
So fv taE ngin< -rmtj 1 sti u e

Software Specifications:
A Framework
Curriculum Module SEI-CM-11-2.1

Q) ,
<2:
• I

• •*

• • •*

* * *
* *

Software Specifications:
A Framework

SEI Curriculum Module SEI-CM-11-2.1

January 1990

H. Dieter Rombach
University of Maryland

- Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This dccument has been reviewed and is approved for publication.

FOR THE COMMANDER

j4OHN S. HERMAN, Capt, USAF
L,/SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Ati: FDRA, Cameron 3tation, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on
odring, please contact NTIS directly: National Technical Information Service, US. Department of Commerce,
Springfield, VA 22161.
Use of any trademarks in this document is not intended In any way tW .fringe on the rights of the trademark holder.

Software Specifications:
0 A Framework

Acknowledge me nts Contents

I would like to thank Norm Gibbs. Director of the SEI Capsule Description I
Education Program. who made sure I had the resources Philosophy 1
and encouragement to complete this work. Special thanks
go to John Brackett, the author of the curriculum module Objectives
Soft'uare Req-r:.-,-:nts, who reviewed earlier versions of Prerequisite Knowledge 3
this module and provided valuable feedback. I would also Module Content 4
like to thank all the members of the Education Program,
especially Gary Ford and Lionel Deimel for their helpful Outline 4
comments, Polly Bech for doing the graphical work, and Annotated Outline 4
Linda Pesante of Information Management for her Glossary 17
editorial work.

Figures 19
Teaching Considerations 27

Uses of this Material 27
Suggested Introductory Literature 27
Suggested Course Schedule 27
Exercises 28

Bibliography 29

SEI-CM-1 1-2.1 iii

0

0

Software Specifications: A Framework

Module Revision History

Version 2.1 (January 1990) Minor revisions and corrections
Version 2.0 (December 1989) Major revision

Approved for publication
Version 1.0 (October 1987) Draft for public review

0
iv SEI-CM-1 1-2.1

Software Specifications:
A Framework

Capsule Description broad subject area about which there is

little conseisus.
This curriculum module presents a framework for It is intended to provide background for
understanding software product and process specifi- understanding other curriculum modules
cations. An unusual approach has been chosen in and is therefore c-ddressed more to tea-
order to address all aspects related to "specification" chers than to students.
without confusing the many existing uses of the * It contains a good deal of original mate-
term. In this module, the term specification refers tc rial, embodying an unusual approach to
any plan (or standard) according to which products its subject matter.
of some type are constructed or processes of some
type are performed, not to the products or processes The term "specification" is overloaded. It is used
themselves. In this sense, a specification is itself a both informally and in the literature in a great
product that describes how products of some type variety of senses, and it is difficult to achieve a

* should look or ho,. processes of some type should coherent understanding of the term that accounts
be performed. The framework includes: adequately for this diversity. The resulting con-

e A reference software life-cycle model fusion may either be viewed as a simple terminology

and terminology problem (i.e.: Which life-cycle products or processes
should be referred to as "specifications"?) or as a

e A characterization scheme for software more fundamental philosophical problem regarding
product and process specifications the role of "specification" in the context of software

* Guidelines for using the characterization development (i.e.: Can the notion of "specification"
scheme to identify clearly certain life- be restricted to certain life-cycle product and process
cycle phases types? Should only life-cycle products and proc-

* Guidelines for using the characterization esses, only their plans, or both objects and plans

scheme to select and evaluate specifica- properly be called "specifications"?).
tion techniques The Terminology Problem. According to

[IEEE83], the term "software specificaiion" refers ei-
ther to a document or product that describes various
characteristics of a software system or to the process

Philosophy of developing such a document or product. This
general definition applies to a large variety of prod-

Most SEI curriculum modules provide a structure for uct and process types'.
organizing a well-defined subject area (sometimes
related to a life-cycle phase) and a guide for under- 'In the study of software engineering, individual products or
standing the related literature. They are addressed to processes are of little interest. The term "type" is used here to
an educator audience, but contain material intended denote the class of similar products or processes of which a
for presentation to students. This module has all particular one is an instantiation. Thus, for example, all Ada

programs may be viewed as products of the same type (i.e., Adathese characteristics, but is atypical in the following code products); all coding processes based on stepwise refire-
ways: ment that result in Ada programs may be viewed as processes of

*It is an overview module covering a the same type (i.e., stepwise-refinement-oriented Ada coding
processes).

SE1-CM-1 1-2.1 1

Software Specifications: A Framework

Many software development organizations have A project model like the one depicted in Figure 2
adapted this definition to their own technological enables us to address the sound selection and evalu-
and organizational characteristics and needs. The ation of boftware specification techniques, i.e.,
resulting terminologies are context-dependent and models, languages, methods, and tools used to create
inconsistent regarding the use of the term life-cycle products or perform life-cycle processes
"specification." Examples of inconsistencies be- according to their specifications. In practice, many
tween existing life-cycle terminologies include the major software development failures can be traced to
following (see Figure 1, p. 20, middle column): the use of inappropriate (as well as inappropriate use

" The same term is used for product and of) techniques for describing software products and
process types (e.g., "requirements defini- processes.
tion," "system specification"). The Approach Taken Here. This module addresses

" The same term is used for different types the above problems by using a reference life-cycle
of products (e.g., "requirements specifi- terminology that avoids the term "specification" for
cation," "functional specification"). any life-cycle product or process type. Instead, this

" Different terms are used for the same module refers only to "plans" of product and process
type of product (e.g., "requirements spe- types as "specifications." Doing so eschews existing
cification," "functional specification") or life-cycle terminologies in favor of one that facili-
the same type of process (e.g., "require- tates consistency in the present exposition and al-
ments analysis," "system specification"). lows the reader to reinterpret this module in terms of

some other nomenclature he or she prefers, if neces-
Sometimes the same product may be referred to as sary. In this module, then, a software specification
"specification" or "implementation," depending on is a product resulting from the planning process that
whether an executable specification language or a prescribes how a product of some type should look
high-level implementation language is being used. or how a process of some type should be performed.
Further, the same software characteristic may be ad- This approach may seem unusual, but the author is
dressed in one or more products, depending on the convinced of its benefits.
underlying life-cycle and project organization
model. And processes may or may not be modeled Module Content. This curriculum module intro-
explicitly, depending upon the perceived importance duces the reference life-cycle model and terminol-
by the organization of "process." ogy discussed above, builds a scheme for charac-

terizing product and process specifications, uses thisThe Philosophical Problem. Software develop- scheme to describe the process and product types re-

ment projects should be explicitly planned, executed, lated to certain life-cycle phases of the rence

and evaluated. The project model depicted in Figure life-cycle model, and shows how such characterize-

2, p. 21, reflects these principles [Basili88]. It is tions may be used to select and evaluate specifica-

definitely justifiable, based on the IEEE definition tion techiques.

[IEEE83]-it is probably not an intended interpreta-

tion-to view both a number of life-cycle products Introduction of the reference life-cycle model and
and processes, as well as their plans resulting from terminology depicted in Figure 1 (left and right
the planning activity, as "specifications." columns, respectively) represents an attempt to over-
The purpose of planning is the production of "plans" come the confusion of terminology in the field.T he e uroexplaning is ntofhe t rodiofe e "p" None of the product or process type names of the-whether explicit or not--of what life-cycle prod- reference terminology uses the term "specification."

ucts should look like and how life-cycle processes However, cross references to some of the existing

should be performed. Examples of such plans are, in life e trologies o poe (figue 1id-
the aseof poduts, he NSI/EEE830 tanard life-cycle terminologies are provided (Figure 1. mid-the case of products, thc ANSI/IEEE 830 standard die column).

on "software requirements specification" [I1E:EE84]
and, in the case of processes, the DoD 2167A stan- The scheme for characterizing product and process
dard on "software development" [DoD88a] and the specifications is based on the following four dimen-
DoD 2168 standard on the "software quality as- sions:
surance process" [DoD88b]. The purpose of execu- 1. Purpose and context (i.e., what is the ex-
tion is to perform processes and construct products pected role of the specified product or
according to their plans. The purpose of evaluation process type?)
Is to assess whether the plans were satisfactory and 2. Content (i.e., what aspects of the product
whether the life-cycle products and processes were or process type need to be described, and
constructed and performed in accordance with their with what attributes?)
plans.

2 SEI-CM-1 1-2.1

Software Specifications: A Framework

3. Representation format (i.e., what models narrowly focused curriculum modules, which utilize
and languages should be used to repre- its terminology. Among these are Software
sent the above content?) Requirements [Brackett9O], addressing C- and D-

4. Support (i.e., what methods and tools requirements, and Introduction to Software Design
should be used to support the creation of [Budgen89], dealing with design. Additional mod-

life-cycle products and processes accord- ules using the framework set forth here will follow.
ing to the above representation format?) This module should be studied before reading any of

these life-cycle-oncnted curriculum modules.

The first two dimensions of the characterization

scheme are used to identify three important phases in
the context of the reference, life-cycle model:

1. C-requirements (customer/user-oriented Objectives
requirements)

2. D-requirements (developer-oriented re- A person having studied the material covered in this
quirements) curriculum module is expected to be able to do the

3. Design following:

These reference phases are discussed, using the e Explain the nature of the confusion
framework, not because the author believes that they caused by the common uses of the term
are more important than other phases, but because "specification."
they are likely to correspond most closely to the 9 Apply the reference life-cycle model and
reader's intuitive notion of "specification." relate its terminology to that of any of

All four dimensions of the characterization scheme the commonly used models.
are used to select and evaluate specification tech- e Discuss C-requirements, D-requirements.
niques. Requirements for any specification tech- and design within the framework
nique are formulated in terms of the latter three presented in this module.
dimensions of the characterization scheme, e Apply the characterization scheme to de-
motivated by its project-specific purpose and con- scribe any process or product specifica-
text. Selection implies finding a specification tech- tion.
nique that matches the stated requirements; evalua-
tion implies comparing the actual effects of the cho- Apply the characterization scheme to the
sen technique to the expected ones, as stated in the selection of specification techniques.
requirements. e Apply the characterization scheme to the

evaluation of specification techniques.
Relation to Other Modules. It is helpful if the

reader of this curriculum module is familiar with SEI
curriculum modules Models of Software Evolution:
Life Cycle and Process [Scacchi87l and Technical Prerequisite Knowledge
Writing for Software Engineers [Levine89].

Early life-cycle phases are often given less attention In order to understand this material, the student must
in the classroom than are later phases, such as de- understand the fundamentals of software engineering
sign, coding, and testing, even though their impor- at the level of an introductory course and must have
tance is widely recognized. It is hoped that the in- had practical software development experience as a
sights into software specifications provided here will member of a team.
increase the understanding of teachers and allow
these activities to be more widely taught.

This module provides material needed to understand
software specifications and to apply that understand-
ing to the characterization of specifications and to
the selection and evaluation of specification tech-
niques. No attempt is made to deal with system
specifications or to provide detailed guidance about
the prcX, tion of particular life-cycle products. In-
stead, this module provides background for more

SEI-CM-1 1-2.1 3

Software Specifications: A Framework

Module Content

This module uses the terminology in [IEEE83] where 1. Selection of Proper Specification Techniques
possible. A glossary of significant terms follows the a. Define specification requirements
annotated outline. b. Chose specification techniques

2. Evaluation of Specification Techniques

VI. Assessment of Current Maturity and Future
Outline Directions

I. Overview
1. Conflicting Meanings of "Specification" Annotated Outline
2. Definition Used Here

3. A Framework for Understanding Specifications I. Overview
II. A Reference Software Life-Cycle Model and 1. Conflicting Meanings of "Specification"

Terminology
The term "software specification" is used inconsis-

III. A Characterzation Scheme for Software tently by the software community. Most of the time,
Specifications it refers either to products created during the early
1. Purpose and Context phases of a software project, to the processes leading

a. Product perspective to those products, or to descriptions/characteriza-

b. Process perspective dons of those types of products or processes.
c. Use perspective 2. Definition Used Here

d. People perspective Although an argument can be made for referring to
diverse types of products and processes by the term

2. Content "specifi,.4,or," a crnmpe lig ai urnent can also be
a. Aspects made for restricting the term in order to avoid con-
b. Attributes fusion. In this module, we will avoid completely

use of the term for any of the usual life-cycle prod-
3. Representation iict or process types. Instead, we will define

a. Models software specification as a plan or standard that pro-

b. Languages vides a description/characterization of a softwqre
product or process type. This definition allows us to

4. Support emphasize "good" software engineering, in that we
a. Methods focus on planning before execution.

b. Tools A software specification, then, becomes a product
IV. A Characterization of Life-Cycle Phases resulting from the planning process. Execution of

C-Requirements the "plan" results in the instantiation of a particular
product or process. (See Figure 2, p. 21.) A

a. Purpose and context product specification describes how products of

b. Content some type should look; a process specification de-
scribes how processes of some type should be per-

2. D-Requirements formed. In cases where planning is informal, im-
a. Purpose and context plicit, or haphazard, specifications are not explicitly

b. Content constructed.

3. Design Consider software design as an example. This might

a. Purpose and context involve:
b The specification of the input product type

(requitemenms product), including a fonnai
4. Other Object Types syntax and semantics description for the

V. Guidelines for Selecting and Evaluating requirements document, or a standard,

Specification Techniques
4 SEI-CM-1 1-2.1

Software Specifications: A Framework

such as ANSL'IEEE-Std-830 on "software Within the framework, we charactenze any product
requirements specification" [IEEE84]. or process specification by

" The specification of the output product 9 the purpose and context of the specified
type (design product), including a formal product or process type,
syntax and semantics description for the * the content of the type of product or proc-
design document. ess of interest,

" The specification of the process type * the representation format used to capt.re
(design process), including a guideline for the content, and

the use of specific design techniques, such t a ilbe s t fc n
as Structured Design or 'object-oriented de- available support for the creation of the
sign. life-cycle products or execution of proc-

esses of the type of interest.

As another example, consider software compilation, The characterization scheme can be used to

which might involve:

* The specification of the input product type Characterize the specification needs of a

(source code product), including the project.

source language definition, a coding style * Characterize candidate .pfecification tech-
handbook, and a language-oriented editor. niques.

* The specification of the output product * Select the appropriate specification tech-
type (object code product), the object code niques by comparing the project specifi-
definition, cation needs with the characteristics of

* The spCcitication of the process ie candidate pecilication techniques to lind
the best match.(compilation process), the compiler tool it-

self. * Evaluate specification technique.; used by
comparing observed characteristics to ex-

Other examples of process specifications are the pected ones and, if necessary, suggest
DoD 2167A standard on "software development" changes for future projects.
[DoD88a] and the DoD 2168 standard on "software
quality assurance process" [DoD88b]. In this module, we will use the reference life-cycle

model and characterization scheme to identity
As a general rule, existing specification techniques clearly several important life-cycle phase's and to an-
-models, languages, methods, and tools used to in- alyze these phases within our framework.
stantiate specifications into life-cycle products or
processes-are better suited (e.g., are more formal) II. A Reference Software Life-Cycle Model and
to the specification of (1) software product types, Terminology
rather than process types, and (2) types used in later, Many different software life-cycle models exist (e.g..

waterfall [Royce7o], iterative enhancement [Bashi751,

3. A Framework for Understanding Specifications sph'a [Boehm86], and prototyping [Boehm84]). Thev
have in common certain types of products (e.g., re-

This module presents a comprehensive framework quirements, design, code). They differ substantially,
for unders inding software specifications and related however, in the types of processes used to build those
issues. The framework includes: products. From this obseiation, we may construct a

" a reference life-cycle model and terminol- reference life-cycle model that posits the existence of
ogy, certain product types filling specific roles within a soft-

* a characterization scheme for software ware development context but that makes no particular

product and process specifications, assumptions about the mechanisms by which products
are actually built.

* guidelines for using the characterization

scheme to identify clearly certain life- Such a reference life-cycle model is shown in the
cycle phases, and leftmost column of Figure 1, p. 20, where we assume

* guidelines for using the characterization the existence of the following product types (we do not

scheme to select and evaluate specification distinguish between deliverable products and

techniques. documents):

* Software needs, which are predominantly
The framework provides a tool for understanding the concerned with the questions: What de-
literature and provides background and context for mands exist? What needs should a proposed
other specification-related curriculum modules (e.g., software product attempt to fulfill?
[Brackett9O] and [Budgen89]). a Customerluser-oriented software require-

SEI-CM-1 1-2.1 5

Software Specifications: A Framework

ments (C-requirements), w'hch are predomi- specification" and "functional specification,"
nantly concerned with the question: What may play the same role as our "D-
functional and no'-iunctional characteristics, requirements product." The entire discussion
from a customer's or user's point of view, related to 'D-requirements products" in this
must a prr -ict exhibit to meet those needs? module applies to both "behavioral

" D'veloper-orienred .c\y,, ,are requirements specifications" and "functional spccilIca-

D-requwrements), which are predominantly Lions."

concerned with the question: What function- Due to the structural model chosen for the
al and non-functional characteristics, from a deliverable product, the reader deals with
software developer's point of view, must a several instances of a product or process type
product exhibit to meet those needs' of the reference model. In this case. multiple

" Software design, which is predominantly types may be distinguished with appropriate

concerned with the question: How can a qualifiers and treated as instances of types

prodact be built to behave as described by the described in this module. For example, if the

D -requirements? product is structured into system, subsystems.
and modules, the reader may identify a cor-

" Code, which is predominantly concerned responding number of instances of types de-
with the question: How is the product ac- sign product and design process.
tually implemented on some machine using a
particular technology? III. A Characterization Scheme for Software

The refrence life-cycle tcrminology used in this cur- Specifications

riklulum module is depicted in the r' rmo, column of This section incorporates ideas from [Abt :t:,.
Figure 1. Whenever possible, %c rcfcr to processes ,Sommerv~lle89], [FirhT,,, and elsewhere. The ,chcmc
and the resulting producLs A some type under :he same presented enables the characterization of any soft,.are
name leg.. "design process" and "dc:,imn product"). product or process specification in terms of the purpose
More detailed characterizations of the product and and context of the specified product or process type.
process types related to C-requirernenLs, D- the content of the specified type, the representation
requirements, and design are contained in section IV, used, and the support for product creation or proce s

Inconsistent terminologies are used in different indus- execution.

trial software development organizations and in the 1. Purpose and Context
literature. Examples of commonly used terms are
shown in the middle column of Figure 1. The reader Specifications describe all important characteristics
may map his or her preferred or local terminology (and of a particular software product or process type in
associated practice) to the reference terminology as re- some format. The desirable characteristics, as well

quired. Possible inconsistencies between the reader's as the appropriate format for representing them, are

terminology and the reference life-cycle terminology, determined by the purpose and cortcxt of the type

along with resolutions enabling the application of our withi the software development project. We have

discussion to the reader's circumstances, include the chosen to characterize purpose and context (in no
following: particular order) from product, process, use, and

" The reader uses a different name than the ref- people perspecties.

erence model to refer to the same product or a. Product perspective
process type. Resolution is straightforward
here, of course, as the reader can simply sub- Product and process specifications are ultimately
stitute one name for another. For example, aimed at creating life-cycle products i.e., project
the reader may prefer using the term deliverables) to satisfy the customer. Therefore,

theisresuder tmaytprefere ousingucthed term
"requirements definition" to refer to what we it is assumed that the choice of product and proc-

call "C-requirements product." The entire ess specifications depends on the type of

discussion of "C-requirements products" in deliverables to be developed. We characterize

this module applies to "requirements product types by application and qual!ty require-

definitions," according to the reader's termi- ments.
nology. i Application

" The reader identifies several types that col-
lectively encompass one or more product or The type of application has a deep impact on

process types of the reference model, or vice what product or process aspects (see section

versa, and a 1-1 mapping is not possible. In Ill.2.a) need to be specified. There are a num-

this situation, a more complex mapping is ber of possible classification schemes for soft-

needed. For example, in the reader's termi- ware applications, for example:
nology two product types, "behavioral * schemes based on control-flow char-

6 SEI-CM-1 1-2.1

Software Specifications: A Framework

acteristics of the software system quential paradigm, reflecting the fact that er-
(sequential, concurrent, real-time) rors are committed in the application of this
schemes based on the application principle.
(commercial, system, process con- (2) Iterative enhancement model
trol, scientific, cmbedded)

ii0 Quality requirements The iterative enhancement model LBasihi751
is based on the idea of producing the same

The need to satisfy particular software quality product types as for the water"all model for
requirements impacts both the aspects that only some of the requirements at a time. The
need to be specified and their attributes (see idea is to allow for more effective I arning-
sections III.2.a-b). For example, the need for based feedback from each of these "mini-
maintainability may justify the explicit specifi- development" projects or to allow feasibility
cation of the design rationale in a traceable analysis of some critical requirements (by
form, so mainmainers can trace changed require- actually implementing them) before commit-
ments to affected design components. ting to the entire project. The product types

used according to the iterative enhancement
An incomplete list of possible quality require- model might be the same used according to
ments includes: the waterfall model. However, the process

" reliability types (or at least the instantiatior patterns)

" correctness are very different.

• fault-tolcrance (3) Prototyping model

* mniaitab~ity The prototyping model [Boehm84] is based
* portability on first concentrating on producing an oper-
Suser-friendliness ational software version for a limited set o,

the overall requirements. This limited set of* availability requirements excludes part of the functional
b. Process perspective or non-functional overall requirements.

Very often, crucial man-machine interface
Specifications serve different purposes in differ- requirements or highly demanding perfor-
ent development process contexts. We charac- mance requirements are the reason for
terize the process perspective in terms of the prototyping. Prototyping is intended to help
overall life-cycle model and its individual life- in the process of developing an acceptable
cycle phases. C- or D-requirements product or to explore

the technical feasibility of requirements and
Ii;) Life-cycle models the associated risk. Prototyping is a way of

Different life-cycle models, reflecting different learning "fast" about crucial project issues.
philosophies for creating software products, in- The expectation is that this up-front invest-
corporate different product and process types ment pays off either by detecting early on[Seacchi87]. that it is infeasible to continue the project or

by creating an acceptable C- or D-

(1) Waterfall model requirements product that allows predictable
and controllable software evolution. TheThe waterfall model [Royce70] is based on goal is only to reuse the experience gained

the idea of producing product types at differ- during the prototyping process and feed it
ent levels of abstraction (requirements, sys- back into creating better requirements, not
tem design, module designs, code) sequen- necessarily to reuse any products created as
tially, followed by the integration of code in part of the prototyping process. After ac-
reverse order. Following this model in a ceptble requirements have been created, the
project means transforming, in a linear fash- regular software evolution process can fol-
ion, the entire set of requirements into more low any other life-cycle model (e.g.,
and more concrete solutions. Attempting to waterfall).
feed lessons learned back into earlier stages
results in (acceptable) deviations from the (4) Spiral model
waterfall model. It must be remembered The spiral model [Boehm86] is based on a
that the waterfall model is just a model, risk-driven approach to software evolution.
which is intended to stress the top-down Ierative development cycles are organized
principle for software development. In prac- in a spiral manner, with inner cycles
tice, there exist many exceptions to this se- representing early analysis and prototyping,

SEI-CM-1 1-2.1 7

Software Specifications: A Framework

and outer cycles representing the classic sys- ess, in this case) help guide and control the
tern life cycle. This technique is combined task. If all three specifications are completely
with risk analysis during each cycle. The formal (see [Berztiss87]), the desired product
model is intended to identify situations that can be created automatically. In the best cur-
might c'iise a development effort to fail or rent practice, most product types are explicitly
go over budget or schedule. The spiral tech- specified, whereas most process types are not.
nique incorporates ideas derived from the it- Further, downstream product types tend to be
erative enhancement model and the defined with greater formality that early-phase
prototyping model. ones. The degree of formality and specificity

in a process specification (or the lack thereof)
(ii) Life-cycle products and processes is indicative of the possible degree of guidance

Product and process specifications are created and control. Process specifications can be used
for, used in, affected by, and modified during by people (e.g., a designer uses a set of infor-
particular phases. These phases include, ac- mal design guidelines) or by automated tools
cording to our life-cycle reference model: (e.g., a compiler uses a formally specified pro-

" software needs cedure for transforming source code into object
code).

* C-requirements* D-requirements (iii) Modification of products and processes

" software design Software projects require the ability to react to

" code changes. Changing product requirements dur-
ing development or enhancement requests dur-

Additional project phases may include: ing maintenance typically requires modifica-

•verification and valida'4 on [Collo- tions to existing products, with or without
fello88] changing the underlying product specification.Changing project or environment characteris-

• integration tics (e.g., addition of new personnel or intro-
* maintenance duction of new technology) may require
" teaching and training modifications to existing processes and pos-

sibly to their underlying specifications. The
c. Use perspective existence of explicit product and process speci-

fications permits the incorporation of changes
There exist a variety of different uses for specifi- in a systematic way.
cations. We distinguish between uses for com-
munication, creation, modification, verification (iv) Verification and validation products
and validation, and software quality assurance. The purpose of verification and validation

(i) Communication among people (V&V) is to show that a life-cycle product of
some type (e.g., source code) is consistent with

Software projects include people. Specifica- a life-cycle product of a different type (e.g.,
tions are aimed at supporting their communi- design product) [Collofello88]. This kind of
cations regarding the important product and cross-checking between products is facilitated
process characteristics and gaidelines accord- by the existence of explicit specifications.
ing to which products are created and modi-
fied, and processes are executed and changed. (v) Assuring adherence to plans
Specifications are a useful mechanism for Software quality assurance (SQA) is concerned
teaching and training people what products with assura nce (SlA is c r-should look like and how processes should be with assuring that software development is car-

shoud lok lke nd hw poceses houl beried out according to plan [Brown87]. Much of
executed. Also, the existence of specifications te ouccrng tpn wi h o f
allows project members to achieve reliable the concern of SQA, then, is with comparingconsensus about their roles by making explicit software products and processes to their speci-
toectus pbutteirp conext byain xprocd . fications. Examples are checking whether athe project's purpose, context, and procedures. design product is consistent with its specifica-

(ii) Creadon of products tion or whether a review process was con-
ducted according to established review guide-

Many software project tasks are aimed at crat- lines.
ing, in a traceable way, instances of one prod-
uct type from instances of another (e.g., a de- d. People perspective
sign product from a D-requirements product). Specifications are created or used by audiences
Explicit specifications for both product types playing different project roles. Although some
and for the creating process (the design proc- specifications are intended for consumption by

8 SEI-CM-1 1-2.1

Software Specifications: A Framework

machines, people have to understand them in one (vii) Implementors
way or another. Examples of different project
audiences are listed below. (Some of the descrip- The audience that takes the component designStions aeaotdfrom [Frh])products and develops the corresponding ira-

tosare adopted frm[Firth87].)
plementation products (code).

i) Customers (viii) V&V personnel

The audience that contracts for the software
project and, in part, determines the C- The audience that checks whether life-cycle
requirements for the system. products are consistent with earlier life-cycle

products.(ii) End-users
(ix) SQA personnel

The audience that will install, operate, use, and
maintain the system after it is delivered, and The audience that checks whether life-cycle
that, in part, determines the C-requirements for products are created and life-cycle processes
the system. performed according to their specifications.

(iii) Sub-contractors (x) Configuration management personnel

The audience that performs development or The audience that assures the integrity of soft-
maintenance activities contracted out by the ware during and after development by initiat-
primary development organization, ing, evaluating, and controlling changes to the

product [Tomayko87].
(iv) Requirements analysts (xi) Maintenance personnel

The audience that develops the C-requirements
product in conjunction with the customers and The audience that keeps the software system
end-users. Requirements analysts find a repre- operational and useful. Maintenance personnel
sentation format appropriate to customer and perform corrective, perfective, and adaptive
end-user needs. maintenance activities.

(v) Specification engineers (xii) Managers

The audience that evolves the C-requirements The audience concerned with filling leadership
product into the D-requirements product. The roles, controlling the budgets and schedules re-
main objectives of specification engineers are lated to the project, ensuring that problems are
to resolve ambiguities, remove inconsistencies, recognized and resolved early, and dealing
and represent the D-requirements in a format with personnel assignments and problems.
suitable for the development audiences. This 2. Content
often implies use of more formal represen-
tations for D-requirements than C- We characterize a specification also by its content,
requirements. that is, by the product or process aspects it addresses

and by attributes to be possessed by the represen-
(vi) Designers tation of those aspects.

The audience that describes how the software According to this view, the roles of product and
system is to be constructed to satisfy the cor- Acrigt hsveterlso rdc nprocess specifications are not completely parallel.
responding D-requirements product. This in- To begin with, mechanisms for specifying process
volves making optimization decisions about types are much less developed than those for speci-
the best way to proceed, given the constraints fying product types. (More on this below.) More
imposed in the D-requirements product. Ex- fundamentally, however, instantiation of a process
amples of such constraints are performance re- specification produces action, whereas that of a
quirements, resources available, and fault- product specification produces a static artifact, albeit
tolerance capabilities. These constraints often one either capable of animation (i.e., execution) or
influence the design as much as the required descriptive of another artifact with such a capability.behavior of the system. Despite this difference, we will treat products and

There are basically two types of design proc- processes in parallel; examples will clarify the dif-
esses: (1) designing a system that consists of a ferences wherever applicable.
set of communicating components and deter- a. Aspects
mining the functionality of the components,
and (2) designing the algorithms ana data Four important aspects that may be addressed in a
structures encapsulated in those components. specification are behavior, interface, flow, and

SEI-CM-1 1 -2.1 9

Software Specifications: A Framework

structure of the objects (products or processes) (i) Behavior (external, dynamic)
specified. To discuss these, we first introduce
several definitions. The externally observable response of a prod-

uct or process to stimuli in actual use. Be- 0
Dynamic characteristics of an object of any type havior may include externally observable
relate to its use. Dynamic characteristics of a states, outputs, or boundary conditions on the
process can be captured during its execution (e.g., validity of inputs and states. We distinguish
the set of all design decisions made by a designer between functional and non-functional be-
or historical data on the amount of time required havioral aspects.
for design on past projects). Dynamic character- (1) Functional behavior
istics of a product can be captured during its oper-
ational use by the customer/user or during its test- This may include the response of a product
ing phase. to specific inputs or the requirement that a

Static characteristics of an object of any type re- certain pre-conditon of a process results
late to its representation. Static characteristics of (after execution) in a certain post-condition.
a process should be described in its specification (2) Non-functional behavior
(e.g., the steps in a design process). Static aspects
of a product are described in the product itself and This may include response time of a product
in its specification (e.g., data structures or al- or the time allowed for completion of a
gorithmic control structure of an Ada source code process.
product). (ii) Interface (external, static)

Functional characteristics of an object of any t3 pe The structure of the boundary between product
relate to its functional requirements. These can

or process and its environment. We distinguishbe identified by analyzing what services are pro- between functional and non-functional inter-
vided by the object (e.g., functions such as "store" face aspects.
and "retrieve" provided by a product; generation
of a product of type "design" by a process). (1) Functional interface

Non-functional characteristics of an object of any This may include the set of functions pro-
type relate to its non-functional requirements. vided by a product or the role a process
These can be identified by analyzing how services plays in software development.
are provided by the object (e.g., each of the above
product functions must be provided in time less (2) Non-functional interface
than t; the product of type "design" must be pro- This may include response-time constraints
duced by the above process within a certain on a product or a description of the required
period of time and within a certain budget). synchronization points of a process with

External characteristics of an object of any type other processes.
relate to the black-box view of that object. Exter- (iii) Flow (internal, dynamic)
nal characteristics of an object can be identified
without knowledge of its actual implementation The internal dynamics of a product or process
(e.g., a product provides certain interface func- in actual use. This may include the flows of
tions or reacts to certain input stimuli in particular control, data, and information between struc-
ways; a process consumes certain inputs and pro- tural units of the product or process. (The dif-
duces certain output products). ference between control flow, data flow, and

information flow is nicely explained in
Internal characteristics of an object of any type [Henry8l1].) In the case of parallel processes,
relate to the white-box view of that object. Inter- we must also consider such aspects as
nal characteristics of an object are identified synchronization. We distinguish among the
based on knowledge of its actual implementation following:
(e.g., a product contains a number of modules
with certain bindings among them; a process con- (1) Control flow between sub-products or
sists of a number of subprocesses). sub-processes

We now use these definitions to characterize, ex- (2) Data flow between sub-products or
plain, and distinguish aspects of products and sub-processes
processes we may wish to address in specifica- (3) Information flow between sub-products
tions, or sub-processes

(4) Synchronization between executing
sub-products or sub-processes

10 SEI-CM-11-2.1

Software Specifications: A Framework

(iv) Structure (internal, static) (vii) Preciseness

The organization of a product or process into The meaning is exact.
interacting parts. This includes the decomposi-
tion of the whole into components or the com- (viii) Formality
position of the whole from basic units. Ar- Formal syntax and semantics are used.
chitectural, algorithmic, and data structures, as Various degrees of formality are possible.
well as the internal interfaces between sub- Mathematical formalism is the subject of
structures, may be of interest. We distinguish [Berztiss87], [Bjorner82], [IWSSD82],
among: [IWSSD84], [IWSSD85], and [IWSSD87].

(1) Architectural structure of a product or (ix) Abstractness
process in terms of sub-products or
sub-processes The description is at a particular level of ab-

straction. D-requirements are more abstract
(2) Interfaces between sub-products or (removed from the details of the eventual

sub-processes implementation) than code.
(3) Algorithmic structure of a product or (x) Structuredness (or modularity)

process
(4) Data structures used in a product or The description shows systematic structure.

process Lessons learned regarding the production of
readable code by applying the concepts of

(5) Information structure across modularization and minimizing interfaces be-
sub-products or sub-processes tween modules should be applied to specifi-

b. Attributes cations of all types of products and processes.

In general, each of the aspects in (a) can be (xi) Traceability
represented in a variety of different forms. Pur- One is able to relate information items of cor-
pose and context of the product or process type of responding product or process types. For ex-
interest require a suitable form of representation ample, a C-requirements product is much more
to exhibit certain attributes. helpful in the context of maintenance if it is

For example, if the aspect "data flow" of a design possible to trace changes made to the D-
product needs to be validated, we may specify requirements to certain components described
that its representation needs to exhibit the attri- in the architectural design product.
butes "complete," "consistent," and "executable." (xii) Modifiability
If the "control flow" of a design process needs to
be validated, we may specify that its represen- Changes can be made easily whenever neces-
tation needs to exhibit the attribute "executable." sary (e.g., during maintenance).

(i) Correctness (xiii) Executability

Requirements are satisfied. The attribute of being automatically executable

(ii) Completeness on some machine. This characteristic allows
for validating the dynamic and behavioral char-

All relevant information is captured. acteristics; the executability of more abstract
products (e.g., D-requirements) underlies the

(iii) Consistency quick-feedback idea of prototyping.

There are no internal or external contradictions. (xiv) Verifiability

(iv) Feasibility Techniques (possibly formal) can be used to
check for consistency with requirements.

Requirements are satisfied within the con-

straints imposed by the software evolution con- 3. Representation
text. Certain software aspects (see III.2.a) need to be

(v) Non-ambiguity represented so they exhibit desired attributes (see
III.2.b). The representation format chosen is based

Alternative interpretations are not possible. on models and languages. Models allow the for-
(vi) Clarity mulation of aspects of interest. Languages allow the

well-defined reflection of those models in a form
The meaning of the representation is easily un- that exhibits the desired attributes. We make the
derstood and communicated.

SEI-CM-1 1-2.1 11

Software Specifications: A Framework

distinction between models and languages to express mal, whether they are textual or graphical, and the
the different formal representational capabilities. In language paradigm on which they are based.
practice, however, it is not always easy to distin-
guish between models and languages. We distinguish between formal, semi-formal, and

informal languages:

Our discussion may seem to be biased toward prod- * Formal languages are based on formal
ucts, rather than processes. In fact, despite the rec-
ognized need for representing "process," most s a santics e asd on
people use traditional product languages for the pu- Semi-formal languages are based on
pose. It is currently a burning research issue to iden- some formal syntax and are usually
tify appropriate mechanisms for process represen- graphically oriented.
tations. (E.g., see the annual proceedings of the In- * Informal languages are usually based on
temational Software Process Workshop, which are natural language.
usually published as special issues of ACM Most of the product (and process) specification
SIGSOFT's Software Engineering Notes.) languages used in practice are semi-formal lan-
a. Models guages, combining formal and informal elements.

Most are based on a conceptual specification
Specification models allow the formulation of and model, a specific representation, or a develop-
reasoning about certain aspects of interest. ment approach.

An incomplete list of examples includes: We distinguish between
" functional models * tabular,

• input-output models [Ross77] o textual, and
" algebraic models [Guttag78] o graphical
* axiomatic models [Hoare69] representation languages.

" finite state models [Parnas72] We also distinguish between different language
" statecharts [HareI88a] paradigms. Some important examples are:
" stimulus-response models [Alford77] e imperative
" Petri net models [Peterson77, Bruno86, * declarative

Peterson8l] * constraint oriented
" control flow models * data-flow oriented
" constraint models The reader interested in different language
" module interconnection models [De- paradigms is referred to any classical program-

Remer76] ming language book.
" data structure models 4. Support
" information flow models In practice, it is necessary to have effective support

" information structure models for creating specifications, as well as for using them
" requirements net models [Alford77] during project execution. Most existing support ac-
* data flow models [Babb85] tually addresses the instantiation of products accord-

ing to product specifications. We distinguish be-
* entity-relationship models tween methods that provide operational guidelines
* relational models [Teichrow77] based on some models and/or languages, and the

b. Languages automation of those guidelines using computers.
There exists a m-to-n relationship between methods

Specification languages allow the presentation of and tools. One method can be supported by an inte-
specifications in a well-defined fashion [Bal- grated set of tools, a single tool, or several tools
zer8l]. It is impossible to give a complete list of alternatively. Correspondingly, a tool may support
such languages; there are just too many. Most of part of a method, an entire method, or several inte-
them allow the representation of more than one grated methods.
aspect of the thing specified. For example, an a. Methods
implementation language such as Ada allows rep-
resentation based on control flow, data flow, and Popular examples include:
data structure models. Instead, we provide a e SREM [Alford77]
characterization of existing languages based on
whether they are formal or semi-formal or infor- Sutcliffe t, Cohen86

12 SEI-CM-1 1-2.1

Software Specifications: A Framework

* SADT [Ross77] a. Purpose ind context
" PSL [Teichrow77] The purpose and context of products of type C-
* Structured Analysis [DeMarco79, Your- requirements can be characterized as follows:

don89] * Product Perspective: For our purposes
* Real-time specification methods [Rzep- here, we generalize across all possible

ka85, Hatley87] application domains and quality require-
ments.

These methods are discussed in detail in relevantSEI curriculum modules (e.g., SA, SADT, and * Process Perspective: For our purposesSREM in [Brackett90]). here, we generalize across all possible

life-cycle models. We are interested in
b. Tools product and process types related to

overall system requirements and their
Popular examples include: validation.

" PSA [Teichrow77] * Use Perspective: C-requirements serve
" REVS [Aford77] as a basis for communication with the
" compilers and runtime environments for customer and end-user. They define, in

all kinds of languages (Goldsack85] a contractual sense, what functions a

* Statemate [HareI88b] software system must fulfill. In addi-
tion, they serve as input product for the

These tools will be discussed in detail in the ap- subsequent creation of the D-
propriate curriculum modules. requirements, as reference document for

IV. A Characterization of Life-Cycle Phases acceptance testing (V&V), and as the
potential starting point for maintenance

In this section, the characterization scheme of section activities (especially in the case of per-
III is used to define some of the phases within the fective maintenance). The C-
reference life-cycle model of section II. We will pro- requirements product is derived from
vide definitions of C-requirements, D-requirements, software needs; created during the C-
and design based on the purpose/context dimension requirements process; used during de-. (section 111.1) and the content dimension (section sign, verification and validation, and
Ill.2.a) of the characterization scheme. Figures 3a and maintenance activities; and modified
3b allow for the graphical representation of such throughout the entire lifetime of the cor-
definitions. First, we characterize the purpose/context responding software system.
of a specification within some software evolution proc- * People Perspective: C-requirements
ess (vertical axis in Figure 3a). Second, we derive the are used by customers and end-users,
aspects that need to be described based on requirements analysts, specification en-
purpose/context (horizontal axis in Figure 3a). Third, gineers, verification and validation
we define desirable attributes for each aspect (vertical people, quality assurance personnel,
axis in Figure 3b), considering also purpose/context. maintenance personnel, and managers.
Marked matrix elements in Figures 3a and 3b provide a
graphical representation of the scope of the correspond- b. Content
ing life-cycle phases of interest. The content of C-requirements can be charac-

These definitions help us define particular software de- terized as follows:
velopment activities and serve to delineate the bounds * Aspects: C-requirements address the
of related curriculum modules, such as those on re- aspects behavior and interface, insofar
quirements analysis [Brackett9O] and design as they are important to establish a con-
[Budgen89]. tractual relationship with the customer
1. C-Requirements and user. Sometimes even structural as-

pects (i.e., design constraints) have to
C-requirements are predominantly concerned with be addressed if they are essential to
answering the question what functional and non- product creation (e.g., in the case of a
functional characteristics, from a customer's/user's specific technical process that needs to
point of view, must a software product exhibit? This be controlled).
section characterizes products of type C- C-requirements can suffer from over-
requirements, using the characterization scheme in- specification, as well as under-. troduced in section III (partly reflected in figure 4). specification. Of course, it is desirable
Processes of type C-requirements are is treated in to describe all aspects that are of inter-
[Brackett90J. est to the customer and user as com-

SEI-CM-1 1-2.1 13

Software Specifications: A Framework

pletely as possible. On the other hand, circumstances. However, the most de-
unnecessarily included items can restrict sirable attibutes of C-requirements are
the subsequent development choices completeness (at least from the
needlessly. customer's perspective), consistency,
Abbott [Abbott86j provides a non- and clarity. In addition, depending on
exhaustive list of C-requirements is- the need for changes, it may be desir-
sues: able for the product to be structured,

" why the user wants the system traceable, and formal.

" how the user intends to use the sys- 2. D-Requirements
tem The purpose of D-requirements is to answer the

" what other systems and procedures question what functions,from a developer's point of
will interface with the planned sys- view, must a software system fulfill? This section
tem characterizes products of type D-requirements, using

" what expertise the people have who the characterization scheme introduced in section III
will actually operate the system (partly reflected in Figure 5). Processes of type D-

" what information the system must requirements are treated in [Brackett90].
be able to handle a. Purpose and context
" whether there are any legal con- The purpose and context of products of type D-
straints (e.g., record retention re- requirements can -o' characterized as follows:
quirements)

" whether the system must enforce * Product Perspective: For our purposes
any integrity constraints (e.g., access hcre, we generalize across all possiblelimitations) application domains and quality require-

limitaions)ments.

* what data processing functions the

system should perform for the user. * Process Perspective: For our purposes
here, we generalize across all possibleOptional issues include: life-cycle models. We are interested in

" on what hardware must the planned product and process types related to
system operate overall system requirements and their

" in what programming language must validation.
the system be written * Use Perspective: D-requirements de-

" on what operating system must the fine, for the software developer, the
system be installed functional and non-functional character-

, what expected load must the system istics the product under development
be able to handle (e.g., in trans- must fulfill. Therefore, D-requirementsactions per hour) serve as a basis for communication with

the developer. In addition, they serve as
• what response time is needed from input product for the subsequent crea-

the system tion of the software design, as reference
" what enhancements must be ex- document for the integration and system

pected for the system after initial use testing (V&V), and as the potential
" what design qualities are expected starting point for maintenance activities
of the system (especially in the case of adaptive

maintenance). The D-requirements
- what auditing processes must be product is evolved from the C-

performed requirements; created during the D-
- what physical constraints exist for requirements process; used during de-

the system (e.g., need for air con- sign, verification and validation, inte-
ditioning because of location) gration, and maintenance activities; and

* what peripheral devices must be updated throughout the entire lifetime
used of the corresponding software product.

*Attributes: The desirable attributes of * People Perspective: D-requirements
C-requirements cannot be characterized are used by sub-contractors, specifica-
easily without knowing the life-cycle tion engineers, designers, verification
context and the application context. and validation people, quality assurance
Each of the attributes in section III.2.b personnel, maintenance personnel, and
might be of importance under certain managers.

14 SEI-CM-1 1-2.1

Software Specifications: A Framework

b. Content overall system requirements and their
validation.

The content of D-requirements can be charac-terized as follows: * Use Perspective: Design products
serve as a basis for commnication with

Aspects: D-requirements address the the subsystem or module designer or
aspects behavior, interface, ,-d implementor. In addition, they serve as
structure, insofar as they are important input product for the subsequent crea-
to the developers. Due to the difference Lion of the subsystem or module design
in audience, D-requirements typically or implerr tation, as reference docu-
are specified in a different format from ment for the module or subsystem inte-
that used for C-requirements. Often gration testing (V&V), and as the poten-
more formal languages are used (e.g., tial starting point for local maintenance
state-machine languages) than for C- activities. A design product is derived
requirements (e.g., SADT). from its related D-requirements product;

9 D-requirejnents, too, can suffer from created as the result of a design process;
over-specification, as well as under- used during design, implementation,
specification. Subsequent development verification and validation, integration,
choices should not needlessly be and maintenance activities; and modi-
restricted, fled throughout the entire lifetime of the

* Attributes: The desirable attributes of corresponding software system.

D-requirements cannot be characterized * People Perspective: Designs are used
easily without knowing the life-cycle by designers, implementors, verification
and the application contexts. Each of and validation people, quaiity assurance
the attributes in section III.2.b might be personnel, maintenance personnel, and
of importance under certain cir- managers. They define the overall
cumstances. However, the most desir- structure of the software system to be
able attributes of D-requirements are built. They define subsystems or mod-
completeness (at least from the ules, their functional requirements, and
developer's perspective), consistency, interfaces between them. The function-
formality, traceability (from the C- al requirements serve as the input for
requirements, to the design), and struc- the subsystem/module design activities,
turedness. Traceability from the C- as do the D-requirements for the overall
requirements specification can be easily system design phase.
achieved if the D-requirements specifi-
cation evolves from the C-requirements b. Content

specification, rather than being a corn- The content of a design product can be charac-
pletely new product. terized as follows:

3. Design * Aspects: Designs address the aspects
flow and structure, insofar as they are

The purpose of a design is to answer the question important for further development.
how can a system be built to behave as described in Which specific software aspects need to
its related D-requirements? This section charac- be specified predominantly depends on
terizes the design phase, using the characterization the project and application type. In the
scheme introduced in section III (partly reflected in case of information systems, the data
Figure 6). Processes of type design are treated in structure might be dominant; for em-
[Budgen89]. bedded systems, control flow, inter-

a. Purpose and context faces, and synchronization might be
dominant. Practical constraints during

The purpose and context of products of type de- design may include (1) the considera-
sign can be characterized as follows: tion of ties between the software system

" Product Perspective: For our purposes under development and its anticipated

here, we generalize across all possible target environment and (2) the aware-
application domains and quality require- ness of compatibility with the cho:,,,,i
meitsi implementation language and hardware.

" Process Perspective: For our purposes * Attributes: The desirable attributes of

here, we generalize across all possible designs cannot be characterized easily

life-cycle models. We are interested in without knowing the life-cycle and ap-

product and process types related to plication context. Each of the attributes

SEI-CM-1 1-2.1 15

Software Specifications: A Framework

in section III.2.b may be of importance depicted in Figure 3a. The selection of
under certain circumstances. However, methods and tools only makes sense in
the most desirable attributes of designs the context of a specific project or proj-
are completeness (at least from the ect type.
implementor's perspective), consisten- * Derive, for each specification aspect of
cy, formality, traceability (from the D- interest, the appropriate attributes
requirements, to lower-level designs or (II.2.b), using the matrix depicted in
code), clarity, and structuredness. Figure 3b.

4. Other Object Types b. Chose specification techniques

There are many other software objects for which * Select models and languages (111.3) that
sound specifications are needed. Examples are: best match the derived aspect-attribute

* management processes (e.g., monitoring matrix. Obviously, this selection would
schedule adherence) be most efficient if we had definitions

" management products (e.g., schedules) of a number of candidate models and

" other life-cycle processes (e.g., testing) languages in the form of the matrix in
Figure 3b.

* analysis processes (e.g., measurement) * Select methods (I1.5.a) and tools (II.5.b)

It is important to understand all aspects of the soft- that best support use of the selected
ware life-cycle. The first step to better understand- models and languages.
ing is the ability to specify all aspects. The more 2. Evaluation of Specificaton Techniques
formahy a process or proauct type can be specified,
the better it can be communicated, taught, executed, The evaluation of techniques needs to be done with
and improved. Broadening our view of life-cycle respect to some goal [Basili88]. The characterization
objects that need to be specified from just the con- of a technique according to our framework has two
ventional products (including documents) to all advantages in this context: (1) it provides valuable
types of products and processes involved in software input as to what evaluation goals might be of interest
evolution is the objective of this section. (e.g., quality requirements [1I.1.a.ii]), and (2) it pro-

vides a basis for relating negative or unsatisfactory a
Individual software development organizations es- observations regarding the effects of a technique to
tablish their own specification standards. Most of particular characteristics or to actual use of the tech-
these standards are not well documented. The two nique (e.g., a C-requirement technique may be in-
major sources of standards are the Department of effective because it is too formal for the customer to
Defense and ANSI/IEEE. Examples of standards understand).

from those sources are:

" DoD Std 2167A on "Software We can think of two kinds of evaluations: (1) evalu-
Development" [DoD88a] ating whether a chosen technique actually possesses

" DoD Std 2168 on "Software Quality the characteristics promised by its creator or ex-

Assurance" [DoD88b] ;acted by us or (2) evaluating whether a chosen
technique achieves the expected impact on software

" ANSI/IEEE Std 830 on "Software Re- quality or productivity.
quirements Specification" [IEEE84]

The first type of evaluation is relatively easy. The
V. Guidelines for Selecting and Evaluating evaluation goal is implicitly defined by the original

Specification Techniques characterization of the technique on which its selec-
tion was based (see IV.1). We can develop a second

One important application of the characterization characterization during the use of the technique in a
scheme of section III is its use in selecting and evalu- real project, reflecting our actual experience. This
ating specification techniques. Although this is an im- actual characterization can then be compared with
portant topic, we can deal with it only briefly here. the original characterization.

1. Selection of Proper Specification Techniques The second type of evaluation requires more plan-

For selecting an appropriate specification technique, ning. Evaluation goals should identify the perspec-
the framework should be applied as follows: tive (i.e., the audience for this evaluation), which

can be derived from the people dimension of our
a. Define specification requirements framework, as well as a characterization of the envi-

ronment (the life-cycle model that was used and theanExplicitly define.purpose/contexif(111.1) application type), which can be derived from the
type of interest by using the matrix process and application context dimensions of our

16 SEI-CM-1 1-2.1.

Software Specifications: A Framework

framework. Perhaps the hardest part of the evalu- 9 Better basis for constructing automated envi-
ation process for specification techniques is for- ronments that actually support some
mulating recommendations about what should be predefined set of processes.
improved: train people better, choose better tech- e A basis for employing generator technology
niques, make sure that techniques are more for building environment components from
thoroughly applied, or apply different life-cycle process specifications.
models or management structure. Defining expec-
tations for the use of a technique based upon our
framework and selecting it according to the proce-
dure presented in section IV.l. allows comparison of
expectation to reality, thus providing a more objec- Glossary
tive basis on which to improve existing techniques
or select better-suited ones than is otherwise avail- The following terminology is used throughout the
able. module, except in the abstracts found in the bibliog-

It is important to recognize that evaluation, although raphy.
potentially time-consuming and expensive, is neces-
sary to guarantee improvement in the way we select process
and use specification techniques. Each activity or action that consumes (or is in-

VI. Assessment of Current Maturity and Future tended to consume) input products and/or pro-
Directions duces (or is intended to produce) output prod-

ucts, e.g., the overall software life cycle, each
Many people have a limited view of what software life-cycle activity (such as designing or testing),
life-cycle objects are subject to specification and how or even each action of the compilation process.
they should be specified. Commonly held beliefs in- Process is used in a very general sense.

elude:
" Only product types, not process types, need process type

be specified. A class of processes with common characteris-
• Product types in later phases of the life cycle tics. For example, all development processes

should be specified more formally. executed according to some standard X are said
" Specifications are mostly used for purposes to be of type X.

of communication and validation.
These attitudes provide fertile ground for change. Fu- product
ture developments are likely to include: Each document or artifact created during (or for)

" The broadening of the notion of specification a project is a product, independent of whether or
to all product and process types in the context not it is designated tor delivery to the customer
of software evolution. (e.g., design document, code, measurement data,

" The development of specific process specifi- project plan). This is a broader definition than
cation languages. that of the IEEE ("[a] software entity designated

* The introduction of greater formality of spec- for delivery to a user") [IEEE83].
ification.

" The generation of custom-tailored environ- product type
ment components (e.g., database schemes) A class of products with common characteris-
from specifications of the software processes tics. For example, all requirements products cre-
to be supported. ated according to some standard X are said to be

This prediction is motivated by the many needs of the of type X.
software community, all ultimately aimed at improving
productivity and quality ot sottware evolution and its project execution stage
resulting products: The project activities concerned with performing

* Better understanding of the software evolu- the project according to the plans (specifica-
tion process itself. tions) produced in the preceding planning stage.

e Better control of process executions. (See software project model.)
e Better traceability zad predictability of the

impact of decisions made early in the project. project feedback stage
* Better basis for reuse. The project activities concerned with monitoring

the effectiveness of the specifications used dur-

SEI-CM-1 1-2.1 17

Software Specifications: A Framework

ing the execution stage, evaluating those results some type should be performed; a product speci-
after execution, and feeding them into the plan- fication describes how products of some type
ning stages of future projects. (See software should look. Having process and product speci-
project model.) fications available allows us to instantiate indi-

vidual processes and products from such specifi-
project planning stage cations during project execution. It should be

The project activities preceding the actual ex- clear that the temi specification refers to the de-

ecution stage of a project. This stage is con- scription of a product or process type, not to the

cemed with creating specifications of all individual product or process.
relevant product and process types. This in-
cludes all products, whether deliverables or not, Among its definitions for specification,
and processes for management, construction, [Webster87] gives:
control, and analysis. (See software project 1. The act or process of specifying.
model.) 2. A detailed precise presemauion or

requirement something or of a plan or proposal
Anefui enct for something ... a statement of legal
Any function, constraint, or other property that particulars (as of charges or of con-
must be provided, met, or satisfied to fill the tract terms).
needs of the system's intended user(s)
[Abbott86].

According to [IEEE83], specification in the con-
software development text of software engineering is:

The process of translating customer/user needs 1. A document that prescribes, in a
into a system for operational use [IEEE83]. complete, precise, verifiable manner,

the requirements, design, behavior,
software evolution or other characteristics of a system

The process of software development and main- or system component.

tenance. 2. The process of developing a specifi-
cation.

software maintenance
The process of modifying a product after
delivery to correct faults (corrective mainte-
nance), to improve performance or other attri-
butes (perfective maintenance), or to adapt the
product to a changed environment (adaptive
maintenance).

software project model
The software project model underlying this cur-
riculum module is based on (1) planning, (2) ex-
ecution, and (3) evaluation-based feedback
stages. Conventional life-cycle models describe
the execution part. Specifications are created
during planning, used to control the performance
of processes and the creation of products during
execution, and evaluated after execution during
the feedback stage.

specification
A plan or standard that provides a
description/characterization of a software prod-
uct or process type. A specification is itself a
product resulting from the planning process. A
process specification describes how processes of

18 SEI-CM-1 1-2.1

Software Specifications: A Framework

Figures

Figure 1. Reference life-cycle model and terminology.

Figure 2. PlanninglExecution/Feedback-Based Project Model.

Figure 3a. Purpose & Context vs. Content (Aspect).

Figure 3b. Content (Attributes) vs. Content (Aspects).

Figure 4. C-Requirements Characterization.

Figure 5. D-Requirements Characterization.

Figure 6. Design Characterization.

SEI-CM-1 1-2.1 19

Software Specifications: A Framework

Figure 1. Reference life-cycle model and terminology.

Reference Existing Reference Life-cycle
Life-cycle Life-cycle Terminology

Model Terminologies (used in this module)

Market Analysis Context Analysis
System Analysis
Business Planning
System Engineering

Software Market Needs, Business Needs Needs Product

Needs Demands, System Requirements
Operational Requirements

Requirements Analysis C(ustomer/User-oriented)-
Requirements Definition Requirements Process
System Specif:catcn

Requirements C - Requirements
Requirements Defln;tton Product

Oriented Software Requirements Document
Oriment Requirements Specification
R eeFunclional Specification

Specification D(eveloper-oriented)-
Requirements Process

Behavioral Specification D - Requirements

Developer System Specification Product
Oriented Software Functional Specification

Requirements Specification Document
Requirements Specification

Design Design Process

Design Design Product

Software Design Document
Design Architectural Design

Algorithmic Design IL1.0 i

Coding Coding Process
Implementation PT cosses

Software Code Code
Implementation Implementation Products

20 SEI-CM-11 1-2 1

Software Specifications; A Framework

Figure 2. Planning/Execution/Feedback-Based Project Model.

*PLA ,NNING

PProcess

GProduct
00 information Flow

- "is type description
* for"

SEI-CM-I 1 .2.1 21

Software Specifications: A Framework

Figure 3a. Purpose & Context vs. Content (Aspect).

ASPECT: Ill. 2. a.
Behavior 11Inter ace F1 ~ Structure

CONT caE o Tnp 2: 0M

SeCommerial

r Systems
01 *Process control
d *Scientific

u a *Embedded
c

Quality Requirements
*Reliability
*Cor ectness - - - - - -

*Faulit- tolerance
*Maintainability
*Portability -

Life-Cycle Models
*Waterfall -

Ilterative enh. -

*Prototyping -

P *Spiral -

C 1. Life-Cycle Phases -

e b. Requirements
s Design

*Integration

*Maintenance

*Teaching

LU Communication -

s Ill Creation
a1 *Modification - - - - - - -

*Assurance- - - - ---------

*Customrer -

*End-user
P Sub-contractor
o Il Req. analyst

1 *Spec engineer-

Pd Designer
I Implementor

e *V& Vpers.- - - -- - - - --

* QA pers.
*Conf man pers.,
*Maintenance pers.-

*Manager
I-

22 SE!-CM-1 1-2.1

Software Specifications: A Framework

Figure 3b. Content (Attributes) vs. Content (Aspects).

CONTEN T (ASPECTS) - III. 2. a.

Behavior Interface Flow Structure

- .- - - - - - - -

00 00 3:
C Z5 t..-o 5 2 - -

o " o - -- - CI c. o0
C C C LL _5 (D E 2-2 E. --

LL Z A Z (0 CD oI < 6 0 C

-I - - a

Correctness
C

0 Completeness
N
T Consistency
E
N Feasability
T

Non-Ambiguity

T Clarity

R Preciseness

B Formality

U
T Abstractness

E Structuredness
S (Modularity)

Traceability

Modifiability2I.
2. Executability
b.

Verifiability

SEI-CM-1 1-2.1 23

Software Specifications: A Framework

Figure 4. C-Requirements Characterization.

ASPECT: Ill. 2. a.
Behavior Interface Flow Structure

LEQiN. U- a- - - -

Optona o pelcaeninTyeer:

[ZSeqptnonal
possible)Maintuentpes

-Commercia

24~ Systems -2.

Software Specifications: A Framework

Figure 5. D-Requirements Characterization.

ASPECT: Ill. 2. a. ________

PURPOSE 0 ; .2 a LL o~

Optioal e Req.atinlytvp
~'address 0 Sequeninee

Optional Con.maner.
L......J~ (aoiys Mitenacspr

0osbe Prcs Manager

SEICMd Scientifi

Software Specifications: A Framework

Figure 6. Design Characterization.

ASPECT: Ill. 2. a.
Behavior Interface Flow Structure

PURPOSE 4- LL M

Application Type 1:
*Sequential
*Concurrent
*Real-time ...

Application Type 2:
* Commercial

r Systems
0 *Process control - - -

d Maientifil

Reloiability"IT

FauItoerae
MaProttyinblt

Porabiit 0
-Life- Cycle- Phases

Iteratioe nh

ProTeaching

e1. ReModirmctio

InAssurancen

MaiSu-ntactor----

TiSechngine

* . V&Vpes

CusAoer
ECntmansers

P Mai-cntacetprs
* Meqanast

26I De-CM-g1-2.

Software Specifications: A Framework

Teaching Considerations

Uses of this Material Week 6 Presentation and discussion of
selection and evaluation criteria

The material presented in this module is intended to for specifications (V).

be used in one of three ways: Exercise: An informal software
1. As background material for teachers pre- specification is given to four

paring software engineering courses. student teams, who are asked to

2. As the basis of an introductory unit on develop corresponding D-

requirements (C- or D-requirements) or requirements documents using

design. any of the following ap-
proaches: SADT, Petri nets, R

3. As the basis of a stand-alone course on nets, NRL approach, algebraic
the selection and assessment of software approach, or axiomatic ap-
engineering methods and tools. proach. The teams are asked to

justify their choice and to deter-
mine the degree to which the
method used fulfill their expec-

Suggested Introductory Literature tations.
Week 7 Presentation and discussion of

The following nine books and papers are recom- C-/D-requirements specification
mended as introductory literature on the topics dealt (IV. 1-2).
with in this module: Week 8 Presentation and discussion of

Abbott86 Gomaa86 Lamb88 formal approaches to specifying
* DeMarco79 Hayes87 Rzepka85 D-requirements.

Gehani86 Jensen79 Sommerville89 DrqiennsWeek 9 Other specification types
(IV.3-4).

Week 10 Presentation and discussion of
Suggested Course Schedule exercise by team 1.

Week 11 Presentation and discussion of
The author has taught the material in this module as exercise by team 2.
a graduate course called "Assessment of Software Week 12 Presentation and discussion of
Requirements Methods and Tools" at the University exercise by team 3.
of Maryland. This course is a stand-alone course on
selection and assessment, as suggested above. The Week 13 Presentation and discussion of
planned schedule for this course (14 weeks, 2 hours exercise by team 4.
per week) is shown below. References to the mod- Week 14 Course wrap-up.
ule outline are shown in parentheses.

The requirements document used in the class ex-
Week 1 Overview of software evolution ercise describes a heating control system. It is one

(processes, products, etc.). of four informal sets of requirements that have been
Week 2 Overview of life-cycle models used as examples within the specification commu-

and the roles played by specifi- nity JIWSSD87].
cations in these models.

Weeks 3-5 Detailed presentation and dis-
cussion of the characterization
scheme (III).

SEI-CM-11-2 1 27

Software Specifications: A Framework

Exercises

Depending on individual course objectives, the fol-
lowing student exercises may be useful:

1. Distribute an informal requirements doc-
ument and ask students to create a more
formal D-requirements document. (See
course description above.) Students can
be required either to use a particular
method or to chose one themselves from
a candidate set of available methods and
tools. Students should then assess the ef-
fectiveness of the method used.

2. Provide a concrete project scenario (use
the characterization scheme in 111.1-2)
and ask students to chose and justify
their choice of the most appropriate spec-
ification methods(s) and/or tool(s)
(111.3-4).

3. Provide students with corresponding D-
requirements, design, and code products.
Have them perform modification and/or
verification on these products and assess
which of the product characteristics are
helpful and which cause difficulties in
performing the tasks.

28 SEI-CM-1 1-2.1

Software Specifications: A Framework

Bibliography

Abbott86 then be used to develop eight design principles for
Abbott, R. J. An Integrated Approach to Software "good" specifications. These principles, in turn,
Development. New York: John Wiley, 1986. result in eighteen implications for specification lan-

guages that strongly constrain the set of adequate
This is a general software engineering text, organ- specification languages and identify the need for
ized as a collection of annotated outlines for product several novel capabilities such as historical andfu-
types important to the development and mainte- ture references, elimination of variables, and result
nance of software. specification.

Alford77 Basili75
Alford, M. "A Requirements Engineering Method- Basili, V. R., and A. J. Turner. "Iterative Enhance-
ology for Real-Time Processing Requirements." ment: A Practical Technique for Software
IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977), Development." IEEE Trans. Software Eng. SE-1, 4
60-69. (April 1975), 390-396.

Abstract: This paper describes a methodology for Abstract: This paper recommends the "iterative
the generation of software requirements for large, enhancement" technique as a practical means of
real-time unmanned weapons systems. It describes using a top-down, stepwise refinement approach to
what needs to be done, how to evaluate the interme- software development. This technique begins with a
diate products, and how to use automated aids to simple initial implementation of a properly chosen
improve the quality of the product. An example is (skeletal) subproject which is followed by the
provided to illustrate the methodology steps and gradual enhancement of successive implementations
their products and the benefits. The results of some in order to build the full implementation. The de-
experimental applications are vummarized. velopmonf' ,id quantitative analysis of a production

compiler for the language SIMPL-T is used to dem-

Babb85 onstrate that the application of iterative enhance-
R. G., II. "A Data Flow Approach to Unfy- ment to software development is practical and effi-Babb, R. Speciicato Design, nd cient, encourages the generation of an easilying Software Specification, Design, and modifiable product, and facilitates reliability.

Implementation." 3rd Intl. Workshop on Software

Specification and Design. Washington, D.C.: IEEE Basi1188
Computer Society Press, 1985, 9-13. Basili, V. R., and H. D. Rombach. "The TAME

Abstract: Specifying requirements for software sys- Project: Towards Improvement-Oriented Software
tems is a complx and frequently frustrating proc- Environments." IEEE Trans. Software Eng. SE-14, 6
ess. A major source of difficulty is that require- (June 1988), 758-773.
ments engineering and system development involves
a wide range of people, including both computer Abstract: Experience from a dozen years of analyz-
specialists and non-specialists. This paper de- ing software engineering processes and products is
scribes a unified approach to software specification summarized as a set of software engineering and
and design that relies on executable data flow measurement principles that argue for software en-
diagrams to serve as a basis for communication gineering process models that integrate sound plan-
among those involved in system development. ning and analysis into the construction process.

In the TAME (Tailoring A Measurement Environ-
Balzer81 ment) project at the University of Maryland we have
Balzer, R., and N. Goldman. "Principles of Good developed such an improvement-oriented software
Software Specification and Their Implications for engineering process model that uses the goal
Specification Languages." AFIPS Conference question/metric paradigm to integrate the construc-
Proceedings: Vol. 50, 1981 National Computer tive and analytic aspects of software development.

Conference. Arlington, Va.: AFIPS Press, 1981, The model provides a mechanism for formalizing

393-400. the characterization and planning tasks, controlling
and improving projects based on quantitative anal-

Abstract: Careful consideration of the primary ysis, learning in a deeper and more systematic way
uses of software specifications leads directly to about the software process and product, and feed-
three criteria for judging specifications, which can ing the appropriate experience back into the current

and future projects.

SEI-CM-1 1-2.1 29

Software Specifications: A Framework

The TAME system is an instantiation of the TAME Boehm86
software engineering process model as an ISEE Boehm, B. W. "A Spiral Model of Software Devel-
(Integrated Software Engineering Environment). opment and Enhancement." ACM Software Engi-
The first in a series of TAME system prototypes has neering Notes 11, 4 (Aug. 1986), 14-24.
been developed. An assessment of experience with
this first limited prototype is presented including a This paper, reprinted from the proceedings of the
reassessment of its initial architecture. The long- March 1985 International Workshop on the Soft-
term goal of this building ejfort is to develop a bet- ware Process and Software Environments, presents
ter understanding of appropriate ISEE architec- Boehm's spiral model. The author's description
tures that optimally support the improvement- from the introduction:
oriented TAME software engineering process The spiral model of software development and en-
model. hancement presented here provides a new

framework for guiding the suftware process. Its
Berztlss87 major distinguishing feature is that it creates a risk-
Berztiss, A. Formal Specification of Software. Cur- driven approach to the software process, rather

riculum Module SEI-CM-8-1.0, Software Engineer- than a strictly specification-driven or prototype-
driven process. It incorporates many of theing Institute, Carnegie Mellon University, Pitts- strengths of other models, while resolving many ofburgh, Pa., Oct. 1987. their difficulties.

Capsule Description: This module introduces
methods for the formal specification of programs Brackett9O
and large software systems, and reviews the Brackett, J. W. Software Requirements. Curriculum
domains of application of these methods. Its em- Module SEI-CM-19-1.2, Software Engineering Insti-
phasis is on the functional properties of software. It tute, Carnegie Mellon University, Pittsburgh, Pa..
does not deal with the specification of programming Jan. 1990.
languages, the specification of user-computer inter-
faces, or the verification of programs. Neither does Capsule Description: This curriculum module is
it attempt to cover the specification of distributed concerned with the definition of software require-
systems. ments-the software engineering process of deter-

mining what is to be produced--and the products
generated in that definition. The process involvesBjerner82
all of the following:"

Bjomer, D., and C. B. Jones. Formal Specification a requirements ientfication

and Software Development. Englewood Cliffs, N.J.:

Prentice/Hall International, 1982. 9 requirements analysis
* requirements representation

Boehm84 * requirements communication
Boehm, B. W., T. E. Gray, and T. Seewaldt. * development of acceptance criteria and
"Prototyping vs. Specifying: A Multi-Project Exper- procedures
iment." Proc. 7th Intl. Conf. Software Eng. New The outcome of requirements definition is a precur-
York: IEEE, 1984, 473-484. sor of software design.

Abstract: In this experiment, seven software teams
developed versions of the same small-size (2000- Brown87
4000 source instruction) application software prod- Brown, B. J. Assurance of Software Quality. Curric-
uct. Four teams used the Specifying approach. ulum Module SEI-CM-7-1.1, Software Engineering
Three teams used the Prototyping approach. Institute, Carnegie Mellon University, Pittsburgh,
The main results of the experiment were: Pa., July 1987.

Prototyping yielded products with roughly Capsule Description: This module presents the un-
equivalent performance, but with about 40% derlying philosophy and associated principles and
less code and 45% less effort. practices related to the assurance of software qual-
The prototyped products rated somewhat ity. It includes a description of the assurance acti-
lower on functionality and robustness, but vities associated with the phases of the software de-
higher on ease of use and ease of learning. velopment life-cycle (e.g., requirements, design,

Specifying produced more coherent designs test, etc.).
and software that was easier to integrate.

The paper presents the experimental data support-
ing these and a number of additional conclusions.

30 SEI-CM-1 1-2.1

Software Specifications: A Framework

Bruno86 Collofello88
Bruno, G., and G. Marchetto. "Process-Translatable Collofello, J. S. Introduction to Software Verifica-
Petri Nets for the Rapid Prototyping of Process Con- tion and Validation. Curriculum Module SEI-
trol Systems." IEEE Trans. Software Eng. SE-12, 2 CM-13-1.1, Software Engineering Institute, Came-
(Feb. 1986), 346-357. gie Mellon University, Pittsburgh, Pa., Dec. 1988.

Abstract: This paper presents a methodology for Capsule Description: Software verification and
the rapid prototyping of process control systems, validation techniques are introduced and their ap-
which is based on an original extension to classical plicability discussed. Approaches to integrating
Petri nets. The proposed nets, called PROT nets, these techniques into comprehensive verification
provide a suitable framework to support the follow- and validation plans are also addressed. This cur-
ing activities. building an operational specification riculum module provides an overview needed to un-
model; evaluation, simulation, and validation of the derstand in-depth curriculum modules in the verifi-
model, automatic translation into program struc- cation and validation area.
tures.

In particular, PROT nets are shown to be trans- DeMar=o79
latable into Ada® program structures concerning DeMarco, T. Structured Analysis and System
concurrent processes and their synchronizations. Specification. Englewood Cliffs, N.J.: Yourdon
The paper illustrates this translation in detail using, Press, 1979. Also published by Prentice-Hall, 1979.
as a worked example, the problem of tool handling
in aflexible manufacturing system. A very readable book on Structured Analysis and

system specification that covers data flow diagrams,

Budgen89 data dictionaries, and process specification.

Budgen, D. Introduction to Software Design. Cur-
riculum Module SEI-CM-2-2.1, Software Engineer- DeRemer76
ing Institute, Carnegie Mellon University, Pitts- DeRemer, F., and H. H. Kron. "Programming-in-the-

burgh, Pa., Jan. 1989. Large Versus Programming-in-the-Small." IEEE
Trans. Software Eng. SE-2, 6 (June 1976), 80-86.

Capsule Description: This curriculum module pro- a stract:w e dng u th e actvit of witn

vides an introduction to the principles and concepts Abstract: We distinguish the activity of writing

relevant to the design of large programs and sys- large programsfrom that of writing small ones. By

tems. It examines the role and context of the design large programs we mean systems consisting of

activity as a form of problem-solving process, de- many small programs (modules), usually written by

scribes how this is supported by current design different people.
methods, and considers the strategies, strengths, We need languages for programming-in-the-small,
limitations, and main domains of application of i.e., languages not unlike the common programming
these methods. languages of today, for writing modules. We also

need a "module interconnection language" for knit-
Cameron89 ting those modules together into an integrated

Cameron, J. R. JSP and JSD: The Jackson Approach whole and for providing an overview that formally

to Software Development, 2nd Ed. Washington, records the intent of the programmer(s) and that

D.C.: IEEE Computer Society Press, 1989. can be checked for consistency by a compiler.

A collection of articles and papers describing JSP DoD88a
and JSD and illustrating these methods using a DoD. Military Standard for Defense System Soft-
range of examples of reasonable size and com- ware Development. DOD-STD-2167A, U.S. De-
plexity. partment of Defense, Washington, D.C., 29 February
Good source material for the instructor. Source of 1988.
material for student tutorials.

DoD88b
Cohen86 DoD. Military Standard for Defense System Soft-
Cohen, B., W. T. Harwood, and M. I. Jackson. The ware Quality Program. DOD-STD-2168, U.S. De-
Specification of Complex Systems. Reading, Mass.: partment of Defense, Washington, D.C., 29 April
Addison-Wesley, 1986. 1988.

SEI-CM-1 1-2.1 31

Software Specifications: A Framework

Firth87 scribed which can be used both to automate such

Firth, R., et al. A Classification Scheme for Software proofs of correctness and to derive an immediate

Development Methods. Technical Report CMU/SEI- implementation from the axioms. This implemen-

87-TR-41, Software Engineering Institute, Carnegie tation allows for limited testing of programs at de-
Mellon Univrsty, Eittsurg InstituteuCarnegisign time, before a conventional implementation is
Mellon University, Pittsburgh. Pa., June 1987. accomplished.

Abstract: Software development methods are used
to assist with the process of designing software for Harel88a
real-time systems. Many such methods have come Harel, D. "On Visual Formalisms." Comm. ACM 31,
into practice over the last decade, and new methods 5 (May 1988), 514-530.
are emerging. These new methods are more power-
ful than the old ones, especially with regard to real- An elegant and clearly-written paper that discusses
time aspects of the software. This report describes a number of important issues about model represen-
a classification scheme for software development tation. While the first part of the paper is concerned
methods, includes descriptions of the major charac- with general issues, the latter part provides an inter-
teristics of such methods, and contains some more esting exposition of statecharts, and includes a de-
words of advice on choosing and applying such tailed example in the form of a description of a
methods. digital watch. The paper will be of particular inter-

est to instructors concerned with the imprecision of
Gehani86 the graphical notations frequently used to describe
Gehani, N., and A. D. McGettrick, eds. Software software requirements.

Specification Techniques. Reading, Mass.:
Addison-Wesley, 1986. Harel88b

Harel, D., et al. "STATEMATE: A Working Envi-
A collection of papers on formal specification tech- r e nt for t D e n of C oplex eaciv

niqes.Thi bok ddrsse geera pincple, pr-roniment for the Development of Complex Reactiveniques. This book addresses general principles, par Systems." Proc. l0th Intl. Conf. Software Eng.

ticular specification techniques, case studies of ac- Wst on, D 0C. IE Coue Soctyaress,

tual experiences, and systems for automatic gener- Washington, D.C.: IEEE Computer Society Press,

ation of prototypes from specifications. 1988, 396406.

Abstract: This paper provides a brief overview of
Goldsack85 the STATEMATE system, constructed over the past
Goldsack, S. J. Ada for Specification: Possibilities three years by i-Logix Inc., and Ad Cad Ltd.

and Limitations. Cambridge, England: Cambridge STATEMATE is a graphical working environment,

University Press, 1985. intended for the specification, analysis, design and
documentation of large and complex reactive sys-
tems, such as real-time embedded systems, control

Gomaa86 and communication systems, and interactive soft-
Gomaa, H. "Software Development of Real-Time ware. It enables a user to prepare, analyze and
Systems." Comm. ACM 29, 7 (July 1986), 657-668. debug diagrammatic, yet precise, descriptions of the

system under development from three inter-related
Suitable for use by both instructors and students as points of view, capturing structure, functionality
an easily readable introduction to issues of real-time and behavior. These views are represented by three
products. graphical languages, the most intricate of which is

the language of statecharts used to depict reactive
Guttag78 behavior over time. In addition to the use of

Guttag, J. V., E. Horowitz, and D. R. Musser. statecharts, the main novelty of STATEMATE is in

"Abstract Data Types and Software Validation." the fact that it 'understands' the entire descriptions

Comm. ACM 21, 12 (Dec. 1978), 1048-1064. perfectly, to the point of being able to analyze them
for crucial dynamic properties, to carry out rigor-

Abstract: A data abstraction can be naturally spec- ous animated executions and simulations of the de-
ified using algebraic axioms. The virtue of these scribed system, and to create runing code automat-
axioms is that they permit a representation- ically. These features are invaluable when it comes
independent formal specification of a data type. An to the quality and reliability of the final outcome.
example is given which shows how to employ al-
gebraic axioms at successive levels of implemen- Hatley87
tation. The major thrust of the paper is twofold. Hatley, D. J., and I. A. Pirbhai. Strategies for Real-
First, it is shown how the use of algebraic Time System Specification. New York: Dorset
axiomatizations can simplify the process of proving House, 87.
the correctness of an implementation of an abstract House, 1987.
data type. Second, semi-automatic tools are de-

32 SEI-CM-1 1-2.1

Software Specifications: A Framework

This is a well-written text on Real-Time Structured tions, defines and validates a set of software metrics
Analysis. This book should be read in conjunction which are appropriate for evaluating the structure
with [Ward89] in order better to understand the ca- of large-scale systems. These metrics are based on
pabilities of the notation. This text and [Ward85] the measurement of information flow between ss
are alternative texts; the choice of a text for teach- tern componenrt. Specific metrics are defined for
ing Real-Time Structured Analysis may depend procedure complexity, module complcxit\., and
upon whether the computer tools to be used support module coupling. The validation, using the source
only the Hatley notation or only the Ward notation, code for the UNIX opeating sxstem, shows that the

complexity measures are strongly correlated with
Hayes87 the occurrence of changes. Further, the metrics for

procedures and modules can be interpreted toHayes, Ian, ed. Specification Case Studies. Engle- reveal various types of structural flaws in the design
wood Cliffs, N.J.: Prentice/Hall International, 1987. and implementation.

A collected set of case studies based on the use of
Z, providing a well-structureti introduction to the Hoare69
use of formal methods. The section on specification Hoare, C. A. R. "An Axiomatic Basis for Computer
of the UNIX filing system may involve sufficiently Programming." Comm ACM 12, 10 (Oct. 1969),
familiar material to provide a good introduction for 576-580.
many students.

Abstract: In this paper an attempt is made to ex-Suitable for use by both instructors and students.por th l gia f un ton fc m uer r ga -plore the logical foundation of computer program-

ruing by use of techniques which were first applied
Heninger8O in the study of geonetry and have later been ex-
Heninger, K. L. "Specifying Software Requirements tended to other branches of mathematics. This in-
for Complex Systems: New Techniques and Their volves the elucidation of sets of axioms and rules of
Applications." IEEE Trans. Software Eng. SE-6, 1 inference which can be used in proofs of the
(January 1980), 2-13. properties of computer programs. Examples are

given of such axioms and rules, and a formal proof
Abstract: This paper concerns new techniques for of a simple theorem is displayed. Finally, it is
making requirements specifications precise, con- argued that important advantages, both theoreticalOcise, unambiguous, and easy to check for complete- and practical, may follow from a pursuance of these
ness and consistency. The techniques are well- topics.
suited for complex real-time software systems; they
were developed to document the requirements of ex- IEEE83
isting flight software for the Navy's A-7 aircraft. IEEE. IEEE Standard Glos.';- of ., 'oftnare Engi-
The paper outlines the information that belongs in a n
requirements document and discusses the objectives neering Termtnology. New York: IEEE, 1983.
behind the techniques. Each technique is described ANSI/IEEE Std 729-1983.
and illustrated with examples from the A-7 docu- Provides definitions for many of the terms used in
ment. The purpose of the paper is to introduce the software engineering.
A-7 document as a model of a disciplined approach
to requirements specification; the document is
available to anyone who wishes to see a fully IEEE84
worked out example of the approach. IEEE. IEEE Guide to Software Requirements

Specifications. New York: IEEE, 1984. ANSI/
Henry8l IEEE Std 830-1984.
Henry, S., and D. Kafura. "Software Structure
Metrics Based on Information Flow." IEEE Trans. IWSSD82
Software Eng. SE-7, 5 (Sept. 1981), 510-518. FTirst Intl. Workshop on Software Specification and

Abstract: Structured design methodologies provide Design. Washington, D.C.: IEEE Computer Soci-

a disciplined and organized guide to the construc- ety Press, 1982.

tion of software systems. However, while the meth-
odology structures and documents the points at IWSSD84
which design decisions are made, it does not pro- 2nd Intl. Workshop on Software Specification and
vide a specific, quantitative basis for making these Design. Washington, D.C.: IEEE Computer Soci-
decisions. Typically, the designers' only guidelines ety Press, 1984..are qualitative, perhaps even vague, principles such
as "functionality," "data transparency," or
"clarity." This paper, like several recent publica-

SE)-CM-1 1-2.1 33

Software Specifications: A Framework

IWSSD85 havior. Black-box and state-machine models are

3rd Intl. Workshop on Software Specification and used, which are similar in concept to the form of

Design. Washington, D.C.: IEEE Computer Soci- representation described in [HeningerSO].

ety Press, 1985.
Parnas72

IWSSD87 Parnas, D. L. "On the Criteria to be used in decom-

4th Intl. Workshop on Software Specification and posing systems into modules." Comm. ACM 15, 12

Design. Washington, D.C.: IEEE Computer Soci- (Dec. 1972), 1053-1058.

ety Press. 1987. Also appears as ACM Software En- Abstract: This paper discusses modularization as a

gineering Notes 14, 3 (May 1989). mechanism for improving the flexibility and com-
prehensibility of a system while allowing the shor-

Jensen79 tening of its development time. The effectiveness of

Jense, R W, na "modularization" is dependent upon the criteria
Jensen, R. W., and C. C. Tonies. Software used in dividing the system into modules. A system

Engineering. Englewood Cliffs, N.J.: Prentice-Hall, design problem is presented and both a convention-

1979. al and unconventional decomposition are described.

A collection of primarily management-oriented at- It is shown that the unconventional decompositions

cles. Structured program design is covered, have distinct advantages for the goals outlined. The
criteria used in arriving at the decompositions are
discussed. The unconventional decomposition. if

Lam b88 implemented with the conventional assumption that

Lamb, David Alex. Software Engineering: Planning a module consists of one or more subroutines, will

for Change. Englewood Cliffs, N.J.: Prentice-Hall, be less efficient in most cases. An alternative ap-

1988. proach to implementation which does not have thi:;

This book introduces basic software engineering effect is sketched.

concepts. Among other topics, it contains an A truly "classical" paper, in the sense of being often

elaborate discussion of "specification and cited but probably rarely read. It is a very important

verification." Specific emphasis is placed on al- paper that lays down the basic ideas about infor-

gebraic specifications, trace specifications, and ab- mation hiding but in a very concise and compact

stract modeling. form. The discussion is based upon an example of a
problem that may not be very familiar to many

Levine89 reauers.

Levine, Linda, Linda H. Pesante, and Susan The teacher must read this paper; the student might

B. Dunkle. Technical Writing for Software do better to settle for the teacher's interpretation.

Engineers. Curriculum Module SEI-CM-23-1.0,
Software Engineering Institute, Carnegie Mellon Peterson77
University, Pittsburgh, Pa., Dec. 1989. Peterson, J. "Petri Nets." ACM Computing Surveys

Capsule Description: This module, which is di- 9, 3 (Sept. 1977), 223-252.

rected specifically to software engineers, discusses This is the first widely circulated survey and tutorial

the writing procesv in the context of software engi- on Petri nets. It touches briefly on modeling with

neering. Its focus is on the basic problem-solving Petri nets, basic definitions, analysis problems and

activities that underlie effective writing, many of techniques, Petri net languages, and related models
which are similar to those underlying software de- of computation. A good introduction that should be

velopment. The module draws on related work in a readable by any graduate student.
number of disciplines, including rhetorical theory,
discourse analysis, linguistics, and document de-
sign. It suggests techniques for becoming an effec- Peterson81

tive writer and offers criteria for evaluating writing. Peterson, J. L. Petri Net Theory and the Modeling of

Systems. Englewood Cliffs, N.J.: Prentice-Hall,

MIIU86
1981.

Mills, H. D., C. Linger, and A. R. Hevner. This books makes two important contributions: it

Principles of Information Systems Analysis and identifies a new class (called Petri net languages) in

Design. Orlando, Fla.: Academic Press, 1986. the Chomsky hierarchy, and it organizes a set of

models of parallel computation into a lattice in
This book describes an approach to requirements which the ordering is based on the expressive power I

definition for information systems that emphasizes of a model. Examples are given to show the proper

the use of models showing external system be-

34
SEI-CM-1 1-2.1

Software Specifications: A Framework

inclusion among each adjacent pair of models in the Rzepka8S
lattice. An excellent bibliography is provided. Special Issue on Requirements Engineering Environ-

ments. W. Rzepka and Y. Ohno, eds. Computer 18,
Ross77 4 (April 1985).
Ross, D. T., and K. E. Schoman, Jr. "Structured The papers in this issue cover approaches such as
Analysis for Requirements Definition." IEEE Trans. SADT and SREM, with special emphasis on real-
Software Eng. SE-3, 1 (Jan. 1977), 6-15. time applications.

Abstract: Requirements def/nition encompasses all
aspects of system development prior to actual sys- Scacchi87
tern design. We see the lack of an adequate ap- Scacchi, W. Models of Software Evolution: Life Cv-
proach to requirements definition as the source of cle and Process. Curriculum Module SEI-CM-10-
major difficulties in current systems work. This 1.0, Software Engineering Institute, Caregie Mellon
paper examines the needs for requirements defini-
tion, and proposes meeting those objectives with University, Pittsburgh, Pa., Oct. 1987.

three interrelated subjects: context analysis, func- Capsule Description: This module presents an in-
tional specification, and design constraints. Re- troduction to models of software systen. evolution
quirements definition replaces the widely used, but and their role in structuring software development
never well-defined, term "requirements analysis." It includes a review of traditional software life-

The purpose of this paper is to present. in a com- cycle models as well as software process model

prehensive manner, concepts that apply throughout that have been recently proposed. It identifies three

requirements definition (and, by implication, to all kinds of alternative models of vo?!fttare cVilut,,l

of system deve!opment). The paper discusses the that focus attention to either the prducts. pr,,ji,-

functional architecture of systems, the characteris- tion processes, or production settin,4s as the twar

tics of good requirements documentation, the per- source of influence It examines how di!Tcrent wr

sonnel involved in the process of analysis, and man- ware engineering tools and techniques can suppnrt

agement guidelines that are effective even in corn- life-cycle or process approaches. It also identifies

plex environments, techniques for evaluating the practical utility')(a
given model of software evolution for development

The paper then outlines a systematic methodology projects in different kinds of organizational settings.
that incorporates, in both notation and technique,
the concepts previously introduced. Reference is Sommerville89
made to actual requirements definition experience
and to practicable automated support tools that Sommerville, 1. Software Engineering, 3rd Ed.

may be used with the methodo!_-gy. Wokingham, England: Addison-Wesley. 1989.

This book contains an easy-to-read introduction to
Royce70 software engineering principles and issues. It cm-
Royce, W. W. "Managing the Development of Large phasizes the early life-cycle stages, including
Software Systems: Concepts and Techniques." "software specification."
WESCON Technical Papers Volume 14, Western
Electronic Show and Convention. Los Angeles: Sutcliffe88
WESCON, 1970, 1-9. Reprinted in Proc. 9th Intl. Sutcliffe, A. Jackson System Development. New
Conf. Software Eng., Washington, D.C.: IEEE York: Prentice-Hall, 1988.
Computer Society Press, 1987, 328-338. From the introductory chapter:

Abstract: Gives the personal views of the author [Jackson System Development (JSD)l is organized
about managing large software developments, lie in three separate stages which guide the analyst
has had various assignments during the past nine through the systems development process. Each
years, mostly concerned with the development of stage has a set of activities with clear start and end
software packages for spacecraft mission planning, points (this helps the analyst using the method) and
commanding and post-flight analysis. In these as- facilitates project control as deliverables can be
signments he has experienced different degrees of defined for each stage. The three stages can be

success with respect to arriving at an operational outlined briefly as follows.
state, on-time, and within costs. He has become (a) Modelling stage. A description is made
prejudiced by his experiences and relates some of of the real world problem and the impor-
these prejudices in the presentation. tant actions within the system are identi.

fled. This is followed by analysis of the
major structures within the system. called
entities in JSD....

(b) Network stage. The system is developed

SEI-CM-1 1 -2.1 35

Software Specifications: A Framework

as a series of subsystems. First the major Tomayko87
structures are taken from the modelling Tomayko, J. E. Software Configuration Manage-
stage and input and outputs are added;
this is followed by the analysis of the ment. Curriculum Module SEI-CM-4-1.3, Software
output subsystem which provides infor- Engineering Institute, Carnegie Mellon University,
mation, and then of the input subsystem Pittsburgh, Pa., July 1987.
which handles the user interface and vali-
dation.... Capsule Description: Software configuration man-

(c)Implemenration stage. In this stage the agement encompasses the disciplines and tech-
logical system specification, which is niques of initiating, evaluating, and controllingviewed as a network of concurrently change to software products during and after the

communicating processes. is transformed development process. It emphasizes the importance
into a sequential design by the technique of configuration control in managing software pro-
of scheduling. This is followed by fur- duction.
ther detailed design and coding ..

JSD begins by analysing the major system struc- Ward85
tures which are important to create a model of the Ward, P. T., and S. J. Mellor. Structured Develop-
system problem, the entities. Then these structures
are connected together to create a network model ment for Real-Time Systems. New York: Yourdon
of the system, while at the same time the design is Press, 1985-1986. The three volumes in this series
elaborated by addition of other processes to create are Introduction and Tools, Essential Modeling
output, and to handle input messages and user in- Techniques, and Implementation Modeling Tech-
teraction. The essence . . . is to create a system niques.
model of reality first and then to add the function-
alitv. This book is an alternative to [Hatley87] for teaching

JSD is usually not considered to support require- Real-Time Structured Analysis.
ments definition, but Jackson's emphasis on model-
ing the problem domain makes it a viable alter- Ward89
native, for information systems, to functional, top- Ward, P. T. "Embedded Behavior Pattern Lan-
down approaches such os Structured Analysis. This guages: A Contribution to a Taxonomy of CASE
book is unique in showing how JSD relates to more Languages." J. Syst. and Software 9, 2 (Feb. 1989),
widely used software requircments and design tech- 109-128.
niques. [Ward89] also shows how its notation re-
lates to more widely used requirements notations. Abstract: With the increasing availability of CASE

tools, graphics-based software modeling languages
Telchrow77 have the potential to play a much more central role
Teichrow, D. "PSL/PSA: A Computer Aided Tech- in the development process. Although some com-
nique for Structured Documentation and Analysis of parisons among these languages have been made,Inq t Pno systematic classification based on the underlying
Information Processing Systems." IEEE Trans. Soft- abstractions has been attempted. As a contribution

to such a classification, a class of languages desig-

Abstract: PSLIPSA is a computer-aided structured nated Embedded Behavior Pattern (EBP) languages
documentation and analysis technique that was de- is described and its members are compared and
veloped for, and is being used for, analysis and doc- contrasted. The EBP languages include the
umentation of requirements and preparation of Ward/Mellor and Boeing/Hatley Structured Analy-

functional specifications for information processing sis extensions, the Jackson System Development
systems. The present status of requirements defini- notation, and Harel's StateChart-Activity Chart
tion is outlined as the basis for describing the prob- notation. These notations are relevant to the build-
lem which PSLIPSA is intended to solve. The basic ing of specification models because they display
concepts of the Problem Statement Language are clear one-to-one correspondences between elements
introduced and the content and use of a number of of the model and elements of the application
standard reports that can be produced by the Prob- domain. These notations are also amenable to a
lem Statement Analyzer are briefly described, style of model partitioning that is related to object-

oriented development.
The experience to date indicates that computer-

aided methods can be used to aid system develop- This paper is a detailed comparison of the notations
ment during the requirements definition stage and described in [Harel88a], (Hatley871, and [Ward85l.
that the main factors holding back such use are not
so much related to the particular characteristics Webster87
and capabilities of PSLIPSA as they are to or- Webster's Ninth New Collegiate Dictionary.
ganizational considerations involved in any change Springfield, Mass.: Merriam-Webster, 1987.
in methodology and procedure.

36 SEI-CM-1 1-2.1

Software Specifications: A Framework

Yourdon89
Yourdon, E. Modern Structured Analysis. Engle-. wood Cliffs, N.J.: Yourdon Press, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.

SEI-CM-1 1-2.1 37

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPOR4T SIECUITY CLASSIFICATION lb . RESTRICTIVE MAAKIN4GS

UNC LA SSIFTED NONE
2SECUi.ITY CLASSIFICATION AUTHORITY 3 OISTAIBUTION/AVAILASILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OCCLASSIFICATIONICOOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A _

A PERFORMING ORGANIZATION REPORT NUMaEAIS) S. MONITORING3 ORGANIZATION REPORT NUMaERiSl

SEI-CM-11-2.O

G&. NAME OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. SEISET JOINT PROGRAM OFFICE

6c. ADDRESS (iaty. State and ZIP Coda) .7b. ADDRESS (City, State uied ZIP Codul

CARNEGIEMELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

____ ___ ____ ___ ____ ___ _ __ ___ ____ __ ANSCM__MA Q1711
So. NAME OF FUNOING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBSER

ORGANIZATION j(if appileableJ

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003

Sc- ADDRESS (City. State and ZIP Coda) 10. SOURCE OF FUNDING NOS. _____________

CARNEGIE MELLON UNIVERSITY PROGRAM PROjECT TASK WORK UNIT

PITTSBURGH, PA 15213 EMNTO.o.NO. NO.

II ITLE (Include Seckniy Clauirication)N/ NA I

SRSONAL AUTHOR(S3)

H. Dieter Rombach, University of Marln
3TYPE OF REPORT 13f& TIME COVERED 14. DATE Of REPORT Irr.. N.. Di7i 16. PAGE COUNT

IFROM _____TO _____ December 1989 36
I.. SUPPLEMENTARY NOTATION

Ili. COSATI CODIES ItIS SUBJECT TERMS (Contiuena ON miyrm aIfaresuh"t vd Identify by black mitnaberl
FIELD GROUP $ U4. Go. specification requirements specification

(nIne I specification document

19. ABSTRACT (Cnii"on rwverm i netearnd identify by block nuijmb.FD

This curriculum module presents a framework for understanding software product and
process specifications. An unusual approach has been chosen in order to be able
to address all aspects related to "specification" without confusing the many existing
uses of the term. In this module, the term specification refers to any plan (or standard)
according to which products of some type are constructed or processes of some type are
performed, not to the products or processes themselves. In this sense, a specification
is itself a product that describes how products of some type should be performed. The
framework includes a reference software life-cycle model and terminology; a characterizing
scheme for software product and process specifications; guidelines for using the
characterization scheme to identify clearly certain lifecycle phases; and guidelines
for using the characterization scheme to select and evaluate specification techniques.

OISTRISUTION'AVAILAGILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

ULASSIPIEOIUNLIMITEO jJ SAME AS RPT. 03 OTIC USERS (3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22.NAME OF RESPQNSISLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c, OFFICE SYMBOL

4O~IS. HRMA, , SAF (include A me Codel
___________HN__S._HERMAN,___________USAF_ 412 268-7630 SEl JPO

nin FEIRM 1471 Al APq EDITION OF IJAN 73 IS OBSOLETE. IT.TMTTE.D. UINr1,ASSTFTED

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.. The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineenng
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-191 EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management* Engineering Education
CM-5 Information Protection EM-3 Reading Computer Programs: Instructor's Guide and

CM-6 Software Safety Exercises

CM-7 Assurance of Software Quaity
CM-8 Formal Specification of Software'
CM-9 Unit Testing and Analysis
CM-0I Models of Software Evolution: Life Cycle and Process
CM-1l Software Specifications: A Framework
CM-12 Software Met'ics
CM-13 Introducton to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 Software Development and Licensing Contracts
CM-16 Software Development Using VDM
CM-17 User Interface Development*
CM-18 [superseded by CM-231
CM-19 Software Reuirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems'
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for ConcurrentProgramming

CM-26 Understanding Program Dependencies

Prgamig

