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I. INTRODUCTION

The independent increment noise channel is an additive noise communications channel model

incorporating causal feedback in which the noise is a process with independent increments. A diagram ," -. '

of the independent increment noise channel is given in Figure 1. In this model, a random message de- j

INDEPENDENT INCREMENT Accession For
NOISE, N, NTIS GRA&I

DTIC TAB

Unannounced l
MESSAG, 0Justification

X = XS(G,Y) EY, = X +N,
By

Distribution/

Availability Codes

FEEDBACK, Y, Avail and/or -
Dist Special

Figure 1. Independent increm~ent noise channel model. 6 i1

scribed by a stochastic process 0,, 1 e [0,T] is encoded, perhaps using channel feedback, and the

encoded message X, =X,(0, Y) is transmitted. The encoded message is corrupted in transmission by the

addition of an independent increment noise process N,, I E [0,T] so that the signal observed by the

receiver is Y, =X, +N,. The channel model is presented in further detail in the next section.

Within the taxonomy of continuous-time channel models, the independent increment noise chan-

nel occupies a unique position. First, the independent increment noise channel is a natural point of

departure for the study of more general continuous-time channels such as those with conditionally

independent increment noise, Markov noise, or martingale noise. Independent increment noise is a spe-

cial case of all three of these classes of noise processes. Second, the independent increment noise chan-

nel is the continuous-time analogue of the discrete memoryless channel [9]. Thus one finds properties of

the discrete memoryless channel reflected in the independent increment noise channel. For instance, the

capacity of the discrete memoryless channel is not increased by the availability of feedback [2], [17].

The same result holds under certain conditions for the independent increment noise channel [11].

Finally, both the white Gaus.iai ,,ise channel and the Poisson channel with nonrandom noise intensity
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belong to the class of independent increment noise channels. Each of these two channel models is

relevant to modem communication systems: for example, the Gaussian model for satellite systems and

the Poisson model for laser/optical communications.

In this initial treatment of the independent increment noise channel, we derive its information

capacity. We consider only independent increment noise channels with Lvy process noise; that is, sto-

chastically continuous, independent increment noife. The LEvy process can be decomposed into a

continuous-path Gaussian part and a purely discontinuous-path marked Poisson part [6]. The existence

of this decomposition f)ar LEvy noise processes allows us to split the independent inrement noise chan-

nel into Gaussian and marked Poisson parts. Then the information capacity can be calculated using

results for the capacity of the Gaussian and marked Poisson channels. Heretofore, the information capa-

city of the marked Poisson channel in any guise was unknown (although see Davis' treatment [4] of

orthogonally polarized optical channels.) Therefore, to obtain the information capacity of the indepen-

dent increment noise channel, some attention must be given to the marked Poisson channel.

A difficult part of formulating the capacity problem for the independent increment noise channel

is the imposition of a suitable constraint on the channel encoding process. A suitable constraint should

appeal to physical intuition, it should be capable of separation into two parts corresponding to the Lvy

decomposition of the channel noise, and its two parts should admit finite solutions for the capacity of

the corresponding Gaussian and marked Poisson subchannels. A mean-square constraint on a "general-

ized" channel intensity meets all these demands. While the capacity of the white Gaussian noise chan-

nel with mean-square constraint is well-known, such is not the case for the Poisson and marked Poisson

channels. Previous work on the Poisson channel is limited to peak and average constraints [4]. "".. Thus

we present here certain results for the capacities of the mean-square-constrained Poisson and marked

Poisson channels. A fuller treatment of the mean-square-constrained Poisson and marked Poisson chan-

nels is planned for a separate paper.

The remainder of this paper is organized into three sections. The first section describes the chan-

nel model in detail. The second section states the capacity of the channel and outlines the steps in its

derivation. Proofs of results used in this derivation are presented in the last section.



11. CHANNEL MODEL

The noise in the independent increment noise channel is modeled by a Lvy process. The proper-

ties of this process are given in [6], [7]. For convenience certain of these properties are restated here.

The Lvy Process

A stochastic process. k,, 0:t _T, is an independent increment process if, for all 0<to<t1 < ...

<I, <T, the quantities , . , - _ are mutually independent. We say a process is sto-

chastically continuous at time to if

as It -tol ---0. If 4 is stochastically continuous over the whole interval [0,T] (with the definition of sto-

chastic continuity at the endpoints of the interval suitably modified), then is said to be stochastically

continuous. Stochastically continuous processes with independent increments have no discontinuities of

the second kind w.p. 1 [6, p.168]. Every such process has a unique version which is chidlig (right-

continuous with extant left limits). This version of a stochastically continuous, independent increment

process is called a lvy process [7]. Every LUvy process can be represented in terms of independent

Gaussian and Poisson processes as follows [6, Theorem 1, p.271]:

Let ,, 05t :ST, be a Levy process. Let J be the space of jumps which occur at the discontinui-

ties in the paths of 4. Zero is expressly excluded from belonging to J; jumps of size zero are disal-

lowed. For A E Zj, define W, (A) to be the number of points S E [0,1] for which E -,0 A-[0}.

Also define V, (A)= W (A) -FIl, (A) where [l, (A)= E [WI (A)]. Then

=G,+ x,(dx) +i x,(dx) (1)

where G, is an independent increment Gaussian process, W, (A) is an independent increment Poisson

process for each A E E, xV, (A) and W (B) are independent for A n B = 0, and G, is independent o!

W, (A) for every A E Ej.
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It is primarily for convenience that the Levy process is emphasized in this presentation over the

more general independent increment process which is not necessarily stochastically continuous. The

general independent increment process has a unique decomposition [7] in terms of a deterministic part,

a stoclidstically continuous (L6vy) part, and a stochastically discontinuous part. Nonrandom translations

of the noise have no effect on channel information or capacity so we can assume the deterministic part

is absent. The discontinuous part represents the process at the points at which it is not stochastically

continuous. These points are no more than countable in number [7] and, since the location of these

points are part of the specification of the process, can be avoided by channel users. Thus, we focus on

the stochastically continuous part of the independent increment noise process and define the iudc-nv.2nt

increment noise channel model with Levy noise.

The Independent Increment Noise Channel Model

The independent increment noise channel is an additive noise model Y, =X, +Nt, 0!t 5T incor-

porating causal feedback (Figure 1). The process Y is the channel output, X is the encoded message,

and N is the channel noise. IF and FY denote the natural histories of the processes 0 and Y, i.e.,

F'8= cr[0,,0<s <1] and FY=c[Y_,0<s<t] for t E [0,T). We fix r>O and define

FY' =a[Y,_,,0<s St], taking Y, aO for all t <0. FY ' is the history of Y delayed by r. The encoded

message process X in the channel model is specified to be an F0 .-F '-adapted functional of Y and the

message process 0. Thus the channel model includes noiseless delayed causal feedback from the chan-

nel output Y and nonanticipative encoding of the message 0. We do not consider the case T=O of

instantaneous feedback. This case seems impractical and raises presently unresolved technical questions.

In the no-feedback version of the channel model, the encoded message is an Fe-adapted functional

X, =X,(0) of only the message 0. The case T>T is equivalent to the no-feedback case. Also as part of

the channel model, X is required to be clhdg with X0 n0. The channel noise N is a Lvy process and

is independent of 0. Following (1), we write

N, = W, + P, (2)

with W 0=P 0 =O. In (2), W, is a zero-mean Wiener process [6], [121 with finite continuous variance

measure 0. By this it is meant that W, has continuous paths and Gaussian independent increments

W2- W, I such that, for all 0!5 t I < t 25 T,
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E [W, 2 - W,] 0, E [(W, 2- 1, 1)2 ] =

where 3 is a finite continuou (w.r.t. Lebesgue measure) measure defined on ([O,T1,YJO.T]). Also in (2),

P, is a purely discontinuous [15] (piecewise-constant) chdlbg process

P, = m P,(dm) (3)
J

where, for each Fe E,, the quantity P,(F) denotes the number of points s E [O,t] such that

P, -P-oE F. P,(') is a marked Poisson point process with mark space J cBR. To distinguish the nota-

tions P, and P,('), we remark that P, is a jump process while, for instance, P,(J) is a counting process

which gives the number of jumps (irrespective of size) of P, in the interval [O,t]. It follows from the

Levy nature of N that W and P are independent processes. Also, for Flr, F 2=0, the counting

processes P(F1 ) and P(Fj) are independent. Because P,(F) is Poisson [6] for a given F E -.,, it has a

deterministic compensating measure B which here we assume takes the form

B ([0,/ Ix F) = Xb ([0,t ]).t(F) (4)

for some X O and all F e Ij and [ e [0,T]. The set functions b and t in (4) are required to be finite

measures on ([O,TJ, Z;oT]) and (J,1j) respectively. The measure b is continuous w.r.t. Lcbesgue meas-

ure. (Both b and P are continuous as a consequence of the stochastic continuity of N.) Finally, both It

and b are assumed to be standardized:

t(J) = I, b([,T]) = T.

Looking back to (1), it is evident that deterministic terms have been arbitrarily added and sub-

tracted to produce the decomposition of N in (2). We maintain that this does no harm because the noise

decomposition in (2) is used only for calculating channel information and capacity - and those quanti-

ties are unaffected by nonrandom translations of the noise.

The paths of the Levy noise process N in the channel model are chdlhg. Thus, without the com-

parable restriction (cdlag paths) on the encoded message process X, the encoder could communicate

without error at any desired rate by transmitting non-chdlhg paths. Hence, for finite information capa-

city, X must be chdlhg. Given that X is cddlhg, its paths can only have discontinuities of the first kind

[1] and these are countable in number. Thus it is meaningful to define

Xd,= , (X, - x ), X .l = x, - x,.,
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Both X and N are chdlbg so Y =X +N must be chdlhg as well and we define

Yd., = I (y, - Ys-O), Y.,, = Y, - Yd,.
S51

Analogous to (3), we can write Xd as

Xd., = M Xd , (dm)
J

where the marked Poisson-type point process Xd,,(F) counts the number of jumps of Xi with size in

F E Z1. in the interval [O,t ]. Likewise, we have

Yd., = Jm Yd.,(dm).
J

Conversely, the marked point processes Xd(.) and Yd(') can be expressed in terms of their jump process

counterparts as follows:

Xd,,(F) = , lF(Xd., -Xd. 5 -O)

'S t I F E Z , .
Yd,,(F) = Z IF(yd.s-r,,-o) ",

$!

Using the notation

0 = [0"]
for the message process 0 in the independent increment noise channel model, we have

Y.,, = xc (0, Y) + W, (5)

Y,. = X.,(o, Y) + Pt. (6)

The jump process channel expressed by (6) can be just as well viewed as a marked Poisson channel;

that is, as a Poisson channel in the sense of 141, [8) in which marks (the jump size) are associated with

each jump event in the channel. In terms of the marked point processes Xd,(), P,('), and Yd.,(-), we

write

Yd.,(F) = Xd.,(Od, Y)(F) + P,(F), FE Zj . (7)

The two formulations (6) and (7) are equivalent; however, (7) has the advantage of being applicable in

other contexts so it is the formulation we use.
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The continuous-path part X, of the encoded message is assumed to take the form

i

X,., f 0 b (ds) (8)
0

where *0 =, (0, ,Y) is an F 0 ,ff.Y.,:-predictable functional. Also, the measurability, integrability, and

identifiability conditions laid out in [10] for (5) and (8) are assumed to be satisfied. If the variance

measure 3 of W in (2) is absolutely continuous w.r.t. b and if a mean-square constraint

T1E f ,b (dt)i<p (9)

is imposed on the encoding kernel 4), then (5) and (8) describe a form of the additive white Gaussian

noise channel treated by Kadota, Zakai, and Ziv [10]. Therefore, to use their results for information

capacity, we assume (9) to be in force and take j3«,,b. In fact, it is assumed that 13 and b are scaled

versions of one another 3=Tib. The scalar T1 >O is termed the Wiener noise intensity of N,. 1 is the

counterpart to the Poisson aoise intensity X introduced in (4).

The compensator A of the discontinuous part Xd in (6) is assumed to have the form

A ([O,t ] x F) = If Lx(m)t(dm)b (ds) (10)

where the (nonnegative) jump intensity X,(m) is a F ed YFY'predictable functional, li is the finite

measure on (J,lj) introduced in (4), and b is the measure already appearing in (4) and (8). The meas-

ures b in (4), (8) and klU) need not have ceen chosen to be identical: howeve'r ,his is P r'atural choice.

b is called the base measure of the independent increment noise channel. In usual applications, b is

Lebesgue and the reader uninterested in more abstract situations is invited to view b as Lebesgue for

the remainder of this paper.

Suppose a mean-square constraint similar to (9) is imposed on the jump intensity X,(m):

TE fJX.(m)I(dm)b(dt~ Q.(I

With X in (10) satisfying (11), the subchannel model in (7) is recognized to be a straightforward gen-

eralization of the Kabanov Poisson-type point process channel model [8] with a mean-square constraint

in place of the peak constraint considered there
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The mean-square constraints (9) and (11) suggest a way to impose a single mean-square con-

straint on the encoder output X by a formal unification of , and X. For all _>0, define

X7, (M), in E J

(M)- 0, 1 M=0

to be the formal intensity of the chdl.ig process X =Xc +Xd with the parts Xc and Xd as in (8) and (10).

We introduce the formal mark measure v=ii+50 defined in the obvious way on the whole of the space

M =J u(Q0. Here, 80 denotes the atomic measure which assigns all of its unit mass to the point 0.

Since 1i.J)= 1, v gives equal weight to the continuous and di,'ontnuous parts of the chrnnel. Now the

two constraints (9) and (11) are combined in the single mean-square constraint

E [_LT ,2(m )v(dm )b (di -< t-2 (12)

on the formal intensity I of the encoded message process X. In this context, we call the LHS of i12)

the formal power of the encoder output and nl
2 the formal power available to tihe encoder.

To summarize, the independent increment noise channel model is given by (5) and (7) with LU-vy

noise N in (2). The noise variance 03 measure is related to the channel base measure by T=b for some

Tl_>O. The noise compensating measure B is correspondingly assumed to take the form kb4 for some

X>0. The encoded message X is assumed to be cdliag with IF - Y'-predictable (->0) formal inten-

sity TP saJfying the mean-square constraint (12). The channel base measure b is assumed to be con-

tinuous with b([O,T])=T while the formal mark measure v has an atom of unit mass at zero and unit

mass (without atoms) elsewhere:

v([O}) = I, N,(J) = I.



III. CHANNEL CAPACITY

In this section the information capacity of the independent increment noise channel is givcn and

its derivation is outlined. Proofs of results used in the derivation are given in the next section. We begin

by recalling the definitions of channel information and channel capacity.

Channel information is defined to be the average mutual information [14] in the message 0 and

the channel output Y over the interval [0,T]:

IT[Oy] = ELIn d

provided p e o r.; otherwise T[ 0,Y]=-. Here, to, -o, and 4ty are the joint and marginal measures

induced by the message and output processes, 0 and Y, on the spaces So, Sy, and SoxSy where So and

Sy are the spaces of trajectories of 0 and Y over the interval [0,T]. Also, to.y is the product measure

induced by pe and 4ir. The information capacity of the independent increment noise channel is the

supremum ot the channel information

C = sup sup l r [Oyle X T

where 0 is any jointly measurable process defined over the interval [0,T] and X =X(0,Y) is any cdlhg

F -. '-FY. adapted message encoding satisfying the men-square constraint (12) on its formal intensity.

The independent increment noise channel with delayed feedback considered here is memoryless in

the sense of Kadota in [91 and Kadota, Zakai, and Ziv in [11 . In [II] it is shown that the information

capacity of a continuous-time memoryless channel can not be increased by feedback. Thus, for the

present purpose of obtaining the information capacity of the independent increment noise channel with

t>O. we can and do restrict our attention to the no-feedback case. This significantly simplifies the

problem. In particular, we exploit the facts that in the absence of feedback the processes X and N are

independent and that Y, and Yd are independent if and only if the components Od and 0, of the mes-

sage are independent.

The parallel Gaussian and marked Poisson subchannels of the independent increment noise chan-

nel dominate its structure. In the absence of feedback, these two subchannels have two points of

interaction: the transmitted message components 0, and 0 d may be dependent and the encoders of the
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two subchannels compete for the available formal power Fl2 . Thus, the independent increment noise

channel is distinguished by the possibility of redundantly encoding some or all of the message to be

transmitted into both Xd and X ,. It is not immediately clear what effect such redundancy has on the

combined capacity of the two subchannels. This question is settled with the aid of some definitions.

Let the combined message and output of n additive noise channels be expressed by

0= (01,02..... G,) and Y=(YI, Y2,... Y,), respectively. Also, define N' =(N,N: ... , NA,) and

X =(XI-X 2.  X, ). The parallel combination channel (0,X ,N, Y) with n sub-hannels is defined to have

the following properties:

1. Y5 =X., + N,., i E1[0,T], i =1,2 ... , n

2. Xi., = X.,(0,) is IF -adapted, i = 1,2.n

3. 0, N are independent,

4. N1 , N2 ... , N, are mutually independent.

Disregarding the mean-square constraint on the formal intensity, we observe that the independent incre-

ment noise channel without feedback is a parallel combination channel with two subchannols.

The capacity of the parallel combination channel is

C sup sup I 

9ER 1 XEC " [,Y]

where B is the class of n -tuples (0 I. 0, ) of jointly measurable processes and 4, = 1,2,..., n is the

class of Flr -adapted encodings. Also, C is a class of encodings satisfying a fixed collection of con-

straints; for the independent increment noise channel. C is the class of chd)hg processes with formal

intensity satisfying (12). It is clear that the capacity of the parallel combination channel is at least as

great as the sum of the capacities of th' individual subchannels. The following theorem states that noth-

ing is gained by redundantly encoding some part of the message; allowing components of 0 to be

dependent does not increase capacity. The theorem's proof is given in the next section.

Theorem 1: Let (0,X,N,Y) be a parallel combination channel with 2 subchannels (0 1,X 1 ,N1 ,Y 1 )

and (02 ,X2,N 2, Y2). The capacities of the two subchannels are

sup sup l l ll"I(CJ2) =A ,E XIE CXnAI T
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SUp sup ,T[ 0 2

C2(CX I)  e 2e X2Cx n -A2  Y2

where B is the class of jointly measurable processes, Ai, i =1,2 is the class of Fe -adapted encodings,

Cx1 is the set of all encodings X E C with first component XI fixed, and Cx2 is the set of all encodings

X E C with second component X2 fixed. Then

C =X.X2)1 c {(CX2) + C2(Cx, .

Similar statements can be made for parallel combination channels with more than 2 subchannels.

In terms of our channel model, Theorem I states that the information capacity of the independent incre-

ment noise channel is

C R2 a 2sul2p {Cw(R)+ Cp(Q)} (13)

where Cw(R) is the capacity of the Gaussian channel (5), (8) with Wiener noise W and mean-square

constraint parameter R in (9) and where Cp(Q) is the capacity of the marked Poisson channel (7), (10)

with marked Poisson noise P and mean-square constraint parameter Q in (11). The capacity Cw(R) is

known [10]; with or without feedback it is

Cw(R) - (14)

Therefore, to obtain the capacity of the independent increment noise channel, it only remains to deter-

mine the capacity of the marked Poisson channel with mean-square constraint (11) and to then find the

supremum in (13).

The following theorem gives the capacity of the marked Poisson channel. The proof is given in

the next section.

Theorem 2: Consider the marked Poisson channel model (7) with signal compensator (10) and

noise compensator (4). Suppose that the channel base and mark measures b and i' are both finite and

continuous and Ilu the encoder intensity X,(m) be ,FV - F %predictable and mean-square-constrained as

in (11) for some Q >0. Then Cp(Q)=D(X,Q) where D(O,Q)=2Q/e and, for X>0,
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Q2 cr(p1L12 ax,

where a is the unique solution of the equation

In 2+1I +2= + I In(l +a).

The information capacity given in Theorem 2 is the instantaneous feedback capacity. When the

proof of this result is examined, however, it is seen that feedback is not used in its derivation. Thus

(15) is also the capacity for delayed feedback (t >0) and, in particular, for the case in which the

encoder intensity X,(m) is restricted to be Fo-predictable - the no-feedback case. Causal feedback with

or without delay cannot increase capacity in the marked Poisson channel considered here.

With regard to Theorem 2, we note that although the theorem is presented for a mark space

J ci)? of jumps, one obtains the same result for more general mark spaces - provided the associated

mark measure is finite.

The following theorem follows from (13) using Theorem 2 and (14).

Theorem 3: Fix r>O. The information capacity of the independent increment noise channel is

C = r(X, 17,1I) where

r(%,T1,r'I = O<Q. < _ Q2 + D(X,Q . (16)

The supremum in (16) does not in general admit analytic evaluation for X>0. However, for X=O,

r can be more simply expressed. Using D(0,Q)=2Q/e, the suprcmum in (16) is found to be

r- I 1 - e (17)r(02 = - , M_5 2A1
ee

r(O,TI , 1 ) is presented as a function of 11 in Figure 2. For comparison, the corresponding Gaussian and

Poisson subchannel capacities r'l2/(271) and 2rl/e are also shown.



13

C = F(O, T1, i)

r21

2 4

e e

Figure 2. Information capacity C of the independent
increment noise channel with ?,=0.
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The expression for Fl(0,nI, I) in (17) exhibits a transition point at 2Ti/e. This point is obtained by

solving for the zero of the derivative of

n 2 -Q 2 + 2Q

2r" e

with respect to Q. For Fl<2TI/e. to maximize channel capacity, one does best to allocate all available

formal power to the marked Poisson subchannel. For I- > 2T1/e, the formal power should be apportioned

between the two subchannels with formal power equal to (2TI/e)2 assigned to the marked Poisson sub-

channel and the remainder to the Gaussian subchannel. For maximum information rate in the channel,

at least some formal power must be assigned to the Poisson subchannel in all cases where X= 0.

The optimal distribution of the formal power n-2 among the two subchannels of the independent

increment noise channel for the case X>0 can be addressed numerically, affording further insight to the

nature of the channel. Numerical calculations involving F are somewhat simplified by the fact that F is

first-order homogeneous; i.e. r(wx,wy,wz)=wr(x,y,z) for all w >0. The results of calculations made

for the optimal distribution of formal power are displayed in Figure 3 for a range of I- and Trl/l.

There are three possible forms the optimal distribution might take: assignment of all of 112 to the Pois-

son subchannel, assignment of all of 112 to the Gaussian subchannel, or a nontrivial apportionment of

FI2 to both subchannels. According to Figure 3, all three possibilities do occur for the independent

increment noise channel.

Figure 3 shows, in particular that for X._>TI, the optimal distribution of formal power is to assign

all of 112 to the Gaussian subchannel. Thus, in this case, the capacity of the independent increment

noise channel is simply

C= " , X > r1. (18)

A proof of (18) is given in outline as follows: Hold X and rl fixed with XTI>O. Let g(Q) and d(Q)

denote the first partial derivatives with respect to Q of Q2/(2r1) and D(X,Q), respectively. The second

derivative of D(1,Q) is found, upon evaluation at Q =0, to be equal to 1. Because D(X-,Q) is first-

order homogeneous, it then follows that d'(0)= 1/X. Also, d'(Q) is a decreasing function of Q.

g'(Q)=11 so, for X Tl and all Q >0, g'(Q)>_d'(Q). We have g(O)=d(0)=0 so g(Q)>d(Q) for all

Q 0. Then the supand in (16) is nonincreasing in Q and the optimal choice of Q is Q =0. (18) fol-

lows.
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Assign all of r' 2 to

Poisson subchannel
10

1---------------

Share fn2
between

subchannels

0.1 Assign all of n 2 to

Gaussian subchannel

0.01.......

0.01 0.1 10 100

Figure 3. Optimal assignment of formal power, H2. Three regions
shown as functions of the channel noise parameters, t2.,if} scaled
by . The dotted line is the contour along which each subchannel

is optimally assigned half the available formal power.
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For Vi/r < 1, Figure 3 shows that the optimal distribution of r"
2 follows the general scheme

observed for the special case X=O; for HIl below some transition point (which varies as a function of

X/r1) one optimally uses only the Poisson subchannel and above this transition point one optimally uses

both subchannels. This point is illustrated in Figure 4 where the channel capacity C = F(k, il, 1 ) is plot-

ted for the representative case X'rj=0.1. The similarity with the plot of r(O,Hi,) in Figure 2 is evi-

dent.

The capacity formula (17) is given for the independent increment noise channel with delayed

causal feedback even though (17) was only derived for the case of message encoding without feedback.

As has already been observed, it follows from the result of Kadota, Zakai, and Ziv in [11] that the

information capacity is the same in the two cases of delayed feedback and no feedback.

A quantity of significant practical interest for a channel is the coding capacity [2], [17]. Briefly, it

is the supremum of information rates - the logarithm of the number of messages of length T divided by

T - for which the error probability can be made arbitrarily small for sufficiently large T. The coding

capacity CCoDING of the independent increment noise channel follows in straightforward fashion from

Theorem 3. For the present channel model with r>O, C ODO=(X, rl,'I) also. Skipping the details, this

is proved first by showing that the coding capacity of the marked Poisson channel in Theorem 2 has the

same expression as that given for the information capacity. An argument similar to Wyner's [18] for the

peak-constrained Poisson channel proves this. Combined with the known coding capacity [2] of the

additive Gaussian white noise channel, this gives that CDc >(X,thil). Fano's inequality completes

the proof.
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C = F(/1O, r, I_)

n 2

2 4
e e

Figure 4. Information capacity C of the independent increment
noise channel with ,. =rj/10. Compare with Figure 2.



IV. PROOFS

This section is divided into two subsections. In the first, a result for the information in the parallel

combination channel is obtained, leading to a proof of Theorem 1. The second subsection contains a

proof of Theorem 2.

Capacity of the Parallel Combination Channel

In this subsection we show that the capacity of the parallel combination channel is the sum of the

capacities of its n subchannels. Repeated use is made of Kolmogorov's formula [13]. Let Z1 , Z 2, Z 3,

and Z4 be four random elements defined on a common probability space. Kolmogorov's formula is

I[(Z1,Z1 ),Z 3] = I[Z1 ,Z 3] + E[I[Z 2,Z 3 1Z1]]. (19)

When generalized to average conditional informations, Kolmogorov's formula takes the form [13]

E[I[(Z,Z 2),Z 3 IZ4]] = E[I[Z,Z 3 IZ4]] + E[[[Z 2,Z 31(Z1,Z 4)]]. (20)

Multiinformation [15] appears naturally in the following discussion. The multiinformation

M[Z 1 .... Z.] in n random elements Z1,...,Z. is defined as a relative entropy in [15]. An equivalent

definition is

M[Z. . Z8 =I[(Z 1 . ...Zkl),Zk]. (21)
k=2

Multinformation is an extension of average mutual information; for two random elements

M [ZZ 2]=I[ZI,Z2 ]. Like average mutual information, multiinformation is nonnegative and zero if and

only if the corresponding random elements are mutually independent.

Lemma 1: Let (O,X,N,Y) be a parallel combination channel with n subchannels. Then, for all

i j,

t[(,O),y j = IT [ , Y,

IT[(0 , Yi),Y] 1= IT[0,, Yjl



19

IT[(Oi ,(yi, yj)] = IT [e,, y, ]

Proof: We prove the first equality; the others are proved similarly. 0i and Nj are independent so

IT(,Yj [0 j] = IT[Oi,Xj0j)(O)+Nj 10j] = 0.

Then, by Kolmogorov's formula (19),

IT [(0, Oj),¥ ]=IT [Oj ,j] + E VTr [0, yj 10(]]

IT Ir[j,ryj].

Proposition 1: Let (O,X,N, Y) be a parallel combination channel with n subchannels. Then,

Ij[O,yj - l[OJy] _ MT[y 1 ,Y 2 . Y
i=1

where MTI[Yl, Y2, ..... Y, ] is the multiinformation in the n subchannel outputs over the interval [0,T].

Proof. Consider n =2. From (19),

IT[(01, 0 2),(y 1,y2 )] = Ir[0,(Y1,Y2 )] + E[IT [0 2,(Y, Y2 )101]I.

By Lemma 1 above, jTr[ 01,(Y1,y2)]=IT[O,Y]. Then, using (20),

IT [(01, 0),(y1yDY)] = IT [0 1, y 1]

+ E[It[02,Y 1101]]

+ E VTr [02, Y21(01,Y 0)]].

Also

IT[ 0 2, Y2 1(01, Y0] = IT [02, Y2 1(01,N 1)] = J[02, Y2101]

since Y2 is conditionally independent of N, given (01, 02). So

Ir[(o1'x 2),(01, y )] = IT[0 1, ]

+ E [IT[(01, Y21Y1]1

+ E[T 102, Y21011].
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Kolmogorov's formula is used twice more to obtain

E V [i 102, Y210111 =  IT [(01,0),y~ Y _I- T [01, Yj,

E [IT[O1 Y 2 1Y1]] = IT[(0 Y1),Y] - I [y 1,y2 ].

Then, using the preceding lemma, we get

IT [(01,0),(y , y)] = IT [01,y ]

+ IT [02, Y2] - IT [01, y 2 ]

" ITr[01,Yj ] - ITr[y, y]

wvhich is the desirAZ resuk for n =2. Similarly, for n =k one can show that

I r [(01' .... k),(Y1..... Yk)] = IT [(01'.... Ok-1),(Y1 ... Yk-1)]

+IT [e,yk] -_IT [(y I., yk_-),yk].

Then, by recursion and the relation (21) the result is obtained for all n. Therefore, the proof is com-

plete.

Since multiinformation is always nonnegative, Proposition 1 implies that for parallel channels

without feedback, the channel information in the composite channel is dominated by the sum of the

informations in the component subchannels. Proposition 1 quantifies the degree to which the composite

mutual information is dominated by the sum of its component informations - according to Proposition 1,

the sum of the component informations exceeds the composite information by exactly the multiinforma-

non MT[y1 .... Y.] in the channei output. Since the outputs Y1 .... Y. of the parallel combination chan-

nel are mutually independent iff B..9,, are mutually independent, the proposition further implies that

the composite information equals the sum of the component informations if and only if the components

of the input are mutually independent. We state this formally as a corollary from which Theorem 1 fol-

lows directly.

Corollary. Let (0,X ,N, Y) be a parallel combination channel with n subchannels. Then,

lT[,Y] < I[0,y,
i--1
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with equality iff 01,..., 0, are mutually independent. Also,

n

C = zc
i=1

where C is the capacity of the parallel combination channel and Ci is the capacity of its ith subchan-

nel.

The corollary implies that, in seeking the capacity of the parallel combination channel, one need

only consider messages 0 such that 01, 02,..., 0,, are mutually independent,

The foregoing calculations are similar to some performed by Kadota [8] for time segments of the

continuous-time memoryless channel.

Capacity of the Marked Poisson Channel

The proof of Theorem 2 relies on results given in [5] for the capacity of the Poisson channel

(unmarked) with a mean-square constraint. These results are repeated here as Lemmas 2 and 3.

Lemma 2: Fix Q >0, X2-0 and let AQ denote the set of all nonnegative random variables X with

constrained second moment E [X2]< Q2. Also, I tX] -E[XlnX]-E [X]IlnE [X]. Then

sup I[X+X]=D(X,Q).
X E AQ

Lemma 3: Consider the Poisson channel with Poisson-type point process channel output Y,

t E [0,T] with compensator

f + X)b(ds
0

where X 0 is the noise intensity, b is the channel base measure (b[0,T]=T), and X, =X(0,Y) is a

predictable encoding of the message process 0,, t E [0,T]. Let the encoder intensity X, be mean-

square-constrained, E [X?2]< Q2 for all t E [0,T1. The information capacity of this channel is D (X, Q).
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Lemma 4: Let D be a Borel subset of B? and define AD to be the class of random variables with

range in D. Let f be a real function and suppose f-', the inverse off, exists on D. For P E D, define

A = (X E AD: E (f (X)])<f (P)). Let g be a real function such that g-f- is concave and nondecreasing.

Then

max
XEA E (g(X)] = g(P).

Proof: Define h = g f. Then

E[g(X)) = E [h (f/(X))) < h(E[f (X)]) < h(f (P)) = g(P).

Let X =P. Then X E A and E[g(X)j]=g(P). The result follows.

Lemma 5: Consider the Poisson channel of Lemma 3 except, instead of the mean-square con-

straint imposed there on the encoder intensity, let the encoder constraint be

T

The capacity is still C=D (XQ).

Proof: The channel information is [12]

TIT(O.Y] I I[',InTI, -,lnl, ]b~d)

Here T1, =X, + X and fi, is the predictable version of E[T, I!FYI. By Jensen's inequality,

T
IT[Y] (, + X]b(dt).

By Lemma 2, 1IX + X] has the upper bound D(X,E 2[X 2]). Therefore

T
IT[O, Y] s 1 D (X, NM -)b (dt)

where M(t)=E [X, 2]. Thus

T su(
T <_ "U ()64 D ( , M ( (23)
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where (D is the class of nonnegative functions

S= (M t): M t) O, fM(t)b(dt)<Q2)
0 0

The function D (X, ,\F) is nonnegative, increasing, and concave as a function of x. Also, b is finite so,

by Lemma 4, the supremum in (23) is realized for M(t) equal to a constant. Thus we have

TfD (X,'-)bd D (X, Q).
T 0

The constraint E[X7] =Q 2 for all t E [0,T] is stronger than the constraint (22) so C>D(%,Q), also.

This completes the proof.

Proof of Theorem 2: We begin just as in the proof of Lemma 5. The channel information in the

marked Poisson channel is

T

f )E [TI, (m)lnTl, (m) - , (m)lnfi, (m)]b (dt)ti(dm);

this expression is easily inferred from that given in [12] for the Poisson channel. Here

Tl,(m)=X,(m)+ X and fi,(m) is the predictable version of E[, (m)IFt]. By Jensen's inequality,

T
IT [o,Y] f<_ ![X,(m) + %.]O(dt)lla(dn) .

By Lemma 2, I[X + X] has the upper bound D (XE l[X2]). Therefore

T
IT[0, y] f fD (X,4M (t,m))b(dt) t(dm)

Jo

where M (t, m) = E X,2 (m)]. Thus

T1 su! MfD( t M(. ,'h(dtit(dm) (24)

where 0 is the class of nonnegative functions

TO
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The function D (,,fx-) is nonnegative, increasing, and concave as a function of x. Also, b and t are

finite so, by Lemma 4, the supremum in (24) is realized for M(t,m) equal to a constant. Thus we have

T

C f }JD (%,4Q-i)b (dt)g(dm) = D (%,Q. (25)
TJo

We now show that the RHS of (25) is also a lower bound on C. Let the marks on the channel

output be ignored; i.e., process the output Y of the marked Poisson channel being considered here as

follows:

(Y,(F),F E } - Y,(J).

In other words, only the path Y(J) of the channel output is retained. In such cases

T[ 0 , y] >IT[O, Y(J)] so C is lower-bounded by the capacity of the Poisson channel (unmarked) with

channel output Y(J). This second channel has noise and encoder intensities

frit(dm) = X, fX,(m)u(dm).

Suppose the encoder intensity X,(m) is chosen to be a function X, -X(m) of only t - not of m. Then

we have a Poisson channel with noise intensity ?. and encoder intensity X, with constraint

T

Therefore, by Lemma 5. C _D (X, Q) and the theorem is proved.
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