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INTRODUCTION

We continue the discussion of the capacity of the mean-square-constrained Poisson channel with
causal feedback and general channel base measure from [5]. The Poisson channel is a continuous-time
additive noise model. In the model, the channel output Y is a stochastic process Y, =X, +N, where
N=N)os,r is the channel noise and X=(X, )os,,T is the transmitted signal into which is encoded the
message 0=-{0, 'o- T (assumed to be independent of the noise process N.) Here, X and N are Poisson-
type point processes [8] with respective compensators

t t

At = fyx.b(ds), B, = ,fb (ds) = Xb([O,t)
0 0

for all t E [0,T]. b is called the channel base measure and is assumed to be finite; for convenience we
assume bT= I where bT -b([O,T])/T. Also, the noise int-isity X_>O is considered as a real constant. A
mean-square constraint E [X,2]:P2 is imposed on the encuder intensity Xt X, is also restricted to be
predictable, allowing only causal feedback. For more on the predictability restriction and mean-square
constraint and for further gtieral description and discussion of the Poisson channel model, the reader is
invited to review [5].

A special case of both practical and theoretical interest is that in which the encoder intensity X, is
constrained to switch between only two values. In this situation an "on-off' keying (0OK) constraint is
said to be imposed on the encoder intensity in recognition of the fact thai when tie range of X, is res-
tricted to just two values, then one of these values should be zero (to minimize the effective channel
noise intensity.) In an actual implementation of such an encoder, transitions of X, between its zero
value and its second (positive) value might typically be accomplished by turning on and off a power
source. Hence the nomenclature "on-off keying". We consider the Poisson channel with and without an
OOK constraint on the encoder intensity.

Information capacity is defined in terms of the average mutual information IT [0, Y] in the mes-
sage and channel output processes, 0 and Y over the interval [0,T]. Let Po, Ptr, and toi be the marginal
and joint measures induced by the message and output processes, 0 and Y, on the spaces So, St, and
SoxSr where So and Sy are the spaces of trajectories of 0 and Y over the interval [0,T]. Write the
induced product measure as po k. Then, the average mutual information in 0 and Y over the interval
[0,T] is [9]

IT[ 0 ,Y] = E In

provided pI <<poy; otherwise T[O,Y]= o. Expressions exist for the average mutual information over
the interval [0,T] in the Poisson channel with base measure b and channel output intensity q,. Under
the conditions of the channel model

Ir[0, y] = E (T11T-itlnAl)b((1)

where 1, =X, +X is the channel output intensity and A, is the predictable version of the mean of r1,
conditioned on the path of Y up to time t. The channel information capacity is

CNj - sup sup IT [0,y]

where 0 is any jointly measurable process defined over the interval [0,T] and X= X(,Y) is any predict-
able functional satisfying the mean-square constraint E[Xt_< p 2]. We write CNo and Cwo, respectively,
for the information capacities with and wltiiout OOK-constrained encoder intensity. To emphasize the
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dependence of the information capacity on the channel parameters X and P, we use the notation

C = D (X,P), = D, (X,P).

The functions D(X,,P) and Do (X,P) are easily shown [5] to be first-order homogeneous; i.e.,
D (z L, zP) =zD (X, P) and Do (z X, zP ) = zD0 (X, P). Thus to generally determine the information capaci-
ties Ca., and CM0o, one need only find expressions for

D(O,P), Do(O,P), D(1,P), Do(1,P).

In our initial treatment [5] of the Poisson channel with a mean-square constraint, a simple for-
mula was obtained for the information capacity for the special ase of zero noise intensity. There it was
shown that

D(O,P) = Do(O,P) = 2-P .
e

The case of nonzero noise intensity was found to be less tractable and an explicit expression for the
information capacity was found only for the special case in which the encoder intensity is OOK-
constrained:

D,(,) s p fn , k (1/a) + 1 (2)Do(1,P) = sup P kla+

c 2k(I/a) < PS X p2 k(a/P2)/X+ (

where

k(x)= + -x.

The remainder of the paper is comprised of three sections. The first uses a theorem of Hoeffding
[7] to show that D(1,P)=Do(1,P), allowing (2) to be used to calculate the capacity Ce 0o=DQ( P).
The second section introduces coding capacity and shows it to be equal to the information capacity.
Some final remarks are made in the last section.
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INFORMATION CAPACITY

The purpose of this section is to show that the information capacities Cm and CO are equal.
This is known to be true in the special case X = 0 of zero noise intensity. Thus, showing CNM = CCo°°K
amounts to showing

D (1,P) = D, (1,P). (3)

(3) is proved in part by an application of a theorem of Hoeffding [7] on the extrema of expectations.
We prepare the way for the use of this theorem with some notation and several lemmas.

Let B (P) denote the class of nonnegative random variables X satisfying E[X']=P2. Also let
B*(P)cB(P) denote those members X of B(P) which are discrete. We use Bk (P) to denote the
class of X E B(P) with no more than k atoms. We also freely use B (P), B *(P), and Bk (P) to
denote, respectively, the classes of distribution functions generated by X e B (P), X E B *(P), and
X E B (P). The distance d (F ,G) between two distribution functions F ,G E B (P) is defined to be

d(F,G) = sup IF (x) - G (x) I

We also define the functional O(P) for F E B (P) by

O(F)= f(x + 1)ln(x + 1)F(dx).

O(F) exists and is finite for all F E B (P). Indeed, 0(F) <P 2 +P for all F E B (P).

Lemma 1: For every e >0 and F E B (P) there exists a distribution function F° B "(P) such that

d(F,F*) < e. (4)

Proof (4) holds for F*(x)=LI1F(x +A)j/rI1 for some choice of A>0.
E C

Lemma 2: For every e>0 and F E B(P), there exists a 8>0 such that

10(F) - O(G) I <E

for all G E B (P) satisfying d (F,G) < S.

Proof Let F r B(P). Let G E B (P) be any distribution function such that d (F ,G ) <5. Associate
with F and G the truncated distribution functions

F\F(x), x <B
FB (X) = L F1x, x>B

fG 1, x <!B

GB (X) = L G1x, x>B

RXf, 1 , x B

The idea for the proof is to show that O(F) and (FB) differ by an arbitrarily small amount for a large
enough choice of B. Likewise for O(G) and O(GB). Next, FR and GB are approximated by discrete dis-
tribution functions F" and G" with n equal size jumps. We show that the differences I(FB)-¢(F')I
and I (GB)-0(G')I can be made arbitrarily small by improving (etting n -- oo) the approximations of
FR, GB by F', G'. Finally, to complete the proof, it is shown that, for 8--+0, I0(F")-0(G")I is
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arbitrarily small uniformly in G for all G within distance 8 of F.

We have

1N(F)-O(G)I -! 1(F)-'(F,)I + I(G)-O(GB)I + IO(FB)-O(F')I

+ IO(GB)-O(G")I + IO(G")-O(F")I

where, for positive integers n, F" and G" are discrete approximations of FB and GB: F and G" are,
respectively, the right-continuous versions of the functions

±FnF(l, 'FnG(-)l.
nt ni

We have

IO(F)-,O(FB)I <5 I(x + 1)ln(x + 1)F (dx) - (B + 1)ln(B + 1)(1 - F(B)) (5)

The integral on the RHS of (5) is finite so B can be chosen so that

(x + 1)ln(x + I)F(dx) < e (6)

for any eI>0. Now

0 <(B + 1)ln(B + 1)(1-F(B)) < i(x + 1)ln(x + 1)F(dx),

so
IO(F)-¢(FB)l :f- el

for B large enough. We choose B so that (6) and a similar statement for G hold. Then

If(F)-O(G)i < If(FB)-O(F")I + IO(GB)-O(G")I

+ IJ(G")-O(F")I + 2 1.

Define F. to be the distribution function F"(x)=LnF(x)J/n. Let {xi, i =0, 1,...,n ) be the locations of
the jumps of F, and F"; the jumps of F" are located at (x, , i =0, 1 ..., n-1) and the jumps of F. are
located at (xi , i = 1,2,..., n Then I "I FB )- (F ")I -< :5(F.)- O(F R)

= -(xi + 1)ln(xi + 1) - - (xi + 1)ln(xi + 1)
n i=I n .

= -(x. + 1)ln(x + 1) - l(xo+ 1)ln(x 0+ 1)
nt n

_ -(B + l)ln(B + 1).

Consider n >F(B + 1)In(D + 1)/e 21. For any such n and given any E2>0, we have 1(FB)-O(F')I <E2.

Given our choice of B, the same n gives IO(GB)-O(G')I--E2. Therefore

IJ(F)-O(G)I < k G)-O(Fm)I + 2e, + 2E2

for sufficiently large n and B. For d (F ,G )<5,
IO(a)- O(F")I < (F.8)-O(F)
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where FA6(x ) = F. (x - 8). Thus

I (G)-4(F) i +(xi +8+ 1)ln(x +8+ 1) - - (xi + 1)ln(xi + 1)
n i= n i=O

Choose 5 so that
min
!_ 5 i:n,(Xi -Xi-)

and define x,,l =x, +5. Then x+1 -5 xj for all i =0, 1,...,n. Thus

IO(F.)- O(G.)I < - .(xj+j + 1 )ln(xi+l + 1) - -XE(xi + 1)ln(xi + 1)
n i=, n i=,

' [(x. + 1)n(x. + 1) + (x,+, + 1)ln(x.+, + 1)
nL

- (x0+ 1)ln(xo+ 1) - (xI + 1)ln(x +1)]

2 -(B +S+ 1)ln(B +S+ 1).
n

Let n =[(B +2)ln(B +2)/E 3]. For sufficiently small 8E(0,1) and all GE JB(P) satisfying d(F,G)<8, B
and n can be chosen large enough to give

IO(F)-O(G)I !5 2e, + 4F3

for any e=2 1 +4E 3 >0. This is what we sought to prove.

We are now in a position to use Hoeffding's theorem.

Lemma 3: Define I [X] =E [X lnX] -E [X]lnE [X]. Then
su (P I [X + I]su=X Su PpI[x+ x. (7)

Proof. Writing g = E [X] and F for the distribution function of X, we have

S [ SU L U[P) O(F) -(.+ l)ln(i.t+ )g< L =E[XI

:Sup I[ ] sup [ sup +]

X e3(P +X ) O(F) - (+i(P) g=ECXI

Lemmas 1 and 2 show that 0 satisfies the conditions required in Hoeffding's theorem [7, Theorem 2.1].
The proof is complete since for constrained first and second moments, Hoeffding's theorem states that

sup sup
x cB(P)O(F) = X EB 3(P)O(F).
j±=EIXI ji=E[XI

Lemma 3 is enough to prove that three-level encoder intensities are sufficient to realize channel
information with rate approaching Cemo. Two-level encoding - the on-off keying case - can be shown to
be sufficient by inspection ofl[X + 1] for X e B3(P). We express X E B 3(P) by

0, w.p. 1-PI-P2

X =a,, w.p. pI
La 2 , W-p. P2
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for nonnegative numbers pl,P2,al,a 2 such that Pi+P2 -< 1 and pta2 +p 24p 2 . The phrase "with

probability" is abbreviated by "w.p." here. Consider the 4-tuple (p 1,pC2,a ,a 2) as a point ?r E 4 belong-
ing to the set

A = {~E E4 : P1, p 2 ,al,a 2 >O, p, +p2 -5 1, pla +p 2 a 2 <p2}.

f () =I [X + 1] defined on A is continuous. To be closed, the set A lacks only the limit points associ-
ated with sequences of points (=(pik,p2,,aik,a2k)} with third, fourth, or both coordinates
a 1k.a2k --> as k -- -. Therefore the supremum of f (z over ?E A (equivalently, the supremum of
I [X + 1] over X e B 3(P)) is to be found as the value off () for some particular value (or values) of
Ve A or as the limit of a sequence (f (-)] where (4 I is a sequence of points k e A with one or both
coordinates alk ,a2k-->-. We consider three cases exhausting the possibilities for the supremum of
f (z: the case in which at least one coordinate of Y, is zero, the case in which the supremum is the
limit with aI -*o- or a 2 -- 00, and the case in which no coordinate of ? is zero.

Let !0 E A have a zero coordinate and suppose the supremum of f (-) over A is f (z'0). In this
case, X actually has only two atoms and two-level encoding suffices to obtain channel information rates
approaching capacity.

Suppose the supremum is the iimit of a sequence f ()) where the coordinate alk of 4 tends to
infinity and a2k is bounded. Then

limif (-k) p ilpk (a Ik + 1)ln(a 1, + 1) + p 2.t(a 2j + 1)ln(a 2A + 1)

- (plka k +p2,a2k + 1)ln(pIkaU +p2ka2A + 1)]

S lim (P2/a 2)(alk + 1)ln(alk + 1) + pz (a2k + 1)ln(a2k + 1)

- (p2ka2k + 1)ln(p2ka2k + 1)]

S lirn 2k.(a 2 + l)ln(a 2 + 1) - (p2 a2 + 1)ln(p 2ka 2 + I)]

This shows the supremum to be dominated by the limit of a sequence of values of I [Xk + 1] where
Xk E B 2(P). The symmetric case in which a 2 -- while alk is bounded and the case where both
coordinates tend to infinity are handled similarly.

Finally, consider the case in which the supremum of f(z) is given by f(?,) for some
rE A riE where E+= {E !E4 : p 1,p 2,al,a2 >O). Then the supremum is actually the maximum and

we have the nonlinear programming problem: Maximize the objective function f(V) over :-E IE sub-
ject to the constraints g (z-)50 and g 2(5) 0 where

gi(Z-) zIz3 + z 2 Z4 - p 2

g2() = z 1 + Z2 - 1

In the terminology of nonlinear programming, E' is the feasible set and any feasible point satisfying
constraints g()<0, g92 (z)0 is said to be attainable. In the present case, the set ot attainable points is
exactly the set A n E + . Also in the present case, the feasible set is open and f, g1 , g 2 meet required
differentiability conditions [1], so any given attainable point 7o which maximizes f must satisfy the
Kuhn-Tucker conditions (1]:

Vf (4,) - u1 Vg(Zo) - u 2Vg 2(o) = 0, (8)

u, gi(?,,) = 0, i = 1,2 (9)

ui _0, i=1,2

where the Lagrange multipliers u1, u2 are unique. It follows from (9) that u2= 0 or g 2(Y,) =0. The latter
case g 2(Z!)=0 reflects the situation in which pl+p2= I; a situation in which X has only two atoms. If

g2() 0 then u -0. Then in (8) we have
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(a, I1)ln(a I +I1) --a,1 - a 1ln(p la, +p2a2 + 1) - u la 12 = , (10)

(a 2 + 1)In(a 2 + 1) - a 2 - a 2 n(oIaI+p2a 2 + 1) - ua = 0, (11)

pln(aI + 1) - plln(p a1 +p 2a 2
+ 1) - 2utp aI = 0, (12)

p 21n(a 2 + 1) - p 21n(p a 1 +p 2a 2 + 1) - 2u P2 a2 = 0. (13)

Multiplying (12) by a /p and subtracting the result from (10) gives u I = (a 1) where

x-ln(x + 1) x>0.
x2

A similar calculation using (11) and (13) gives uI=4(a2 ). The inverse -' exists since

4,(X)= 21 [(x+l)ln(x+1) - 1x2 -  >0

for x >0. uI is unique for a given ?, so aI=a 2, nnplying that XE B 2(P). Thus, in this last case as
well, two-level encoding suffices. This proves

Lemma 4:

sup fIX +1] =X SUP !X +1]X EIR?3(P) E Bi 2(P )

Theorem 1: Suppose the encoder intensity X, of a Poisson channce with noise intensity X is
predictable and mean-square-constrained E [X2] < P 2. For this channel

Ceo = CL = D0 (%, P)

so that
2,

D (0,P) --
e

and, for X >0,

D (),P)=max p21In ak(X/a)+X (14)aeA a p 2k ka/P 2)/a+ X

with A = [a,oo) and a, satisfying a.2k -a,) = p 2.

Proof. The case X=0 is known [5] to be true. Also in [51, it was shown that CL ooKD(P) as
given in (14) for X>0. Obviously, 'o so all that remains to be shown is that

Ceo <- Do(X,P) (15)

for X>0. D and D, are homogeneous [51 so, actually, it is enough to show (15) for the case X= 1.
From (1) and Jensen's inequality

IT[0, y] !5 I[X, + 1]b([0,T]) = I[X, + 1]T. (16)

Here in (16) X, is just any random variable belonging to B (P). Therefore,
CtM,! 5 (su )I[X+1] =X SP(p) [X+I] (17)

where the equality in (17) follows from Lemmas 3 and 4. It follows from [5, Lemma 4] that the RHS
of (17) is D,(1,P). Hence the proof is complete.



CODING CAPACITY

Coding capacity is the threshold on transmission rates below which essentially error-free com-
munication is possible. Coding capacity is founded on ideas uf chaici;' ,:odes, dccod '-,g schcmcs, anu
decoding error probability. A code (M, T,P,) for the mean-square-constrained Poisson channel is a set
of M equally likely nonnegative waveforms X,, (t), t E[0,T , m = 1....M corresponding to unique mes-
sages and satisfying the constraint

IM T[ '-(t )d, !5-
M =I 0

Let Sy be the space of trajectories of Y on [0,T]. A decoding scheme is a mapping D:Sy 1,2'_ ..
where the integers 1,2 ..... M are labels for members of the set of possible mczsages. The error probabil-
ity associated with D is

1 M

where Y[ Sy denotes the path (Y,: te [0,T}. A code (M,T,P,) has rate R =(I/T)l . A code rate
R is said to be achievable, if for all e>0, there exists a code (M,T,P,) whose parameters saus \

M -eRT with P, <e for T sufficienly large. The coding capacity CcoD0 0 qG is the supremum of achiev-
able rates. McoDNG is the coding capacity of the OK-constrained Poisson channel in which it is addi-
tionally required that the encoded message waveforms X, (t). m = 1. of any code (M, T, P, ) take
on no more than t'. values.

Coding capacity can be related to information capacity using Fano's inequality [4].

Lemma 5: CCODNG! -Jimsup CUITO.
T -- ao

Proof: Th, proof uses Fano's inequality [2], [] in a straightforward adaption of proofs [21, :6;
given in the context of other channel models.

Applying Lemma 5 to the Poisson channel with and without the OOK constraint, we have
COOK,, < C1'Ko.

Ccooia !5 CLJFo, CooL % -(, (N

We showed in Theorem I that Gm = C °°NG and, of course, CODIG -<COOING SO, to show that the four
capacities

CLNFO, O CCOIN, CONo

are equal, we need only show that COO >COOK. This is accomplished using an argument employed
by Wyncr [10] to address the peak-constrained Poisson channel.

Wyner's approach [10] is to consider the Poisson channel as a binary discrete memoryIless chan-
nel [6]. The message is assumed to be a stream of Is and Os produced at the rate of one symbol 0,
each A seconds. The encoded message waveform X,(t) is assumed to be constant in the intervals
((n-l)AnA],n = 1, 2,... taking on only the values X, =0 or X,, =a; 0 if the message symbol is 0,- =0
and a if the message symbol is 0, = 1. The receiver decoder identifies the message symbol as I if
Yn Yn- (,-I)A= I. The message symbol is identified as 0 otherwise. The discrete channel created by
using the Poisson chahancl in this way hab chwinei u'ansition probabilities

Po = P {Y, = 110, =0} = Xe
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Plu = P (Y. = 110. = 1) = (.+a)e - +o a .

he coding capacity of the OOK-constrained Poisson channel is lower bounded by the coding capacity
of the binary channel with these transition probabilities. Coding capacity and information capacity are
equal r6] for the discrete memoryless channel so

ACL, -- q> su [0, Y] (18)

where a=P2/A 2 and q =P [0= 11. In (18) and in the definition of q, the subscript n on 0 and Y is no
longer relevant and has been dropped. The restriction q _<a in (18) accounLs for the mean-square con-
straint E [ qA 2 p 2 .

Define h (x) to be the binary entropy function

h(x) = -xlnx - (I-x)ln(l-x)

and let

f (q,A) h(p 0 1(1-q)+pllq) - qh(pl,,) - (1-q)h(po).

Then

q So" v q So [,
s So q ,IYau [ 1[Y]- ,

C -"

sup [h(pol(1 -q)*P lq) - qh(p 11 ) - (1 -q)h(pol)l

suPff(qA). (19)

Let s = XJA. For small A, we can write

qpui + (I-q)ol = sAAe-AA(1 -q) + q(s + I)AAe -AA (s+l)

= sAA(I-q)[1-sAA+o(A)] + q(s + 1)AA[1-AA(s I1)+o(A)

= sAA(1 -q)+qsAA + qAA+o(A)

= AA(s +q)+o(A).

We have h(x)=-xlnx +x +0(x 2) as x -+-0 so

f(q,A) = -(podl -q)+p 1 q)ln(po(1 -q)--pjuq)

+ pol(1 -q)+plq + O(Pol(I -q)-plq)

+ qp 1llnp11 - qpjj + 0(p,2 )

" (Il-q)po~lnpoj - (I1-q)Pol -, O(pol)

= -(pol(I-q)+pll q )ln( pol(l-q)+pllq)

+ qp 1llnp11 + (1-q)pojlnpoj + o(A)

= (- q)sA Aln(sA A) -- q(s + I)A Aln((s + 1)AA)

- (s +q)AAIn((s +q)A A) + o(A)

AA (1 -q)slns + (I-q)sln(AA)

+ q(s + I)ln(s + 1) + q(s + l)ln(A A)

- (s + q)ln(s +q) - (s +q)ln(s +q)ln(AA)] + o(A)

= Ai[(l -q)s Ins + q(s + l)ln(s + I) - (s +q)ln(s +q)] + o(A). (20)
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When combined, (18), (19) and (20) give

COING > s A[I -q)sIns + q(s + 1)ln(s + 1) - (s + q)ln(s +q

We have

(1-q)slns + q(s + 1)ln(s + 1)= -L- (1-q)kln+q(X+A)lnX+A - (X+qA)lnA

and

(s +q)ln(s +q)= (X+ qA)ln(k+qA) - I ()+qA)lnA.
A' A

Therefor.

C(OOK > supA n(1A)]
CODINGs - q oC; q )XlnX + q (%+A)ln(.+A) - (.+qA)tn(? +qA

=s s p(,)LE[(X+ X)ln(X +X)I - (E [XI+ X)ln(E [I+ )

SSup(p) I[X +X]

COOK
IN"FO•

This proves

Theorem 2: For the Poisson channel with mean-square-constrained encoder intensity E [xCI] .7'

and noise intensity X,

= IN CCODEMG = CO = D (X,P).

The capacities in Theorem 2 are all capacities of the Poisson channel with causal feedback. How-
ever, as observed in [5], C. and NOC are also no-feedback capacities. Therefore CcoD[NG and CODNG

are also no-feedback capacities.



OTHER REMARKS

We are justified to an extent by Theorem 2 in speaking of the capacity of the mean-square-
constrained Poisson channel without using qualifying descriptors; for nonrandom noise intensity X all
the capacitks - information and coding, with and without OOK constraint, with and without causal
feedback - are the same. The availability of the expression (14) for the channel capacity enables us to
consider questions of time-varying channel parameters X(t) and P (t). Strictly analogous to proof for the
peak-constrained Poisson channel in [3], it can be shown that for b-measurable X(t) and P (t)

T

0

It is easily shown that (21) is the information capacity with or without causal feedback. Further restric-
tions on X(t) and P (t) to provide for stationarity such as periodicity or almost periodicity allow expres-
sions analogous to (21) to be given for CCODING. See [4].

Given (21) for the information capacity, it is possible to give a treatment of jamming along the
lines given in [3] for the peak-constrained Poisson channel. We take as our jamming model

71, = Xt + (t) + Jt

where rh is the intensity of the channel output and J, is the intensity - possibly stochastic - of the
Poisson-type process G, jamming the channel. Also, we make the assumptions that G, is independent of
the message and noise processes 0, and N, and that

fE[J, b (dt) P.
To

Under these assumptions it can be shown that from the standpoint of minimizing information cap~acity,
the optimal jamming intensity is nonrandom and follows the form of a %%aterfilling schemum [2]; i.e.,

jo, ___ [a, it) - )(t)r

where c _ 0 satisfies

-!J I t )- .(t )]+b (dt ) = P , .

0

It is hoped that knowledge of the form of D (%, P) given here will also shed light on other ques-
tions relating to channel error exponent, random noise intensity, and marked Poisson channels.
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