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Feature Extraction using an Unsupervised Neural Network

Nathan Intrator
Div. of Applied Mathematics, and Center for Neural Science

Brown University
Providence, RI 02912

Abstract sna!!or ,a;,]n-pal 4ace, and th-r.ere t'v to r-
duce the dimensionality before attempting the clas-

A novel unsupervised neural network for di- sification.

mensionality reduction which seeks directions Hence, the desired property of a dimensionality re-
emphasizing distinguishing features in the ductionifeature extraction method is to lose as lit-
data is presented. A statistical framework tle information as possible after the transformation
for the parameter estimation problem asso- from the high dimensional space to the low dinien-
clated with this neural network is given and sional one. This motivation underlies methods such as
its connection to exploratory projection pur- principal components (PC), mutual information max-
suit methods is established. The network is imization (Linsker, 1986), and self supervised form of
shown to minimize a loss function (projec- back-propagation.
tion index) over a set of parameters, yielding
an optimal decision rule under some norm. At a first glance, it seems that a supervised feature ex-

A specific projection index that favors direc- traction method will always be superior to an unsuper-

tions possessing multimodality is presented. vised one, because if one has more information about

This leads to a similar form to the synap- the problki, it is natural to suppose that finding the

tic modification equations governing learning solution is easier. However, unsupervised methods use

in Bienenstock, Cooper, and Munro (BCM) a local measure to optimally estimate single dimen-

neurons (1982). sional functions of projections instead of functions of

The importance of a dimensionality reduc- the full dimensionality of the space, and therefore tend
tion principle based solely on distinguishing to be less sensitive to the curse of dimensionality prob-

features, is demonstrated using a linguisti- lei (Huber, 1985).
cally motivated phoneme recognition exper- One way to reduce the curse of dimensionality is to
iment, and compared with feature extrac- look for lower dimensional structures (features) by us-
tion using principal components and back- ing a localized and smooth objective function that di-
propagation network. rectly measures the importance of the extracted fea-

tures.

1 How to construct optimal A useful class of features to explore is defined by some
linear projections of the high dimensional data. This

unsupervised feature extraction class is used in projection pursuit methods (PP) orig-
inally introduced by Kruskal (1969, 1972), Switzer

When a classification of high dimensional vectors is (1970, 1971), and later implemented by Friedman and

sought, the curse of dimensionality (Bellman, 1961) Tukey (1974). These methods are reviewed in Huber
becomes the main factor affecting the classification (1985).
performance. The curse of dimensionality problem is
due to the inherent sparsity of high dimensional spaces, It is still difficult to characterize what interesting pro-

implying that the amount of training data needed to jections are, although, it is easy to point at projec-

get reasonably low variance estimators is ridiculously tions that are uninteresting. To motivate this discus-

high. One approach to the problem is to assume that sion, consider the following example in which two data

important structure in the data actually lies in a much clusters lie in a two dimensional space. If we are inter-
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ested in reducing the dimensionality of the data, and on polynomial moments.
still retaining an indication on the structure, it is best
to project the data onto the z axis, even though the
variance of tie projection to the y axs is larger. 2 Feature Extraction using ANN

In this section, the intuitive idea presented above is
used to form a statistically plausible objective function
whose minimization will find those projections having

× a single dimensional projected distribution that is far
from Gaussian.

We first informally describe the statistical formulation
that leads to this objective function (the mathemati-
cal details are left to the appendix). Based on statisti-
cal decision theory, a neuron is considered as capable

Figure 1: In this dir. ensionality reduction of making decisions. The most intuitive decision for
problem the interesting direction is not the a neuron is whether to fire or not for a given input
one that maximizes the variance: Two data and vector of synaptic weight.. To aid the neuron
clusters which can be separated by projecting in making the decision, a loss function is attached to
to the x axis, can not be separated by project- each decision, namely a function that measures the loss

ing to the y axis, although the variance in the from making each decision. The neurons task is then

y axis is larger. to choose the decision that minimizes the loss. Since
the loss function depends on the synaptic weights vec-
tor in addition to the input vector, it is natural to

Notice that in the above example, the projection onto se-k a synaptic weight vector that will minimize the
the x axis will give a two hump distribution, while sum of the losses associated with every input, or more
the projection onto the y axis will give a normal dis- precisely, the average loss (also called the risk). The
tribution. It turns out that this is not a coincidence, search for such vector, which yields an optimal synap-
A statement that has recently been made precise by tic weight vector under this formulation, can be viewed
Diaconis and Freedman (1984) says that for most high- as learning or parameter estimation. In those cases
dimensional clouds, most low-dimensional projecticns where the risk i- a Ftnmoth fintion its minimization
are approximately normal. This finding suggests that can be done using gradient descent.
the important information in the data is conveyed in
those directions whose single dimensional projected The ideas presented so far make no specific assump-
distribution is far from Gaussian. Friedman (1987) tions regarding the loss function, and it is clear that
argues that the most computationally attractive mea- different loss functions will yield different learning pro-
sures for deviation from normality (projection indices) cedures. For example, if the loss function is related to
are based on polynomial moments. For example, prin- the inverse of the projection variance (including some
cipal components extraction uses a projection index normalization) then minimizing the risk will yield di-
which is based on polynomials of the second moment rections that maximize the variance of the projections,
of the projections (maximizing the projected variance). i.e. will find the principal components.
In some special cases where the data is known in ad- Before presenting our version of the loss function, let
vance to be bi-modal, it is relatively straightforward us review some necessary notations and assumptions.
to define a good projection index (Hinton & Nowlan, Consider a neuron with input vector z (l ... , x.),
1990). synaptic weights vector m = (mI...N), both in

Despite their computational attractiveness, projection RN, and activity (in the linear region) c = z -m. De-
indices based on polynomial moments are not directly fine the threshold (9, = E[(x.m)2j, and the functions
applicable, since they very heavily emphasize depar- 4(c,O,,) = c-2 _ 2cE, 4(c,0,) = - c4 ,. The
ture from normality in the tails of the distribution (Hu- 4 function have been suggested as a biologically plau-
ber, 1985). Friedman (1987) addresses this issue by sible synaptic modification function to explain visual
introducing a nonlinear transformation that squashes cortical plasticity (Bienenstock, Cooper and Munro.
the projected data from R to [-1, 1] using a normal 1982). The main features of BCM theory will be dis-
distribution function. We address the problem by ap- clissed below. 0- i- a dynamic threshold whi.ch %iil
plying a siunmn';, squa4hae fun ticr, t3 thc projec- be shown later to have an affect on the sign of the
tions, and ,iemi applying an objective function based synaptic modification. The input z, which is a stochas-
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tic process, is assumed to be of Type II p mixing
bounded, and piecewise constant. These assumptions
are plausible, since they represent the closest continu-
ous approximation to the usual training algorithms, in
which training patterns are presented at random. The THE QAND LOSS FUNCTIONS
V mixing property allows for some time dependency in
the presentation of the training patterns. The assump- L,,4c)
tion are needed for the approximation of the resulting
deterministic gradient descent by a stochastic one (In-
trator, 1990b). For this reason we use a learnzng rate -l
pthat has to decay in time so that this approxima- C 2 Ction is valid. Note that at this point c represents the 3

linear projection of z onto m, and we seek an optimal

projection in some sense.

Our projection index is aimed at finding directions
for which the projected distribution is far from Gaus- Figure 2: The function $ and the loss func-
sian, more specifically, we are interested in finding tions for a fixed rn and E).
clusters in a high dimensional data. Since high di-
mensional clusters have a multimodal projected dis-
tribution, our aim is to find a projection index (loss The graph of the loss function shows that for any
function) that emphasizes multimodality. For compu- fixed m and 1m, the loss is small for a given input
tational efficiency, we would like to base the projec- x, when either c = x • m is close to zero, or when
tion index on polynomial moments of low degree. Us- x in is larger than 10- . Moieovci, the loss function34 theefrean
ing second degree polynomials, one can get measures remains negative for (x rni) > ,therefore an
of the mean and variance of the distribution, which kind of distribution at the right hand ;ide of 10, is
do not give information on multimodality, therefore, possible, and the preferred ones are those which are
higher order polynomials are necessary. Furthermore, concentrated further from 10..
the projection index should exhibit the fact that bi-
modal distribution is already interesting, and any ad- It remains to show why it is not possible that a mini-
ditional mode should make the distribution even more mizer of the average loss will be such that all the mass
interesting, of the distribution will be concentrated in one of the re-

gions. Roughly speaking, this can not happen because
With this in mind, consider the following family of loss the threshold 0m is dynamic and depends on the pro-
functions which depend on the synaptic weight vector jections in a nonlinear way. namely, Gm =  E(x •7n) 2 .
and on the input x (the derivation based on decision This implies that e, will always move itself to a po-
theory appears in the appendix). sition such that the distribution will never be concen-

trated at only one of its sides. This yield that the part
of the distribution for c < le, has high loss, mak-

f )ing those distributions in which the distribution for
L,,(x) =-pJ (s, Om)ds c < 10,e has its mode at zero, more plausible.

I_) 2  The fact that the distribution has part of its mass on
3 r, both sides of rriakes it already a plausible projec-

tion index that seeks multi- modalities. However, this
projection index will be more general, if in addition.

T'he motivation for this loss function can be seen in the loss will be insensitive tc outliers, if we allow any
the following gr..ph, which represents the 4 function projected distribution to be shifted so that the part of
and the associated loss function Lm(.). For simplicity the distribution that satisfies c <. 10,,, will have its
the loss for a fixed threshold e, and synaptic vector modc at zero. These points will be discussed below.
m can be written as L,,(c) 80-zc(c - OE), wherec c (Z w m). 3 The risk (expected value of the loss) is given by:

Rm - n 'i - E [(x . m)21(x - nz

'The v mixing property specifies the dependency of the Since the risk is continuously differentiable, its rin-

future of the process on its past. imization can be achieved via a gradient descent
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method with respect to m, namely: The gradient of the risk becomes:
din, 9 _ VmXm p)O"r

= - - R n 1i {E [(z -)2z ] 4
4 E[( M)][( m)x,]}JE( m)o

3 pE[¢( ( - :).m,®)a

The resulting differential equations suggest a modified where u' represents the derivative of a at the point
version of the law governing synaptic weight modifica- (x - ni). Note that the multiplication by a' reduce-
tion in the BCM theory for learning and memory (Bi- sensitivity to outliers of the differential equation since
enenstock, Cooper and Munro, 1982). This theory was for outliers a' is close to zero.
presented to account for various experimental results Based on this formulation, a network of Q identical
in visual cortical plasticity. According to this theory, I
the synaptic efficacy of active inputs increases whenand inhibit each
the ptsynaptic tfficarge cti conunty dcelared b other, may be constructed in order to extract several
the postsynaptic target is concurrently depolarized be- features at once. A similar network has been studied
yond a modification threshold, 19,. However, when the by Scofield and Cooper (1985). The activity of neuron
level of postsynaptic activity falls below E, then the k in the network is defined as ck = X -M, where nik is
strength of active synapses decreases. An important the synaptic weight vector of neuron k. The inhzbztcd
feature of this theory is that the value of the modifica-
tion threshold is not fixed, but instead varies as a non- activity and threshold of the k'th neuron are given by
linear function of the average output of the postsynap- ck = Ck - , Zc3, 6k = Eiji.
tic neuron. This feature provides the stability proper- j ¢k
ties of the model, for positive or mean positive inputs, Schematic structure of the network is given in Figure
and is necessary in order to explain, for example, why 3.
the low level of postsynaptic activity caused by binoc-
ular deprivation does not drive the strengths of all cor-
tical synapses to zero. Mean field theory for a network
based on these neurons is presented in (Scofield and Unsupervised Fcaturc Extracting Nctwork
Cooper, 1985; Cooper and Scofield, 1988), statistical
analysis is given in Intrator (1990c) computer simula-
tions and biological relevance are discussed in (Soul et )p.

al., 1986; Bear et al., 1987; Cooper et al., 1987; Bear /
et al., 1988; Clothioux, 1990).

Up to this point we have presented an unsupervised
(exploratory) method for feature extraction that seeks iidd i. -c-
projections in which the single dimensional distribu-
tion is multi-modal, namely we have presented an ex-
ploratory projection pursuit method. This method
uses polynomial moments as a projection index and *
therefore suffers from over-sensitivity to outliers (Frei- 0 eye
dman, 1987). We address this problem by considering
a nonlinear neuron in which the neuron's activity is de-
fined to be c = ( • m), where o usually represents a
smooth sigmoidal function. A more general definition
that would allow symmetry breaking of the projected Figure 3: The activity of a nonlinear neuron
distributions, will provide solution to the second prob- j i- given by ci = a(x * ni,), the inhibited
lem raised above, and is still consistent with the sta- activity is given by J, = c, - YI i; ck.
tistical formulation is c = a(x .m-o), for an arbitrary
threshold a which can be found by using gradient de-
scent as well. For the nonlinear neuron Em is defined
to be ,2. E'2(. m)]. The loss function is given We omit the derivation of the synaptic modification
by: equations which is similar to the one for a single neu-

pair ,'.! ~Z,,, ZRI- rOen! on! 'V fh Trr,uJ ung n.~ct; ,J'

L, = -P/ k(s, ®,,,)ds tions for a synaptic vector mk in a lateral inhibition
.o,. network of nonlinear neurons:

{u 3(z m) - E[a'2 (a. M)]&(X _ m)} -p E{0(3&.6 (( -Mk)
3
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The full derivation can be found in Intrator (1990a).
The lateral inhibition network performs a direct search
of k-dimensional projections together, which may finJ
a richer structure that a stepwise approach may miss,
e.g. see example 14.1 Huber (1985).

Place of Articulation
Velar Alveolar Labial

Voiced T [d] I FbUnvoiced -k] It tP_____

3 Comparison with other feature

extraction methods

Table 1: The two distinguishing phonetic fea-
tures between the six stop consonants.

The problem of feature extraction for classification is

in some sense easier than that of feature extraction
for density or function estimation. This is because the
only interesting features in such case are those that dis-
tinguish between a finite set of classes. The common
features, namely those features that do not help in
making the distinction between classes are uninterest-
ing, even though they may be very important for data
compression, e.g. the self supervised back-propagation
network in which the number of hidden units is smaller
than the number of input and output units (Ehnan k,
Zipser, 1989). The network presented in the previous
sections has been shown to seek multimodality in the
projected distributions, which translates to clusters in The Linguistic information in th t able suggests the
the original space, and therefore to find those direc- following experiment: A network is to be trained to
tions that make a distinction between different sets in reduce abiity o the dsops [the training data. In order to reduce variability in the data, only a single

speaker and a single vowel context is used. Therefore,
In this section we explore the differences in clas- the only distinguishing features in the training data
sification performance between a network that per- are associated with place of articulation, since the fea-
forms dimensionality reduction (before the classifica- tures that are speaker dependent, voicing dependent.
tion) based upon distinguishing features, and a net- or context dependent belong to the set of common fea-
work that performs dimensionality reduction based tures in the training data. A dimensionality reduc-
upon minimization of misclassification error. The per- tion method that concentrates mainly on distinguish-
formance of the different methods will be compared ing features should find only the features associated
on a specific classification task: a phoneme classifi- with place of articulation, a.d therefore become in-
cation experiment whose linguistic motivation is de- sensitive to voicing dependent and speaker dependent
scribed below. features, which are the common features in the train-
We looked at the six stop consonants [p,k,t,b,g,d] ing data. This can easily be tested by evaluating the
which have been a subject of recent research in eval- performance on place of articulation classification of

uating neural networks for phoneme recognition (see voiced stops and data from other speakers.

review in Lippmann, . These stops posses several For comparison, we have attempted to extract features
common features, but only two distinguishing phonetic using three methods: principal components, back-
features, place of articulation and voicing (table 1) (see propagation, and the above unsupervised network.
Blumstein & Lieberman for a review and related ref- all trained and tested on the same data. In back-
erences on phonetic feature theory). propagation, the only supervised method, the place of
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articulation phonetic feature was used as a supervisor, the preprocessing, and linguistic motivation related to
child language acquisition can be found in Seebach
(190'0), :.nd Seebach and Intrator (1990).

F fr e .er

... .~ ~~ ~ ~ ...i; ir :i:. k. ........ i: i:.: .........:: . . .. .!

.... ........ €- i!:

.... . ... .. .... ... . .. ..... .. i .: :.::. ....... ....... O F'?-

.... ............

Figure 4: The six stop consonants followed by
the vowel [ra] for male speaker BSS. Their or-

der from bottom to top is [pa] [ka] [ta] [ba] [ga] Figure 5: The six stop :onsonants followed
[da]. Each token is represented by a 20 con- by the vowel [ai for female speaker JES. Their
secutive time windows of 32msec with 30msec order from bottom to top is pa' [kal [ta ha'
overlap. In each time frame a set of 22 en- [ . r a
ergy levels in Zwicker critical band filters are Notice that the same burst that appear in ta

computed. Notice the significant difference is clear in the [da i as well.
between the voiced and the unvoiced images.

Figure 5 presents five tokens of each of the CV pairs

The speech data consists of 20 consecutive time win- pronounced by the female speaker JES. The classifica-

dows of 32mesec with 30mSec overlap, aligned to the tion results obtained using BCM network and princi-

beginning of the burst. In each time window, a set pal components methods, were better on this speaker,

of 22 energy levels is computed. These energy levels than on those obtained when testing the performance

correspond to Zwicker critical band filters (Zwicker, on the speaker that was used in the training. This is

1961). due to the very 'clean' sound that corresponds closely
to the acoustic features that are known (Blumstein &

The consonant-vowel (CV) pairs were pronounced in Lieberman, 1984) to exist in these sounds. For exam-
isolation by native American speakers (two male BSS pie, this was the only speaker out of several that we
and LTN, and one female JES.) Five tokeis of each of tested, in which the high frequency burst (top left cor-
the CV pairs used for training are presented in Fig- ner) is clear for the voiced stop as it is clear for the
ure 4. Additional details on biological motivation for unvoiced stops.

6



The unsupervised feature extraction/classification 2. Several observations can be made from the results;
method is presented in Figure 6. Similar approach us- First, the principal components dimensionality reduc-
ing the RCE and back-propagation network have been tion is clearly not sufficient in discovering structure
carried out by several researchers (Rimey et al., 1986; for this kind of data, suggesting that the structure is
Reilly ct al., 1987, 1988; Zemani et al., 1989), and highly non linear. Second, the back-propagation net-
using the unsupervised charge clustering network by work is doing well in finding structure useful for clas-
Scofield (1988) sification of the trained data, but this structure does

not concentrates on distinctive features solely, it also
Five features/directions were extracted from the 440 contains speaker dependent and voicing dependent fea-
dimensional preprocessed speech vectors. These fea- tures, and therefore has degraded classification perfor-
tures were the activation of five neurons in the unsu- mance when tested on voiced data, or data from other
pervised network, the five principal components in the speakers. This can also be viewed as a generalization
bak-promathon The fivexhiddent nitact ivatese i problem, in which case one can say that the network
back-propagation. The extracted features were used is overfitting to the training data. Third, classification

to train a k-NN classifier (with k = 3) to classify place results using the BCM network for dimensionality re-

of articulation. Although the three dimensionality re- duction suggest that for this specific task, structure

duction methods were trained only with the unvoiced that is less sensitive to voicing features can be ex-

tokens of a single speaker, the five dimensional k-NN that e ss en t ive th network atr e c n b e

classifier was trained on voiced and unvoiced data from tracted, even though the network was trained on the

the other speakers as well. unvoiced data only and voicing has significant effects
on the speech signal itself.

Classification using Featurc Place of Articulation Classification
Extraction Network P-C B-P BCM

BSS /p,k,t/ 66.0 100.0 98.6
BSS /b,g,d/ 57.4 73.3 94.0

_ , LTN /p,k,tT/ 60.0 95.8 98.9
LTi /b,g,d 1 46.6 66.7 90.0
JES (Both) 70.6 83.7 99.4

F. wtu Table 2: Percentage of correct classifica-
T,., ,clon rtion of place of articulation in voiced and

unvoiced stops using principal components,

back-propagation, and the BCM network.
Training for dimensionality reduction was
done on unvoiced stops of male speaker BSS in
all three experiments. LTN is a male speaker
aswell. The result in the last column repre-
sents testing on both the voiced and unvoiced

stops of a female speaker (JES). The results
represent an average result of several trials.

Iipt Lnitu which differ only in the initial conditions of
the networks.

Figure 6: Low dimeisional k-NN classifier is
trained on the features extracted from the 4 Discussion
high dimensional data. Training of the featureextraction network stops, when misclassifica- It has been shown that the BCM neuron is capable
tion rate drops below a predetermined thresh- of effectively discovering nonlinear structures in high

dimensional spaces. When compared with other pro-
old on either the same training data (cross val- jection indices, the highlights of the presented method

idatory test) or on a different testing data. are i) the projection index concentrates on directions
where the separability property as well as the non-

The classification results are summarized in table normality of the data is large, thus giving rise to bet-

7



ter classification properties; ii) the degree of correla- Devijver P. A., and J. Kittler (1982) Pattern Rec. gni-
tion between the directions (features) extracted by the tion: A Statistiklj Approach. Prentice Hall London
network can be regulated via the global inhibition, al-
lowing some tuning of the network to different types of Diaconis, P, and D. Freedman (1984) Asymptotics of
data for optimal results; iii) the pursuit is done on all Graphica Projection Pursuit. The Annals of Statis-
the directions at once thus leading to the capability of tics, 12 793-815.

finding more interesting structures than methods that Friedman, J. H. and J. W. Tukey (1974) A projection
find only one projection direction at a time. pursuit algorithm for exploratory data analysis. IEEE

Regarding the speech experiment, the network and Trans. Coid. C-23:881-889
its training paradigm present a different approach to Friedman, J. H. and W. Stuetzle (1981) Projection
speaker independent speech recognition. In this ap- pursuit regression. J. Amer. Statzst. Assoc. 76:817-
proach the speaker variability problem is addressed by 823
training a network that concentrates mainly on the dis-
tinguishing features, on a single speaker, as opposed Friedman, J. H., W. Stuetzle and A. Schroeder (1984)
to training a network that concentrates on both the Projection pursuit density estimation. J. Amer.

distinguishing and common features, on multi-speaker Statist. Assoc. 79:599-608

data. Friedman, J. H. (1987) Exploratory Projection Pur-

suit. Journal of the American Statistical Assoczatzon
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they represent the intuitive idea that the neuron will
fire when its activity is greater than some threshold.
and will not otherwise. We denote the firing of the

neuron by a = 1. Define K = -p f"6(s,E, )ds-
The loss function for a decision to fit, is given by:

L,(x,1) { s. 0,(, )d, (x.,,) >-0,

" - p o (s, 0, )ds, (xin)<O,,.

and for the decision not to fire by:

L(, 0) = ~s -0,o (, )ds (x in,)< 0-
((z )) ,Km- MOfr{ ' .f ( s ,f- )d> . (zn)>O,0

It follows from the definition of Lm and from the Oef-
inition of b, that

L,,(x,b,) - 1  J (s,.m )ds

I -(.. rn)3 - E'(. -,,n)2(x -,,n) 2

We can write L,(Z) instead of L,,(x. 6_) when there
is no confusion.

The risk is given by:

RO(b) = P{IE'(x-m)3 - E2( "in) 2 '}.

Since the risk is continuously differentiable, its mini-
mization can be done via the gradient descent method
with respect to in, namely:

ame, a3a - Re( 6,) = in, , )x
at an,

Notice that the resulting equation represents an av-
eraged deterministic equation of the stochastic B('M
modification equations. It turns out that under suit-
able conditions on the mixing of the input x and the
global function p, this equation is a good approxima-
tion of its stochastic version (Intrator, 1490b). namely:

am=, 4( ,O),
at
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