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When a computer monitors a physical process, the computer uses SPit'21
sensors to determine the values of the physical variables that represent
the state of the process. A sensor can sometimes fail, however, and in
the worst case report a value completely unrelated to the true physical
value. The work described in this paper is motivated by a methodology
for transforming a process control program that cannot tolerate sensor
failure into one that can. In this methodology, a reliable abstract sen-
sor is created by combining information from several real sensors that
measure the same physical value. To be useful, an abstract sensor must
deliver reasonably accurate information at reasonable computational
cost.

In this paper, we consider sensors that deliver multidimensional val-
ues (e.g., location or velocity in 3 dimensions). Geometric techniques
are used to derive upper bounds on abstract sensor accuracy and to
develop efficient algorithms for implementing abstract sensors.

1 Introduction

A process control program communicates and synchronizes with a physi-
cal process. Typically, the program reads values from the physical process
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through sensors and writes values through actuators, as shown schemati-
cally in Figure 1. This paper is concerned with control programs tolerating
failures of continuous-valued sensors.

actuator

process
control

program

sensor

Figure 1: A process-control program

In an earlier paper [6], we presented a methodology for writing process
control program that can tolerate faulty sensors:

1. A specification of the control program is written in terms of the state
variables of the physical system. For example, the specification of a
program controlling a chemical reaction vessel would refer to a variable
T whose value is assumed to be the temperature of the vessel.

2. Each physical state variable referenced by the specification is replaced
with a reference to an abstract sensor. An abstract sensor is a set
of values that contains the correct value of the physical variable of
interest. Uncertainty in sensor values now becomes an issue, and the
specification must be re-examined and possibly changed to accommo-
date it.

3. The control program is written based on the specification produced by
Step 2. This program reads abstract sensors that are assumed to al-
ways contain the correct value of the corresponding physical variables.

4. For each abstract sensor referenced by the program written in Step 3,
a set of abstract sensors that fail independently are constructed. Each
abstract sensor is implemented using a concrete sensor, which is a
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physical device that "reads" a physical variable, such as a thermome-
ter. This step will require some knowledge of the physical process
being controlled as well as the specification of the concrete sensor.

5. A fault-tolerant averaging function is used with these replicated ab-
stract sensor values in order to calculate another abstract sensor that
is correct even if some of the original sensors are incorrect. The av-
eraging algorithm assumes that no more than f out of the n abstract
sensors are incorrect. The relation between n and f depends on the
way sensors can fail.

The resulting system will have a structure like that shown in Figure 2.

abstract concrtte

sensor sensor

actuator

process abstract concrete
control sensor sensor

reliable abstract concrete
abstract sensor sensor
sensor _ .

Figure 2: Replicated sensors

Step 5 in the above methodology is an example of masking failures
through redundancy [11]. In fact, the fault-tolerant averaging function pre-
sented in [6] is a generalization of NMR, or n-module redundancy, whereby
n independent copies are fed into a majority voter [12]. For both NMR and
our averaging function, up to f = [nj signal failures can be masked.

One limitation of our earlier work is that the fault-tolerant averaging
function of [6] is applicable only to sensors that measure a single, indepen-
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dent, real value. An example of a sensor that does not fit this model is one
that measures the location of some physical object in 3D space. If such mul-
tidimensional sensors are used then a naive approach to masking failures is
to consider the x component separately from failures of the y and z compo-
nents, bur doing so limits the accuracy of the resulting value. For example,
any sensor found to be faulty by examining the x components should most
likely be discarded when considering the y and z components.

In this paper, we extend our fault-tolerant averaging function to multidi-
mensional sensors. We derive the amount of replication necessary to achieve
fault masking, which turns out to be a function of the number of possible
failures and both the shape and number of dimensions of the sensor measure-
ment. We also discuss efficient algorithms for computing the fault-tolerant
average.

One way in which our approach is unusual is that we apply a very weak
failure model to sensor failures. This failure model-defining a fault hier-
archy and assuming no more than f of n components are faulty-has been
applied to several problems in "istributed systems such as consensus [8] and
reliable broadcast [1]. It has dso been incorporated into a methodology
for building fault-tolerant distributed programs [10,5]. In contrast to our
method of tolerating sensor failure, the more typical approach models the
value of a sensor as as a random variable and then convolving several mea-
surements, either from different sensors or the same sensor read at different
times [2]. Doing so posits a probability distribution function, which may be
too strong an assumption. One of the goals of our research is to understand
the applicability of the weaker failure model to continuous-valued signals.

The paper proceeds as follows. In Section 2, we present our failure model
for sensors and describe how aults can be masked. Section 3 summarizes the
relevant results from [6]. Sections 4 and 5 extends the results of Section 3
to d-dimensional rectangles and d-dimensional circles, respectively. Note
that the results on circles actually hold for any class of convex shapes in
which the shapes are geometrically similar and share the same orientation
(for example, squares aligned with a fixed coordinate system). Section 6
presents discusses bounds for some special cases, and Section 7 summarizes
our results

2 Sys-cem Model

We distinguish between a concrete sensor, which is a. device that reads a
physical state variable and an abstract sensor which is a set of possible
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values for the physical state variable. Abstract sensors are easier to reason
about than concrete sensors, in part because there are several different kinds
of concrete sensors, each with a different specification. If considered as
a whole, the only failure model one can impose on concrete sensors is a
probabilistic one. This is not the case for abstract sensors, as discussed
below. Further discussion on the implementation of abstract sensors and
their use in specifications can be found in [6].

We assume that abstract sensors have the following properties. Let 6,
be a sensor of some physical variable W. A measurement si is a continuous
set of values that conform to some shape, such as a continuous interval, a
rectangle, a sphere, etc. We say that si is correct if it is not too inaccurate
and always includes the value of the actual physical variable. More precisely,
for some upper bound acc on the accuracy of si,

def

si correct = 'T E si A Isi < acc

where Isi is the accuracy of si. Thus, an abstract sensor can fail in two
ways: it can fail to contain the true value or it can report a region so large
as to be useless. In this paper, we first assume such large-region sensors
could be detected and discarded by preprocessing the abstract sensor data
(n and f would have to be adjusted). We relax this assumption in Section 6.

Let si and sj (i €: j) be the measurements by two abstract sensors for the
same physical value V. If si and s. both contain the correct value, then the
measurements si and sj must intersect, and their intersection must contain
the (unknown) value "U.

Consider a set S = {s,, s2,..., S} of n independent measurements of the
same physical value. If f or less measurements do not contain the correct
value, then any set of n - f mutually intersecting measurements may contain
the correct value within their intersection, since they each share a common
value. Conversely, any point not contained in at least n - f measuirements
cannot be the correct value; if it were, then there would be more than f
faulty sensors. So, the cover of all (n - f)-cLiques must contain the correct
value. (An (n - f)-clique corresponds to a value where at least (n - f)
sensor measurements intersect.)

We have one further constraint: any program written to deal with a sin-
gle measurement assumes that the sensor delivers a region of some expected
shape (e.g., rectangle, sphere, interval, etc.), so we require the cover to also
have this same shape. This constraint allows us to improve a program based
on a single (unreliable) abstract sensor by changing only the implementa-
tion of the sensor; the abstract sensor is replaced by several abstract sensors
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whose inputs are combined to produce a single reliable abstract sensor. The
program can use the resulting reliable abstract sensor just as it originally
used the single abstract sensor.

To summarize, we have the following goals for our reliable abstract sen-
sor:

1. It should be guaranteed (assuming no more than f failures) to deliver
a region containing the true physical value.

2. It should deliver a shape that is within the same class as the shapes
delivered by the individual abstract sensors.

3. It should be accurate. In other words, assuming no more than f
failures, it should deliver a region that is not significantly larger than
a region that might be delivered by a single, correct abstract sensor.

4. It should be efficient to compute. A reliable abstract sensor is useless
unless it can be computed in a reasonable amount of time.

It is useful to define I1 ,n(S), the smallest region the satisfies goals 1 and
2. In other words, 21,n(S) is the smallest figure of the correct shape that
covers all (n - f)-ciques in S. For instance, if the individual sensors report
intervals in one dimension then If,n(S) is the smallest interval that contains
all the (n - f)-cliques. It is clear that the (unknown) true value V is a
member of 7 Z,(S) as long as no more than f measurements are faulty.

Figure 3 illustrates If,n(S) for measurements that are rectangles. The
left-hand figure shows four measurements, and the right-hind figure shows
the smallest rectangle that covers all 3-cliques of the measurements.

3 Linear Sensors

In [6], we show that for linear sen' .-,rs - sensors that report 1D intervals -
tfn,($) can be found efficiently and that for f < 11, f,.,(S) has reasonable

size. The upper bounds on IT'.,(S) are stated in the following two theorems.
We do not include the proofs in this paper, but the bounds are derived by
considering interval graphs [4].

First, we need some notation. Define the functions mini and max, to
be the i th smallest and largest values of a set of n values respectively. Note
that mini is the same as maxn.i+i. For example, if S = 113, 14, 15} then
min3(S) = max,(S) = 15.
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(a) (b)

Figure 3: 11,4(S) for Rectangular Measurements.

Theorem 1 Let S be a set consisting of n intervals. If 0 < f < !1 then2
117,n($)l :5 min2j+1{1'3 : E S}.

Thus, when f < -, the resulting reliable abstract sensor is as accurate
as one of the original sensors, and the larger n - f is (i.e., the more likely
any one sensor reading is correct), the more accurate I1 ,n(S) is.

l",n(S) can also be computed efficiently - in O(n log n) time - by sorting
the endpoints of the n intervals and then moving through the endpoints in
order, keeping track of the depth at each instant. If,n(S) is bounded by the
smallest and largest points that are in (n - f)-ciques. Figure 4 illustrates
this algorithm. The hatched areas denote the points that are in 3-cliques,
and the lowest interval is 12,5(S). Note that according to Theorem 1, the
length of 12,5(S) is bounded by the length of the longest interval in S,
although in Figure 4, it happens to be shorter than the longest interval.

The second theorem states that there is no upper bound on the size when

Theorem 2 Given a set {11,e2,...,en} of n lengths and ! < f < n, then
for any length A > max{1, £2, ... ,In}, there exists a set of n intervals S =

{8i,"2, ...,9} where Vi : 1 < i < n : Sil = ii and IJI,n(S)I = A.

It is easy to see that an equivalent of Theorem 2 holds for multidimen-
siona) sensors as well as linear ones. If over half the sensors have failed then
Z,n(S) may be arbitrarily large regardless of the dimension of the sensor's
data.
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12,s(S)

Figure 4: 12,5(S) for Linear Measurements.

3.1 Multidinensional Sensors and Projection

The ID results on intervals can be used directly to give results for multi-
dimensional sensors. For a d-dimensional sensor, we project the region for
sensor measurement si onto each of the d orthogonal axes. We now have d
separate ID problems. These problems can be solved individually and then
recombined to produce a d-rectangle, which we call the projection rectangle.

There are several possible disadvantages to this approach:

1. Information may be lost. For example, the knowledge that a sensor's
x-coordinate cannot possibly be correct can be used to discard the
entire measurement.

2. A d-rectangle is not necessarily the desired shape. For example, our
abstract sensor may be required to report a circle.

3. The size of the resulting sensor may be larger than necessary (for
example, see Figure 5).

In fact, projection techniques are the method-of-choice in some situations
(see Section 4), but these situations depend on the shapes involved and the
relationship between f and n.

4 d-Rectangles

If si is constrained to be a d-dimensional rectangle, then another upper
bound can be placed on the size of If,,,(S).



I I
I I

(a) (b)

Figure 5: (a): Three rectangles and their projection onto the x and y axes.

(b): 21,3(S) is the crosshatched region and the projection rectangle is the
gray region.

Theorem 3 Let S be a set consisting of n d-dimensional rectangles. If
0 < f < " then IZ,,n(S) <_ min2df+1{l9 : j E S}.

Proof. We use a counting argument to show that If,n(S) is contained in
at least (n - 2df) of the original d-rectangles. Assume f < n. Choose 2d
points, one from each of the 2d sides of If,n(S) where each chosen point is a
member of an (n - f)-clique. These points must exist since if they did not,
If,n(S) could be reduced in size. Call this set P. By definition of (n - y)-
clique, each point p of P is contained in at least (n - f) d-rectangles. Letting
Rp represent the set of d-rectangles containing p, we have n - f < IRpI for
each point p E P. If we sum the number of rectangles containing each point,
we get

2d

2d(n-f) f I jRpL = * i* {rectangles containing exactly i points of P}j.
pEP i=1

The last sum can be broken into two pieces: the part due to d-rectangles
that contain all the points of P and the part due to d-rectangles that contain
fewer points. Let a be the number of d-rectangles that contain all 2d of the
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points in P; that is, the rectangles that contain Il,,(S). The number of
rectangles remaining is n - a. The part of the sum due to the d-rectangles
that contain fewer points can be bounded by (2d - 1)(n - a). We now have

2d(n - f) < 2da + (2d - 1)(n - a).

Solving for a, we get a > n - 2df; thus, 17f,,,(S) is contained in at least
(n - 2df) d-rectangles and the bound of the theorem follows immediately.
0

The bound on f given in the theorem is tight. Figure 3 shows a 2D
example where f = n and 1f,n(S) is larger (in area) than any of the original
rectangles. Similar examples can be built for any dimension d.

This theorem shows that the increased accuracy comes with a price: if
it is desired that I2j,,.(S)I be at least as accurate as some measurement in
5, then the amount of replication needed increases quickly (linearly) with
d. For example, in order to tolerate a single failure for measurements that
are 3D rectangles, a sensor must be replicated at least 7 times.

4.1 Algorithms for Rectangles

The 1D algorithm for intervals can be extended to handle rectangles. In 1D.
we move from left to right across the intervals, keeping track of the covering
depth. A similar sweeping idea works for 2D: we move a vertical sweep
line from left to right across the rectangles, keeping track of the covering
depth. Note that this depth can be different for different y-values, so depth
information must be kept for each position along the vertical sweep-line.
As the line enters or leaves a rectangle the depth information is updated.
Using a naive implementation, this update takes O(n) time, leading to an
0(n 2) time algorithm for computing T",,(S). Since the entire boundary
of the (n - f)-cliques can be of complexity £l(n2), this might appear to
be the best time-bound one can hope for. Note though, that the entire
boundary is unnecessary; we need only determine the left, right, top, and
bottom boundaries. This can be done efficiently by using Bentley's segment
tree (see, for instance, [9]) to keep track of depth information along the
vertical sweep-line. Thus, the entire computation for constructing 2Tf.,(S)
can be done in O(nlogn), including the initial sorting that must be done
in preparation for both the sweep-line (sorting by x-coordinate) and the
segment tree (sorting by y-coordinate).

Unfortunately, this technique does not generalize well to higher dimen-
sions. The 2D version is fast because we can make use of the segment tree,
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a structure that allows efficient insertion and deletion of segments. But
higher-dimensional analogs - allowing insertion and deletion of rectangles,
for instance - ari not correspondingly efficient. Thus, as the dimension
increases the time bounds become prohibitively large.

There is however, an efficient algorithm that reports a d-rectangle (for
any dimension d) that is almost as good as the minimal d-rectangle that we
desire. This uses the projection technique described in Section 3.1, convert-
ing a d-dimensional problem into d 1-dimensional problems. The results of
these separate 1D problems are combined to produce the projection rectan-
gle, a d-rectangle that is guaranteed to be of reasonable size. The algorithm
is based on the following theorem.

Theorem 4 Let S be a set consifting of n d-dimensional rectangles. If 0 <
f < then the size of the projection rectangle is < min2df+1{'I : 7 E S}.

Proof Each d-rectangle r is associated with exactly d intervals, one for each
axis; these are the intervals found by projecting r onto the axes. Let Ir be
the set of intervals associated in this way with d-rectangle r. For each axis,
we now have a 1D problem with f < n. By the proof of Theorem 3, the
1D (n - f)-cliques for each axis are contained in at least n - 2f intervals.
Let I be the set of all such intervals, at least n - 2f of them from each axis.
If we sum the number of rectangles over all intervals, we get

d

d(n- 2f) < I1 =Z i f I{r: IrlnII = i}1.
t=1

The last sum can be broken into two pieces: the part due to rectangles that
project onto a member of I for all axes, and the part due to other rectangles.
Let a be the number of d-rectangles r for which IIrfhI = d; that is, the d-
rectangles that contain the projection rectangle. The number of rectangles
remaining is n - a. The part of the sum due to these remaining rectangles
can be bounded by (d - 1)(n - a). We now have

d(n - 2f) < da + (d - 1)(n - a).

Solving for a, we get a > n - 2df; thus the projection rectangle is contained
in in at least n - 2df d-rectangles and the bound in the theorem follows
immediately. 0

Note that the projection rectangle can be computed in O(dn log n) time
and has exactly the same size bound as Zf,n(S). Thus, if our goal is simply
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to create an abstract sensor that is at least as accurate as some measurement
in 5, the projection rectangle is as good as If'Ln(S ) .

This theorem shows that, at least for rectangles, the projection rectangle
can be used to define an reliable abstract sensor with all the desirable prop-
erties that we have specified. The projection rectangle is either the same
size or somewhat larger than "f,,(S), the optimal rectangle.

5 d-Circles

In this section, we show that circles are better than rectangles in the sense
that the bound on the size of It,,(S) for circles grows more slowly than the
corresponding bound for rectangles. We also show that circles are worse
than rectangles in the sense that 2"T,(S) is more difficult to compute for
circles than for rectangles.

If si is constrained to be a d-dimensional circle (e.g., a sphere in 3D)
then the following upper bound can be placed on the size of I",n(S):

Theorem 5 Let S be a set consisting of n d-circles. If 0 < f < +1 then
11f,.(S)l <_ min(d+l) +If{171 : 7 E S}.-

Proof. We use a counting argument to show that If,n(S) is contained in
at least (n - (d + 1)f) of the original d-circles. Assume f < "I. Choose
a set P, consisting of d + 1 points such that each point is a member of an
(n - f)-clique and the d + 1 points pin the circle Z,.(S). (A circle is pinned
by a set of points if it is the smallest circle that includes that set of points.)

These points must exist since if they did not, 1"t,n(S) could be reduced in
size. By definition of (n - f)-clique, each point p of P is contained in at

least (n - f) d-cirde3. Letting Cp represent the set of d-circles containing
p, we have n - f < ICIp for each point p E P. If we sum the number of
circles containing each point, we get

d+l

(d+1)(n-f) E z icpi = Z i*l{circles containing exactly i points of P}.
PEP i=1

The last sum can be broken into two pieces: the part due to d-circles

that contain all the points of P and the part due to d-circles that contain
fewer points. Let a be the number of d-circles that contain all d + 1 of the
points in P; that is, the circles that contain T,n(S). The number of circles
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remaining is n - a. The part of the sim due to the d-circles that contain
fewer points can be bounded by d(n - a). We now have

(d + 1)(n - f) < (d + l)a + d(n - a).

Solving for a, we get a > n - (d + 1)f; thus, 1,.(S) is contained in at
least n-(d+ 1)f d-circles and the bound of the theorem follows immediately.
01

This bound grows more slowly with d than does the bound of Theorem 3.
For example, in order to tolerate a single failure for measurements that are
spheres, a sensor must be replicated at least 4 times.

This theorem applies to sensors with a large variety of shapes - not
just (simple) circles. Given a class of convex shapes in which the shapes
are geometrically similar and share the same orientation, the shapes can be
pinned by d + 1 points where d is the dimension of the space. This property
was the only circle property used in the proof of the theorem; thus, the same
bounds hold for any such class of convex shapes.

Algorithms for d-circles are not as efficient as algorithms for d-rectangles.
Even in 2D, it appears that to find the (n - f)-cliques, it is necessary to
build the entire arrangement of n circles. Since n circles can have Ql(n 2 )
intersections, building the arrangement must take time f!(n 2 ). (The incre-
mental algorithm for building an arrangemen c of circles takes worst-case
time O(nA4(n)) where A4 is an almost-linear function related to Davenpor,-
Schinzel sequences [3]; using randomization, the arrangement can be b,:i!t
in expected time O(m+nlogn) where m is the number of intersections [71.)
Of course, we can replace each d-circle by a d-square that contains it and
use the rectangle techniques, but this may produce an answer less accurate
than desired.

6 Other Results

Improved results are possible if sensors are known to report d-rectailgles
that are all the same size and orientation. In this case, the projection
technique can be used to create a reliable abstract sensor which reports a
d-rectangle of the standard size in O(dn log n) time provided f < 2. Note
that for this case, the required relation between f and n is independent of d.
This better bound occurs because for a single axis each projected rectangle
(i.e., each interval) is exactly the same size. Since f < a, by Theorem 1
there is a single interval that contains all the (n - f)-cliques for an axis.
When these containing intervals are recombined to create the projection
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(a) (b)

Figure 6: (a): Three unit circles. (b): Three unit circles with fourth unit
circle in center. Note 21,3(S) for the three original circles extends past the
central unit circle.

rectangle we get a rectangle of the same size and orientation as the original
rectangles. Note that he projection rectangle may not correspond to any of
the original rectangles. In contrast, for identically sized circles, the smallest
circle covering all of the (n - f)-cliques may be larger than the initial circles
even when f < -a. An example of this case is shown if Figure 6. Of course,
the bound in Theorem 5 still applies; 1J",n(S)J is bounded by the size of the
initial circles when f < -*

Theorems 3 and 5 apply when measurements that are too inaccurate can
be detected and removed in a preprocessing step. If this is not the case, then
2",n(S) may be bounded by an abstract sensor that is too inaccurate. The
following two theorems give bounds when abstract sensors may be unde-
tectably inaccurate. Note that in this situation, a faulty sensor can contain
the correct value.

Theorem 6 Let S be a set consisting of n d-rectangles, and let C be the (un-
known) subset of S that are correct. Iff < 7 then I",n(S) _ min(2d_1)f + 1 {IsI

s E C}.

The proof of this theorem is simple: from Theorem 3,

1II,.(S)l _< max._2d1{Is : s E S}

14



For JIT,n(S) to be bounded by an accurate measurement, we must have
n - 2df > f and so n > (2d + 1)f. The worst case is when f faulty
measurements are the most inaccurate, so

I1j,n(S)l < min(2d-I)f+l{IsI : s E C}

0

A similar proof supports the following theorem:

Theorem 7 Let S be a set consisting of n d-circles, and let C be the (un-
known) subset of S that are correct. Iff < n then Ij,$(S) < mindf+1{sI:

E C}.

We have also looked at some fast approximation techniques. A grid of
equal-sized buckets can be used to detect (n - f)-cliques, leading to a linear-
time fault-tolerant averaging algorithm at the cost of some accuracy. This
technique works for both d-rectangles and d-circles, but is more accurate
for rectangles.

7 Summary

We have shown how several abstract sensors (that measure the same mul-
tidimensional physical data) can be combined to produce a reliable abstract
sensor. This process can be done efficiently for d-rectanlges, reporting a
region guaranteed to be of reasonable size, provided f < ' where n is the
number of sensors and f is the number of sensors that are faulty. For d-
circles, a reliable abstract sensor region of reasonable size exists provided
f < I, but determining this region is considerably less efficient. As men-
tioned above, the results on size bounds for circles actually hold for any class
of convex shapes in which the shapes are geometrically similar and share the
same orientation.

The following table summarizes our results:

geometry n complexity comments

linear 2f + 1 O(nlog n)
rectangles 4f + 1 O(n log n)

d-rectangles 2df + 1 unacceptable with IT,n(S)
d-rectangles 2df + 1 O(dn log n) with projection technique

circles 3f + 1 0(n 2 ) randomized

d-circles (d + 1)f + 1 unacceptable I
d-rectangles 2f + 1 0(dn log n) uniform size
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The results in this table assume that the goal is to produce a reliable ab-
stract sensor whose size is no larger than that of a single individual abstract
sensor. If the reliable abstract sensor is allowed to be somewhat larger.
then many of the time bounds can be improved. For instance, d-circles can
be approximated by d-squares in order to produce a less-accurate reliable
abstract sensor in time O(dnlogn) by using the projection technique.

Theorem 3 shows bounds on the size of a reliable abstract sensor for
f < ' and an analog of Theorem 2 shows that for f > -1 the size of an29-2
abstract sensor is unbounded. For in-between values of f, n : f < L
reliable abstract sensors are of bounded size, but such a sensor may report
a d-rectangle significantly larger than any of the original d-rectangles.
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