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ABSTRACT

The recently described phenomenological model for strongly adiabatic electron

transfer (et) in the lowest excited state S1 of donor/acceptor molecules has been developed in

more detail. The model has been generalized to include simultaneously two types of electron

transfer, namely adiabatic et in S1 and diabatic et (S 2 -. SI). A general definition of the et

"reactant" survival probability is given in terms of the surviving charge on the donor. A

relationship between the survival probability and integrated emission intensity from S1 and

S 2 is established. The use of this model is demonstrated employing the recent simulation

results from our group on the excited state et of bianthryl (BA) and

4-(9-anthryl)-N,N'-dimethylaniline (ADMA).
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1. Introduction

Photophysical studies on organic aromatic electron donor/acceptor compounds are

leading to new information on several issues of contemporary interest, including: the role cf

solvation dynamics in electron transfer (et) reactions; the mechanism of ultrafast charge

separation (which is relevant to problems ranging from photosynthesis to nonlinear optics)

and the effect of the solvent coordinate on the absorption and emission spectroscopy of the

aromatic compounds in polar solvents. 1 The comparison between experiment and et theory

has been a particular emphasis. Historically, one of the most extensively studied organic

donor/acceptor compounds is 4-(9-anthryl)-N,N '-dimethylaniline (ADMA) (Figure 1). 2

The preceding article in this issue presents static and ultrafast spectroscopic data on

ADMA. 3 The results are analyzed in terms of a phenomenological et model (in the strongly

adiabatic regime) that was recently introduced by Kang et al. for et between strongly

coupled donors and acceptors. 4

In this paper we explore the strongly adiabatic theories in more detail. The strongly

adiabatic approach is apparently a more accurate description of et between strongly

coupled donors and acceptors than the more conventional et theories which are appropriate

for weak to moderate electronic coupling. 1 ,5 - 10 It is important to note, however, that all of

these theories invoke the diabatic (localized) states of Marcus theory, here denoted # A and

#D' where A and B refer to the reactant and product states, respectively. 10 The magnitude

of the interaction between the localized states is given by the electronic coupling matrix

element, H AD = f AH Ddr. The et kinetics are induced by fluctuations and vibrations of

the nuclear coordinates, including the solvent and intramolecular vibrational modes. In the

nonadiabatic and moderate adiabatic theories H AB is treated by perturbation theory. In the

presence of a large HAD the perturbative treatment is inappropriate and a strongly adiabatic

model becomes more useful. A rigorous theory of the coupling between the solvent
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coordinate and the electronic coordinate in the strongly adiabatic regime has been given by

Kim and Hynes. 11 Molecular dynamics simulation models that are compatible with the

strongly adiabatic regime have also recently been published. 12

For the specific case of excited state et, Tominaga et al. 3 showed the electronic

couliig between the locally excited (LE) state and charge transfer (CT) state of ADMA

(Figure 1) is so great that it is more useful to use the approximate 13 adiabatic states S 1 and

S 2 rather than the diabatic states. Figure 2 portrays the energy dependence of the diabatic

states on the displacement of the so-called solvent coordinate, z. Figure 2 shows the energy

dependence of the adiabatic states which are mixtures of the diabatic states.

IS1> = C ) (z)ILE> + C )(z)ICT>. (1-1)

S2> = C( 2)(z)ILE> + C(2) (z)ICT>. (1-2)LE CT

The various parameters required to construct Figure 2 were determined empirically by a

phenomenological approach which involves fitting the experimental spectra to theoretical

predications using the curves in Figure 2 and other information, see below and Kang et al. 4

for more details.

For ADMA the diabatic states involved in the excited state et are the LE state which

results from a r-r transition of the anthracene ring (DA) and the CT state which is an

intramolecular ion-pair state (D+A - ) (Figure 1).

The ultrafast spectroscopy of ADMA shows several features which are characteristic

of an adiabatic mechanism, and would be awkward to treat in a nonadiabatic representation.

In particular, the fluorescence spectrum is structureless and exhibits a continuous shift of

emission maximum frequency on a time scale which is approximately equal to the known
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time scale for solvation dynamics, e.g. 1.7 ps in N,N-dimethylformamide. 1' 6 The decay of

the emission intensity is not due to loss of population of excited molecules, which occurs on a

much slower time scale. The observed behavior is close to simulations using the adiabatic

model. In terms of this model, the fluorescence is assigned to the S, state. The drop in

intensity and evolution of the emission maximum frequency is assigned to diffusion along the

solvation coordinate which causes the probability distribution of the solvent to evolve from

its initial photoprepared distribution (peaked near z = 0) to its equilibrium distribution in S

(peaked near z = 1).

The decrease in intensity as the solvent coordinate evolves is due to the adiabatic et

process. As the average z values goes from zero to one the amount of LE character in 0s

decreases, and the amount of CT character in ts increases. The transition moment (Si -,

SO) simultaneously weakens, which causes the integrated fluorescence intensity to decrease.

The S adiabatic et processes of ADMA and related examples are beyond the

conventional definitions of et kinetics. It is not immediately obvious how the rate coefficient

(ket) for this process should be defined in theoretical or experimental terms. This general

problem is the main focus of the present paper. In addition, the underlying physical

principals and approximations of the phenomenological adiabatic excited state et model are

delineated. An additional focus of this paper is the existence of two distinct et processes, i.e.

the S2 -- S1 "nonadiabatic" et mechanism and the S1 (or S2 ) adiabatic et mechanism, which

were not classified in the original Kang et al.4 paper. This paper is based primarily on

simulations within the adiabatic model on ADMA and BA. Some of the simulation results

have been previously discussed and shown to be in semiquantitative agreement with

experiment. In the present paper, we show that the simulation results can be analyzed via a

general definition of the rate coefficient to extract kinetic information on the et process.
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2. The Adiabatic Electron Transfer Model and ket

This section develops the basic adiabatic et model with particular emphasis on the

various inherent approximations. We restrict this discussion to molecules like ADMA which

involve a "two state" et process, i.e. LE -. CT in adiabatic picture. The molecule BA is

more complicated since there are two CT states and LE state. 4 ' 14 However, the theoretical

results for ADMA are applicable to BA with a simple extension, as will be discussed in

Section 5.

For purposes of describing the excited state et of ADMA and the photodynamics of

this compound, it is important to consider the So ground electronic state. While this state

plays a small direct role in the LE -. CT et, it does play an essential role in the overall

photodynamics. Optical excitation from So to S1 and S2 prepares the t = 0 configuration of

ADMA, and transient emission from the excited ADMA to So is an observable which can be

used to measure ket and other dynamical observables (see below). For the purpose of this

paper we will assume that LE and So have identical charge distributions, which is consistent

with experiment, 2 ' 3 such that both states have identical equilibrium solvent configurations.

2.1. Diabatic States versus Adiabatic States

Invoking Marcus theory, 1 '5 - 10 Tominaga et al. 3 have shown that the free energy

dependence of So, LE, and CT should be given as follows:

FSO(z) = (1/2)ksz 2 , (2-1)

FLE(Z) = (1/2)ksz 2 + F0 , (2-2)

FC,(z) = (1/2)ks(z-1) 2 + F 0 - AF° , (2-3)
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where ks is the solvent force constant, F0 is the energy of the spectroscopic transition

between So and LE, and AF° is the equilibrium free energy change for the LE -. CT charge

separation.

It is useful to consider appro.dmate stationary adiabatic states for the ADMA

problem as represented in Figure 2 and by eqns 1-1 and 1-2. The z dependent energies of

these two states can be found approximately by diagonalizing the secular equation,

FLE(Z)-F H.LECT

H LECT FcT(Z)-F =0, (2-A)

where the diagonalized free energies are given by eqns 2-2 and 2-3, HLE,CT is the electronic

coupling between LE and CT, and F is the adiabatic free energy. Accordingly, the

coefficients can be found by the usual means.

2.2. Electron Transfer Kinetics and the Nonadiabatic and Weak Adiabatic Theories

The basic formulation of et theory in solution is firmly routed in the localized two

state description of Marcus, which involves a reactant state I and product state 1P. In

the language of this paper the electron that is being transferred in the reaction is first on the

donor group, localized in ILE' and is later on the acceptor group, localized in I CT* As in

Huckel theory, the overlap between the localized states is negligible.

<LEI CT> = 0. (2-5)

Based on this picture one can envision an operator qD that measures the charge on the donor,
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such that

<LEIq D' LE> q°i, (2-6)

<CTIqD 1CT> _ 0. (2-7)

Thus, transitions between LE and CT physically transfer charge between the donor and

acceptor. Many of the variations of contemporary et theory are based on an approximate

treatment of the coupling of the nonadiabatic states to the medium fluctuation, via a

Liouville equation description, that involves the diTbatic states (LE and CT) as a basis set

and a two state Hamiltonian: 5- 10

Hef(E) = [H LE,CT HE(t) C (2-8)

where E is the energy "exchanged" with the quantum mechanical nuclear and electronic

degrees of freedom, and AE(t) is a fluctuating energy that describes the coupling and thermal

motion of the classical degrees of freedom.

The Liouville equation involves a two by two density matrix 7 in the diabatic basis

set, ILE> and I CT>:

= 1[Hei(E),7(/t)]--[K,7(E/t)]. (2-9)

Here we employ the notation [A,B]+ = AB k BA. K is a stochastic relaxation operator

which induces relaxation in the product (CT) state.

The solution to this equation typically involves several assumptions: (i) The initial
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concentration is 7(f/0) = [I J =LE>. (ii) AE(t) is the fluctuating energy gap, i.e. AE(t)

FLE(z(t)) - FCT(Z(t)) (see eqns 2-2 and 2-3), where z(t) is often assumed to obey a

Fokker-Planck equation for stochastic (Brownian) solvent coordinate motion on harmonic

potential. (Although we have emphasized only the solvent coordinatt in the reaction

coordinate, the theory can be extended to include the intramolecular vibrational motion.)

Several of the recent theoretical results on et kinetics that include the effect of

solvation dynamics (and in some cases vibrational modes) are closely related to the

perturbative solutions of eqn 2-9.1,5-10 Since the physical identity of the I LE> and I CT>

states is maintained in this nonadiabatic approach, the reactant survival probability is

simply given for a solvent-coordinate-only model by

SNA(t) = fdzpLE(z,t), (2-10)

where pLE(z,t) is the time-dependent classical probability distribution of the reactant in the

solvent coordinate. The reaction rate coefficient is conventionally

ket(t) = -dlnSNA(t)/dt. (2-11)

Note that SNA(t) is simply proportional to the surviving electronic charge on the donor (see

eqn 2-6).

2.3. Electron Transfer Kinetics in the Strongly Adiabatic Regime

For the excited state et reactions involving a donor/acceptor pair linked by a single

bond, the electronic matrix element, H LE,CT is large enough that the perturbative treatment

in the nonadiabatic and weak adiabatic regime becomes questionable. In particular, the
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degree of adiabaticity can be quantified by the adiabaticity parameter,

8-rH ET2L
HA - LECTL (2-12)

where -, is the longitudinal dielectric relation time. 7 For ADMA and BA in common polar

solvents, H A 1 I (, 80 with ks = 20 kcalmol-', HLE,CT = 1 kcalmol "d, and r- ps),

indicating that strong adiabatic effects should be considered. In addition, the adiabatic free

energy surfaces for ADMA have no barrier separating the initially prepared (reactant-like)

and equilibrium (product-like) regions. This is a strongly adiabatic effect which is

inconsistent with a perturbative treatment of H LE,C. Hynes has considered strong

adiabatic et reactions over a substantial barrier, 6 and related this regime to

transition-state-theory. But, our concern here is small barrier 1 5 and barrier-free 1,9

dynamics on the adiabatic surfaces.

We have been particularly interested in an "outer-sphere" strongly adiabatic et

model, which assumes that vibrational coordinates play a minor role, and treats the solvent

coordinate z classically at each value of z. The system can be represented by a two by two

density matrix F(z,t),

r(z,t) = p(z,t)

C( (Z) 2-,-C( , (Z ) 2C (.1) (,.)c (. 2) (Z).+c ( 1)" (z)C : ( ) )

C( 1&(z)C (2) (Z)+C )(Z)C(2)(z) C()(z) 2+CG (z ) 2J

(2-13)
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Here the off-diagonal elements are geietialy time-dependent and signify coherence between

the S, and S2 states. p(z,t) is the classical probability of the solvent coordinate at z.

It is important to consider the properties of the off--diagonal elements. Roughly

speaking, motion along z will produce coherence, i.e. non-zero off-diagonal elements. Also,

the laser excitation pulse which prepares S1 and S2 from So will create "coherence" among

So, S1 and S2. However, we make the approximation that the off-diagonal terms in the

adiabatic state representation are : O.at all relevant times. (the random phase

approximation). This is appropriate where the SI/S 2 energy gap is large enough to ensure

rapid dephasing compared with the time scale for z fluctuations. Under these circumstances

eqn 2-14 applies, if it is further assumed that motion along the solvent coordinate z satisfies

a generalized Smoluchowski equation (GSE). 15' 16 In an earlier paper we used a more exact

approach involving the generalized Langevin equation (GLE) which is computationally more

intensive.4 A comparison of the GLE and GSE treatments is made in Section 5.

I= D(t) a a z1 .I()P(z,t). (2-14)

Here D(t) and F(z) are a generalized diffusion coefficient and a potential acting on the

system, respectively.

apsl(zt) a 1 OFs ( z)
S =z + RTz )PS(z,t) - ks-,s2 ()Ps,(zt) + ks 5 (Z)P(z 't).

(2-15)
p S2 (Z't) aa 1 OF S2) "W tt) =(D(t)(z+(Zt) - ks, s(Z)p(z 't) "

(2-16)
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Here k sVs(z) and kS _-s2(z) are defined as diabatic rate constants and represent "internal

conversion" between S1 and S2. In this paper we leave the form of these internal conversion

mechanisms unspecified. They are physically analogous to the radiationless decay between

states of the same spin multiplicity, and, as such, formally represent a

non-Born-Oppenheimer transition of state. In order to simulate the overall dynamics in

terms of eqns 2-15 and 2-16, initial distributions of p s(z,t) and pS2(z,t) are required, and

values for the various parameters, D(t), ks, ..., etc. are needed The methods for performing

such simulations from phenomenological estimates have been outlined previously by Kang et

al.4 and Tominaga et al., 3 and will also be discussed below.

Our major interest here, however, is a "reactant" survival probability and, in turn, a

definition for ket that is appropriate in all et regimes including the strongly adiabatic limit.

The definition of the survival probability follows from the definition of the operator qD (eqns

2--6 and 2-7). The expectation value of this operator for the system wavefunction

(according to the random phase approximation) can be shown to be

f dz<1sySl qD IyS> = q01[fps (z,t)C[ (z)2dz + f Ps2(Z,t)C ) (z)Edz].

(2-17)

Thus, the "generalized" survival SG(t) of the electronic charge on the donor divided by the

charge of an electron qel is

SG(t) = fdz[ps (z,t)CL I (z) 2 + p5  C z ItC 2 (Z)2]

= [C(1) 2(t) + C(2) 2(t)].NT (2-18),

LE LE

10



where the rhs of eqn 2-18 represents the z-averaged probability of the LE character times

the total number NT of S1 and S2 molecules, Ns , and Ns2, respectively.

IN T N s (2-19)

NS = fdzp s(z,t). (2-20)

Ns = fdzpS2(z,t). (2-21)

An average of a function of z, C( i) (z), over z on the Si surface at time t is defined as
X

C (t)= rfdzps (z,t)C 1 ,(z)]/[fdzps (z,t)+ fdzps(z,t)],

(2-22)

where i=1 or 2 and x = LE or CT. In turn, the generalized et rate coefficient, ket(t), can be

expressed as

ket(t) = -dln(SG(t) - SG(®))/dt. (2-23)

This expression is analogous to the conventional definition of a reacticn rate constant in

terms of a surviving "concentrations" of the reactants. SG(m) is the equilibrium value of the

survival of the electronic charge. In the case of the adiabatic model, SG(w) is the thermally

average LE character at equilibrium. By analogy to conventional reactions, if SG(®) is

approximately zero, the adiabatic et reaction is effectively irreversible. In contrast, a

non-zero SG(aD) signifies a reversible et reaction, which is the case for the S, et reaction of

11



ADMA (see below).

Having defined a general survival, we now turn to its relationship to experimental

observables. The key observable is the integrated emission intensity

A(t) fdvl(t,v)/v3, (2-24)

where I(t,v) is the time-dependent fluorescence spectrum to So from both S1 and S2 (within

the random phase approximation). An expression for A(t) in terms of SG(t) can be derived

by simple manipulations of the basic photodynamic equations of the Kang et al. model. A(t)

is proportional to the square of the expectation value of the electronic transition dipole

moment operator # (within the Franck-Condon approximation).

A(t) o, fdzI <9sys IIISo> 12 (2-25)

fdz[ps(z,t)I <S11 i So> 12 + ps2(Zt) <S2 1 ISo> 12].

(2-26)

The z dependent contribution to the transition moment is given by

<Sil/&ISO> = C( i)(z)L + C i(z) " T, (2-27)
LE LE CT CT

where i = 1 or 2 and pLE and uCT are the dipole transition moments connecting the diabatic

states,

ALE = <LE IpISo>, (2-28)

12



ACT = <CTI AISO>. (2-29)

Utilizing the definition in eqn 2-22 of the average of C(i) over the solvent coordinate at time
x

t, it is useful to make the approximation that the average of the square is approximately

equal to the square of the average, i.e.

C (i) 2(t) - [c( ) (t)] 2, (2-30)

and similarly

CL( C ) ~ (t)t (t).C (t). (2-31)

In a latter section of this paper we examine the range of validity of this approximation using

the simulation results.

The integrated emission intensity A(t) can be related to C( and C( by the
LE CT

following expression from eqns 2-26 and 2-27

A(t) m (CL( )p + C()p )2 (t) + (C(2) + C(2)LE rLE CT ]CT) 2 t  "  LE ALE "F CT ACT ) ( )

(2-32)

If all the population on S2 relaxes to the S1 surface due to the fast internal conversion, A(t)

can be related to SG(t) in a simple way, using eqns 2-18, 2-30, 2-31,2-32 and (C ) (t)) 2 +

13



SG(t) t [ALEV/ B(t) ACTVLE +ACT -B(t)]/(4LE 2 + ACT2)2 ,

(2-33)

where

B(t) =---(C (®),L + C( + ' (m)ACT) 2 , (2-34)
A(L) LE CT

where we used NT = 1 (slow population depletion process compared with the et reaction).

This expression is a general definition for the survival in all regimes from the weakly

adiabatic to the strongly adiabatic, within the previously noted approximations.

The situation is particularly simple in the non-adiabatic limit for which the weak

coupling between the donor and acceptor ensures that 4LE ) ACT* In this limit, the optical

excitation pulse prepares a pure LE state, and only LE -4 So emission can be observed.

Under these circumstances eqn 2-33 reduces to eqn 2-10.

SG (t) A(t)LES0 ' SMA(t), (2-35)

which means that the integrated emission intensity directly monitors the LE concentration.

Furthermore, in the nonadiabatic regime if the reactant and product wells are divided by a

large activation barrier, the survival can be simply measured by monitoring the emission

intensity at a single wavelength region

SG(t) x I(tv). (2-36)

14



For the strongly adiabatic limit eqns 2-35 and 2-36 are not generally valid. Indeed

they very poorly describe the situation for ADMA. On the other hand, eqns 2-35 and 2-36

can be approximately valid in the strongly adiabatic limit if a large activation barrier is

present. Under this situation, the shape of p(z,t) in the reactant "well" can be

approximately time-invariant. These issues should become dearer as we consider specific

simulation of the excited state et dynamics of ADMA and BA.

3. An Approximate Expression of ket(t) in the Strongly Inverted Regime

Ultrafast laser studies have been made for BA, ADMA, and related compounds. In

the case of BA the excitation wavelength in these studies exclusively prepares the S1 state.

For ADMA, both S1 and S2 are prepared by the laser excitation, but the S2 state is

converted to S1 within < 150 fs. Thus, for both compounds, the et process occurs

predominantly in the S state. For et in the S, state only, eqn 2-18 reduces to

SG(t)= fdzps (z,t)C1) (z) 2. (3-1)

The functional form of C(1) (z) is obtained by solving the secular equation (eqn 2-4).LE

For example,

C 1 (Z)2 = 2HLE CT2 [4HLE CT2 + AF(z) 2 + AF(z)V AF(z) 2+4HLE CT2  ,

(3-2)

where AF(z) is free energy difference between the LE and CT states, and

15



AF(z) = FLE(Z) - FcT(z)

= ks(z - 1/2) + AF° . (3-3)

In general, SG(t) and correspondingly ket(t) can be calculated by first employing the

GSE and GLE to calculate p(z,t) from a given initial condition p(z,t=0). The procedure is

outlined elsewhere.
3 ,4

In order to establish a basic physical understanding of SG(t) and ket(t) it is useful to

consider an approximate analytical expression for these questions in the limit of a strongly

inverted et reaction, such as ADMA. In this limit, Fst(z) has a single minimum at z = 1,

and is approximately equal to FcT(Z) near the z = 1 minimum, i.e. F s (z) is harmonic near z

= 1 as shown in Figures 2 and 3. It will be shown below that at late times p(z,t) is

approximately Gaussian with a maximum position z !_ 0.95, that is approximately the

equilibrium value, z = 1, see the bottom panel in Figure 3. Under these circumstances a

solution to eqn 2-14 for a harmonic potential leads to the following expression for z,

z(t) -! 1--exp(-t/,rs), (3-4)

where it has been assumed that the solvation dynamics are overdamped and well

characterized by a single relaxation time rs. Eqn 3-4 is the same result found in the

derivation of the so-called transient Stokes shift.1

Assuming that the shape of p(z,t) is slowly varying on the time scale of rs, which is a

result of the simulation (Figure 3), we can replace the integral in eqn 2-18 by the following

expression,

16



sG(t ) =_ cL lzt) ,  (3-5)

which should apply at long times.

Combining eqns 3-2, 3-4, 3-5, and the definition of ket(t) in terms of SG(t) (eqn

2-23), it is easy to show that the limiting rate coefficient,

klim

et -lia ket(t)

=lim -1 ln(SG(t) - SG(w))], (3-6)

leads to

k =im 1/Ts. (3-7)

This relationship indicates that for adiabatic et reaction in the strongly inverted

regime, solvation dynamics are rate limiting, which is closely related to analogous results

from the weakly adiabatic model. 1 '5- 1 0

4. The S Adiabatic ET Kinetics of ADMA

Tominaga et al. 3 have reported transient emission data I(V,t) on ADMA in the polar

aprotic solvent N,N-dimethylformamide (DMF) which according to transient Stokes shift

measurements l .b has an average solvation time <rs> of 1.0 - 1.5 ps. The experimental

I(t,v) results are very similar to simulations of the spectra using strongly adiabatic model, as

shown in Figure 4. The simulations in Figure 4 have been described previously. 3 '4 They

involve a convolution of an empirical spectral shape function with p(z,t),
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I(t,v) x f dz I <S1 I So> I 2g(VO(z),V-VO(z))p(z't)V 3,

(4-1)

where g(L(z),,-vo(z)) the normalized emission spectral shape and Yo(z) corresponds to the

free energy difference between the S, and So states, vo(z) = (Fs(z) - Fs(z))/h. Here p(z,t)

was calculated numerically 3 from eqn 2-14 using an initial, spectroscopically prepared

distribution, see the bottom panel in Figure 3. In the simulation we used a two exponential

function for the solvation dynamics C(t), 1.b

C(t) = A.exp(-t/ri) + A 2.exp(-t/r 2). (4-2)

These values for C(t) were measured by the transient Stokes-shift method, as discussed

elsewhere. 1.b The time-dependent diffusion coefficient which is used in the GSE

simulations can be related to D(t). For C(t) of DMF A, = 0.55, A2 = 0.45, r1 = 0.75 ps,

and r 2 = 2.5 ps.L b Unfortunately, the experimental measurements of the transient

fluorescence spectrum are not reliable over a broad enough wavelength region to allow for an

accurate determination of A(t), the key observable for the determination of SG(t). We are in

the process of improving the apparatus employed in these measurements in order to

determine A(t) accurately. In this paper, however, we will emphasize the simulated A(t)

data as shown in Figure 4. The simulated results (eqn 4-1) will allow us to demonstrate the

physical significance of the SG(t) definition (eqn 2-33) and allow us to evaluate one of the

important approximation (eqns 2-30 and 2-31).

Tominaga et al. 3 have demonstrated that the emission dynamics of ADMA at times

> 150 fs is primarily due to emission from S1. The time-dependent spectra (Figure 4)
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reflect the continuously evolving probability distribution, p s(z,t), in St as shown in Figure

3. Note that as the distribution shifts toward equilibrium (near z = 1) the emission

intensity shifts toward lower frequency since the So/Sj gap decreases as z goes from zero to

one (Figure 3). In addition to shift in the spectrum as p s(z,t) evolves, the integrated area

(Figure 5) also shows time-dependence. Simply speaking, as the average value of z increases

from 0 -. 1 the LE character of S decreases, and, as a result, A(t) decreases because g LE >

AM Note that the actual number of S, molecules is essentially constant during the

3evolution.3

Note also that S G(t) is not zero at infinite time, since the relaxed form of S, is not

purely CT. Therefore, S,(®) has a finite value in eqn 2-23. ket(E) is portrayed in Figure 5.

The time-dependence of ket(t) reflects three complex effects, namely the dependence of

C( " (z) on z, the anharmonic shape of Fs(z ) at the initially prepared z values, and complex
LE (h

diffusion effects due to the time-dependent diffusion coefficient D(t), as shown in Figure 4

Nevertheless, a unique value for the et rate constant can be obtained by determining the

limiting rate coefficient klira

The generalized survival during the Si evolution is shown in Figure 5. This shows

that the survival probability indeed decreases as the S adiabatic et process occurs. The

value we extract for ADMA from the simulation is keltl = 1/(2.50 ps). kli" is equal to the

inverse of the slower solvation time r 2. This is precisely the result expected in the limit

discussed in Section 3, where the potential is approximately given FcT(z) in the equilibrium

region of S and the solvation dynamics are characterized by C(t) of the form of eqn 4-2.

Figure 6 provides a comparison of the survival S(t) and hence ket(t) calculated two

ways. The middle panel shows ket(t) calculated "exactly" from eqn 2-23. Alternatively, we

can determine SG(t) from the simulated area using the approximate result which connects

experiment and SG(t) (eqn 2-26). The upper panel shows ket(t) resulting from a simulation
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of SG(t). For the both cases a two exponential form for the solvation was used. While the

exact and approximate results are not identical, the approximate approach is reasonably

accurate, especially at longer times, supporting the validity of the approximation of eqns

2-30 and 2-31.

It should be strongly emphasized that while ket(t) can be simply related to A(t),

there is no simple relationship between ket(t) and the emission dyixamics I(V,t) at any single

emission wavelength. This is an important result which impacts on the interpretation of

published data on the transient fluorescence data of ADMA and related molecules.

The bottom panel in Figure 6 shows "exact" ket(t) (eqns 2-18 and 2-23) for a solvent

with a single solvent relaxation time r, = 1.5 ps. All other parameter are identical to the

simulation results in Figure 4 and the middle panel of Figure 6. At long times ket(t) is well

characterized by the inverse of a single solvation time, with a limiting rate coefficient k .i'

1/(1.5 ps), in accord with simple results of Section 3.

The overall shape of ket(t), as time increases, is qualitatively similar for the single

exponential and bi-exponential solvation dynamics. There is a prompt increase in ket(t) at

early times (barely observable in Figure 6), a slower decay of ket(t), and finally a limiting

value. The early time increase is due to the increase in the magnitude of dF s S(z)/dz as z

increases, which accelerates the diffusion. The intermediate rate coefficient decrease is

apparently due to the strong dependence of C(1) (z) on z as shown in Figure 3.LE

5. The Electron Transfer Kinetic of BA

The et mechanism of BA is different from that of ADMA in two important ways.

First, there are two CT states which should be considered (Figure 7). Second, the adiabatic

S, et mechanism in polar solvent of BA involves a small barrier (AF1 - 0.5 kcalmol - ')

between the reactant "well" and product "wells" (Figure 8), while for ADMA the reaction is

20



barrierless in S1.

The appropriate equations for the three adiabatic excited BA are summarized by the

following.

IS1> = C( 1)(z)ICT'> + C( 1)(z)ILE> + C( 1)(z)CT>. (5-1)CT' LE CT

IS2> = C( 2(z)ICT'> + C( 2)(z)ILE> + C(2)(z)ICT>. (5-2)CV LE CT"

IS3> = C( 3)(z)ICT'> + C( 3)(z)ILE> + C( 3)(z)ICT>. (5-3)CT ' LE CT

For BA laser excitation at 400 nm prepares the S state exclusively. The

time-dependence of p s(z,t) has been simulated as shown in Figure 9. The upper panel

portrays the recently published GLE simulation of p(z,t) in the overdamped limit using the

following solvation parameters for C(t): A, = 0.46, A2 = 0.54, 71 = 0.43 ps, and r 2 = 4.1 ps.

p(z,t) is calculated from z(t) trajectories calculated by the GLE. The lower panel of Figure

9 shows a GSE simulation of p(z,t) using the same initial conditions and solvation parameter

as the GLE calculation. The evolution of p(z,t) according to the GSE is noticeably slower

(roughly a factor of 2). It has been noticed in other contexts that the GSE leads to slower

(and apparently less accurate) dynamics. 17 In the present case, our goal is to explore the

relationships between ket(t), A(t), I(t,v), and SG(t), rather than explore the relationship

between ket(t) and the solvation dynamics, so we emphasize GbE calculations which are

computationally less expensive. Note that the small barrier between the reactant and

products is large enough to maintain a reactant peak in ps 1(z,t). This separation of p s(z,t)

into different regions coupled with the S,/S0 energy gap dependence due to the reaction

barrier, causes the simulated spectra to be approximately the sum of separate "reactant"
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and "product" bands, see Figure 10.

The presence of even a small barrier, as in the case of BA, is apparently sufficient to

dramatically alter the spectral manifestations of the et kinetics. See, in particular, in Figure

11 the dynamics of the survival SG(t) ("exact", see eqns 2-18 and 2-23), the spectral area

A(t), and the intensity dynamics I(t,413nm) at the "blue edge" emission wavelength. All

these are very similar. Thus, either experimental observable A(t) or I(tV) gives a

reasonably accurate measurement of SG(t). For example, the half-lifetime of SG(t) in Figure

11 is 3.0 ps, while the corresponding values for A(t) and I(t, 413nm) are 3.3 and 3.1 ps,

respectively. This demonstrates that the existence of even a small barrier can simplify the

measurement of adiabatic et kinetics, for ket(t) by essentially producing a "reactant" region

of the emission spectrum. This is analogous to the large barrier limit of the strongly

adiabatic regime, which resembles transition-state-theory. In this limit the survival is

defined for BA as

+Zc

STST = f dzp 5 (z,t), (5-1)
-z C

where z, and -zc are the locations of the dividing points separating the reactant and

products wells. In an earlier paper we demonstrated that STST(t) was nearly

indistinguishable from A(t) and I(t,413nm) for the BA simulations using the strongly

adiabatic model. 4

The fact that the probability distribution has separate peaks in the LE and CT

regimes (due to the small barriers separating the LE and CT minima in F s(z)) causes the

approximation that C( 1 2(t) = (C( 1) (t)) 2 to be invalid. Consequently, the estimation ofLE - LE

ket(t) from A(t) by eqn 2-26 for BA is in error and completely inappropriate.
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From the standpoint of experimental measurements of ket(t) in terms of the strongly

adiabatic model, it is essential that an extensive analysis be made for each molecules in

order to classify the molecule in either the ADMA class (which has no barrier separating the

reactant and product region) or the'BA class (which possesses a barrier). The static

absorption and fluorescence spectroscopy has features which should allow for a rapid

classification for molecules that fall strongly in either class.3 '4 For molecules like BA the

presence of the barrier ensures that SG(t) can be quantified directly from I(t,v) in the blue

edge of the fluorescence. For molecules that fall in the ADMA class, A(t) must be measured

experimentally in order to estimate SG(t) (using eqn 2-26) or alternatively SG(t) may be

calculated "exactly" using eqns 2-18 and 2-23.

5. Conclusions and Summary

The recently introduced phenomenological model for strongly adiabatic et in the

excited states of aromatic electron donor/acceptor compounds has been developed in more

detail. The underlying assumptions in the model have been delineated. A definition of a

generalized reactant survival probability SG(t) has been given. An expression relating SG(t)

and the experimental observable A(t), the integrated emission intensity has been derived.

The utility of these approaches have been applied to the photodynamics of BA and ADMA,

using the previously estimated free energy versus solvent coordinate dependencies of these

compounds in typical organic solvents. The general applicability of the strongly adiabatic

model has been discussed.
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Figure Captions

Figure 1. Molecular structures of bianthryl (BA) and

4--9-anthryl)-N,N'---dimethylaniline (ADMA). Donor (D) and acceptor (A) signify the

electron donor and acceptor chromophores, respectively. Schematic energy levels of the

three relevant states in the non-polar solvent: ground state (DA - So), locally excited state

(DA LE) which results from the Y-r excitation of the anthracene ring, and charge

transfer state (D+-A - E CT) which is an intramolecular ion-pair state.

Figure 2. Theoretical estimates for the (left) diabatic and (right) adiabatic free energies

of ADMA in N,N'-dimethylformamide, as a function of the solvent coordinate. The free

energy parameters are: ks = 13.0 kcalmol "1 , AF° = 10.5 kcalmol "1 , H LE,C = 0.8 kcalmol -1 .

See ref. 3 and 4 for details of the simulation.

Figure 3. (upper panel) Theoretical estimate for the adiabatic S, surface of ADMA in

N,N'-dimethylformamide. (middle panel) The square of the coefficient of the LE character

in the adiabatic S state, as a function of the solvent coordinate. (lower panel)

Time-dependent probability distribution function on the Si surface of ADMA in

N,N'-dimethylformamide obtained from a generalized Smoluchowski equation (GSE) and

C(t) (eqn 4-2) with AI = 0.55, A2 = 0.45, T- = 0.75 ps, and 72 = 2.5 ps for the solvation

dynamics. See ref. 3 for the details of the GSE simulation.

Figure 4. Simulation of the time-resolved emission spectra of ADMA in

N,N'--dimethylformamide obtained from the probability distribution function on the

adiabatic S surface shown in Figure 3. The ratio of the transition dipole moment (A CTbLE)

(eqns 2-28 and 2-29) is 0.30 in the simulation.
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Figure 5. (upper panel) The integrated emission intensity of the simulated

time-resolved spectra (Figure 4) obtained from eqn 2-26 for ADMA in

N,N'-dimethylformamide (DMF). (middle panel) The generalized survival (SG(t)) for the

adiabatic et reaction on the S1 surface of ADMA in DMF obtained "exactly" from eqn 2-i6.

(lower panel) The generalized et rate coefficient obtained from eqn 2-23 and the generalized

survival shown above.

Figure 6. (upper panel) The generalized et rate coefficient for the adiabatic et reaction

on the S, surface of ADMA in N,N'--dimethylformamide obtained "approximately" from the

integrated emission intensity and eqn 2-33 with the approximation of eqns 2-30 and 2-31.

A two exponential function (eqn 4-2) with Al = 0.55, A2 = 0.45, r, = 0.75 ps, and T2 = 2.5

ps was used for the solvation dynamics. (middle panel) The generalized et rate coefficient

obtained "exactly" from the generalized survival shown in Figure 5 and eqn 2-23. A two

exponential function with the same parameters as above was used for the solvation

dynamics. (lower panel) The generalized et rate coefficient obtained "exactly" from the eqI

2-23 and the probability distribution function (eqn 2-14). A single exponential function

with rs = 1.5 ps was used for the solvation dynamics.

Figure 7. Theoretical estimates for the (left) diabatic and (right) adiabatic free energies

of BA in propylene carbonate as a function of the solvent coordinate. The free energy

parameters are: ks = 21.0 kcalmol "', AF° = 5.0 kcalmol "| , and HLE,C T = 1.0 kcalmol-'. See

ref. 3 and 4 for details of the simulation.

Figure 8. (upper panel) Theoretical estimate for the adiabatic S1 surface of BA in
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propylene carbonate as a function of the solvent coordinate. (lower panel) The square of

the coefficient of the LE character in the adiabatic S, state. The free energy parameters for

both the panels are the same as those in Figure 7.

Figure 9. (upper panel) Time-dependent probability distribution function ps 1(z,t) on

the S, surface of BA in propylene carbonate obtained from a generalized Langevin equation

(GLE) and C(t) (eqn 4-2) with A, = 0.46, A 2 = 0.54, r, = 0.43 ps, and 72 = 4.1 ps for the

solvation dynamics. (lower panel) ps(z,t) for the same chemical obtained from a

generalized Smoluchowski equation (GSE) and the same functional form as above for the

solvation dynamics. See refs. 4 and 3 for details of the GLE and GSE simulations,

respectively.

Figure 10. Simulation of the time-resolved emission spectra of BA in propylene

carbonate obtained from the distribution function on the S, surface shown in the lower panel

of Figure 8. A single exponential function of C(t) (eqn 4-2) with Ts = 2.4 ps was used for

the solvation dynamics. The ratio of the transition dipole moments (ACT/ALE) (eqns 2-28

and 2-29) is 0.32 in the simulation.

Figure 11. (upper panel) The integrated emission intensity of the simulated

time-resolved spectra (Figure 10) obtained from eqn 2-26 for BA in propylene carbonate

(PC). (middle panel) The generalized survival (SG(t)) for the adiabatic et reaction on the

S, surface of ADMA in PC obtained "exactly" from eqn 2-18. (lower panel) The transient

decay dynamics of the simulated emission spectra (Figure 10) at 413 nm ("the blue edge").

For all the panels a single exponential function of C(t) (eqn 4-2) with rs = 2.4 ps was used

to represent the solvation dynamics.
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