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Abstract - An earlier discussion of the capacity of (e mean-square-constrained Poisson
channel is continued. Using a theorem of Hoeffding, it is shown that the channel informa-
tion capacity is the same with or without an on-off keying (OOK) constraint on the channel
encoder intensity, affirmatively resolving the conjecture made in our earlier discussion.
Thus the known formula for the information capacity of the OOK-constrained channel
applies as well in the absence of an OQOK constraint. Adapting arguments used by Wyner to
address the peak-constrained Poisson channel, it is also shown that the coding capacity with
no OOK constraint is equal to the corresponding information capacity. This establishes that
all four capacities - coding and information, with and without OOK-constrained encoder -
are equal.
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INTRODUCTION

We continue the discussion of the capacity of the mean-square-constrained Poisson channel with
causal feedback and general channel base measure from [5]. The Poisson channel is a continuous-time
additive noise model. In the model, the channel output Y is a stochastic process Y, =X, +N, where
N=(N,)os.sr is the channel noise and X=(X, Jo<.<r is the transmitted signal into which is encoded the
message 6={0, }o<:,<r (assumed to be independent of the noise process N.) Here, X and N are Poisson-
type point processes [8] with respective compensators

A, = [1sb(ds), B, = [\b(ds) = Ab([04])
0 0

for all ¢+ € [0,T]. b is called the channel base measure and is assumed to be finite; for convenience we
assume by =1 where by =b([0,T])/T. Also, the noise int-nsity A>0 is considered as a real constant. A
mean-square constraint £ [7(,2]31’2 is imposed on the encuder intensity ¥,. ¥, is also restricted to be
predictable, allowing only causal feedback. For more on the predictability restriction and mean-square
constraint and for further general description and discussion of the Poisson channel model, the reader is
invited to review [S].

A special case of both practical and theoretical interest is that in which the encoder intensity x, is
constrained to switch between only two values. In this situation an "on-off” keying (OOK) constraint is
said to be imposed on the encoder intensity in recognition of the fact thai wien we range of x, is res-
tricted to just two values, then one of these values should be zero (10 minimize the effective channel
noise intensity.) In an actval implementation of such an encoder, transitions of ¥, between its zero
value and its second (positive) value might typically be accomplished by tumming on and off a power
source. Hence the nomenclature “on-off keying”. We consider the Poisson channel with and without an
OOK constraint on the encoder intensity.

Information capacity is defined in terms of the average mutual information /7(8,Y] in the mes-
sage and channel output processes, 8 and Y over the interval {0,T]. Let W, iy, and [or be the marginal
and joint measures induced by the message and output processes, 0 and Y, on the spaces Sq, Sy, and
Sox Sy where S and Sy are the spaces of trajectories of 6 and Y over the interval [0,T]. Write the
induced product measure as Wexy. Then, the average mutual information in 8 and Y over the interval
(0,77 is [9]

Hexr

rey] = E[ln ;“‘" }

provided pay<<Loxr; Otherwise /7[0,Y]=c0. Expressions exist for the average mutual information over
the interval [0,T] in the Poisson channel with base measure b and channel output intensity n,. Under
the conditions of the channel model

ITe,Y]1=E

T
t[(n. Inm, 7, In7, )b (dt )J M

where M, =%, +A is the channel output intensity and 7, is the predictable version of the mean of 7,
conditioned on the path of Y up to time ¢. The channel information capacity is

1
Ciapo = Sl.:)p Sl)](p FIT[G,Y]

where 9 is any jointly measurable process defined over the interval [0,T'] and x=x(6,Y) is any predict-

able functional satisfying the mean-square constraint E [x*<P?]. We write €395 and Cpwro, respectively,

for the information capacities with and widiout OOK-constrained encoder intensity. To emphasize the




dependence of the information capacity on the channel parameters A and P, we use the notation
Cnro =D\ P), CX%X=D,(\,P).

The functions D(A,P) and D,(A,P) are easily shown [5] to be first-order homogeneous; i.e.,
D(zA,zP)=2D(\P) and D,(z),2P)=2D, (A, P). Thus to generally determine the information capaci-
ties Covro and €228, one need only find expressions for

D(,P), D,(0,P), DQ1,P), D,(1,P).

In our initial treatment {5] of the Poisson channel with a mean-square constraint, a simple for-
mula was obtained for the information capacity for the special case of zero noise intensity. There it was
shown that

D(©,P)=D,(0,P) = %P.

The case of nonzero noise intensity was found to be less tractable and an explicit expression for the
information capacity was found only for the special case in which the encoder intensity is OOK-
constrained:

P? ok(l/a)+1

- sup LR L LA S
DO(LP) - a2k(lie)s P2 o In sz(a/Pz)/a+l (2)

where

The remainder of the paper is comprised of three sections. The first uses a theorem of Hoeffding
(7} to show that D(1,P)=D,(1,P), allowing (2) to be used to calculate the capacity Cpro=D (A, P).
The sccond section introduces coding capacity and shows it to be equal to the information capacity.
Some final remarks are made in the last section.
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INFORMATION CAPACITY

The purpose of this section is to show that the information capacities €pro and CRes are equal.
This is known to be true in the special case A=0 of zero noise intensity. Thus, showing Cnro=CRee
amounts to showing

DQ1,P)=D,(1,P). 3

(3) is proved in part by an application of a theorem of Hoeffding [7] on the extrema of expectations.
We prepare the way for the use of this theorem with some notation and several lemmas.

Let B(P) denote the class of nonnegative random variables X satisfying E [X2]=P2. Also let
B*(P)cB(P) denote those members X of B(P) which are discrete. We use B, (P) to denote the
class of X € B*(P) with no more than k atoms. We also frecly use B(P), B (P), and B,(P) to
denote, respectively, the classes of distribution functions generated by X € B(P), X e B"(P), and
X € B, (P). The distance d(F ,G) between two distribution functions F,G € IB (P) is defined to be

d(F.G)=5SWIF(x)-Gx)l.
We also define the functional ¢(+') for F € B(P) by
O(F) = ;J:(x +1In(x + 1) F (dx).
®(F ) exists and is finite for all F € B (P). Indeed, ¢(F)<P2+P forall F € B(P).
Lemma I: For every €>0 and F € IB (P) there exists a distribution function F* e B*(P) such that

d(F,F*)<ce. @)

Proof: (4) holds for F'(x):L[%]F *x +A)J/|'%'I for some choice of A>0.

Lemma 2: For every ¢>0 and F € B (P), there exists a >0 such that
IO(F) -0(G)l <€
for all G € B (P) satisfying d(F ,G)<d.

Proof. Let F € B(P). Let G € B(P) be any distribution function such that d (F ,G) <8. Associate
with F and G the truncated distribution functions

FB(X)={F(x), x<B

1, x2B
G(x), =x<B
GB(X)={1 ) x2B °

The idea for the proof is to show that ¢(F) and ®(F;) differ by an arbitrarily small amount for a large
enough choice of B. Likewise for ¢(G ) and ¢(Gp). Next, Fz and G, are approximated by discrete dis-
tribution functions F” and G" with n equal size jumps. We show that the differences I(Fz) - ¢(F ™)l
and (¢(G)—®(G")| can be made arbitrarily small by improving (letting n — o) the approximations of
Fg, Gg by F", G". Finally, to complete the proof, it is shown that, for § 50, IO(F*)~-d(G")! is




arbitrarily small uniformly in G for all G within distance 8 of F.
We have
IO(F)— G < 1OF )—0(F3)l + ING)—&(Gp)! + 10(F5) —§(F ™)
_+ 10(Gp) =G| + 1§(G™) - o(F ™)

where, for positive integers n, F* and G" are discrete approximations of Fz and Gg: F" and G" are,
respectively, the right-continuous versions of the functions

1 1
~[nF O, GO

We have

IO(F)—0(Fz)l < £(x +Din(x + 1DF (dx) — (B + DIn(B + 1)(1-F(B)). %

The integral on the RHS of (5) is finite so B can be chosen so that

{(x +DIn(x + DF (dx) < g, ()

for any g, >0. Now

o

0< (B +DInB +1)(1-F@B)) < g(x +Dinx + DF (dx),

O(F )~ d(Fp)l £ &
for B large enough. We choose B so that (6) and a similar statement for G hold. Then
[OF)-&(G )l < 10(Fp)—¢F ") + 16(Gg) - &G ™)
+ I0(G™)—(F ™) + 2¢,.

Define F, to be the distribution function F"(x)=|nF (x))/n. Let {x;,i=0,1,...,n} be the locations of
the jumps of F, and F"; the jumps of F* are located at (x;, i=0,1,..,n~1) and the jumps of F, are
located at {x;,i=1,2,..,n}. Then

16(F )~ OF ™) < 6(F )= o(F")

= LS Dine + 1) = L 5 + Dinge + 1)
n R

i=]

. + Dln(x, +1) - %(xo+ Din(eg+ 1)

< —(@B +DinB +1).

X x|

Consider n 2[(B + 1)In(Z + 1)/e,]. For any such n and given any £,>0, we have |0(Fg)—-&F")i <€,
Given our choice of B, the same n gives |¢(Gg)—®(G")i <¢&,. Therefore

IOF)-G)H| < IHG™)-HF ) + 28, + 2¢,
for sufficiently large n and B. For d(F ,G)<3,
(G ™)~ OF ™) < §FD)-o(F")




where F.9(x)=F,(x - §). Thus
n-l

HG™")-0(F ™) < —-Z(x, +8+ DInx; +8+1) - ;Z(x, +Din@x; + 1)
=0

nin

Choose d so that
3< 1518, i —xiy)

and define x,,;=x, +8. Then xM—8>x~ for all i =0,1,...,n. Thus
n-l

Z(xn-l + l)ln(xx+l + 1) - - Z(xx + I)In(xl + 1)
i=l

10(FA) =Gl S —

- [(x. F1)INCE, +1) + oy + DINCEray + 1)
— (xo+ DIn(xo+ 1) — (x; + Din(x; + 1):‘

E(B +3+ DInB +3+1).

=

Let n =[(B +2)In(B +2)/e5|. For sufficiently small §&(0,1) and all G € B (P) satisfying d (F.G )<, B

and n can be chosen large enough to give
I(F)- G ) £ 2¢, + 4e;4

for any e=2¢; +4€3>0. This is what we sought to prove.

We are now in a position to use Hoeffding’s theorem.

Lemma 3: Define I [X]=E[XInX]-E [X]InE [X ]. Then

xeBPy X +11 =y Fhpy [ X +11. 0]

Proof: Writing u=E[X] and F for the distribution function of X, we have
b ¢ epr(P) O(F) - (u+ Din(u + 1)]

xempy X +11= pSP

Xele(P) o(F) - U+ Dinu+1)| .
u=EX]

XeB (P)I[X+l] p.SP

Lemmas 1 and 2 show that ¢ satisfies the conditions required in Hoeffding’s theorem (7, Theorem 2.1]
The proof is complete since for constrained first and second moments, Hoeffding’s theorem states that

XelB(P)¢(F) = XelB;(P)cb(F)
E[X] u=E[X]

Lemma 3 is enough to prove that three-level encoder intensities are sufficient to realize channel
information with rate approaching Cpwo. Two-level encoding - the on-off keying case - can be shown to
be sufficient by inspection of /[X + 1] for X € B4(P). We express X € [B4(P) by

0, wp. l-p—-p;

X =49a,, wp.p,
az, W.p.p2




for nonnegative numbers p,p,,a1,d, such that p,+p,<1 and p,a? +p,a? <P2 The phrase "with
probability” is abbreviated by "w.p." here. Consider the 4-tuple (p,£5,a;,a5) as a point € [E 4 belong-
ing to the set

A = (Z€E p1,p261,6,20, p1+pyS1, prat +pa} <P?.

F@)=I[X +1] defined on A is continuous. To be closed, the set A lacks only the limit points associ-
ated with sequences of points (Z, =(pix,Pu.a14.ad2))] Wwith third, fourth, or both coordinates
@1k, —> o0 as k —>»oo. Therefore the supremum of f (Z) over € A (equivalently, the supremum of
ITX +1] over X € B4(P)) is to be found as the value of f (Z) for some particular value (or values) of
7€ A or as the limit of a sequence {f (z;)} where {z;} is a sequence of points z; € A with one or both
coordinates ai;,aq —> 0. We consider three cases exhausting the possibilities for the supremum of
f(2): the case in which at least one coordinate of 7 is zero, the case in which the supremum is the
limit with @, — oo or @, —» 0, and the case in which no coordinate of 7 is zero.

Let e A have a zero coordinate and suppose the supremum of f () over A is f (Z). In this
case, X actually has only two atoms and two-level encoding suffices to obtain channel information rates
approaching capacity.

Suppose the supremum is the iimit of a sequence {f (z;)} where the coordinate a,; of z, tends to
infinity and a4 is bounded. Then

Jim s 22) = fim [p1e(@ss + Dinayy +1) + pouan + Din(az + 1)
~ (P +pudu +DIN(pua +pudy + 1)]
< lim [(lea Z)@ay + Din(@ye +1) + por(@g + Din(@z + 1)
= (pman + Din(puaz + 1)
< ’}iﬂ[pu(an +DIn(aqy +1) — (ppay + DIn(pyayn + 1)] ;

This shows the supremum to be dominated by the limit of a sequence of values of 7[X, + 1] where
X, € By(P). The symmetric case in which g, — o while q;; is bounded and the case where both
coordinates tend to infinity are handled similarly.

Finally, consider the case in which the supremum of f(Z) is given by f(Z,) for some
Z,€ ANE" where [E*={Z¢ [E py,p2.a,,a,>0). Then the supremum is actually the maximum and
we have the nonlinear programming problem: Maximize the objective function f () over ¢ [E* sub-
ject to the constraints g ,(z) <0 and g,(Z) <0 where

g(@) =22} + 252 - P2,
828) =2, +z5-1.

In the terminology of nonlinear programming, E* is the feasible set and any feasible point satisfying
constraints g,(Z) <0, g,(2) <0 is said to be attainable. In the present case, the set of attainable points 1s
exactly the set A NIE™. Also in the present case, the feasible set is open and f, g,, g, meet required
differentiability conditions [1], so any given attainable point z, which maximizes f must satisfy the
Kuhn-Tucker conditions {1]:

V@)~ u Vg (3,) — uVea(7,) = 0, ®3)
u;gi(%)=0, i=12 )
u; ZO, i=l,2

where the Lagrange multipliers u,, u, are unique. It follows from (9) that u,=0 or g4(2,)=0. The latter
case g,(7;,)=0 reflects the situation in which p,+p,=1; a situation in which X has only two atoms. If
£4(Z,)#0 then #,-0. Then in (8) we have




(a;+Din@,+1) - a, - a,In(p,a; +paa,+1) — uat =0, (10)
(@z+ DIn(a,+1) - a, - a,In(p,a, +pra,+1) —ua$ =0, (1
piln(a,+1) - p\In(p,a;+praz+1) - 2upia, =0, (12)
paln(az+1) — paln(pia+paaz+1) - 2u\pa; = 0. (13)

Multiplying (12) by a/p, and subtracting the result from (10) gives u;=£&(a;) where
E(x) = L_'_ln(2£+_1) . x>0.
x
A similar calculation using (11) and (13) gives u,=&(a,). The inverse & exists since

1
x+1

2_x>0

E'kx) = —2; (x + Din(x +1)- 2
x 2

for x >0. u, is unique for a given Z, so a,=a,, mplying that X € B,(P). Thus, in this last case as
well, two-level encoding suffices. This proves

Lemma 4:

su su
xemyp) X +11= XGBE(P.)![X +1].

Theorem 1: Suppose the encoder intensity x, of a Poisson channel with noise intensity A is
predictable and mean-square-constrained E [,2] <P2. For this channel

Coro = Ciirs = D, (A P)

so that

o0,P)= 2."
e

and, for A>0,

P2 ak(Ala)+ M\
DAP)="8 —In
M P)=aca a  PY%(a/P¥la+A

(14)
with A =[a, =) and a, satisfying a,% (}.'a,) = P2

Proof. The case A=0 is known [5] to be true. Also in [5], it was shown that €8 =D (AL P) as
given in (14) for A>0. Obviously, Caro > C 25 so all that remains to be shown is that

CWSDoa'P) (15)

for A>0. D and D, are homogeneous (5] so, actually, it is enough to show (15) for the case A=1.
From (1) and Jensen’s inequality

1716,Y] Iy, +16(0.TD) =1+ 1T. (16)
Here in (16) ¥, is just any random variable belonging to B (P). Therefore,
Cowo < x SH Y X +1] =x€5,g§(,,)1[x+1] a7

where the equality in (17) follows from Lemmas 3 and 4. It follows from [5, Lemma 4] that the RHS
of (17) is D,(1,P). Hence the proof is complete.




CODING CAPACITY

Coding capacity is the threshold on transmission rates below which essentially error-free com-
municaton is possible. Coding capacity is founded on ideas of chanici codes, decoding schemcs, and
decoding error probability. A code (M ,T,P,) for the mean-square-constrained Poisson channel is a sct
of M equally likely nonnegative waveforms x,, (1), t€ (0.T], m =1,.... M corresponding (o unigue mes-
sages and satisfying the constraint

-

l il ]
— xa(t)dt <P,
™ Am ()

Mx
~|—
Ot

m=1

where the integers 1,2,...,3f are labels for members of the set of possible mecsages. The error probabil-
ity associated with D is
M

P,=—=3P(DY5)=miz.())

1
M
where Yge Sy denotes the path (Y,: re [0.T]}. A code (M.T,P,) has rate R =(1'THinM . A code rate
R 1s said to be achievable, if for all £>0, there exists a code (M. T,P,) whose parameters sausly
M 2e®T with P, <e for T sufficiently large. The coding capacity Ccopmg is the supremum of achiev-
able rates. €8s 1s the coding capacity of the OCK-constrained Poisson channel in which it is addi-
tionally required that the encoded message waveforms . (¢}, m=1,...M of any code (M ,T, P, ke
on no more than t=7o values.

Coding capacity can be related to information capacity using Fano’s mequality {4].
Lemma 5. € copmg < HMSUp € ppo.
T -0

Proof: Tue proof uses Fano’s inequality {2], (4] in a straightforward adaption of proofs [2]. [6]
given 1n the context of other channel models.

Applying Lemma § to the Poisson channel with and without the OOK constraint, we have

00K 00K
Ceoows € Covo,  Ccoonne S Civio -

We showed in Theorem 1 that Cppo=Cies and, of course, €E5%xne < Ceopmc SO, t0 show that the four
capaciues

00K 00K
CINFO ’ CL\'FO . CCODINO » d:‘CODL"JO

are cqual, we need only show that €&55wa > CRve. This is accomplished using an argument emploved
by Wyner {10] to address the peak-constrained Poisson channel.

Wyner’s approach [10] is to consider the Poisson channel as a hinary discrete memoryless chan-
nel {6]. The message is assumed to be a stream of 1s and Os produced at the ratc of one symbol 8,
each A seconds. The encoded message waveform y,(t) is assumed 10 be constant in the intervals
((n-DAnal),n=1,2,.. taking on only the values , =0 or x, =a; 0 if the message symbol is 8, =0
and a if the message symbul 1s 0, =1. The receiver decoder identifies the message symbol as 1 if
Yo=¥,0-Y_1ya= 1. The message symbol is identified as O otherwise. The discrete channel created by
using the Poisson channel 1 this way has channei wansition probabilities

por= P (¥, =118,=0) =Ae ™,




pu=P{Y,=18,=1) = A+a) **2

The coding capacity of the OOK-constrained Poisson channel is lower bounded by the coding capacity
of the binary channel with these transition probabilities. Coding capacity and information capacity are
equal (6] for the discrete memoryless channel so

ACSEre = S 18.Y] (18)

where o=P%A7 and g =P{6=1}.In (18) and in the definition of ¢, the subscript n on 8 and Y is no
longer relevant and has been dropped. The restriction ¢ <& in (18) accounws for the mean-square con-
straint £ [ ]=gA2<P2

Define A (x) to be the binary entropy function

h(x)=-xlnx - (1-x)In(1-x)

and let
f@.A)Y=h(pa(l-9)+pq) —qh(pn) - (1-g)h(pq).
Then
sl 16.Y1= YF 11y, Y]
=2 [H[Y] - H[Y!X]J

= qSl;% [h(Pox(l -q)+pnuq) - qh(py) -0 —tl)h(Pm)J1

= % f(q.4). (19)

Let s =NA . For small A, we can write
gpi + (1=q)por = sAAe ™1 ~g) + g(s + DA Ae 426 *D
=SAA1-@)1-5AA+0(A)) + g+ DAA[l-AA(s + D)+ 0(A)
=5AA(l-q)+gsAA + qgAA+0(A)
=AA(s +q)+0(A).
We have A(x)=—-xInx +x +O(_z2) as x 20 so
flq.A)=~(pal-@)+pugin(poi(l-¢)+p11q)
+poall-g)+pug + Opa(l1-9)+pnq)
+qpulnpiy - gpy + O(pth)
+(1-gpalnpe - (1-@)por + O(par)
= ~(po(1-g)+pug)in(poi(l-¢) +pnq)
+gpulnpy + (1-g)pailnpo + 0(4)
= (1-¢)sAAlnsA A) + g (5 + DA AIn((s + DA Q)
- (s+@)AAIn((s +¢)AA) + 0(A)
= AA[(] -q)slns + (1-g)sIn(A Q)
+q(s+Dinis +1) + q(s+DIn(AY)
~ (s+@)ns +¢) - (s +¢)In(s + ¢)In(A A)} +0(4)
= AA{(I -g)slns + g(s + Din(s + 1) - (s +¢)In(s +q)] + o). {20
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When combined, (18), (19) and (20) give

CL%ne 2 j‘;%A[(l —@)slns + g (s + DIn(s +1) = (s +q)In(s +q)] .

We have
(1-g)slns + g (s + Dln(s +1) = %\(l-q)lln}‘.+q(l+A)ln0»+A)J - %—(l+qA)lnA
and
(s +@)n(s +q) = -;—(qu Jn(h+qA) ~ —;—(l+qA)lnA .
Therefoic
C8wa 2 )3 [(1 —@ANA + g(A+A)In(A+A) - (A +qA )m(x+qA)J

=x ) [E (X +M)In(X +A)] ~ (E[X]+W)InE [X] +1)J

=y es,gg(,,)l[x +A]

= CR25.
This proves

-2

Theorem 2: For the Poisson channel with mean-square-constrained encoder intensity E [(?] <
and noise intensity A,

Coro = C&?‘g = Ceopmvg = nggme =D (X,P)-

The capacities in Theorem 2 are all capacites of the Poisson channel with causal feedback. How-
ever, as observed in {S], Cowo and €2 are also no-feedback capacities. Therefore Ceopmc and €&
are also no-feedback capacities.




OTHER REMARKS

We are justified to an extent by Theorem 2 in speaking of the capacity of the mean-square-
constrained Poisson channel without using qualifying descriptors; for nonrandom noise intensity A all
the capaciti.s - information and coding, with and without OOK constraint, with and without causal
feedback - are the same. The availability of the expression (14) for the channel capacity ¢nables us to
consider questions of time-varying channel parameters A(z) and P (¢). Strictly analogous to proof for the
peak-constrained Poisson channel in {3], it can be shown that for b -measurable A(¢) and P (t)

T
Cowo = 5D (M), P ()b (dr). @
0

It is easily shown that (21) is the information capacity with or without causal feedback. Further restric-
tions on A(t) and P (¢) to provide for stationarity such as periodicity or almost periodicity allow expres-
sions analogous to (21) to be given for Ccopme. See [4].

Given (21) for the information capacity, it is possible to give a treatment of jamming along the
lines given in [3) for the peak-constrained Poisson channel. We take as our jamming model

Ne =% +A(@) +J,

where 1, is the intensity of the channel output and J, is the intensity - possibly stochastic - of the
Poisson-type process G, jamming the channel. Also, we make the assumptions that G, is independent of
the message and noise processes 8, and N, and that

T
1
?6[E[J,]b(dt) <P;.

Under these assumptions it can be shown that from the standpoint of minimizing information capacity,
the optimal jamming intensity is nonrandom and follows the form of a waterfilling schemum [2]; i.e.,

JP = [aP ()= )]

where o020 satisfies
T
%J;[aP )= AOTb(dt) = P, .

It is huped that knowledge of the form of D (A, P) given here will also shed light on other ques-
tions relating to channel error exponent, random noise intensity, and marked Poisson channels.




1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(10]

1?

REFERENCES

M.S. Bazaraa and C.M. Shetty, Nonlinear Programming, Theory and Algorithms, John Wiley &
Sons, New York, 1979.

R. Blahut, Principles and Practice of Information Theory, Addison-Wesley Publ. Co., Reading,
MA., 1987.

M.R. Frey, "Capacity of the Poisson Channel with Time-Varying Noise Intensity and Jamming,"
LISS Tech. Report Series, No. 25, Department of Statistics, University of North Carolina, May
1988.

MR. Frey, “Coding Capacity and Error Exponent of the Poisson Channel with Time-Varying
Channel Parameters,” LISS Tech. Report Series, No. 38, Department of Statistics, University of
North Carolina, August 1989.

M.R. Frey, "Information Capacity of the Poisson Channel with Mean-Square-Constrained Encoder
Intensity,” LISS Tech. Report Series, No. 43, Department of Statistics, University of North Caro-
lina, April 1990.

R.G. Gallager, Information Theory and Reliable Communication, Wiley & Sons, Inc., New York,
1968.

W. Hoeffding, "The Extrema of the Expected Value of a Function of Independent Random Vari-
ables," Annals of Mathematical Statistics, Vol. 26, pp. 268-275, 1955.

R. Liptser and A. Shiryayev, Statistics of Random Processes, Vol. II, Applications, Springer-
Verlag, New York, 1977.

M.S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-
Day, San Francisco, 1964.

A.D. Wyner, "Capacity and Error Exponent for the Direct Detection Photon Channef - Part I, ;7,"
[EEFE Trans. on Info. Theory, Vol. 34, No. 6, November 1988.




