
NPS52-90-024

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A235 663

AN INTRODUCTION TO OBJECT-ORIENTED
PROGRAMMING

Michael L. Nelson

April 1990

Approved for public release; distribution is unlimited.

Prepared for:.

Naval Postgraduate School . -

Department of Computer Science, Code CS
%1nntc-e:,. Califo-nia 93943

- ~,.91-00006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research funded by the Naval Postgaduate School
Research Council.

Reproduction of all or part of this report is authorized.

MICHAEL L. NELSON
Assistant Professor
of Computer Science

Reviewed by: Released by:

'~_ \I i Y-'f - *z

ROBERT B. MCGHEE GORDON E. SCHACHER
Chairman Dean of Faculty
Departm:nt of Computer Science and Graduate Studies

UNCLASSIFIED
SECURTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED_______________ _____

ECURITY ~ ~ ~ ~ ~ 3 CLSSFCAISTRIBiT 7-7 UTION/AVAILABILITY OF REPORT
b SApproved for public release;

distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-90-024

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (if applicable)
Naval Postgraduate School 52

6c ADDRESS (City, State. and ZIP Code) 7b ADDRESS (City, State, andZIP Code)

Monterey, CA 93943

Ea NAME OF FUNDING;SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appicable)

- 1,, Posigraduate Schooi CS

8- ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBER,
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Monterey, CA 93943

1 1 TITLE (Include Security Classification)
AN INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING (U)

12 PERSONAL AUTHOR(S)
Michael L. Nelson

YPE OF REPORT 113b TIME COVERLD 14. DATE OF REPORT (Yudr, Month, Day) 15. ,AGE COUNT
umman, FROM TO April 1990

6 Ur- LEMNAR OTTO

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Object-oriented programming, abstract data types, encapsulation,
inheritance, polymorphism, genericity

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Like many new ideas, object-oriented programming (OOP) does not yet have a universally accepted definition.
Even the terminology of OOP can vary greatly from one system or language to another.

This paper introduces OOP to the newcomer in a language-independent manner. The "underlying theory" of OOP
is presented to give the reader the basics necessary to understand the nuances of the various OOP languages that
are available. Several OOP languages are briefly considered, as are object-oriented database management systems,
object-based programming, and object-oriented design. Various problem areas are explored in detail. This paper
should also be of considerable help in making the transition from one OOP language to another.

20 STRIBUTION AVAILABILITY OF ABSTRACT 2-1, ABST RACT SECURITY CLASSIFICATION
U NCLASSiFIFD/UNL , J3ZrA. H" r L [DTIC USERS UNCLASSIFIED

MEOFRESPNIBLE INDVIU1 22b. TELEPHONE (Include Area Code) 22c. I
ichael L. Nelson (408) 646-2449 1 52Ne

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

TABLE OF CONTENTS

* ~1. INTRODUCTION...1

2. WHAT IS OBJECT-ORIENTED PROGRAMMING?.......................1

2.1 OBJECTS, CLASSES, AND INHERITANCE....................2

2.1.1 VARIATIONS ON INHERITANCE........................4

2.2 A COMPARISON WITH ABSTRACT DATA TYPES................4

2.3 POLYMORPHISM..4

2.4 COMPOSITE OBJECTS...................................5

2.5 ABSTRACT AND CONCRETE CLASSES...........................6

2.6 THE METACLASS...6

2.7 DELEGATION AND PROTOTYPING...........................7

2.8 CONCURRENT OBJECT-ORIENTED SYSTEMS...................7

3. OBJECT-ORIENTED PROGRAMMING LANGUAGES.....................7

3. 1 "BUILT-IN" LANGUAGES................................8

3.1.1 SMALLTALK......................................8

3.1.2 EIFFEL...9

3.2 "BOLTED-ON" LANGUAG.ES...................................9

3.2.1 C-BASED OOP LANGUAGES...........................9

3.2.2 LISP-BASED OOP LANGUAGES.......................10

3.2.3 PASCAL-BASED OOP LANGUAGES....................1004. OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS...............10
5. PROBLEM AREAS..11

5.1 SIMPLE TERMINOLOGY DIFFERENCES.......................11

5.2 CLASS VARIABLES...11

5.3 ENCAPSULATION VS INHERITANCE........................12

5.4 SUBCLASSING VS SUBTYPING............................13

5.5 MULTIPLE INHERITANCE................................13

5.6 GENERICITY...14

6. OBJECT-BASED PROGRAMMING..................................15

7. OBJECT-ORIENTED DESIGN.....................................15

8. CONCLUSIONS...16

REFEREN .. 17 ,n For

INITIAL DISTRIBUTION LIST 20 &l

Figure 1 - AN INHERITANCE HIERARCHY. 3O Figure 2 - A MULTIPLE INHERITANCE LATTICE 3

Figure 3 - THE CLASS DEFINITION...............................3 :j ~3/r
ipu)ctal

1. INTRODUCTION

Object-oriented programming (OOP) is still a relatively young field that
does not yet have a universally accepted definition that can be called
upon. It is somewhat disturbing that the terminology of COP varies so
greatly from one system to another - there are slots and variables,
classes and types and flavors, class variables and shared variables,
etc. And even when the terminology seems to be the same from one
language to the next, there can be some very subtle variations in the
implementations and usage.

Something of ai. object-oriented "Tower of Babel" has been created.
And while it is hard enough for someone with OOP experience to under-
stand all of the various dialects and differences, it is even more
difficult for the newcomer to understand what is going on.

This paper is intended to introduce OOP to the newcomer. Rather
than approach OOP from the viewpoint of a specific language, the basic
ideas of OOP (i.e., the underlying theory and a basic vocabulary) are
presented. The reader should keep in mind that the actual terminology
can vary greatly between languages. However, since these seemingly
different approaches can be mapped into the same set of basic ideas,
they can also be mapped into one another.

We begin by answering the question of 'what is object-oriented
programming?', then take a brief look at several OOP languages and
object-oriented database management systems. Various problem areas are
then explored in detail, followed by a brief examination of object-based
prograrming and object-oriented design.

2. WHAT IS OBJECT-ORIENTED PROGRAMMING?

As there is no universally accepted definition of OOP, let us begin with
several notable quotes on the subject.

"My guess is that object-oriented programming will be in the 1980's
what structured programming was in the 1970's. Everyone will be in
favor of it. Every manufacturer will promote his products as
supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know
just what it is." [Rent82]

"Object-oriented is well on its way to becoming the buzzword of the
1980's. Suddenly everybody is using it, but with such a range of
radically different meanings that rio one seems to know exactly what
the other is saying." [Cox86]

"Object-oriented has become a buzzword that implies 'good' program-
ming." [Stro88]

"I have a cat named Trash. In the '11rr-t political _mI>i.i, 0,.
w!1d qp-r it t werp trying Lo .eii him (at least to a Computer
Scientist), I would not stress that he is gentle to humans and is
self-sufficient, living mostly on field mice. Rather, I would argue
that he is okject-oriented." [King89]

All these quotes entail essentially the same meaning - that OOP is good
and that it is currently a hot sales item, but that there is no general
agreement as to just what it is.

What is needed is a definition general enough to encompass all of
the current views of OOP, yet strong enough to stand up as the basis for
the underlying theory of OOP. The following equation [Wegn87] comes
very close to fulfilling that need, and is used as a starting point:

object-oriented = objects + classes + inheritance

2.1 OBJECTS, CLASSES, AND INHERITANCE

If this definition of OOP is to be accepted, then obviously the terms
contained within it must be defined. In defining the terms class and
object, it is easy to get caught in the trap of a circular definition
in which an object is defined to be an instance of a class and a class
is defined to be a description of similar objects.

This confasion can be avoided by defining an object to be a self-
contained set of variables which can be manipulated only by a set of
methods (procedures) defined exclusively for that purpose. A class can
then be defined as a description of similar objects, like a template or
cookie cutter [Wegn87], or as a factory that produces objects [Cox86].

The variables making ur n object can be divided into two sections:
class variables and instance variables. A class variable is shared in
both name and value by all instances of a class, while an instance
variable is shared in name only by all instances of a class (i.e., each
object has its own local version of an instance variable, but all the
objects of the class access the same class variable).

The procedures or operations that are defined for the object are
called methods. A message is sent to an object to tell it to perform
one of its methods. Ideally, the only way to access any of the
variables making up an object is by sending the object a message. In
this way, an object is said to be encapsulated in that its internal
structure may be modified without affecting user-written code which
accesses the object (as long as appropriate modifications have also been
made to the object's methods).

Inheritance can be defined simply as a code sharing mechanism. It
allows a new class to be defined based upon the definition of an
existing class without having to copy all of the existing code. A
subclass inherits all of the variables and methods defined for its
superclass (including those variables and methods which were inherited
by the superclass from some other class).

With single inheritance (usually referred to just as inheritance),
a class may have only one superclass. Multiple inheritance (MI) allows
a class to have several superclasses (i.e., it inherits the definition
of each superclass) . A class hierarchy is a diagram which shows Lhe
inheritance relationship between various classes (see Figure 1) . Under
MI, the inherit2--c hierarchy is technically called a lattice, although
it is fairly common to refer to it more simply as a multiple inheritance
hierarchy (see Figure 2).

2

ANIMAL

REP' ILE MAMMAL

HUMAN DOGI /
STUDENT POODLE DOBERMAN

Figure 1 - An Inheritance Hierarchy

HUMAN

STUDENT TEACHER

STUDENTTEACHER

Figure 2 - A Multiple Inheritance Lattice

A very simple and succinct way of representing class definitions,
without using any specific language, is now possible (see Figure 3) .1
This model, along with the definition of object-oriented = objects +
classes + inheritance [Wegn87], encompasses the underlying theory of
OOP. It looks amazingly simple, but that is really all that there is
to it. This simplicity should not detract from OOP, rather it should
be heralded as one of its central themes: OOP, one of the most powerful
software methodologies available today is actually a very simple idea
that anyone should be able to understand and put to use.

Class <class name>
Superclasses: <superclass_1>, <superclass 2>,
Class Variables: <classvar_1>, <class var 25,
Instance Variables: <inst var 1>, <inst var_2>, ...
Methods: <method-namel>, <method-name_2>,

Figure 3 - The Class Definition

'Figure 3 represents the specification of a class which can easily be
extended to a more detailed specification. For example, variables can
be typed to model a more strongly typed system. The specification can
also be divided into parts such as public, private, and subtype-visible
(i.e., who can access the variable or method - anyone can access public
variables and methods, only methods defined for the class may access
private variables and methds3, while both methods defined for the class
and subclasses of the class may access subtype-visible variables and
methods). However, this simple specification, even without enhance-
ments, captures the fundamental properties of the class definition.

3

2.1.1 VARIATIONS ON INHERITANCE

It is easy to think of a subclass as "everything that its superclass is,
plus some new variables and methods which are defined locally". This
is sometimes true, in that it is relatively simple to define new
variables and methods in the subclass, which in effect are added to
those that are inherited.

However, in most OOP languages, it is also possible to redefine
variables and methods which would otherwise have been inherited from the
superclass(es). That is, a variable and/or method could be declared in
the subclass with the same name as a variable/method that is defined in
(or inherited by) the superclass. In this case, the new definition in
the subclass simply overrides the definition which would have otherwise
been inherited.

It is also possible in some OOP languages to exclude variables
and/or methods which would otherwise have been inherited from the super-
class(es) . That is, the subclass inherits everything from a superclass
that is not specifically excluded.

2.2 A COMPARISON WITH ABSTRACT DATA TYPES

An abstract data type (ADT) can be defined as the encapsulation of a
data structure along with a set of operators, in which the implemen-
tation details of both the data structure and the operators are hidden.
This allows the ADT to be referenced with implementation-independent
code. Without inheritance, OOP is really nothing more than an ADT
system.'

Actually, abstract data types are used in computer systems all the W
time [OFS84]. The only non-abstract type on the computer is the bit
string; all other types have an internal representation (a strLng of
bits), an external representation (typically a string of characters or
numbers), and some set of operations to manipulate these data types.
Thus, both abstract data types and object-oriented programming can be
thought of as ways to allow users to add their own Lypes to those
supplied by the system.

2.3 POLYMORPHISM

Polymorphism (sometimes called operator overloading or funccion over-
loading) can be defined as allowing different data types (classes) to
have methods (routines) with the same name which may be implemented
differently [CW85, Mica88]. We actually use polymorphic routines all
the time, even in conventional systems. For instance, we have a plus
operation for integers and a plus operation for real numbers - in most
cases these operations are implemented differently, but the same symbol
('+') is used fot each operation. The compiler and/or run-time environ-
ment is "smart enough" to determine which version of the operation to
use based upon the arguments (i.e., use the integer plus for integers
and the real plus for real numbers).

'OOP has even been defined in terms of abstract data types, as
"object-oriented = data abstractions + abstract data types + type
inheritance" [Wegn86].

4

One possible alternative to implementinq polymorphism would he to
have A single operation defined which would in affect be a "giant" case
statement. Every call to that operation would then choose the
appropriate case to determine which part of the code to execute (e.g.,
the plus operation on integers would choose the integer case, etc).
However, true polymorphism allows the various operations to be created
and tested independently of one another. Adding a new version of the
operation has no affect upon the existing code at all.

Simple polymorphism (usually referred to simply as polymorphism)
allows different classes to each have their own implementation of an
operation. Multiple polymorphism allows each class to have several
operations with the same name. Once again, the proper operation is
chosen based upon the arguments provided.

For example, a class could have several print routines, all doing
essentially the same thing, but doing it differently depending upon
which printer was chosen. Multiple polymorphism allows a separate print
routine to be developed for each printer, independently of all the other
print routines. As with simple polymorphism, an alternative would be
to have a single routine defined which was again a "giant" case
statement, selecting the proper section of code for the chosen printer.
Once again, the various versions of the operations may be created and
tested independently, and new versions may be added with no affect upon
the existing ccdJ.

2.4 COMPOSITE OBJECTS

A composite object (sometimes called an aggregate object) is an object
which consists of other objects. That is, the variables (or some of the
variables) which make up the object represent other objects. If these
variables are themselves objects, then they are called dependent
objects. If these variables are pointers to other objects, then they
are called subobjects.

A dependent object is completely dependent upon the composite
cbject. It cannot be created unless the composite object is created
first. If the composite object is deleted, then all of its dependent
objects are also deleted, as there would be no way to refer to them
individually.

Subobjects, on the other hand, may exist as stand-alone objects in
their own right. Either the subobject or the composite object may be
created first. If the composite object is deleted, then a decision must
be made about whether or not the subobjects should also be deleted.
Subhbjects may also be shared between composite objects; this is not
possible with dependent objects.

3It could be argued that virtually every object is a composite
object. Any variable which makes up an object must itself be of some
type (such as real, integer, or a user-defined type). It is possible
for an object to have no variables but still respond to som._ set of
messages, and this would be the only type of non-composite object.
However, the term composite object is usually applied only in those
cases where the object is made up of other user-defined objects.

Actually, most objects may be viewed as some type of composite
object if no distinction is made between system-supplied types and user-
defined classes. If, for instance, an object consists of two integer
variables and one real variable, then the object could be viewed as a
composite object consisting of three dependent objects (or subobjects) -

two of which were integer objects and the other a real object.

Composition may also be compared with inheritance [Cox86, H087,
Nels88], choosinq one or the other depending upon the relationships
involved. Composition can be thought of as a form of part inheritance,
while inheritance is more concerned with behavioral inheritance. For
example, an automobile is constructed from a body, an engine, tires,
seats, etc. It would therefore probably be most appropriate to use some
form of composition rather than inheritance. A student teacher, on the
other hand, inherits the characteristics of both a student and a teacher
- it is not a student and a teacher "glued" together. Therefore,
inheritance is probably the most appropriate construct.

Another alternative also exists - an encapsulated form of
inheritance (Nels88, Snyd86], sometimes called enheritance. With
composition, the methods of the dependent objects (subobjects) are not
inherited by the composite object. These messages cannot be sent to the
composite object, they must be directed to the appropriate dependent
object (subobject) . With inheritance, the methods of the superclass (es)
are inherited, and these messages can be sent to instances of this new
subclass. However, there may be some name conflicts which must be
resolved (see the Encapsulation vs Inheritance Section for more infor-
mation on this). Enheritance can be viewed as a form ot composition in
which the methods associated with the dependent objects (subobjects) are
inherited, or as a form of inheritance in which name conflicts are
avoided by keeping separate and distinct variables that just happen to
have the same name.

2.5 ABSTRACT AND CONCRETE CLASSES

An abstract class is a class which does not have any instances. It
generally exists to be used only as an ancestor to other classes which
may have instances. A concrete class is one which does have instances,
although it may alsc be used as an ancertor to other classes.

This author does not know of any language which provides abstract
classes and concrete classes as constructs (i.e., a language in which
there is a '.ay to designate a class as abstract so that it may not have
any instances) . The terms may, however, be used to describe the various
classes in a system and be useful in its design and maintenance.

2.6 THE METACLASS

The metaclass is a special class provided by some OOP systems which is
mainly used to create new user-defined classes. It is possible to take
the viewpoint that everything in an object-oriented environment is an
object, and that everything is accomplished by sending messages to the
objects. With this approach, classes must also be considered to be
objects in that messages are sent to them to create new instances
(objects) of that class. However, messages must also be sent to create
new classes, and these messages are sent to the metaclass. Multiple
metaclasses are also possible, with each metaclass setting different
parameters/standards for classes which they create.

6

This approach, however, can lead to an infinite set of classes.

The me -aclass must be considered an object in its own right, and is
therefore created by the metametaclass, which is in turn created by the
metametametaclass, etc. Most languages which support the metaclass

concept -ither ignore this problem all together, or they simply decree
that the metaclass is a special object provided by the system.

Those languages which do not support the metaclass concept can be
considered to be equi-,alent to this approach. Messages to create new
classes are handled by the system, which for all practical purposes is
the metaclass.

2.7 PROTOTYPING AND DELEGATION

kr~totyo'o (dele. ation) [Lieb86, Stei87, SLU89, Wegn87] is probably the
::-s- notable variation on OOP. With inheritance, an object is defined
by its class. That class may inherit part of its definition from

--ass (the suverclass) . With delegation, each object is defined
i idally (there are no classes). An object delegates to its proto-

n e cl ect) for any -- iable or operation which is not defined
h That. is, an obect "asks" its prototype to supply any missing

a ciass-oase (inheritance) system, we could think of an object
!1C -ts class which in turn d-legates to its super-

S-es and so on. Notice, however, that we are only delegatinc to
S, neVer nstantiations. In a delegation-based system any

srve as a prototype.

et lc y, these types of languages do not fit within the
d.frn_' of "obcect-oriented = objects + classes -4 inheritance"

l] To keeo from excludino this form of OOP, it is necessary to
' defnitiorn as follows:

clhject-orie<.ted = (objects , classes + inheritance) OR

(objects + delegation)

2.8 CONCURRENT OBJECT-ORIENTED SYSTEMS

o systems are another important aspect of ob ect-orienteci
p- ,ra Although much interestinq research is takino place in tnhs

Is considered to be beyond the scope of this introductory
paprr. !I should be noted, however, that there are many intriguing
possiIilitise_ in moving objects into the concurrent world. A good
introduction to concurrent GOP systems may be found in [Nels9Oa] and

3. OBJECT-ORIENTED PROGRAMMING LANGUAGES

There are many languages that claim to be object-oriented. Depending
upon the definition of OOP that is used, some languages are truly
object-oriented, but many are not. In this section, several languages
that meet the definition of "object-oriented = objects + classes +
inheritance" will bE; (briefly) reviewed.

Object-oriented features can be added to an existing language, in
which case it is referred to as a bolted-on language. A language is

considered to be built-in if it is designed around the principles of
object-oriented proaramming. Obviously, any GOP language which is *
designed as an extension or super set of an existing non-OOP lanauage
will fall into the holted-on category.

Depending upon your point of view, a bolted-on language can either
be a problem or a blessing. It allows the programmer to mix ar object-
oriented style of prog-amming with more conventional code. This may be
usea to produce a more efficient system, but it may also generate a
progra- wdtch is simply a mixEI up mixture of old (conventional' and new
(00) statements.

Bolted-on approaches cai also lead to problems of determining who
can really design and code an object-oriented program and who cannot.
n dealing w' h super s; .s, it is possible for someone to write a

completely cc-ventJonal program, run it through the OOP compiler/pre-
rocessor, then proclaim "1 wrote a program in an object-oriente -

lanquage, therefore it is an ot ject-oriented program and 7 are (sic) an
c~ect-oriented programm.er"

3.1 "BUILT-IN" LANGUAGES

Sprevously def nei, a b':i1t-in languaje is one which has been
esiered "from the u-. w " as an object- riented langiage. Smaiiltalk

Sroably the most popular and widely recognized built-in COP
lancuage, and will be the only built-in OOP language reviewed in this

3.1.1 SMALLTALK
3.1, alk arew o of Alar Kay's Dynabook project K7 . More than

aanguageo, it provides a complete environment. That is, once the
environment is entered, it takas care of all of the overhead

(iorati~n' systems calls, etc) . At this time, most available versions
tk are interpretive, and therefore are nct as fast as might

oe for. However, Smalltalk compilers are being developed.

Smaltalk-80 [GR83] is a product of Xerox PARC. It was init. lly
as Smalltalk-72, followed by Srialitalk-'7z and Smailtalk-16.

-te "orginal" Smalltalk. Smalltalk-80 is available for a wide
of machines, but is not available for PC class machines.

Iak/V [Digi86, Digi88] is a product of Digitalk, Inc. It also
run i several machines, including PC class machines.

I have not yet seen a published comparison of Smalltalk-80 and
Pmai1talk/V - even the sales representatives do not want to make a
comparison (they claim that they do not want to "badmouth" the
com~pettion) . However, from asking several questions of sales represen-
tatives of both Xerox PARC and Digitalk, Inc at the OOPSLA'88 Conference
(Oct 1988, San Diego, CA), the following was ascertained:

(1) they are essentially the "same" language (kind of like different
versions of other languages available from different companies);

(2) Smalltalk-80 provides more tools, a "better, richer" environ-
ment, etc; and

(3) Smalltalk/V is smaller, and therefore can run on smaller
machines.

8

3.1.2 EIFFEL

Eiffel [Meye87, Meye88a, Meye88b, Meye88c] was developed by Bertrand
Meyer at Interactive Software Engineering Inc. It is a compiled OOP
language, and although it uses C as an intermediate language (i.e., it
is "compiled" into C code), it is not bolted-on to the C language. C
is use d as an intermediate language due to the large number of systems
which support it - any system which supports C may also support Eiffel.
Eiffel is intended to serve as both a language and environment for
designing software that is easily reusable and extendible.

The notion of programming as contracting [Meye88b, Meye88c], in
which the relationship between a class and its clients is viewed as a
formal agreement (which expresses both party's rights and obligations)
is often assoclated with Eiffel. However, this approach can be viewed
simply as a formalization of the idea that it is the external interface
whi provides users with the only way to access an object. Programming
as contractinq s ffply means that: (1) only the result of sending an

.ertain nessaae with a certain set of arguments is important -
it m-at* , r how the method is implemented, and (2) this external

~er' can be changed without modifying the original contract.
- -c', s!J, however, is free to make any changes to their implementations

* d t :f the interface itself. As such, programming as con-
,- implemented in virtually any OOP language.

3.2 "BOLTED-ON" LANGUAGES

e. vd ned, a bolted-on language is one in which object-
.prinr.? es have been added to an existing language. Many

this category, with the two most popular being those
[KRh78' and those based on Lisp [Stee84] . Various C-based and

[- seJ ianc s will be briefly investigated in this section. OOP
r lisel.:, C. >ascal [Grog78] will also be briefly examined.

3.2.1 C-BASED OOP LANGUAGES

.f *JtheF advantaces of C-based languages that are true super sets of
i-nairtain C's portability. That is, if a preprocessor (a

r that compiles the C-based language into "regular" C code) is
] th.any machine which supports C also supports the C-based

[Str6 WP88] was developed by Bjarne Stroustrup at Bell Labs.
it was or igi naly a C preprocessor, but C++ compilers are now available.
The original goals of C++ were to:

(') reaain C's efficiency (C++ is not faster than C, but it should
not be any slower either);

(2) provide 100' upward compatibility from C (i.e., C++ consists
compiete1y of extensions to C, making no modifications to the
C languaie) ; and

(5) fix some of C's "weaknesses", specifically providing strong
typing (which is available, but not mandatory due to the upward
compatibility requirements) and data hiding.

Multiple inheritance was not originally included in C++, but some of the
more recent releses include this feature.

. |)

Objective-C [Cox86] was developed by Brad J. Cox at Productivity
Froducts International. While the C++ extensions to C were designed to
"look like" the original C code, the Objective-C extensions were
designed more along the lines of Smalltalk code. Everything in
Objective-C that has been added to C is enclosed in brackets (' [...]')
so that it stands out in a program listing.

Some of the terminology of Objective-C is quite different from
other COP languages. For instance, Objective-C associates a factory
object with each class. It is this factory object which is used to
create new objects. The term software-IC is advanced as an alternate
name for a class. This is to emphasize the parallel with the hardware
silicon chip, a technology that radically reshaped the way that hardware
engineers build systems.

3.2.2 LISP-BASED OOP LANGUAGES

Several Lisp-based languages have been developed. While some of these
languages are still in use, the Lisp community seems to be migrating
towards CLOS (Common Lisp Object System) [BDGK88, Keen89, Moon89] . This
is a proposed standard for ANSI Common Lisp, and has been proposed as
a "replacement" for all other Lisp-based OOP languages.

At the ACM Lisp and Functional Programming Conference (summer of
1986), several members of the Lisp community decided that while experi-
mentation should continue, a standard system was needed. An ad hoc
committee was started at the conference, which grew into the X3J13
committee for the formal standardization of Common Lisp. The "best"
features of the various Lisp-based OOP languages were incorporated into
CLOS. CLOS may well become a major OOP language in the future, partly
because it is formally a part of Common Lisp.

3.2.3 PASCAL-BASED OOP LANGUAGES

At this point in time, Pascal-based OOP languages have not made much of
an impact upon the OOP market. This may change, however, due to the
wid =cceptance and use of Pascal in other areas as OOP extensions
become available.

Turbo Pascal 5.5 [Borl89], a product of Borland, is one such
extension. Classes and inheritance have been added, but encapsulation
is not enforced by the system. It is, however, definitely a step in the
right direction.

4. OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS

A database (DB) can be defined as a collection of data stored "perma-
nently" in a computer [Ullm82]. The data to be stored in a database is
said to be persistent in that it survives beyond a single programming
session [AH87, CSWZ87]. A database management system (DBMS) is the
software that allows users to use and maintain the data in the database
[Ullm82). An object-oriented database management system (OODBMS) can
then be defined as the software that allows users to use and maintain
objects (data) in an object-oriented database [Nels90b]. The objects
stored in the database are persistent in that they survive beyond a
single session [Nels90b].

10

A complete treatment of object-oriented database management systems
is considered to be beyond the scope of this introductory paper. For
more information, the reader is referred to [Nels90b].

5. PROBLEM AREAS

If OOP is really dll that simple, then why do all of the languages seem
to be so different?

5.1 SIMPLE TERMINOLOGY DIFFERENCES

A few differences can be explained simply as a case of using different
terms to mean the same thing. For example, a slot can be thought of as
another name for a variable (either an instance variable/slot or a class
variable/slot), and a flavor is essentially the same as a class. A type
may also be used to mean the same thing as a class, but special care is
needed here to determine the exact usage (for more information, see the
section on subclassing vs subtyping) . Unfortunately, other differences
are not so simple.

5.2 CLASS VARIABLES

A class variable is one which is shared in both name and value by all
objects that are instances of the class. But even this simple
definition can be interpreted in two different ways.

Consider, for example, a class variable defined in a superclass
(and therefore inherited by every subclass of that superclass).
Obviously, all of the objects which are instances of the superclass will
share that class variable in both name and value. But what about
instances of the subclass? These objects should also all share that
class variable in both name and value, but is this the same variable
that is shared by the instances of the superclass? This is a question
of both implementation and philosophy - if an instance of a superclass
modifies the value of a class variable, is the value also modified for
instances of the subclass, and vice versa?

The implementation part of this question is fairly easy to resolve
- it can be viewed as a copy vs pointer implementation issue. If the
subclass receives a pointer to the superclass class variable, then
changes will be reflected up and down the hierarchy. If, on the other
hand, the subclass receives a copy of the superclass class variable,
then changes will be seen within individual classes only.

The philosophical aspects, however, are not that easy to resolve.
Rather than argue that one approach is right and the other is wrong, it
should only be noted that either one may be useful in certain situa-
tions. The problem then becomes: given a specific language and its
particular implementation of class variables, how can the other approach
be "simulated" if that is what is needed? An additional consideration
is whether or not a language should provide both kinds of class
variables.

Another problem with the term class variable is its emergence in
C++ literature with a completely different usage from the more generally
accepted idea. An object is sometimes referred to as a class variable
[WP88], and this usage should be halted immediately. It does make some

]1

sense to say that an object is a class variable in that it is repre-
sented by a variable and it is an instance of a class. However, this
usage should be regarded as entirely inappropriate since the idea of a
class variable with a completely different meaning already exists within
the OOP world.

5.3 ENCAPSULATION VS INHERITANCE

Encapsulation can be defined as a form of information hiding. As
previously discussed, it allows us to make changes to the implementation
of a system with minimal effects upon the end-user. Inheritance can be
defined as a code sharing mechanism. It allows new classes to be built
upon existing classes. While it has been claimed by various sources
that either encapsulation or inheritance alone is the central feature
of OOP, it is probably more appropriate to agree that both features are
necessary to make the claim that a language is truly object-oriented.

Encapsulation without inheritance is actually nothing more than an
abstract data type system. As previously discussed, an ADT can be
defined as the encapsulation of a data structure along with a set of
operators, in which the implementation details of both the data
structure and the operators are hidden. This allows the user to
reference the ADT with implementation-independent code. Encapsulation
is an important part of OOP, but is not sufficient by itself to
designate an OOP language.

Inheritance without encapsulation may give the "look and feel" of
an OOP language - it is possible to create objects and give the end-user
methods to manipulate them, but there is no way to keep the user from
accessing the internals of an object. Although "hackers" may prefer
this type of system, allowing end-users to access the internals of an
object can have the effect of constraining the system to the original
implementation, even if a modification may lead to a more efficient or
a more powerful system.

If it is agreed that both inheritance and encapsulation are
necessary for a language to be considered truly object-oriented, the
definition of "object-oriented = objects + classes + inheritance"
[Wegn87] can still be used by agreeing that the concept of a class
implies some form of encapsulation.'

In a typed system (i.e., a system in which variables are defined
to be of a certain type or class), encapsulation can be violated by
inheritance, and this can cause several problems [Nels88, Snyd86]. As
a simple example, consider a Class A with a variable Q defined as an
integer. Now say that a Class B is defined to be a subclass of A. If
B's methods are allowed to access A's variable Q directly (by name),
then A's definition is essentially locked in - if it should become
necessary to modify A's definition so that the variable Q becomes a real
number, then methods defined for B which expect the variable Q to be an
integer will no longer function properly.

4As previously mentioned, OOP has been defined in terms of abstract
data types as "object-oriented = data abstractions + abstract data types
+ type inheritance" [Wegn86]. Although encapsulation is still not
mentioned per se, the idea of an abstract data type definitely implies
some level of encapsulation.

12

5.4 SUBCLASSING VS SUBTYPING

The terms class and type create much confusion for the newcomer to OOP
(and probably for many "oldtimers" as well). The terms superclass and
subclass are used in defining inheritance (a subclass inherits from its
superclass), and the class of a variable is simply the class that the
varianle is an instance of. The word type is sometimes used in lieu of
class, so that we then have subtypes and supertypes.

The term type, however, is also used to refer to the interface
available to an object (i.e., the set of methods it has available). It
is then said that two objects are of the same type if they share the
same interface, in name only.5

Obviously, objects that are instances of the same class are of the
same type. If two classes have the same set of methods available
(either by chance or by design), then objects that are instances of
either class are also said to be of the same type. Two classes are said
to have a common subtype (sometimes referred to as conforming to a
common subtype) if some subset of their interfaces are the same. Thus
the terms class and type may or may not be used interchangeably.

This problem can be better understood by considering the relation-
shic of OOP to conventional languages. In a conventional language,
variables are said to be of a certain type (real, integer, character,
etc.) which is provided by the system. One of the goals of OOP is to
allow the user to represent any arbitrary object, and then be able to
treat this object no differently than a system-supplied object. Indeed,
the term class may have been an unfortunate choice as most people tend
to think in terms of the type of a variable rather than its class.

The term class, however, seems to have caught on as the predominant
term for defining new types (classes) of variables. Since it is
generally in3ppropriate to speak of variables in a conventional system
(an integer and a real number, for example) as being of the same type
just because they share the same interface, perhaps some alternative
term for what is now called subtyping should be found. This could also
help to eliminate distinctions between system-supplied data types and
user-defined classes.

5.5 MULTIPLE INHERITANCE

Multiple inheritance (MI) is really not too complicated in itself, as
it simply allows a class to inherit from two (or more) superclasses.
The real problem with MI is in resolving name conflicts - what to do if
several variables (or methods) are inherited that have the same name.
Much research has been done in this area [Hend86, Nels88, Snyd86, SB86],
and there are no easy answers. The implementation in each language
which supports MI is slightly different in the way that it handles the
name conflicts. The problem itself is amazingly simple though: if the

'It makes no difference if the implementations of these methods are
completely different. For example if the class myintegers has only '+'
and '-' operations and the class my reals also has only '+' and '-'
operations (implemented differently from the operations of myintegers),
then objects of these classes are said to be of the same type.

13

variable (method) being accessed is not defined/maintained locally,
where should we look next?

Even though the problem can be stated so simply, it should not be
construed that solutions to it are also trivial. Just keep in mind what
the problem really is when comparing the various alternatives.

5.6 GENERICITY

Genericity is another term that does not seem to have a universally
accepted definition, and it has been used in many different ways within
OOP (some of the uses are quite appropriate, but others are rather
dubious). Since an exact definition does not exist, consider the
following examples.

An ADT is one of the more common examples of genericity. Since the
implementation details of the data structure and its operators are
hidden, the user can reference the ADT with implementation-independent
code. This allows the physical implementation of the ADT to be changed
without affecting the user-written code. We can therefore deal with a
generic object rather than a specific implementation. OOP itself is
representative of this form of genericity, in that objects (as instances
of various classes) are a form of an ADT.

Another familiar example of generic code is that of a swap or sort
routine that exchanges the values of variables (objects) or sorts a
collection of them according to some set of rules. These generic
routines are defined and then instantiated as needed for various data
types (classes). Any language that allows functions to be passed as
parameters provides some capability in this area. The idea of subclass
responsibility [Cox86] is similar in that a method can be implemented
for a superclass which assumes the presence of another method (to be
supplied by the subclass). In general though, the OOP community has
done little with the idea of generic routines that can be instantiated
for different classes.

A closely related area that helps to confuse the issue is that of
polymorphism. As previously discussed, this can be defined as allowing
different data types (classes) to have methods (routines) with the same
name which may be implemented differently [CW85, Mica88] . Instantiating
generic routines for various data types is thus a form of operator
overloading - each data type is allowed to have a different (customized)
implementation of the generic routine, each one with the same name.
There is a fine distinction here though, as generic routines are merely
one way of defining polymorphic routines. A routine with the same name
as an existing one (which could be generic) could also be defined for
a specific data type from "scratch".

The concept of an array (or list or queue, etc.) can also be
thought of as generic in that it is possible to have an array of
integers or reals or characters (or any other data type). Several OOP
languages support this form of genericity. C++ [Stro86, WP88],
Objective-C [Cox86], and Eiffel [Meye87, Meye88a], for example, all
support some form of a generic class or collection to handle this form
of genericity.

One of the features of CLOS [BDGK88, Keen89, Moon89] is the concept
of generic functions. This is another source of confusion in that these

14

functions are not generic in the sense that they can be defined and then

instantiated for different classes. Rather, declaring a function to be
generic causes a special function to be created (or modified, if it
already exists) to allow the system to select the appropriate implemen-

tation depending upon the arguments supplied to it (i.e., CLOS is
building a "gia:.t" case statement for the user). As this appears to be
more a form of function overloading than genericity, perhaps a better
name would have been 'polymorphic functions'.6

Another caestionable use of the term generic occurs in some object-
oriented database systems. Attention must be paid to version control
of objects (i.e., which is the most recent "official" version of the
object, and what are the various working versions of the object). The
terms generic object [KBCG89] and generic instance [FACC89] have been
used to indicate the most recent version of the object and what the next
working version will be. However, it seems as though it might be more
appropriatF to refer to these as 'version-control' objects.

6. OBJECT-BASED PROGRAMMING

Object-based programming can be defined simply as computing with
objects. It is often confused with object-oriented programming.
Support of objects is a necessary in an object-oriented language, but
alone is nct sufficient to designate a language as being object-oriented
(classes and inheritance are also required in object-oriented languages)
[Wegn87].

Any object-oriented language is therefore also an object-based
language, but the reverse is not true. Languages such as Ada (Booc87]
and Modula [Wirt82] are object-based, but are not object-oriented.
Actor languages [Agha86, TS89, Wegn87] are object-based, but are not
necessarily object-oriented; the Actor model does not specify that
either classes or inheritance are necessary to define the objects,
although these features may be included in an Actor language.

7. OBJECT-ORIENTED DESIGN

Software design varies with the way in which the problem being
implemented is decomposed. Two of the most common methods are (1) a
procedure oriented view in which the problem is decomposed according to
the actions to be performed; and, (2) a data centered view in which the
problem is decomposed according to the entities involved [Cox86].
Object-oriented design [Cox86, Meye88b, SS86, WW89] is when software is
designed asing objects, in which both data and procedures are treated
together.

This is another area which is often confused with object-oriented
programming. However, an object-oriented design could be implemented

6A generic function has been defined as one that can work for
arguments of many types, generally doing the same kind of work indepen-
dently of the argument type [CW85]. This may have been the intention
of generic functions in CLOS, but there is nothing present in the
language to enforce the idea that they do the same kind of work.

15

in a conventional language (although the implementation would probably
be more straightforward in an object-based or object-oriented language).
And just because software is implemented in an object-oriented language
does not necessarily imply that object-oriented design was employed.

8. CONCLUSIONS

This paper presents a relatively simple definition and model as the
basis for the underlying theory of object-oriented programming.
Although simple, it encompasses the essence of OOP, making it relatively
easy for the newcomer to understand what OOP is all about. It also
assails the confusing array of terminology currently in use within the
00 community and makes several recommendations as to what the
vocabulary should be.

The basic concepts of OOP have been presented in a language-
independent manner. It is hoped that this has given the newcomer the
basic knowledge necessary to be able tc understand the underlying
philosophy of any particular language, and to aid in the rapid tran-
sition between the various OOP systems that are available.

e

16

'REFERENCES

[Agha86] G. Agha. Actors: A model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, Mass, 1986.

[AH87] T. Andrews and C. Harris. "Combining Language and Database Advances
in an Object-Oriented Development Environment", OOPSLA'87 Proceedings, Oct
1987, Orlando, FL; Special issue of SIGPLAN Notices, Vol 22, No 12, Dec 1987,
pp 430-440.

[BDGK88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales,
and D.A. Moon. "Common Lisp Object System Specification X3J13 Document 88-
002R", special issue of SIGPLAN Notices, Vol 23, Sep 1988.

[Booc87] G. Booch. Software Engineering With Ada, Second Edition. Benjamin/
Cummings Publishing Co, Menlo Park, CA, 1987.

[Bor189] Borland International, Inc. Turbo Pascal 5.5 Object-Oriented
Programming Guide. Borland International, Inc, Scotts Valley, CA, 1989.

[CSWZ87] M. Caruso, R. Strong, M.Williams, S. Zdonik, and M. Nastos. Object-
Oriented Database Systems, OOPSLA'87 Tutorial, Oct 1987, Orlando, FL.

[Cox86] B.J. Cox. Object-Oriented Programming: An Evolutionary A;pioach.
Addison-Wesley Publishing Co, Reading, Mass, 1986.

[CW85] L. Cardelli and P. Wegner. "On Uinaerstanding Types, Data Abstraction,
and Polymorphism", Computing Surveys, Vol 17, No 4, Dec 1985, pp 471-522.

[Diri82 Digitalk, Inc. Smalltalk/V: Tutorial and Programming Handbook.
Digitalk, Inc, Los Angeles, CA, 1986.

[Digi88] Digitalk, Inc. Smalltalk/V 286: Tutorial and Programming Handbook.
Digitalk, Inc, Los Angeles, CA, 1988.

[FACC89] D.H. Fishman, J. Annevelink, E. Chow, T. Connors, J.W. Davis, W.
Hasan, C.G. Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M.A. Neimat,
T. Risch, M.C. Shan, and W.K. Wilkinson. "Overview of the Iris DBMS", in
[KL89], pp 219-250.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley Publishing Co, Reading, Mass, 1983.

[Grog78] P. Grogono. Programming in PASCAL. Addison-Wesley Publishing Co,
Reading, Mass, 1978.

[Hend86] J. Hendler. "Enhancement for Multiple-Inheritance", SIGPLAN Notices,
Vol 21, No 10, Oct 1986, pp 98-106.

[H087] D.C. Halbert and P.D. O'Brien. "Using Types and Inheritance in Object-
Oriented Programming", IEEE Software, Vol 4, No 5, Sep 1987, pp 71-79.

[KBCG89] W. Kim, N. Ballou, H-T. Chou, J.F. Garza, and D. Woelk. "Features
of the ORION Object-Oriented Database System", in [KL89], pp 251-282.

(Keen89] S.E. Keene. Object-Oriented Programming in Common Lisp. Addison-
Wesley Publishing Co, Reading, Mass, 1989.

[King89l R. King. "My Cat is Object-Oriented", in [KL89), pp 23-30.

[KL89] W. Kim and F.H. Lochovsky (eds) . Object-Oriented Concepts, Databases,.and Applications. ACM Press/Addison-Wesley Publishing Co, Reading, Mass, 1989.

17

(KG771 A. Kay and A. Goldberg. "Personal Dynamic Media", Computer, Vol 10,
No 3, Mar 1977, pp 31-41. 0

[KR781 B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, Inc, Englewood Cliffs, NJ, 1978.

[Lieb861 H. Lieberman. "Using Prototypical Objects to Implement Shared
Behavior in Object Oriented Systems", OOPSLA'86 Proceedings, Sept-Oct 1986,
Portland, OR; special issue of SIGPLAN Notices, Vol 21, No 11, Nov 1986, pp
214-223.

[MeyeS7] B. Meyer. "Genericity, Inheritance, and Type Checking", Technical
Report TR-EI-8/GH (version 2.1), interactive Software Engineering, Inc. Jan
1987 (revised version of "Genericity versus Inheritance", OOPSLA'86 Pro-
ceedings, Sept-Oct 1986, Portland, OR; special issue of SIGPLAN Notices, Vol
21, No 11, Nov 1986, pp 391-405).

[Meye88a] B. Meyer. "Eiffel: An Introduction", Technical Report TR-EI-3/GI
(version 2.1), Interactive Software Engineering, Inc. Jun 1988.

[Meve88b! B. Meyer. Object-oriented Software Construction. Prentice Hall,
Inc, Englewood Cliffs, NJ, 1988.

[Meye88c] B. Meyer. "Programming as Contracting", Technical Report TR-EI-
12/CO (version 2), Interactive Software Engineering, Inc. Mar 1988.

[Mica88] J. Micallef. "Encapsulation, Reusability and Extensibility in
Object-Oriented Programming Languages", Journal of Object-Oriented Programming,
Vol 1, No 1, Apr/May 1988, pp 12-35.

[Moon89] D.A. Moon. "The Common Lisp Object-Oriented Programming Language",
in [KL89], pp 49-78.

[Nels88] M.L. Nelson. "A Relational Object-Oriented Management System and An
Encapsulated Object-Oriented Programming System", Ph.D. Dissertation, Depart-
ment of Computer Science, University of Central Florida, Orlando, FL, Dec 1988.

[Nels90a] M.L. Nelson. "Concurrent and Distributed Object-Oriented Program-
ming Systems", Naval Postgraduate School, Monterey, CA, Technical Report No
NPS52-90-026, May 1990.

[Nels90b] M.L. Nelson. "Object-Oriented Database Management Systems", Naval
Postgraduate School, Monterey, CA, Technical Report No NPS52-90-025, May 1990.

[OFS84] J. Ong, D. Fogg, and M. Stonebraker. "Implementation of Data
Abstraction in the Relational Database System INGRES", SIGMOD Record, Vol 14,
No 1, Mar 1984.

[Pete87a] G.E. Peterson (ed). Tutorial: Object-Oriented Computing, Volume 1:
Concepts. Computer Society Press of the IEEE, Washington, D.C., 1987.

[Peteu.'b] G.E. Peterson (ed). Tutorial: Object-Oriented Computing, Volume 2:
Implementations. Computer Society Press of the IEEE, Washington, D.C., 1987.

[PW88] L.J. Pinson and R.S. Wiener. An Introduction to Object-Oriented
Programming and Smalltalk. Addison-Wesley Publishing Co, Reading, Mass, 1988.

[Rent82] T. Rentsch. "Object-Oriented Programming", SIGPLAN Notices, Vol 17,
No 9, Sept 1982, pp 51-57.

[SB86] M. Stefik and D.G. Bobrow. "Object-Oriented Programming: Themes and
Variations", The AI Magazine, Vol 6, No 4, Winter 1986, pp 40-62.

38

[SLU89] L.A. Stein, H. Lieberman, and D. Ungar. "A Shared View of Sharing:
The Treaty of Orlando", in [KL89], pp 31-48.

[Snyd86] A. Snyder. "Encapsulation and Inheritance in Object-Oriented
Programming Languages", OOPSLA'86 Proceedings, Sept-Oct 1986, Portland, OR;
special issue of SIGPLAN Notices, Vol 21, No 11, Nov 1986, pp 38-45.

[SS86] E. Seidewitz and M. Stark. "Towards a General Object-Oriented Software
Development Methodology", Proceedings of the First International Conference on
Ada Programming Language Applications for the NASA Space Station, 1986
(reprinted in [Pete87a]).

[Stee84] G.L. Steel, Jr. Common Lisp: The Language. Digital Press, Digital
Equipment Corporation, Bedford, Mass, 1984.

[Stei87] L.A. Stein. "Delegation is Inheritance", OOPSLA'87 Proceedings, Oct
1987, Orlando, FL; special issue of SIGPLAN Notices, Vol 22, No 12, Dec 1987,
pp 138-146.

[Stro86] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Putlishing Co, Reading, Mass, 1986.

[Stro88] B. Stroustrup. "What is Object-Oriented Programming?", IEEE
Software, Vol 5, No 3, May 1988, pp 10-20.

[SW87] B. Shriver and P. Wegner (eds) . Research Directions in Object-Oriented
Programming. MIT Press, Cambridge, Mass, 1987.

[TS89] C. Tomlinson and M. Scheevel. "Concurrent Object-Oriented Programmi,g
Languages", in [KL89], pp 79-126.

[Ullm82] J.D. Ullman. Principles of Database Systems. Computer Science
Press, Rockville, MD, 1982.

[Wegn86] P. Wegner. "Classification in Object-Oriented Systems", SIGPLAN
Notices, Vol 21, No 10, Oct 1986, pp 173-182.

[Wegn87] P. Wegner. "Dimensions of Object-Based Language Design", OOPSLA'87
Proceedings, Oct 1987, Orlando, FL; special issue of SIGPLAN Notices, Vol 22,
No 12, Dec 1987, pp 168-182.

[Wirt82] N. Wirth. Programming in Modula 2. Springer-Verlag, New York, NY,
1982.

[WP88] R.S. Wiener and L.J. Pinson. An Introduction to Object-Oriented
Programming and C++. Addison-Wesley Publishing Co, Reading, Mass, 1988.

(WW89] R. Wirfs-Brock and B. Wilkerson. "Object-Oriented Design: A Responsi-
bility Driven Approach", OOPSLA'89 Proceedings, Oct 1989, New Orleans,
Louisiana; special issue of SIGPLAN Notices, Vol 24, No 10, Oct 1989, pp 71-75.

19

