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A Model for Sequential First Order Phase Transitions Occuring in
the Underpotential Deposition of Metals
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FOrRT WoORTH. TExas 76129, USA

AND

L. BLuMm
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Abstract

A model for the underpotential deposition of metals that occurs in stages is introduced.
In this model the deposition takes place as a sequence of first order phase transitions of the
adsorbate. In this application we study the underpotential deposition of Cu on a Au(111)
surface in the presence of sulfate ions. The voltammogram of the deposition shows two sharp

spikes which are reproduced by our model.




1 INTRODUCTION

Voltammograims' of underpotential deposited films on perfect single crvstal surfaces
contain sharp spikes.? Such spikes seem to occur also in polymer film formation.”* In earlier
work. we discussed the possibility of explaining these spikes as the resalt of first order phase
transitions occuring in the surface.” !9 There are a number of conditions that have to be met
to obtain sharp spikes in the voltammogram. These include chemical equilibrium. the degree
of perfection of the substrate (a single crystal in most cases). and the scanning rate of the
voltammogram. Ideally the width of the voltammogram is due to diffusion processes.' so
that slow scanning rates would be best to observe these spikes. The area under the spike is
proportional to the change in coverage of the surface. which is not necessarily equal to the
ideal coverage. As was discussed in earlier work.”'! second order phase transitions. such as
the one occuring in the hard hexagon lattice gas model. are also possible. However. these
transitions would be very hard to see in a voltammogram. because of the vanishingly small

area of the spike associated with a second order transition.

We have recently studied a statistical mechanical model for adsorption on electrode

9-10 Tn this model we nse

surfaces that includes the lateral interactions of the adsorbates.
exact results for two dimensional lattices that tell us when a first or a second order phase
transition will occur. We also show that a first order phase transition corresponds to a sharp

spike in the voltammogram.!?

In some systems. more than one spike has been observed to occur in the voltammogram
during the deposition process. In particular. a voltammogram with two sharp spikes has
been observed during the underpotential deposition of copper on the (111) surface of gold
in the presence of sulfate ions.? This system has been recently studied by a number of
in-situ techniques.!?"'® While we do not have a complete and clear picture vet. the recent
scanning tunnel microscope and atomic force microscope experiments seem to indicate that
there is a /3 x /3 structure that cxists hetween the two underpotential deposition peaks
at 0.07 and 0.22 volts. There seems to be evidence also that there 1s sultate adsoiption.!”
which undoubtedly plays an important role in the underpotential deposition. Unfortunately.
careful mecasurements of the fraction of occupred surtace are not at hand. A preliminary

measurement of the relative area of the two spikes of the voltammogram seems to show




that this ratio is 1 to 2.'® We have constructed a physically reasonable model which is
consistent with the near edge EXAFS.!! and which exhibits two first order phase transitions
corresponding to a voltammogram with two spikes of this relative area. For a reasonable
choice of parameters. it can be made to agree with the experimentally obtained one. Treating
incommiensurate structures such as the ones recently postulated'? 13 is certainly possible in
our theory. but we could not use the simple and exact results of two dimensional lattices. Our
model is simple and versatile, and can be adapted to other circumstances. such as different

lattices or adsorption sequences.

2 THE MODEL

In our model for the underpotential deposition of Cu on Au(111) in the presence of
high concentrations of sulfuric acid we assume that a well defined sequence of events takes

place:
o First.the sulfate ions that are adsorbed form a /3 x /3 lattice on the gold surface.

e Copper ions are then adsorbed on the free adsorption sites. which form a honevcomb

lattice.

o Finally the adsorbed sulfate ions are replaced by copper ions .

We assume that the sulfate binds to the gold (111) surface in such a manner that the
sulfur is directly on top of the adsorption site for the copper. three of the sulfate oxvgens
being above and directly associated with the three gold atoms of the surface. which form a
triangle about the adsorption site. Packing considerations indicate that two sulfate groups
cannot be adsorbed onto neighboring adsorption sites. The sulfate ions will thus form a
V3 x V3 film by occupying one of the three triangular sublattices A1 of the full triangular
lattice of adsorption sites. One can show from statistical mechanics that an order-disorder
transition will accompany this adsorption (or desorption) process. However. since there is
no change in the adsorption coverage at the transition ( rather a change in the adsorption
rate ). there should be no observable spike in the voltammogram. This tyvpe of /3 x .73
sulfate film is illustrated in Fig. 1. The gold atoms are represented by large white disks.

the adsorption sites by small black disks. Each adsorbed sulfate ion is represented by a set




of three lines centered at the adsorption site and ending at the three associated gold atoms.

Each line represents a S-O bond. The vacant adsorption sites form a honevcomb lattice \y.

As the potential bias becomes less positive. copper atoms will be adsorbed onto the
surface and discharged. To model this deposition process. we construct a statistical mechan-
ical model for the interaction of a solution of copper ions with a gold (111) surface which

contains the /3 x /3 sulfate film.

As was done before . the adsorption sites in the model are considered to be sticky
points (to which atoms are either chemically bound or not) with a stickiness parameter \r
for the sites on Ar. the triangular sublattice of adsorption sites which are associated with
the sulfate groups. and with a stickiness parameter \y for sites on the vacant honevcomb

sublattice Ay.

This sticky site model can be shown to be equivalent to a two dimensional lattice

gas™ 1920 of copper atoms which have a fugacity

o = Arpd0. %) (1)
if adsorbed on .\7. and a fugacity

zZy = ,\Hp?(O.\I') (2)

if adsorbed on \y. Here p9(0.¥) is the number density of copper ions at conta~t with the

surface under a potential bias ¥. Here
U = Je[u(0) — vpee)- (3)

where ¢ is the elementary charge. 3 = 1/AT. +*(0) is the potential at the electrode surface.

and .. is the potential of zero charge. At 23°C
¥ = 38.9221" (4)
where 17 is the potential in volts. We approximate p9(0.¥) as'®

p3(0.8) = ¥ 5%0.0), (3)




where 2, = 2 is the electrovalence of the copper ions in solution. When two copper ions are
adsorbed on sites 1 and j. separated by a distauce r,,. they interact in the equivalent lattice

gas with an interaction energy which is equal to the potential of mean force
w(r,,) = —kTn[¢d(r,)]. (6)

where ¢3(r,,) is the pair correlation function of two copper atoms in the adsorption plane. We
should remark that this pair correlation function is quite difterent frcza the pair correlation

function of the copper ions in the bulk. since they already form part of the metal electrode.

We shall calculate the properties of the two dimensional lattice gas using the following
simplifying assumptions: if two copper atoms are adsorbed on neighboring sites of \y. their

interaction energy is

wy = —kT In[g3(d)]. (7)

and if they are adsorbed on neighboring sites of 7. then they interact with an energy
wr = —kT In[¢3(v/3d)]. (8)

Otherwise we shall assume that there is no interaction between adsorbates. This approxi-
mation decouples the adsorption process on the two sublattices. and consequently simplifies
the calculation. ( We will include the interactions between atoms adsorbed on A7 and atoms

adsorbed on Ay in a forthcoming publication.)

We shall now use some ideas introduced in Ref.(10) to calculate the adsorption 1sotherms
for our model. We use the first 8 terms in the low zr series approximation to the free
energy?! 2 to construct a Padé approximant to fr. the fraction of sites of A7 which are
occupied by copper atoms. This Padé approximant. f7. is best at low zr and is constructed
to be the natural extension of the Langmuir isotherm which includes interactions between
atoms adsorbed on neighboring sites. Using svinmetry considerations we then costruct a
Padé approximant 67, which is best at high zr. The explicit form of these Padé approxi-

mants 1s given in Ref.(10).

When the lateral interactions are turned off. ¢9(v/3d) = 1 and both 67, and 1, are

equal to the exact isotherm. f7. which is. in this case. identical with Langmuir’s isotherm.




The isotherm 87 is a smooth function of zr for all values of gg(\/gd) which are less than
the critical value 3.% For values exceeding 3. there is a first order phase transition with a

corresponding jump in the fraction of occupied sites 67 .

In order to construct a single approximation to 7 which is valid for all values of zr.

we use a switching function

n(yr.st) = (1/2){1 + Erf[(yr — 1)s7]}. (9)

where Erf is the error function. and
-3
yr = 217 'g3(V3d) (10)

is a variable which becomes unity at the first order phase transition.® The parameter s7 is a
measure of the sharpness of the switching function and is introduced in order to account for
a variety of line broadeniﬁg factors, especially diffusion and the degree of crystallinity of the
surface. which are not included explicitly in our present treatment of the model. We then

construct the single continuous approximation

01 = n(yr.s1)071.c + (1 — n{yr. 57)])81 8- (11)

In a similar fashion we use 8 terms in the low zy approximation to the free energy of
a lattice gas on the honeycomb lattice \y to construct a Padé approximant Ay, which is
best at low zy and a Padé approximant #y , which is best at high zy. The fraction of sites

of Ay occupied by copper atoms is then approximated as

O = n(yn.s1)8r.c + (1 — n(yn. s1)|0n . (12)
where
v = 21" g3(d) ™" (13)
is a variable which is unity at the phase transition of \y.
The fractional coverage of the full lattice A7 U \y is then given as
6 =(2/3)8y + (1/3)6r. (14)




The change in @ at a phase transition is roughly equal to the measured area under the

corresponding spike of the voltammogram.

As was discussed in our earlier work.'? a phase transition will appear in the voltam-
mogram as a sharp peak in the intensity I. If the scanning rate 1s constant and we neglect
diffusion and double layer effects.! the intensity of the current in the voltammogram can be

obtained by differentiation as

08 d¥

I(¥) = 2~

In Fig. 2 we show a voltammogram which 1s obtained using

Arp%(0.0) = 9.1.
AupS(0.0) = 5.2 x 10°.
¢2(d) = 14.

¢2(V3d) = 3.1.

ST = J.

(16)

and

SH = 2.

The intensity is given in units of the sweep rate |d17/dt[. This voltammogram is very
similar to the one obtained experimentally for the underpotential deposition of copper on a

(111) surface of gold in the presence of sulfuric acid.?
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FIGURE CAPTIONS

Figure 1: The /3 x /3 sulfate phase on the (111) face of gold. Gold atoms are
represented by large white disks. the adsorption sites for sulfate and copper are depicted as
small black disks. and the adsorbed sulfate groups are depicted as sets of three lines emer sing

from the adsorption sites to the neighboring gold atoms.

Figure 2: A voltammogram with two sharp peaks corresponding to two first order

phase transitions in the model.
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