/a[ 19] +e[O]IfEO]+ell]/tI 1);
c=239;
Sort(s, c);

printfQ'Enumeration finds the min soin to be %.2f.\n", s[O]);
printf("Enumeration finds the max soin to be %.2f.\n", s[239]);


