Unclassified	Α	D-A23	25 571	1		
SECURITY CLASSIFICATION OF THIS PAGE					<u> </u>	
	REPORT					
1a. REPORT SECURITY CLASSIFICATION		}				
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY O	F REPORT	for public	
2b. DECLASSIFICATION / DOWNGRADING SCHEDUL	release and unlimited.	sale; its d	listributi	on is		
4. PERFORMING ORGANIZATION REPORT NUMBER	(2)	5. MONITORING	ORGANIZATION R	EPORT NUMB	ER(S)	
Report 33	lau k					
6a. NAME OF PERFORMING ORGANIZATION Department of Chemistry	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION		
University of Florida		Office of N	aval Researd	ch		
6c ADDRESS (Gty, State, and ZIP Code) Department of Chemistry University of Florida Cainesville FL 32611-20/6		7b. ADDRESS (City, State, and ZIP Code) 800 N. Quincy St. Arlington, VA 22217-5000				
8a, NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICATION	NUMBER	
ORGANIZATION	(If applicable)	20001/ 07 -				
Office of Naval Research		NUUU14-87-J	- 1248			
8c. ADDRESS (City, State, and ZIP Code) 800 N. Outpoy St		10. SOURCE OF	FUNDING NUMBER	RS	WORK LINUT	
Arlington, VA 22217-5000		ELEMENT NO.	NO.	NO.	ACCESSION NO.	
11. TITLE (Include Security Classification) Formation of C ₁₀ H ₈ ⁺ from the Benzene Radical Cation: A Case for the Growth of Polycyclic Aromatic Hydrocarbon Ions by Ion/Molecule Reactions in the Gas Phase? 12. PERSONAL AUTHOR(S)						
	WERED				CE COUNT	
Technical FROM 4/	<u>89</u> то <u>10/90</u>	1991, N	lay 10	Udy) 15. PA	20	
16. SUPPLEMENTARY NOTATION						
Accepted for publication in the	International C	Journal of M	ass Spectro	metry and	Ion Processes	
17. COSATI CODES FIELD GROUP SUB-GROUP	18. SUBJECT TERMS (C Soct Formation Synthesis, Ben	ontinue on revers , Polycyclic zene Cations	e if necessary and Aromatic H , Diacetyle	d identify by ydrocarboi ne, Naphti	block number) ns, Interstellar halene Cations	
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)				
Experimental results are reported which show that diacetylene, but not acetylene, adds rapidly to $C_6H_6^+$ in the gas phase in helium at 0.35 Torr and 296 ± 2 K when $C_6H_6^+$ is produced by the chemical ionization of benzene with NO ⁺ . The experiments were performed with the selected- ion flow tube (SIFT) and Fourier transform ion cyclotron resonance (FTICR) techniques. Chemical reactivity and ion photodissociation methods were employed to investigate the identity of the $C_{10}H_6^+$ produced by the addition reaction. Results were obtained for the reactions of this cation with deuterium, acetylene, diacetylene, styrene, trimethylamine, nitric oxide, 1,2,4,5- tetramethylbenzene and p-methylaniline, and were compared with the results of the reactions of these same molecules with the $C_{10}H_8^+$ radical cation produced directly from naphthalene by chemical ionization with Si ⁺ and electron ionization. Laser photodissociation experiments at 355 nm were also carried out on the $C_{10}H_8^+$ produced from the addition reaction, and by electron ionization of naphthalene and azulene. The chemical and photophysical behaviour of the former two ions was found to be identical which suggests that ionized naphthalene is formed in the addition reaction of ionized benzene and diacetylene. The implications of this result for the growth of polycyclic aromatic hydrocarbons in hydrocarbon flames and in interstellar regions are briefly discussed.						
LUUUNCLASSIFIED/UNLIMITED SAME AS P	PT. DTIC USERS	Unclassif	ied		5. 6YM00:	
Dr. Mark M. Ross		220. TELEPHONE	(Include Area Cod 10	e) 22c. OFFIC	E SYMBOL	
DD FORM 1473, 84 MAR 83 AP	Redition may be used un	til exhausted.	SECURITY	CLÂSSIEICATH	ON OF THIS PAGE	
	All other editions are of	bsolete.	Uncl	assified		

U	nc	1.	as	s	i	f	i	
---	----	----	----	---	---	---	---	--

0

OFFICE OF NAVAL RESEARCH

Grant N00014-87-J-1248

R & T Code 4134052

TECHNICAL REPORT NO. 33

Luession For	<u></u>
NTIS GRADI D	
DT1- TAB	
Justification	
DISTRICT CONTRACTOR	
Avellabil te Clura	;
Avial and/er	
DB0181	
A-1	;
	!
	•

4 5 14 051

Formation of C₁₀H₈⁺ from the Benzene Radical Cation: A Case for the Growth of Polycyclic Aromatic Hydrocarbon lons by Ion/Molecule Reactions in the Gas Phase?

by

D.K. Bohme, S. Wlodek, J.A. Zimmerman, and J.R. Eyler

Accepted for publication

in the

International Journal of Mass Spectrometry and Ion Processes

University of Florida Department of Chemistry Gainesville, FL 32611-2046

May 10, 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

FORMATION OF $C_{10}H_8^+$ FROM THE BENZENE RADICAL CATION: A CASE FOR THE GROWTH OF POLYCYCLIC AROMATIC HYDROCARBON IONS BY ION-MOLECULE REACTIONS IN THE GAS PHASE?[†]

D.K. BOHME,^a S. WLODEK,^a J.A. ZIMMERMAN^{b^{*}} and J.R.EYLER^b

Contribution from ^athe Department of Chemistry and Centre for Research in Earth and Space Science, North York, Ontario, Canada M3J 1P3, and ^bthe Department of Chemistry, University of Florida, Gainesville, FL 32611-2046, USA.

Abstract: Experimental results are reported which show that diacetylene, but not acetylene, adds rapidly to $C_6H_6^+$ in the gas phase in helium at 0.35 Torr and 296 ± 2 K when $C_6H_6^+$ is produced by the chemical ionization of benzene with NO⁺. The experiments were performed with the selected-ion flow tube (SIFT) and Fourier transform ion cyclotron resonance (FTICR) techniques. Chemical reactivity and ion photodissociation methods were employed to investigate the identity of the $C_{10}H_8^+$ produced by the addition reaction. Results were obtained for the reactions of this cation with deuterium, acetylene, diacetylene, styrene, trimethylamine, nitric oxide, 1,2,4,5-tetramethylbenzene and p-methylaniline, and were compared with the results of the reactions of these same molecules with the $C_{10}H_8^+$ radical cation produced directly from naphthalene by chemical ionization with Si⁺ and electron ionization. Laser photodissociation experiments at 355 nm were also carried out on the $C_{10}H_8^+$ produced from the addition reaction, and by electron ionization of naphthalene and azulene. The chemical and photophysical behaviour of the former two ions was found to be identical which suggests that ionized naphthalene is formed in the addition reaction of ionized benzene and diacetylene. The implications of this result for the growth of polycyclic aromatic hydrocarbons in hydrocarbon flames and in interstellar regions are briefly discussed.

[†] Dedicated to Professor Paul Kebarle on the occasion of his sixty-fifth birthday.

[•] Present address: IBM Technology Laboratory, Dept. T37, P.O. Box 8003, Endicott, NY 13760-5553, USA.

Introduction

Polycylic aromatic hydrocarbon (PAH) molecules and ions seem to form in the presence of ionization in a number of gaseous environments, both terrestrial and extraterrestrial. For example, neutral and positively-charged PAH molecules have been shown to be present in hydrocarbon flames in which they are perceived to act as intermediates in the formation of soot particles [1]. Curiously, free PAH molecules and ions may also be present in interstellar regions in space which are much cooler and much less dense. Neutral and positively-charged fused-ring molecules such as pyrene, coronene and ovalene, either completely or partially hydrogenated, have been invoked to account for both the observed IR emission features in nebulae [2] and the observed diffuse interstellar absorption bands [3]. The very recent detection of additional sharp emission features [4] has led to the proposal that much simpler linear fused-ring molecules such as naphthalene, anthracene and tetracene are responsible for the IR emission [5]. For example, anthracene has been suggested as the most abundant of these linear polyacenes in the Orion Ridge [5]. Consequently there is a need to understand the chemistry of PAH ions and neutrals, particularly as regards to their growth in the gas phase at high and low temperatures and pressures. There has been considerable speculation in the scientific literature about such growth, but quantitative experimental measurements of the individual steps of growth are almost nonexistent. Here we report the results of an experimental study which is directed specifically toward the identification of ion/molecule reactions which may form naphthalene cations from benzene cations. Ionized naphthalene is the simplest ionic PAH. Its growth from benzene cations may serve as a prototype for analogous growth of larger PAH ions.

Growth of PAH ions or molecules may be envisaged to proceed in at least two different ways: either directly by cross-bonding in the side-on approach of extended chain-like molecules such as cumulenes or polyacetylens or through the successive build-up of hexagonal rings starting with benzene as the nucleus [6]. Both ionic and neutral versions of these mechanisms are possible. Laboratory measurements already have demonstrated the feasibility of forming benzene in the gas phase with ion/molecule reactions involving acyclic 3-carbon units. For example, formation of the benzenium ion (protonated benzene) has been shown to be possible in ionized allene and ionized propyne with the bimolecular reactions (1) and (2) [7]. The benzenium ion may be neutralized to

$$H_2C = C = CH_2^* + H_2C = C = CH_2 - C_6H_7^* + H$$
 (1)

$$HC = C - CH_3^* + HC = C - CH_3 - C_8H_7^* + H$$
⁽²⁾

benzene by proton transfer or recombination with electrons as shown in reaction (3). $C_6H_6^+$ and $C_6H_7^+$

$$C_{6}H_{7}^{*} + M, e - C_{6}H_{6} + MH^{*}, H$$
 (3)

are also known to be formed from 2-carbon units in ionized acetylene by the successive addition of acetylene to $C_2H_2^+$ and $C_2H_3^+$, respectively, but the structures of the $C_6H_n^+$ ions which are formed in these cases have not been elucidated [6]. Neutralization to benzene in this case would require electron transfer or proton transfer.

Here we explore the ability of a cetylene and diacetylene to add to the benzene cation by ion/molecule reactions to form ionized naphthalene. We can imagine a two-step synthesis with acetylene, perhaps with ionized ethynylbenzene or ionized ethenylbenzene as intermediates, and a one-step synthesis with diacetylene. Chemical reactivity and ion photodissociation tests are used to determine whether any $C_{10}H_8^+$ which is produced is ionized naphthalene.

Experimental

All measurements of rate constants and product distributions were performed with the Selected-Ion Flow Tube (SIFT) apparatus in the Ion Chemistry Laboratory at York University which has been described in detail elsewhere [8,9]. Ions were formed either by electron impact in our usual manner with electron energies at around 75 eV, or by chemical ionization. The latter option was chosen for the formation of $C_6H_6^+$ from benzene and $C_{10}H_8^+$ from naphthalene to minimize the possible internal energy content of these ions. NO⁺ and Si⁺ were found to have the appropriate electron recombination energies and were selected to achieve the charge transfer reactions (4) and (5)

$$NO^* + C_6 H_6 \rightarrow C_6 H_6^* + NO \tag{4}$$

$$Si^* + C_{10}H_* - C_{10}H_*^* + Si$$
 (5)

in the flow tube upstream of the reaction region. The ionization energies of NO (9.26436 \pm 0.00006 eV). C_6H_6 (9.2459 \pm 0.0002 eV), Si (8.15172 \pm 0.00003 eV) and $C_{10}H_8$ (8.14 \pm 0.01 eV) are such that reactions [4] and [5] are exothermic by only 0.018 and 0.01 \pm 0.01 eV, respectively [10]. Both charge

transfer reactions were found to be sufficiently rapid to achieve the desired ionization and both were observed to proceed in competition with formation of adduct ions.

All the SIFT experiments were performed in helium carrier gas at ca. 0.35 Torr. No attempt was made to investigate the pressure dependence of rate constants and product distributions. Traces of water vapour in the helium buffer gas were removed by passing the buffer gas through a zeolite molecular sieve at 77K. The reactant gases D_2 , C_2H_2 , NO, and trimethylamine (all Matheson) had minimum purities of 99.5, 99.6, 99.0 and 99.0% respectively. The diacetylene was prepared by the alkaline hydrolysis of 1,4-dichlorobut-2-yne and was stored at Dry Ice temperature to avoid polymerization. Experiments with H_3^+ as "chemical ionization" reagent indicated a purity of greater than 99%. Benzene and styrene (both Aldrich) were used as their vapours, diluted with helium as 10 mol% and 5 mol% mixtures, respectively.

Confirmatory charge transfer and photodissociation experiments were carried out on a homebuilt FTICR mass spectrometer at the University of Florida equipped with a 2 Tesla superconducting magnet and a 2.54 cm cubic cell, controlled by a Nicolet FTMS-1000 electronics console (now available from Extrel) [11]. This system has been customized to allow the introduction of laser light into any of three laser windows on the source side or two windows on the solids inlet flange, and is equipped with two pulsed valves (General Valve Corp., Model 9-181-900) for sample introduction in addition to two standard leak valves.

In all FTICR experiments ions with frequencies from 10 kHz to 2.667 MHz were excited and 25 to 50 time domain signals (depending on signal strength) containing 16 K data points were averaged. The time domain signal was apodized using a modified Blackman-Harris window function [12] and zero-filled once prior to Fourier transformation. A 2 volt trapping potential was used; lower voltages resulted in decreased trapping efficiency. Ions were formed by 12 eV electron ionization in all experiments. The FTICR approach has been described in detail previously [13,14,15]. The chemicals used were high grade and subjected to several freeze-pump-thaw cycles before use. Purity was checked by looking at the FTICR spectrum and no untoward peaks were observed.

The frequency tripled output (355 nm) of a Quantel Nd:YAG laser (Model 581C, now available from Continuum) was used for ion photodissociation. The beam entered the vacuum chamber through one of the windows shown in Fig. 1 of Reference [11], was turned near the FTICR analyzer cell by a quartz prism, entered the cell via a 1 cm diameter hole in an excite plate, made a single pass through the cell, and exited through a 1 cm hole in the opposite excite plate in a manner similar to that shown for the "cw-CO₂ laser beam" in Figure 1 of Reference [16]. Estimated energy

per pulse (pulse width ca. 8 ns) incident on the trapped ions was 50 mJ in a beam of ca. 1 cm diameter.

Results

1. <u>Reactions with $C_6H_6^+$ Cations</u>

The rate constants and products determined with the SIFT apparatus for the reactions of $C_6H_6^+$ cations derived from benzene by charge transfer with NO⁺ are summarized in Table 1.

 $C_6H_6^+$ did not react with acetylene with a measurable rate, $k \le 4 \ge 10^{-13}$ cm³ molecule⁻¹ s⁻¹, irrespective of whether it was produced by electron impact or by chemical ionization. Available enthalpies of formation [10] indicate that the elimination of molecular hydrogen to form ionized ethynylbenze according to reaction (6) is 5 kcal mol⁻¹ exothermic so that it might be expected to

$$C_6H_6^* + C_2H_2 - C_6H_5C_2H^2 + H_2$$
(6)

occur. Several addition reactions to form an isomer of $C_8H_8^+$ such as ionized ethenylbenzene, for example, are also exothermic. But there was no evidence for the formation of such products, not even the formation of an adduct ion, perhaps weakly bound by electrostatic interaction. Also, there was no evidence for the formation of $C_8H_7^+$ by H-atom elimination.

In sharp contrast to the reaction with acetylene, $C_6H_6^+$ was found to add diacetylene at close to the collision rate! The effective bimolecular rate constant for reaction (7) in helium buffer gas at

$$C_{6}H_{6}^{*} + C_{4}H_{2} - C_{10}H_{8}^{*}$$
⁽⁷⁾

0.34 Torr was measured to be 5.0 x 10^{-10} cm³ molecule⁻¹ s⁻¹ which is within a factor of two of the collision rate constant (see Table 1).

The counter-reaction of ionized diacetylene (produced by electron impact at 75 eV) with neutral benzene was observed in separate experiments to proceed rapidly and predominantly by charge transfer as shown in reaction (8). The rate constant for this reaction was found to be

$$C_4H_2^* + C_6H_6^4 + C_4H_2$$
 (8)

1.0 x 10^{-9} cm³ molecule⁻¹ s⁻¹. The charge transfer is exothermic by 0.933 eV in this case since the ionization energy of diacetylene is 10.1080 ± 0.003 eV. Up to 5% of the reaction could have proceeded by proton transfer since $C_6H_7^+$ was observed to be formed, but the source of this ion could not be identified unambiguously. The adduct ion was also observed to be formed, but only in trace amounts, $\leq 2\%$. The $C_6H_6^+$ was observed to react further with benzene to form the ionized dimer with an effective bimclecular rate constant $\geq 5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ in helium at 0.345 Torr.

We can also report that ionized benzene does not react with deuterium, $k \le 2 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹. Neither D-atom transfer, reaction (9), or D-atom exchange, reaction (10), were

$$C_6 H_6^+ + D_2 - C_6 H_6 D^+ + D$$
 (9)

$$C_6 H_6^* + D_2 - C_6 H_5 D^* + HD \tag{10}$$

observed to occur. H-atom transfer can be computed to be endothermic by 23 kcal mol⁻¹ from the know enthalpies of formation of $C_6H_6^+$ and $C_6H_7^+$ [10].

 $C_6H_6^+$ was also observed to transfer a charge to styrene, k = 7.8 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹. This charge transfer reaction is exothermic by 0.82 eV.

2. Reactions with $C_{10}H_8^+$ Cations

2.(a) SIFT Results.

The high efficiency established for the addition reaction of $C_6H_6^+$ with diacetylene suggests the presence of strong chemical bonding in the $C_{10}H_8^+$ adduct ion which could mean that the adduct ion is ionized naphthalene. This possibility was tested chemically in two ways. First, the reactivity of $C_{10}H_8^+$ derived from the addition reaction was compared with that of $C_{10}H_8^+$ produced by the direct ionization of naphthalene. Charge transfer was chosen as the probe reaction and trimethylamine and styrene as the electron-donor molecules. Trimethylamine and styrene have ionization energies of 7.82 ± 0.06 and 8.43 ± 0.06 eV respectively, and closely bracket the ionization energy of naphthalene, 8.14 ± 0.1 eV [10]. Second, the $C_{10}H_8^+$ derived from the addition reaction was reacted with NO. If diacetylene is weakly bound to $C_6H_6^+$ it should be displaced by NO in a "switching" reaction of type (11) leading to covalently-bound protonated nitrobenzene.

Thermochemical data for the enthalpy of dissociation of protonated nitrosobenzene into $C_6H_6 + NO^+$ and $C_6H_6^+ + NO$ indicate values of 46.1 and 46.0 kcal mol⁻¹, respectively [10]. We can therefore

$$C_6 H_6^* C_4 H_2 + NO - (C_6 H_6 NO)^* + C_4 H_2$$
 (11)

expect reaction [11] to occur if $D(C_6H_6^+, C_4H_2) < 46$ kcal mol⁻¹. Reents and Freiser have observed the addition of NO⁺ with C_6H_6 for which they have determined a binding energy of 45.9 kcal mol⁻¹ which is consistent with formation of protonated nitrosobenzene [17].

The $C_{10}H_8^+$ ions were observed to react in an identical fashion whether they were produced by the chemical reaction (7) or from naphthalene by the charge-transfer reaction (5). They were \cdot observed not to react with styrene, $k \le 10^{-12}$ cm³ molecule⁻¹ s⁻¹, but fast reactions were observed with trimethylamine with the channels indicated in reaction (12) which correspond to charge and

$$C_{10}H_8^* + (CH_3)_3N - (CH_3)_3N^* + C_{10}H_8$$
 (12a)

$$- (CH_3)_3 NH^+ + C_{10}H_7$$
 (12b)

proton transfer. Rate constants of 1.0 and 1.1 x 10^{-9} cm³ molecule⁻¹ s⁻¹ and branching ratios of 0.7/0.3 and 0.8/0.2 were obtained for the chemically-formed adduct and the ionized naphthalene, respectively. These results all agree within the experimental uncertainty of the measurements and so suggest that the chemically-formed adduct is ionized naphthalene. Furthermore, a loosely-bound adduct ion with $D(C_6 H_6^+, C_4 H_2) > 19$ kcal mol⁻¹, as required by the failure to observe charge transfer with styrene, could not lead to the proton transfer channel observed with trimethylamine which is endothermic for $D(C_6 H_6^+, C_4 H_2) > 13.5$ kcal mol⁻¹.

No reaction was observed with NO, $k < 2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. This observation argues against the chemically-formed $C_{10}H_8^+$ ion being a weakly-bound adduct ion with $D(C_6H_6^+, C_4H_2) < 46 \text{ kcal mol}^{-1}$.

Also, no reactions were observed with deuterium, $k \le 4 \ge 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. D-atom transfer, reaction (13), and D-atom exchange, reaction (14) did not occur. Available enthalpies of

$$C_{10}H_{B}^{*} + D_{2} - C_{10}H_{B}D^{*} + D$$
(13)

$$C_{10}H_8^* + D_2 - C_{10}H_7D^* + HD$$
(14)

formation and the proton affinity of naphthalene indicate that H-atom transfer is endotherm by 34 kcal mol⁻¹ [10]. While this result does not provide structural information, it is of interest for the chemistry of interstellar clouds which can be rich in molecular hydrogen.

The $C_{10}H_8^+$ ions were found to be unreactive with C_2H_2 , $k \le 1 \ge 10^{-12}$ cm³ molecule⁻¹ s⁻¹. It is interesting to note that when electron impact was used to generate $C_{10}H_8^+$ from naphthalene a small fraction, < 5%, of the $C_{10}H_8^+$ was observed to react rapidly with acetylene in the manner shown in reaction (15). This H-atom elimination reaction was attributed to an excited form of $C_{10}H_8^+$. No

$$(C_{10}H_8^*)^* + C_2H_2 - C_{12}H_9^* + H$$
⁽¹⁵⁾

such reaction was observed when $C_{10}H_8^+$ was created by reactions (5) and 7) in which much less excess energy is available for excitation.

A further reaction of $C_{10}H_8^+$ with C_4H_2 to form $C_{14}H_{10}^+$ was observed to occur, but at a rate much slower, $k \le 1 \ge 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹, then the addition of the first C_4H_2 molecule to $C_6H_6^+$.

2.(b) FTICR Results.

FTICR studies of $C_{10}H_8^+$ reactivity also employed charge transfer reactions of these ions with 1,2,4,5- tetramethyl benzene (I.E. = 8.04 eV) and p-methyl-aniline (I.E. = 7.24 eV) [10]. Because of the high trate of charge transfer of $C_4H_2^+$ with C_6H_6 , experiments which formed $C_{10}H_8^+$ began with ionization of benzene alone, followed by introduction of diacetylene via a pulsed valve after the end of the electron beam pulse. Thus no $C_4H_2^+$ ions could be formed by electron ionization, and $C_{10}H_8^+$ ions were produced only via Reaction (7). Following ejection of any unreacted $C_6H_6^+$ ions from the FTICR cell, a second pulsed valve was then used to introduce either 1,2,4,5- tetramethylbenzene or p-methylaniline. The $C_{10}H_8^+$ ions produced via Reaction (7) readily charge exchanged with these two charge transfer agents, as did $C_{10}H_8^+$ ions produced by electron ionization of naphthalene. However, $C_{10}H_8^+$ ions produced by electron ionization of azulene (I.E. = 7.41 eV, [10]), were unreactive with 1,2,4,5 - tetramethylbenzene and underwent charge transfer to a lesser extent with p-methylaniline than did the $C_{10}H_8^+$ ions produced by the other two methods.

3. Photodissociation of C₁₀H₈⁺ Cations,

The 355 nm photodissociation behaviour of the $C_{10}H_8^+$ formed by the reaction of benzene cations with diacetylene was compared to that of $C_{10}H_8^+$ formed by electron ionization of naphthalene and azulene. The irradiation wavelength was chosen to coincide with an allowed transition "f - g" between the highest occupied and lowest unoccupied Π orbitals of the naphthalene cation [18,19]. In photodissociation studies involving the $C_{10}H_8^+$ ion/molecule reaction product, any unreacted $C_6H_6^+$ ions were ejected from the cell, so that the m/z 128 ion was the only ion present at the time of laser irradiation. When naphthalene and azulene were ionized by 12eV electrons, only m/z 128 ions were observed and these were subjected to the 355nm light. Identical experimental conditions were employed for naphthalene and azulene photodissociation experiments.

Jesults are shown

The photodissociation behavior seen for the adduct ion produced in the $C_6H_6^+ + C_4H_2$ reaction and the $C_{10}H_8^+$ ion produced from naphthalene was identical. The major product ion was seen at m/z 102 and corresponds to $C_8H_6^+$ produced by loss of acetylene from the parent ion. Minor products were observed at m/z 39, 50, 51, 63, 74, 126, and 127. The photodissociation spectrum observed for the $C_{10}H_8^+$ produced from azulene differed from that of the other two by the additional appearance of peaks at m/z 76, 77, and 78, and a reduced intensity of the m/z 126 peak. A partial explanation for the different spectrum of azulene can be found in a consideration of the photodissociation A photon of wavelength 355 nm possesses an energy equivalent to 80.5 kcal mol⁻¹. energetics. The photodissociation pathways observed for $C_{10}H_8^+$, irregarless of how it was produce, all require more than this amount of energy. Indeed, the absorption of two or more photons by the $C_{10}H_8^+$ ion is required to cause dissociation. For example, the major dissociation which was observed, loss of C_2H_2 to form $C_8H_6^+$, is endoergic by 90 kcal mol⁻¹ for azulene cations, and by 106 kcal mol⁻¹ for naphthalene cations [10]. One possible explanation for the enhanced abundance of m/z 76 ions in the photodissociation spectrum of azulene parent ions versus that in the spectra of naphthalene parent ions and $C_{10}H_8^+$ ions formed via reaction (7), is that the most stable forms of the $C_6H_4^+$ ion (m/z 76) and C_4H_4 molecule can be formed from azulene⁺ by absorption of only two 355 nm photons (146 kcal mol⁻¹, [10]), while absorption of three 355 nm photons (162 kcal mol⁻¹, [10]) is needed to form this particular ion and neutral pair from naphthalene⁺. A similar argument holds for the formation of the phenyl cation and the C_4H_3 neutral from azulene⁺ for which about 149 kcal mol⁻¹ is required compared to compared to the 165 kcal mol⁻¹ required for the formation of these species from naphthalene⁺ [10]. The reason for the enhancement of m/z 78 and the decrease in m/z 126 is not understood.

Discussion

With only 0.018 eV of excess energy, the chemical ionization of benzene by NO^+ can be expected to leave the benzene structure intact and to result in the formation of the benzene radical cation in the SIFT experiments. Furthermore, the numerous collisions which this ion undergoes with helium atoms before entering the reaction region should ensure that the benzene radical cations are also thermalized to the temperature of the helium carrier gas. The SIFT measurements show clearly that benzene radical cations produced in this way add rapidly to diacetylene helium carrier gas at 0.34 Torr and 296 ± 2 K. The addition is remarkably efficient, occurring in one of every two collisions. In sharp contrast, the addition reaction with acetylene proceeds with a rate more than 1000 times slower under the same conditions. The large rate constant and high efficiency obtained for the diacetylene addition reaction, together with the observed failure of the "switching" reaction of the adduct with nitric oxide, provide compelling evidence for the formation of a stable product ion involving covalent bonding. Formation of essentially all of the possible covalently-bonded isomers of $C_{10}H_8^+$ is expected to be exothermic. For example, we may note that available enthalities of formation indicate that the addition of diacetylene to benzene ions for form ionized naphthalene is exothermic by 115 kcal mol⁻¹ [10]. Now we need to ask which of these isomers is (are) formed preferentially.

There are, of course, many isomers of $C_{10}H_8^+$. Unfortunately, the enthalpies of formation of only a very few have been characterized in the gas phase so far. The recent compilation of Lias et al. [10] lists only the ions of naphvalene, azulene and naphthalene of which the naphthalene ion is the most stable. Other bicyclic isomers, e.g. ionized 1-methylene-1-H-indene (benzofulvene) or 2methylene-2-H-indene (isobenzofulvene), and several substituted monocyclic isomers are also possible, but little is known about them or even the corresponding neutral parent molecules. Only a few of the neutral isomers of $C_{10}H_8$ have been successfully synthesized so far and often not in the absence of other isomers such as naphthalene which appears to be the most stable [20,21,22]. Given this sparsity of information on enthalpies of formation, we cannot rely on thermochemistry to provide a means for discriminating between the various possibilities.

Can mechanistic considerations help? At least three types of bonding need to be considered: acyclic addition leading to substituted benzene ions, cycloadditions of the Diels-Aider type, and additions of C_4H_2 across the ring. [2 + 2], [2 + 3] and [2 + 4] Diels-Aider-type additions would lead to ionized 1-vinyl-benzocyclobutadiene, 1-methylene indene and naphthalene, respectively. Of these, the cycloaddition to form ionized naphthalene may be favoured since it demands the least amount of shifting of hydrogen-atoms. [4 + 2], [4 + 3] and [4 + 4] additions of C_4H_2 across the $C_6H_6^+$ ring may lead to a three-dimensional structures for the adduct ion. There is no a priori reason for preferring any one of these three types of bonding in the adduct ion. We may suggest, however, that if cycloaddition is preferred, formation of ionized naphthalene may be favoured.

Molecular-orbital considerations can provide a plausible mechanism for the formation of ionized naphthalene as follows. During the initial interaction pi-coordination with one of the triple bonds of diacetylene (with donation/back-donation) leads to the weakening of the triple bond. This may be followed by sigma-bonding to a carbon atom of the benzene ring with syn-orientation of the second triple bond. This promotes additional pi-stabilization via intramolecular pi-interaction with benzene (again with donation/back-donation), again with weakening and polarization of the triple bond. Ab initio calculations by Wu and Houk [23] have shown that such a transition state in the syn-configuration is energetically more favourable than the corresponding anti-configuration. From this syn-configuration, 1,2 addition to the benzene ring becomes favoured in view of the possible rotations about the two single bonds of "diacetylene", in view of the alteration of charge in the benzene ring which leads to a coulombic gradient which favours the 2 position [24], and in view of the lengthening of the 1,2 C-C bond in benzene as a result of a change in hybridization of sp² to sp³ at the 2 position. This mechanistic path allows formation of a new 1,6 C-C bond and ultimately stabilization resulting in formation of the naphthalene ion.

It is also of interest to note previous results of an experimental study of the addition of 1,3butadiene to the benzene cation reported by Gross and co-workers [25]. The addition was observed in the high-pressure source (0.1 to 0.7 Torr) of a tandem mass spectrometer in a 1:1 mixture of benzene and 1,3-butadiene ionized by electron impact. Collision-assisted decomposition, CAD, spectra were used to provide structural information. A two-step mechanism involving the initial formation of a 2-phenyl-2-butene cation which subsequently ring-closes to the 1-methylindan cation was proposed on the basis of closely matching CAD spectra at high and low pressures (low and high energies), respectively. Other possibilities which were ruled out, however without direct comparisons of CAD spectra, were the [2 + 4] cycloaddition to form bicyclo[4.4.0.]deca-2,4,8 triene cation, the [2 + 2] addition to form 7-vinyl-bicyclo[4.2.0]octa-2,4-diene, and the [4 + 2] addition to form 7-vinylbicyclo[2.2.2]octa-2,5 diene. The extent to which this study of the 1,3-butadiene addition provides an analogy for our study of the addition reaction with diacetylene is questionable since our experiments were performed with ground-state $C_6H_6^+$ cations and involved a different adduct molecule, but the methodology of the 1,3-butadiene investigation is instructive.

Chemical reactivity and ion photodissociation rather than collision-activated decomposition was employed in this study as a probe for structure. In principle, the unambiguous identification of the $C_{10}H_8^+$ adduct ions by any of these methods would require the systematic investigation of the reactions of all of the possible isomeric ions of $C_{10}H_8^+$. This is clearly not practical. For the most part the neutral isomers are difficult or impossible to synthesize in a pure form, as already indicated. Their ionization energies and enthalpies of formation are almost completely unknown, as are the chemical ionization charge-transfer reactions which might be required to selectively produce the structurally intact ion. In the SIFT experiments we have focused instead on a comparative reactivity study with ionized naphthalene since ionized naphthalene is likely to be the most stable isomer of $C_{10}H_8^+$ and so likely to be favoured as the product in the addition reaction. In the FTICR experiments both naphthalene and azulene were used in the comparative ion photodissociation and charge transfer studies.

The SIFT charge-transfer bracketing experiments with styrene and trimethylamine in the SIFT establish a window for the ionization energy of the $C_{10}H_8$ species produced in the addition reaction between 7.82 and 8.43 eV. The ionization energy of naphthalene, 8.14 eV, falls within this window as may that of naphvalene, (I.E. = 8.0 eV, [10]). The ionization energy of azulene, 7.41 eV [10] falls outside, as may that of 1-methylene indene if it is significantly lower than that of indene (I.E. = 8.14 eV, [10]).

The FTICR charge transfer experiments reinforce and improve on the SIFT results in that the observation of the charge transfer reaction of the adduct ion with 1,2,4,5-tetramethyl benzene decreases the width of the window to between 8.04 and 8.43 eV. The FTICR results also clearly exclude the possibility of formation of ionized azulene as, of course, is required by this window. On the basis of these results it seems that the $C_{10}H_8^+$ produced by the addition reaction might well be ionized naphthalene.

The proposal that the observed adduct ion $C_{10}H_8^+$ is ionized naphthalene becomes more credible when the SIFT results of the comparative reactivity test with trimethylamine are considered. There is agreement, within experimental error, both in the total rate constants for reaction and, more significantly, in the product distributions for the charge and proton transfer reaction channels. We would expect the product distribution especially to be sensitive to the isomeric structure of $C_{10}H_8^+$ in which case this result alone should provide compelling evidence for the formation of ionized naphthalene.

Finally, the ion photodissociation results are also consistent with the assignment of the naphthalene structure to the product $C_{10}H_8^+$ of the addition reaction of $C_6H_6^+$ with C_2H_2 as the

-

photodissociation behavior of this ion is identical to that of $C_{10}H_8^+$ produced from naphthalene by electron impact.

The failure for acetylene to react with benzene ions in the SIFT experiments is curious. Formation of ionized ethynylbenzene by the elimination of H_2 is exothermic by 12 kcal mol⁻¹ but was not observed to occur. The addition reaction to form ionized ethenylbenzene (styrene) is itself exothermic by 58 kcal mol⁻¹. Other addition reactions to form $C_8H_8^+$ isomers are also substantially exothermic but apparently kinetic barriers exist to prevent their rapid occurrence at room temperature. So our experiments show that direct growth by addition of diacetylene is preferred over sequential growth by reactions with acetylene.

As for the further growth of the naphthalene cation, it is interesting to note that some addition of diacetylene to the naphthalene cation was observed in the SIFT experiemnts but at a much slower rate (more than 500 times slower) than that for addition to the benzene cation. In contrast, acetylene and styrene were observed not to add to the naphthalene ion at all. These results imply that further addition of diacetylene to form anthracene or phenanthrene cations may be possible but with a much reduced rate, at least at room temperature. At flame temperatures these higher-order addition reactions may well be more facile.

Current opinions on the production and loss of interstellar PAH's have recently been reviewed by Turner [26] who indicates that PAH's are probably formed mostly in the hot, dense envelopes of evolved stars from which they are ejected into the interstellar medium. Perhaps they also become incorporated into hydrogenated amorphous carbon surfaces as proposed by Duley and Jones [5] or condense to form larger graphitic grain particles. Unsaturated hydrocarbon chain molecules are known to be present in circumstellar envelopes and methylacetylene is a known interstellar molecule [26]. Although association reactions in the interstellar medium must take place radiatively because of the low density, collisional association becomes possible in dense circumstellar envelopes [16]. It is therefore conceivable that association reactions of the type identified by reactions [1] and [2] proceed to form benzene ions and that further reactions with diacetylene contribute to the formation of PAH ions in these envelopes. Also one may speculate that this chemistry is not fundamentally dissimilar to that leading to PAH ions in fuel-rich hydrocarbon flames which develop soot particles.

The observation that diacetylene and not acetylene adds to the benzene cation may have implications for analogous neutral reactions. Little is known about the onset of the gas-phase production of PAH molecules by neutral reactions. The current status of our knowledge recently has been surveyed by Frenklach and Feigelson in a numerical kinetic investigation of the likely chemistry in carbon-rich circumstellar envelopes [27]. The chemistry was adopted from studies of soot production in hydrocarbon pyrolysis and combustion. It is activated by H-atom abstraction rather than ionization and is restricted to acetylene addition as the dominant mechanism of carbon growth. For example, growth of naphthalene from benzyne is construed to occur via the reaction sequence (16). There are essentially no experimental data or theoretical calculations available for these

reactions. While the results reported here for ionic reactions are not directly relevant to the neutral scheme presented in equation (16), they do point toward the possibility of a significant uncertainty in the kinetics of the acetylene chemistry and to the potential importance of diacetylene chemistry which was not considered by Frencklach and Feigelson [27]. For example, now we need to ask whether C_6H_5 cannot directly react with diacetylene and whether such a one-step synthesis for $C_{10}H_7$ is preferred to the three-step mechanism given in reaction [16].

Clearly the data base for the kinetics of individual reactions important in the growth of PAH molecules by either neutral or ion chemistry is still severely limited. Here we have shown that some of this data may now be in reach, at least for ions. However, the many possible isomeric variations make the task a difficult one. To make the task more manageable at York University, we are currently in the process of adding an ion trap to our SIFT mass spectrometer in order to make available the structural information which can be provided by CAD experiments.

ACKNOWLEDGEMENTS

DKB thanks the Natural Sciences and Engineering Research Council of Canada for the financial support of the research performed in the Ion Chemistry Laboratory at York University, and Dr. J. Hrusak for stimulating discussions on the mechanism of the diacetylene addition reaction. JAZ and JRE thank the U.S. Office of Naval Research for partial support of work at the University of Florida.

References

- 1. H.F. Calcote, Combustion and Flame, 42 (1981) 215.
- (a) W.W. Duley and D.A. Williams, Mon. Not. R. Astr. Soc., 196 (1981) 269. (b) A. Leger and J.L. Puget, J.L. Astr. Ap., 137 (1984) L5. (c) L.J. Allamandola, A.G.G.M. Tielens and J.R. Barker, Ap. J. (Letters), 290 (1985) L25.
- 3. (a) G.P. Van der Zwet and L.J. Allamandola, Astr. Ap. 146 (1985) 76. (b) A. Leger and L.B. d'Hendecourt, Astr. Ap. 146 (1985) 81. (c) M.K. Crawford, A.G.G.M. Tielens and L.J. Allamandola, Ap. J. (Letters) 293 (1985) L45.
- 4. P.F. Roche, D.K. Aitken and C.H. Smith, Mon. Not. R. Astr. Soc. 236 (1989) 485.
- 5. W.W. Duley and A.P. Jones, Ap. J. (Letters) 351 (1990) L49.
- D.K. Bohme, in "Structure/Reactivity and Thermochemistry of Ions", Eds. P. Ausloos and S.G. Lias, D. Reidel Publ. Co., Dordrecht, 1987, p. 219.
- 7. S.G. Lias and P. Ausloos, J. Chem. Phys. 82 (1985) 3613.
- G.I. Mackay, G.D. Vlachos, D.K. Bohme and H.I. Schiff, Int. J. Mass Spectrom. Ion Phys., 36 (1980) 259.
- 9. A.B. Raksit and D.K. Bohme, Int. J. Mass Spectrom. Ion Phys. 55 (1983) 69.
- S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin and W.G. Mallard, J. Phys. Chem. Ref. Data, 17 (1988) Suppl. 1.
- 11. More detail about this home-built vacuum system, including a figure, can be found in J.A. Zimmerman, S.B.H. Bach, and J. Eyler, J. Phys. Chem., 95 (1991) 98.
- 12. F.J. Harris, Proc. IEEE, 66 (1987) 51.
- 13. T.A. Lehman and M.M. Bursey, in "Ion Cyclotron Resonance Spectrometry", John Wiley and Sons, New York, (1976).
- 14. G. Baykut and J.R. Eyler, Trends in Anal. Chem., 5, (1986) 44.
- M.V. Buchanan and M.B. Comisarow, in "Fourier Transform Mass Spectrometry: Evolution, Inovation, and Applications", ACS Symposium Series 359, M.V. Buchanan (ed.), American Chemical Society, Washington, D.C. (1987).
- 16. J.A. Zimmerman, C.H. Watson and J.R. Eyler, *Anal. Chem.*, (1991) in-press.
- 17. W.D. Reents and B.S. Freiser, J. Am. Chem. Soc., 103 (1981) 2791.
- 18. T. Shida and S. Iwata, J. Am. Chem. Soc., 95 (1973) 3477.
- A solid state absorption spectrum of the naphthalene cation is reproduced in Figure 3 of R.C. Dunbar and R.J. Klein, J. Am. Chem. Soc., 98 (1976) 7994.
- 20. G. Neumann and K. Mullen, J. Am. Chem. Soc., 108 (1986) 4114.
- 21. U. Burger and F. Mazenod, Tetrahedron Lett., 23 (1976) 22885.
- 22. G. Gross, R. Schulz, A. Schweig and C. Wentrup, Angew. Chem. Int. Ed. Engl. 20 (1981) 1021.

- 23. Y.-D. Wu and K.N. Houk, J. Am. Chem. Soc., 109 (1987) 2226.
- 24. R.F.W. Bader and C. Chang, J. Phys. Chem., 93 (1989) 5095.
- 25. R.W. Holman, M.D. Rozeboom, M.L. Gross and C.D. Warner, Tetrahedron, 42 (1986) 6235.
- 26. B.E. Turner, Space Sci. Reviews, 51 (1989) 235.
- 27. M. Frenklach and E.D. Feigelson, Ap. J., 341 (1989) 372.

Table 1. Summary of rate constants (in units of 10^{-9} cm³ molecule⁻¹ s⁻¹), reaction efficiencies and products determined for reactions of $C_6H_6^+$ radical cations produced from benzene by chemical ionization with NO⁺ at 296 ± 2 K.

Reaction ^a	k _{exp} ^b	k _{exp} /k _c ^c
$C_6H_6^+ + D_2 \rightarrow \text{no reaction}$	≤ 0.0002	≤ 0.0002
$C_6H_6^+ + C_2H_2 \rightarrow \text{no reaction}$	≤ 0.0004	≤ 0.0004
$C_6H_6^+ + C_4H_2 \rightarrow C_{10}H_8^+$	0.5	0.5
$C_{6}H_{6}^{+} + C_{6}H_{6} \rightarrow C_{12}H_{12}^{+}$	> 0.05	> 0.04
$C_6H_6^+ + C_8H_8^+ \rightarrow C_8H_8^+ + C_6H_6$	0.78	0.5

 C_6H_6 and C_8H_8 represent the vapours of benzene and styrene, respectively.

- The effective bimolecular rate constant is given at a total helium pressure of 0.35 Torr and a helium density of 1.15×10^{16} atoms cm⁻³. The accuracy of the rate constants is estimated to be better than \pm 30%.
- k_{exp}/k_c is a measure of reaction efficiency. Collision rate constants, k_c, are derived from the combined variational transition state theory classical trajectory study of T. Su and W.J. Chesnavich, J. Chem. Phys., 76 (1982) 5183.

Figure Caption

Figure 1. Photodissociation spectra (355 nm) of $C_{10}H_8^+$ ions. a. Ions formed by the reaction $C_6H_6^+ + C_4H_2$. b. Ions formed by electron ionization of naphthalene. c. Ions formed by electron ionization of azulene. Other conditions are as described in the text.

Table 2. Summary of rate constants (in units of 10^{-9} cm³ molecule⁻¹ s⁻¹), reaction efficiencies and products determined for the reactions of $C_{10}H_8^+$ cations derived (a) by ionization of naphthalene or (b) from the association of ionized benzene with diacetylene at 296 ± 2 K.

Reaction ^a	k _b		
	(a)	(b)	
$C_{10}H_8^+ + D_2 \rightarrow \text{no reaction}$	≤ 0.0004	≤ 0.0004	≤ 0.0004
$C_{10}H_8^+ + C_2H_2 \rightarrow no reaction$	≤ 0.001	≤ 0.001	≤ 0.001
$C_{10}H_8^+ + C_4H_2 \rightarrow C_{14}H_{10}^+$	≤ 0.001	≤ 0.001	≤ 0.001
$C_{10}H_8^+ + C_8H_8 \rightarrow no reaction$	≤ 0.001	≤ 0.001	≤ 0.0007
$0.8(0.7) \\ C_{10}H_8^+ + (CH_3)_3N \rightarrow (CH_3)_3N^+ + C_{10}H_8$	1.1	1.0	1.0
$0.2(0.3) \rightarrow (CH_3)_3 NH^+ + C_{10}H_7$			
$C_{10}H_8 + NO \rightarrow no reaction$	≤ 0.0002	≤ 0.0002	≤ 0.0003

- ^a C_8H_8 represents the vapour of styrene. The product distribution are rounded off to the nearest 5% and are estimated to be accurate to within ± 30%.
- ^b The effective bimolecular rate constant is given at a total helium pressure of 0.35 Torr and a helium density of 1.15×10^{16} atoms cm⁻³. The accuracy of the rate constants is estimated to be better than \pm 30%.
- k_{exp}/k_c is a measure of the reaction efficiency. Collision rate constants, k_c, are derived from the combined variational transition state theory classical trajectory study of T. Su and W.J. Chesnavich, J. Chem. Phys., 76 (1982) 5183.

Relative Ion Intensity

. •

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)^{*} Chemistry Division, Code 1113 800 North Quincy Street Arlington, Virginia 22217-5000

.

Dr. James S. Murday (1) Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Robert Green, Director (1) Chemistry Division, Code 385 Naval Weapons Center China Lake, CA 93555-6001

Dr. Eugene C. Fischer (1) Code 2840 David Taylor Research Center Annapolis, MD 21402-5067

Dr. Elek Lindner (1) Naval Ocean Systems Center Code 52 San Diego, CA 92152-5000

Commanding Officer (1) Naval Weapons Support Center Dr. Bernard E. Douda Crane, Indiana 47522-5050 Dr. Richard W. Drisko (1) Naval Civil Engineering Laboratory Code L52 Port Hueneme, CA 93043

Dr. Harold H. Singerman (1) David Taylor Research Center Code 283 Annapolis, MD 21402-5067

Chief of Naval Research (1) Special Assistant for Marine Corps Matters Code 00MC 800 North Quincy Street Arlington, VA 22217-5000

Defense Technical Information Center (2) Building 5, Cameron Station Alexandria, VA 22314