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Capacity of Mismatched Gaussian Channels
with and without Feedback

S. Thara*
Department of Mathematics, College of General Education, Nagoya University,
Nagoya, 464-01 Japan

Summary. Continuous time communication channels with additive noise are
considered under an average power constraint. The noises are assumed to
be Gaussian processes equivalent (or mutually absolutely continuous) to
a Brownian motion. We study the problem whether the capacity of the
channel is increased by feedback or not. It is given a sufficient conditicn
under which the capacity is not increased by feedback. It is also given an
example of a channel whose capacity is doubled by feedback.

1. Introduction

Whether the capacity can be increased by feedback or not has been studied
for various communication channels [4, 7, 13, 19, 20, 25]. Shannon [25] showed
that while the coding capacity of a discrete memoryless channel with feedback
is equal to that of the same channel without feedback, the zero error capacity
is increased by feedback. Kadota et al. [19] showed that feedback can not
increase the information capacity of the white Gaussian channel (WGC). This
result has been generalized by Hitsuda and the author [13]. On the other hand
it has been known that, if a Gaussian channel (GC) is with a non white noise,
the capacity is increased by feedback (see [4, 24]). Moreover it was claimed
by Ebert [7] and Pinsker that the capacity C/ of a GC with feedback is at
most twice of the capacity C of the same channel without feedback:

c/s2cC (L.1)

In this paper we consider a continuous time GC. We give a sufficient condi-
tion under which the capacity is not increased by feedback. We also give an
example of a GC whose capacity is doubled by feedback.

We are concerning the effect of feedback on the capacity of a continuous
time GC presented by

Y()=f x(wydu+Z(t), O=Zt=T, (1.2)

0

* Research partially supported by ONR contract N0O0O14-84-0212
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where x(¢), Y(-) and Z(-) are the channel input, the channel output and the
noise, respectively. The noise Z(-) is assumed to be a Gaussian process given

by
Z(t)=B(t)+f‘ ; f(s,u)dB(u)ds, )
00

where B(-) is a Brownian motion and f (s, u)e LI*([0, T]?) is a Volterra function
(i.e, f(s, u)=0if s<u). It is assumed that the channel is with noiseless feedback,
so that the channel input x(-) is a causal function of the message to be transmit-
ted and the channel output. The WGC is presented by

t
Y(©)=[ x(w)du+B(1), O05t<T, (1.49)
0
and is a special case of the GC (1.2). We assume that an average power constraint
T
{ E[x(u)*1du<PT (1.5)
0

is imposed on the channel input, where P>0 is a constant. The definition of
capacity used in this paper is the mutual information version, and the capacity
is sometimes called the information capacity. We define the capacity as the
supremum of the mutual information between the message and the channel
output taken over all messages and channel inputs satisfying the constraint.

Let F and F* be the integral operators on L*[0, T] with integral kernel
S(s,u) and f*(s, u)=f(u, s), respectively, and define a self-adjoint operator S
by

S=F+F*+FF* (1.6)

It is shown that if S is non-negative definite then the capacity of the GC (1.2)
subject to (1.5) is not increased by feedback and is equal to PT/2 (Theorem 2).
Although it may be expected that if S is not non-negative definite then the
capacity is increased by feedback, we have not succeeded to prove.

To show that the capacity is increased by feedback, we consider a special
case of the GC (1.2) where the noise Z(+) is given by

Z(t)=B(t)—j! fe""dB(u)ds. (1.7)
00

It is shown that, if the power P is equal to 1/2, the per unit tii: capacity
of the GC given by (1.2) and (1.7) with feedback is at least twice of that of
the same channel without feedback (Theorem 3).

We should here give couunicinis cu relerdui woiks agpeaccd after this paper
was submitted. For the discrete time GC, Cover and Pombra [5] proved the
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inequality (1.1) with the aid of certain matrix inequalities. The author [17]
showed that, for any ¢> 0, there exists a discrete time GC for which an inequality

C/'>(2-¢C

holds. Note that the noise process considered in [17] is derived from a discrete
time approximation of the process Z(-) of (1.7). Thus we can say that the factor
two in (1.1) can not be replaced by any other constants less than two. In [3]
and [18], some conditions are given for the discrete time GC under which

the capacity is increased by feedback.

2. Preparation

Let £ and n be random variables defined on a probability space (£2, %, P) taking
values on measurable spaces (G, 4) and (H, ), respectively, and denote by
; and u,, the probability distribution of ¢ and the joint probability distribution
of £ and n, respectively. The mutual information I(£, ) between ¢ and 5 is
defined by

IG )= | logdps,/du;xu)du,,,
GxH

if u,, is absolutely continuous with respect to the product measure p, x g, (4,
<pg x p,), where dp,,/du.x p, is the Radon-Nikodym derivative; otherwise
I(¢, n) is infinite. Since the measurable spaces (G, 4) and (H, ) can be taken
arbitrarily, ¢ and n may be stochastic processes as well as finite dimensional
random variables. The conditional mutual information I(Z, n|{) between ¢ and

n given { is defined by
16, nl0)=[flog(d ue/d myse X pa1;) d enis d it

o pegic € ey X e (U-a.s.), where pg. is the conditional probability distribution
of ¢ given [, and u,,,. is the conditional joint probability distribution; otherwise
I(&, n10) is infinite.

We consider the GC presented by (1.2) and (1.3). The Brownian motion
B(-) is assumed given on (2, #, P). Throughout the paper we assume that the
feedback is instantaneous and noiseless. Precisely speaking, the following condi-

tions are satisfied.
(a.1) The message 6 to be transmitted is a random variable defined on

(22, 8, P), independent of the channel noise Z(-), taking values on ap arbitrary

measurable space (G, 9).

(a-2) x(1) is F(0)¥ #.(Y) measurable, where £ () (resp. Z,(Y)) is the o-field
generated by 6 (resp. {Y(u); u<t}) and F ()~ Z,(Y) is the smallest o-field con-
tainirg # (A) and Z(Y).

(a.3) The stochastic Eq. (1.2) has a unique solution Y(-).

The G i< caid to be without jeedback, if (2.1} and toliowing (a.2) are sat-
isfied:

(a.2) x(r) is # (F) measurable.
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Denote by I7(6, Y)=1(6, Y) the mutual information between the message
6 and the output Yy ={Y(t); 0S1<T}. Then, under the constraint (1.5), the
(information) capacity C§(P) of the GC (1.2) with feedback is defined by

CH(P)=sup 176, V), @.1)
where the supremum is taken for all pairs (6, x) of a message and an input
x(+) satisfying {a.1}a.3) and (1.5). In the same manner the capacity C;(P) of
the GC without feedback is defined, by taking the supremum in (2.1) for all
pairs (6, x) satisfying (a.1), (a.2’) and (1.5). Equivalently, the capacity C;(P) is

given by
Cr(P)=suplr(x,Y),

where I-(x, Y)=1(x], YJ) and the supremum is taken for all inputs x(-) which
are independent of Z(-) and satisfy (1.5). We are also interested in the capacity
per unit time, under the constraint

T
lim sup 1 [ E[x(u)*]dugP. (2.2)
T-x T 0

The per unit time capacity C/(P) of the GC (1.2) with feedback is defined by
¢/ (P)=supl(8,Y), (2.3)
a.x

where
I(6, Y)=1lim sup % 1:(6,Y) (2.4)
T—x

is the per unit time mutual information and the supremum is taken for all
pairs (6, x) satisfying (a.1)«a.3), for all T>0, and (2.2). The per unit time capacity
C(P) of the GC without feedback is defined in the same way.

3. Channel Whose Capacity is not Increased by Feedback

The GC presented by (1.2) and (1.3) is considered in this section. It is well
known that there exists a Volterra kernel g(s, u)e L*([0, T]%), called the resolvent

kernel of f (s, u), such that

S, u)+g(s, W)+ [ f(s, ) glv,u)dv

=f(s, u)+g(s, u)+ _fsg(s, U)f(,u)dr=0, s uel0,T], (3.1
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(see [26]). Denoting by G the integral operator on L*[0, T] with g{s, u) as the
kernel, (3.1) means that
I+FI+G)=(I+G)I+F)=1I, (3.2)

where I is the identity operator on L2[0, T]. It follows from (1.3) and (3.1)
that

Z(t)= j‘ F(t, u)d B(u), (3.3)
[+]

B(t)= f G(t, u) d Z (u), (3.4)
(1]

t
where F(t, u)=1+ jf(s, u)ds for t=2u, F(t,u)=0 for t<u, and G(t, u) is corre-

sponding to g(s, u) in the same way (see [12]). Since (3.3) is the canonical repre-
sentation of Z(-) in the sense of Lévy-Hida-Cramér, we can apply a result
in [13] to get a formula for the mutual information in the GC.

T
Theorem 1. Suppose that | E[x(u)*]du< cc. Then the mutual information in the

GC (1.2) is given by 0

1,6, V)= [ E[(xol)~£o@)]du, 150, 3.5)
(]

where xo=(I + G) x, more precisely,

xo(t)=x(t)+j5g(t, u)x(uydu, >0, (3.6)
0

and %4(t)= E[xo(t)| #,(Y)] is the conditional expectation.

We now can give lower and upper bounds of the capacity and also a sufficient
condition under which the capacity does not change with feedback.

Theorem 2 [16]. (1) The capacity of the GC (1.2) subject to (i.5) is bounded
by
PT25Cr(P)SCHP)SII+F) "1 PT/2, (3.7)

where ||+ || is the operator norm of I1*[0, T].
(2) If the operator S defined by (1.6) is non-negative definite (S20), then

Cr(P)=C{(P)=PT/2. (3.8)

Proof. (1) The second inequality of (3.7) is clear by definition. For an integer
N, denote by 4,(n=1, ..., N) the interval (n—1)T/N, nT/N] and let 8(n), n
=1, ..., N, be mutually independent Gaussian random variables with mean zero
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and variance P. Let 8y=(8(1), ..., 8(N)) be independent of Z(+) ard define an
input x5(*) by
xy(t)=0(n) if ted,.

Then it is clear that (8, xy) satisfies (a.1), (a.2') and (1.5). For any >0, we
can show that there exists an integer N such that

Jr(6n. YZPT/2~¢,

where Yy(-) is the output corresponding to (8, x»). This implies that the first
inequality of (3.7) is true. This inequality was also shown by Baker [1, 2].
Let (6, x) be any pair satisfying (a.1}<a.3) and (1.5). Define xo(:) by (3.6) and
denote by |-}l the norm of L?[0, T]. Then, using Theorem 1 and (3.2), we

bave

T
I:(6, Y)=1 [ E[(xo(u)~%o(u))*] du
0

S3E[lxol3]=$ELI(I+G)x|)3)
SHII+GI E[ixZs3IU+F)7 i PT (3.9)

The last inequality of (3.7) {ollows from (3.9).
(2) Since S is a Hilbert-Schmidt operator, if S20 then we can easily show

that
I+ F) 2= +9" =1 (3.10)

The Eq. (3.8) is straightforward of (3.7) and (3.10). O

4. Channel Whose Capacity is Increased by Feedback

Our main aim is to show that feedback increases the capacity of a GC (1.2)
with the Gaussian noise Z(+) given by (1.7). We consider the GC on the time
interval [0, cc) and under the constraint (2.2) with P=1/2. We can show that
the per unit time capacity of the GC with feedback is equal or greater than
twice of the capacity of the same channel without feedback.

Theorem 3. Let C/(P) and C(P) be the per unit time capacity with and without
feedback, respectively, of the GC given by (1.2) and (1.7) under the constraint

(2.2). Then

'@zt (4.1)
and
CH)=14. (4.2)

Let us outline how to prove Theorem 3. To show (4.1) we construct a coding
scheme (6, x), in the following way, by which mutual information I(9, Y)=1
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AAAAA

of Z(-) with mean zero and variance one, and .4(r) be a function defined by

1
A== exp (1 [ gl du), 120 “3)
y2 0

where the function g(t) is the unique solution of the differential equation

2g'<r)=—g(z)3+%g(z)2+1/5, (>0,

; (4.4)
O)=—=.
g(0) %
The coding scheme of the information transmission is given by
Y*()=[AW)B-0u)du+Z(1), 120, 4.3)

0
where 8(u)= E[0|#,(Y*)]. Than we can prove the following proposition.

Proposition 1. (1) The stochastic Eq. (4.5) has a unique solution Y*(-).

2) AW E[O-0()]1=1,120.

(3) T(6, Y*)=1.

It is clear from (1) and (2) that (6, x) satisfies (a.1)a.3) and (2.2) with P=1/2,
where x(t)= A(1)(6 = §(1)). Hence (4.1) follows from (3): C/(1/2)21(6, Y*)=1.

We turn to the calculation of the capacity C(P) without feedback. In place
of the GC (1.2) we consider a slightly modified GC given by

t

Yo(t)=fx(u)du+20(!), (4.6)
0

where the noise Zy(+) is a Gaussian process defined by

zo(r)=B(z)—f j e *dB(u)ds
0 ~m
=Z(1)— [ e™*¢ods, 4.7)
0

0
here o= [ e*dB(u)and the Brownian motion has been extended to a Gaussian

process {B(r); —oc <t< o} in such a way that B(-) is with independent incre-
ments such that E[(B(1)— B(s))*]=|t—s]. It is shown that the derivative Z,(-)
of the process Zy() can be regarded as a generalized stationary Gaussian process
[10]. Let £ be the space of all infinitely differentiable real functions with compact
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support and Zr=¢€Z;supp(¢)< [0, T]}. Precisely speaking, the derivative
Z(-)of Z(-)1is defined by

Z(¢)==Z(¢)=— | ZW¢'()d1, ¢e2.

t
Note that if X(1)= [ x(u)du then X(¢)=x(¢). It will be shown in Lemma 4
0 .
that Z,(-) is a generalized stationary process with spectral density function
(SDF)
/:2
)= ———. (48
FA=2m5 (48)
Diflerentiating the both sides of (4.6) we get a generalized stationary GC
L(@)=x(8)+Z4(), 2. (4.9

Replacing I11(6, Y) in (2.4) by
Ir(x, Yo) = 1({x(¢); $eZ1}, {Yoly); Y€ 21)),

defines the per unit time mutual information J(x, Y,) in the GC (4.9). Denote
by C,(P) the per unit time capacity of the GC (4.9) without feedback uader
the constraint (2.2). Using a result in [23] we can calculate the capacity Co(l,2)

and (4.3) follows from the following proposition.
Proposition 2. It holds that

CH=Cod)=14. (4.10)

5. Proof of Propositions

We prepare some lemmas to prove Proposition 1.
Lemma 1. The unique solution g(t) of (4.4) is given by
O~-YDW-2F -2 =y, 120, (5.1)
a=(=1+)/70/2)2), B=(-)/T+5)/2)/7),
y=—(1-)22¢(1-)/22),

and % denotes the complex conjugate of a. Moreover, it holds that

lim g(1)=)/2. (5.2)

where
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Proof. The roots of the polynomial
3 1 2
Q(r)=t ———1/5! -2

are ]/2, 2 and 3, and it holds that

11 1 g B
QUY_4C—V5+I—1+t—i)

Then it 1s known that the solution g(r) of (4.4) is given by (5.1). We put ¢(1)
=arg(g(t)—a). Then we have

(g()—2)(g(1)— 2 =]g(t)— ~I***P exp(—2Im(B) ¢ (1))
=|g(r)—1l"exp(—% (l)). (5.3)
Since the right hand side of (5.1) tends to zero as t— x, noting (5.3) and — =

S ¢(t)Sn, we have

lim (g(1)~/2) [g(1) 2| " =0.

This yields (5.2). O

Since the resolvent kernel g(s, u) of the Volterra kernel f (s, u)= —e*"*(s2u)
is given by
glsu=1, s2u,

the expressions (3.3) and (3.4) for the process Z(-) of (1.7) turn to
t
Z(t)= [ e*""dB(u), (5.4)
(V]
B()=Z()+ [ Z(u)du. (5.5)
0
We consider the following information transmission over the GC given by

(1.2) and (1.7):
Y(t)= [ AQu)(8—())du+ Z(1), (5.6)
[o]
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where 8 is the same random variable as in (4.5) and n(u) 1s #,(Y) measurable.

We define a function H(1) and processes o(*) and U(-) by

Hm=Am+fA@Mm
0

1

Hn) (=A@ n@)+ [ AW n()dy,

0

U)=1Y0+ [ Y du
(]

Using (5.4), (5.5) and (5.9) we can easily show the following relations.

Ut)= | Hu)(6— () du+B(),
0

Y(t)=f e~ d U (u).
0

It 1s clear from (5.9) and (5.11) that

F(Y)=#(), 120,

(5.7)

(5.8)

(5.9

(5.12)

meaning 1,(8, Y)=1,(6, U) for all 120. Since {(u) is Z,(Y)=F.(U) measurable,
(5.10) represents a WGC with feedback. The formula for the mutual information

in the WGC has been known (see, e.g, [22], Chap. 16).

Lemma 2. The mean square filtering error in the GC's (5.6) and (5.10) is giten

by
EHG—GmP]=O+ffﬂmzm0_i
[+]

where 8(t)=E[8]|Z(Y). T[8]F(U)]). The mutual information is given by

T

I:(6,Y)=1-(6, U)=4 [ H®)* E[(6~81)*] dt

0

T [}
=4 H(l)z(l + [ H(u)? du) Ldr
0 0

(5.13)

(5.14)

Note that the resulting mutual information does not depend on n(-). Now

we can prove Proposition 1.




Capacity of Gaussian Channels with and without Feedback 463

Proof of Proposition 1. (1) Define processes Uy(+) and 5(-) by
1
Uo(t)= | H(u)6 du+B(r),
‘o

=E[0]FZ(Uo)]. (5.15)

Then H (1) (1) of (5.8) can be written in the form H(1) J(t)= [ h(t, 5)d Uy(s) with
0

an L2-Volterra kernel h(t, s). It can be shown ([15]) that the stochastic equation

U(z)=Uo(:)—f [ k(u, ) dU (s) du, (5.16)
00

where k(t, 5) is the resolvent of h(t, s), has a unique solution

Uty=Us(t)+ [ [ h(u,s)dUs(s)du. (5.17)
o0
In other words, (5.10) has a unique solution U(:) when H(u)(u)

= j' h(u, s)dU,(s)= _|' k(u, s)dU (s). Since there is one-to-one correspondence be-

tween (5.6) and (5.10), this means that (5.6) has a unique solution Y(-) when
n(+) is given by (5.15). From (5.16), (5.17) and (5.12) we see that #(U,)=Z(U)
=Z%(Y) and that n(t1)=E[6!FZ(L,)]=E[6|#(Y)]. Thus (4.5) has a unique solu-
tion Y*(-).

(2) It follows from (4.4) that

d H
7 w0 du)}
T {g(t)cm(iofg u)?du

=(g' () +3g(1) )cxp(}fg(u )

SGNERNE

igl) +1)c\p(}Ig ’du>

df{_{cxp(}‘jg(n)’du)+6('cxp(§jg(5)2 ds)du}

A(r)+ j' A(u)d )
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Therefore, noting (5.7) and the initial condition g(0)= 4(0)= 1,"/5, we obtain

H@)=A0)+ j" A(u)du:g(t)exp(§ f’g(u)z du),
) 0 o

2 2 N - d !
H@)y=¢g(1)* exp([ g(u)” du)=d_t c.\;p(j g(u)? du) (5.18)
0 0
and
1+_\"I-](u)2 du=exp(j',g(u)2 du). (5.19)
0 0

The desired equation is straightforward of (4.3), (5.13) and (5.19).
(3) It follows from (5.18), (5.19) and (5.2) that

T -1
lim H(T)’(l-i-_[H(u)’du) = lim g(T)P=2.

T—-x [s) T—=x
Hence, by Lemma 2, we get

1 ,
I(6, Y*)= lim —1:(6,7")

T=x

1 T v
im — H(u)2<1+ { H(s)? ds)
0

1

du
T ~1

= lim iH(T)z(l-!-j'H(s)zds) =1. O

T2 0

We prepare two lemmas to prove Proposition 2.

Lemma 3. Let x(-) be an input independent of B(+), and Y(-), Yo(:) and Y,(-)
be the corresponding outputs of the GC's (1.2) (with the noise Z(-) given by (1.7)),

(4.6) and (4.9), respectively. Then

Ir(x, Yo)=I1(x, Yo, T20, (5.20)

and )
T(X, Y)=r(x’ YO)=T(X’ YO) (52])
Proof. Using the same arguments as in {11], (5.20) can be shown. The second
equality of (5.21) is clear from (5.20). To show the first equality o1 (5.2i) we
put

f(s)=[e'dBuw), 520,

[+]
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0
which are independent of &= [ €*dB(u). Note that the conditional mutual
-

mformation satisfies
1@, (n, ) =1E D+ E D=1 ) +1(E, ).
Denoting Ir(x, Y|E)=1(x], YF1¢) and I1(x, | Y)=1(x], &|Yd), we have
I (x, (Yo, Sol)=T1(x, Lo} +T1(x, Yol lo)=17(x, ¥)
I+(x, (Yo, So))=17(x, Yo) + 7 (x, (o] Yo),

and consequently
I1(x, Y)=I7(x, Yo)=17(x, {o] Yo). (5.22)

In the same way we have
It(x. ¢l o) =11 ((x, Yo). $o) =1 1(Ys. &o)
=13(x,&o)+17(Yo, {olx)=11(Yy, &o)
=11(Z5,80)=17(Y0.$0) £ 11(Zy, &0)- (5.23)

Noting (4.7) we can czalculate I+(Z,, &,) by use of (5.14):

I1:(Zo, &)= I%dr-}loe(l-l-g)

Therefore,
.1
lim =1;(2,,&,)=0. (5.24)
T—-=x T
The first equality of (5.21) follows from (5.22), (5.23) and (5.24).
Lemma 4. The process Z,(*) is a generalized stationary Gaussian process with
cotariance functional

<)

E[Z,($) Zo(W)]= [ oy ()dr

—Hc fe"‘ dps)u(r)dsdr, S yeD, (525

and with SDF f (/) of (4.8), namely

E[Zo@) 2= | ¢G)E0) f12)d2, (5.26)

where $(i)= [ e"*$(t)dt is the Fourier transform of ¢.

-«
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Proof. We put
C(t)=j" j‘ e~ *dB(u)ds,
0 —x
for simplicity. Then Z,(r)= B(r)—{(t) and
Z,($)=B(¢)—i(¢) ¢e2. (5.27)

It 1s well known that

E[B@)BWI= [ ¢()y()dr, ¢,ye2 (5.28)

(see [16]). Exchanging the order of the ordinary integrals, the Wiener integrals
and the expectations, we can show

EB@)IUP]= | [ et 2¢(s)¢()dsdt, (5.29)
E@)swl= [ | el y(r)dsdt, (5.30)

by elementary calculation. We can derive (5.25) from (5.27)+5.30). Denote ¢,(1)
=¢(t—1). Then it is clear from (5.25) that

E[Zo(¢) Zo(W)]=E[Zo($) Zo(W)],

meaning that the process Zo(*) is stationary. Since

%-E S PO +1) " ds
=‘2‘1;f f’ f¢(s)w(:)e"‘“'“(;.2+1)"d;.dsdt
=1 F Fe"""¢(s)¢/(t)dsdt,

(5.26) follows from (4.8) and (5.25). OO
We are now in a position to prove Proposition 2.

Proof of Proposition 2. It is clear from (5.21) that
C(P)=Co(P). (5.31)
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et R; be the covariance operator of the process Zo(-) on the interval {0, 77,
namely an operator on L?[0, T] such that

T TT
(Rré¥)r=[ oy de=3 [ Je " d(s)y(Ndsdr,
0 00
¢, yeL’[0,T],

where (*,°); is the inner product of L?[0, TJ. Denote by K the integral operator
on L?[0, T] having 1/2¢~1"~*! as the integral kernel. Then Ry=1/~ Ky, where
I is the identity operator. We can show that the eigenvalues {x (T)} of K;

are
x(T)=(1+c, (TP, n=12, ..,

where 0,=0,(T) is uniquely determined by
tan((nz-0,7)2)=0,, (n-1)n<e,TZnn.
The corresponding eigenfunctions {¢,(1)= ¢,(1; T); are given by

—ic

1
64 (1) = explio, )= T 2

“exp(—ic,1), n=12, ...

Therefore the eigenvalues {/,(T)} of Ry are
2N =1=x(T=0c (TP (1 +0,(T))"}, n=12,....

Let C;(P) be the capacity of the GC (4.9) without {eedback, on the finite interval
[0, 7], subject to (1.5). Then it is known that

TP)
-3 3 1og T

n=]

)
[99)
t2
p—

where a positive constant A= A(T, P) and an integer N=N(T, P) are uniquely
determined by

(A /(T)=PT and N=max{n;/; (T)<Al
§

n=]

It can be shown that

11 1 & 11
777 7L<+
Hence we know that
lim N(T.3)= lim A(T,3)=1. (5.33)
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It follows from (5.32) and (5.33) that

Jim 7€)~ fim 57 T g 7y
Tl_ —%—_flog(l-fn‘zT’x’:)dx
}En %m}: log(1+x~%)dx=4%.
We can also show that
R

for every €>0. Therefore, for any ¢>0 and any input signal x(-) satisfying
(2.2) with P=1/2, there exists Ty such that

1 .1
-7—_IT(x, })g—f Crd+eg i+, T2T,.

Since ¢ 1s arbitrary, we conclude that
Cod) =1, (5.34)

Let an input signal x(-) of the GC (4.9) be a mean zero stationary Gaussian
process with SDF

Since
Elx())= | h(2)di=}, -—-x<i<wx,

‘the input X(-) satisfies (2.2) with P=1/2. Since the SDF h(/) is rational, we
can apply the Pinsker’s formula ([23], Theorem 10.3.1) to get

I, Y)—— j log <1+-i—))d;.

1)
1 ° - .
= _.[ log(1+24"%)d)=1. (5.35)
Therefore, we have
Co®)2T(x, 1)=1. (5.36)

Combining (5.31), (5.34) and (5.36) we have (4.10). O
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6. Remarks
There is a well known formula for the capacity C(P) of a stationary GC:
1 A '
C(P)=— [log—-dJ, (6.1)
dn, IO

where f (/) is the SDF of the noise process, A={2; f(/)< A} and the constant
A is determined by

f(4-s(ndr=P
A

(see, e.g., [8], Theorem 5.26; [9], Theorem 8.5.1). We have not applied the formu-
la (6.1) to calculate the capacity of the GC (4.9), since the noise is not an ordinary
process but a generalized one. However, the resulting capacity Co(1/2)=1/2
is equal to the right :and side of (6.1) with f(/) of (4.8) and P=1/2.

In the same manner as in the proof of Theorem 3, we can derive a lower
bound for the capacity C/(P) of the GC of Theorem 3. Let 7(P) be the unique

solution of the equation

x3—P(x+1)?=0.

- Then
C/(P)z7(P). (6.2)

It is conjectured that, for the GC of Theorem 3, the inequality

C/(P)22C(P)

holds only if P=1/2.

We note that the process Z(-) of (1.3) is equivalent (or mutually absolutely
continuous) to a Brownian motion on each time interval [0, T] ([12]). Denote
by |-y the norm of the reproducing kernel Hilbert space corresponding to
Bl ={B(1); 0St X T}. Then the constraint (1.5) can be written in the form

E[ixJI3]1SPT, (6.3)

L 4
where X(1)= j' x(u)du. Since the constraint (1.5) or (6.3) is given in terms of
4]
B(*) and not of the channel noise Z(-), the GC (1.2) subject to (1.5) is called
a mismatched GC (see [1, 2]). On the other hand the WGC (1.4) is to be a
matched GC under (1.5). In this paper we have treated GC’s with noises equiva-
lent to a Brownian motion. This is rather for technical reasons. We can investi-
gate a matched or a mismatched GC with an arbitrary Gaussian noise [1, 2, 13].
Baker [1, 2] bas determined the capacity of the mismatched GC without feed-
back. It bas been shown that the capacity of the matched GC is not changed
by feedback under a moderate assumption on the Gaussian noise [13]). Theo-
rem 2 may be generalized by using a similar method as in [13].




470 S Thara

Ebert [7] claimed that the inequality (1.1) holds for the GC (I 2} subject
to (2.2), under an assumption that the Volterra kernel f(s, v) 1s a funciion of
s—u. If the inequality (1.1) 15 true for the continuous iime GC, the feedback
capacity C/(1/2) of the GC of Theorem 3 would be equal to one, twice of the
capacity C(1/2)=1/2 without feedback, and the coding scheme given by (4.5)
would be optimal in the sense of attaining the capacity. We reczll that, for
the WGC, a coding scheme given in the same manner as (4.5) is optimal [14].

In this paper we have dwelled only on information capacity. In case c.
discrete time GC, Cover and Pombra {5] proved the inequality (1.1) for the
information capacity, and showed that the information capacity is achievable
by a feedback code. This means that, in case of discrete time GC, the information
capacity C/(P)=C/,((P) per unit time is equal to the coding capacity C..(P).
For the continuous time GC with feedback, as far as ] know, such ao equality
has not been established. However we can show that the Jower bound ;(P)
for the capacity C/(P) (see (6.2)) of the GC of Theorem 3 is achievable by a
feedback code, meaning that 7(P)S CL.(P)S L (P). For the capacity without
feedback we refer [6,9, 21].

Ackronledgement. The 2uthor wishes to eapress hissincere thanks to Professor C R Baker forvzivable

discussions.
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