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Abstract - A variety of results are known for the information capacity of the Poisson chan-
nel with a peak constraint 0<y, <c imposed on the encoder intensity y,. Certain of these
results are shown to carry over in some form 10 the case of mean-square-constrained encod-
ing intensity E[x?]<P2 "On-off keyed" encoder intensity is considered. All results are
given for general finite channel base measure.
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INTRODUCTION

The Poisson channel model, sometimes called the Poisson-type point process channel or the direct
detection photon channel, models optical communications systems as described in (2], (6], [9], [15]. The
Poisson channel is a continuous-time additive noise channel with output Y,=X,+N, where
N=(N,}osisr is the channel noise and X ={X, Jos/<r is the transmitted signal into which is encoded the
message 6=(0, Jos.sr. All processes in the channel model are defined on a common probability space
(Q.F ,P). We write IF® for the natural history of 6, [FY for the natural history of Y, etc. By history we
mean a nondecreasing sequence of c-algebras. The natural history of a process Z is FZ where
Ff=0[z,,0<5 <1).

..JISE INTENSITY, A(f)

CHANNEL OUTPUT
ENCODER e INTENSITY,

INTENSITY, X, (8,Y) CoMe =0+ A)
I . =X, +N,)

MESSAGE, 8, ——

FEEDBACK, Y,

Figure 1. Poisson channel model.

In the Poisson channel both X and N are Poisson-type point processes [11]. Thus, X and N have
respective compensating measures

A(E) =£x,b(dt), B(E) =£x(z>b<d:) (1)

for all E € B{0,T]). b is called the channel base measure and is assumed to be finite; by <o where
by =b([0,T]y/T. The encoding intensity ¥, is required to be IF°“[FY -predictable; this allows nonantici-
pative message encoding and causal, noiseless, instantaneous feedback from the channel output. The
noise intensity A(¢) is assumed to be nonrandom. Hence the channel noise N, is a nonhomogeneous
Poisson process. The channel output Y, =X, + N, is the sum of two Poisson-type point processes. Thus it
is also a Poisson-type point process with intensity n, =X, +A{t) where 1, is predictable with respect to
the global history IF®-/FY. Poisson-type point process intensities are, by definition, nonnegative.
Within the context of optical communications [2], [15], A(t) (see Figure 1) represents, nominally, noise
due 1o background radiation as seen by the receiver. We make the usual assumption that the message
and noise are independent, i.e., that the histories F® and IF¥ are independent.

Existence and uniqueness of the compensating measures A and B in the Poisson channel model
can be established by means of the Doob-Meyer submartingale decomposition [2], [11], [14]. X and N
are each submartingales, therefore each of them has associated with it a unique predictable increasing
provess, A, and B,, respectively, such that

X( "An N,—B,




are each martingales. Making the identifications A ([0,f])=A, and B ([0,¢])=B,, the compensating meas-
ures are also seen to exist uniquely. Alternatively, uniqueness and existence of the measures A and B
can be established using projection methods [5].

A notable feature of the Poisson channel model is the presence of two different sources of noise.
Besides the channel noise represented by N,, there is an encoding noise inherent to the channel. Encod-
ing noise arises because the message O is encoded indirectly into X via the intensity x=x(8.Y). The
path of X is influenced by %, and, also, by the innovation martingale m, =X, —A, deriving from the
Doob-Meyer decomposition of X. Thus, a trajectory of X over a finite interval [0,T] is insufficient to
recover %, even when the noise intensity A(t) is identically zero. Hence, one speaks of both channel
noise and encoder noise in the Poisson channel.

Information capacity is defined in terms of the average mutual information I7(6,Y] in the mes-
sage and channel output processes, 0 and Y over the interval [0,T]. Let e, By, and [or be the marginal
and joint measures induced by the message and output processes, 6 and Y, on the spaces S.. Sy, and
S,x 8 where So and Sy are the spaces of trajectories of 8 and Y over the interval (0,T]. Write the
induced product measure as Hexr. Then, the average mutual information in 8 and Y over the interval
[0,T] is [13]

dlior:|

I"(8,Y]=E{ln
[ ] [ dl.lexy

provided Pay<<Mexr; Otherwise /7[8,Y]=00, Expressions exist for the average mutual information over
the interval [0,7] in the Poisson channel with base measure b and channel output intensity 1,. Define

T
1= E[f(m Inn, — i, Inf, )b ar )] @
0

where fi, =E [n, [[F}). Note that, in the terminology of Boel, Varaiya, and Wong (1], 7}, is the intrinsic
local description of the channel output process Y whereas 7, is an extrinsic local description (with
respect to the history F®FY.) According to Liptser and Shiryayev [11), I7(6,Y]=/, provided /, <
(and, as a consequence, Mer<<Maxr for J)<ec.) A useful equivalent expression for the channei informa-
tion is

T
12 = EL[(T!:I"T]: 'Thlnﬁ.)b (d’)] . 3

We have /o=1, so that /T[8,Y]=1, if I, <. The channel information capacity is

1
Coro = suep Sl}l‘p ?IT[O,Y]

where 0 is any jointly measurable process defined over the interval [0,7] and x=%(8,Y) is any
F° Y -predictable mapping.

The information capacity of the Poisson channel was first found by Kabanov [9] for the case of a
peak-constrained encoder intensity 0<y, <c and constant noise intensity A(t)=A. Considering only
Lebesgue channel base measure, he showed that

€ =C(c) QY

where
1+x/y
C(xy)=5[l+l] -x[l+£]ln
e X y

The approach taken by Kabanov was adapted by Frey [6] to treat the case of time-varying noise inten-
sity A(s) and time-varying peak constraint 0<y, <c (f). For time-varying channel parameters A(s) and
¢{t) and finite channel base measure b, we have

1+ ?-]. )
X




T
-1
C= T{C(l(t),c(z))b(dt).

In other work along these lines, Davis [4] treated the case A(t)=X, c(1)=c, and Lebesgue b in which
an additional average constraint

lT
?£E[x,]dt <k

is imposed on the encoder intensity and showed how the capacity is modified. Recently, Wyner {16]
showed that the coding capacity equals the information capacity for the case considered by Davis.
Wyner also found an analytic expression for the channel error exponent in this case. An earlier contri-
bution in this area is that of Massey [12].

In this paper we consider a mean-square constraint
E{x/1<P? ©)

(P 20) on the encoder intensity. This constraint is sufficient for finite information capacity. In fact, one
has that
T

T
I,<E [g(x Iny, —x,Ing, )b (dt )} = E[g(x Inx, — &, Ing, )b (dt )} < b([O,T])[P2+ —i-} <o

which, as already observed, is sufficient for /7 (6, Y] to be expressible by either /, or /5.

A mean-square constraint such as (6) or the similar constraints
%&mesP.Ewhﬂm
have an intuitive power/energy interpretation. Also, they recall the mean-square constraint
%IE (021dt < P?

appearing in Kadota, Zakai, and Ziv’s treatment {10] of the additive white Gaussian noise channel
t

Y, = z[cp,dt + W,

where W, is Wiener noise. These considerations and the fact that (6) is sufficient for finite capacity
brought us to obtain the results we now present for the Poisson channel information capacity.
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INFORMATION CAPACITY

We will assume without further mention that br =1 as in the particular case of Lebesgue base
measure. This entails no real loss of generality and clarifies the presentation. Four theorems are given.
Theorem 1 considers the special case of the Poisson channel with zero noise intensity and states that the
channel information capacity is

c=2p
[-4

for a mean-square constrained encoder intensity as in (6). Theorem 2 takes up the case of general A(¢)
and gives an expression for the capacity for the case in which the encoder intensity is restricted to oniy
two values - the "on-off keying” case. Theorem 3 gives upper and lower bounds on the capacity for the
general case in which "on-off keying” is not necessarily stipulated. Theorem 4 also treats A(z)20 but
with a formulation of the mean-square constraint on the encoder intensity which allows one to give an
exact expression for the capacity. We conclude with a conjecture and some comments regarding jam-
ming and coding capacity.
The following lemmas set the stage for Theorem 1.

Lemma 1: Let D be a Borel subset of R and define Ap L) be the class of random variables with
range in D . Let f be a real function and suppose f~!, the inverss of £, exists on D. For P € D, define
A={XeAp: E[f X)]<f(P)}. Let g be a real function such that gof ! is concave and nondecreasing.
Then

P Eg(X)] = g(P).

Proof: Define h =gof —*, Then
EXN=EhLFEN<hEF XN <SS P)=gP).
Let X =P.Then X € A and E[g(X)]=g(P). The result follows.

Lemma 2: Let A =(X 20: E{X?]<P?} be the class of nonnegative random variables with con-
strained second moment. Then

X EXInX) =y(P) 0
where
PlnP, P>e
vE)= -Pe—z, P <e

Proof: h(x)=v(Vx ) is concave and increasing for x 20 so, by the previous lemma,
EXInX]<E[y(X)] <y(P).
Therefore

9P EIXInX1 < y(P).




Suppose P >e. Choose X =P . Then E[XInX]=v(P). Suppose P <e. Choose
2

0, w.p.l—ﬂz—

X = €
p?-

e, W.p.-e—z-

Then, again, E [XInX }=(P%e?elne =y(P). Hence, for all P 20, a random variable X € A exists such
that E[X InX }=v(P). (7) is proved.

Lemma 3: For the Poisson channel with finite base measure b and mean-square-constrained
encoding intensity as in (6),

C<

1
P)+ —|.
]
When there is no noise intensity present (A(t)=0),

CZEP.
e

Proof: The upper bound follows from Lemma 2 and an application of Jensen’s inequality,

IT6,Y]1=E

T T
[ Gu i, -3 1035 (o )} < [(E Iy, 1~ E [y, JInE [x, Db ().
0

To establish the lower bound, one uses Brémaud’s averaging principle [3] with a sequence of stationary
random telegraph signal [8) message processes {8{™,m=12,..} having common state space (0,eP)
and generatcr mA where A is the matrix

-1 1
4=l1p 19 ®
p p

and p =e¢”2. In the channel with these message processes, E [w(x ™)) =E [w (8{™)]=(P/e)In(Pe) and
Ex{™=E 0] =Ple. Thus C2(P/e)ln(Pe)~(P/e)in(P/e)=2Ple.

Theorem 1: Consider the Poisson channel with finite base measure b and zerc noise intensity.
Suppose the encoding intensity ¥, satisfies the mean-square constraint E [x2}<P2 Then the channel
information capacity is C=2P/e.

Proof: Let IIX1=E[XInX]-E[X]InE [X] and define B (P) for each P 20 to be the class of non-
negative random variables X such that E [X?]<P2. For each X € B (P), we can write X =PZ for some
Z2eBQ).ForX=PZ,I[X]=PI[Z]. Thus

— sup - Su _ su
C=xoppy XK1= pre by P21 =P, 2P (21,

We observe that the upper and lower bounds on capacity given in Lemma 3 coincide for P =1. There-
fore
2

Sup 1[2]=e.

ZeB(1)

Thus €=2P /e and the proof is complete.

Corollary: Consider the Poisson channel with finite base measure b, zero noise intensity, and
encoder intensity satisfying




E[x2 <P¥t), 0<t<T

where P (t) is b-integrable. Then the channel capacity is

T
l—z—iP(z)b(dx).
e

Proof. If P(¢) is b-integrable then J, <= and the usual expressions (2) and (3) for channel infor-
mation can be used. Then the result follows from approximating P(r) by a simple function P,(z) and
passing to the limit as P,(t) — P (¢) pointwise.

Corollary: The results of Theorem 1 are unchanged by substituting
T
1 !E x2dt < P?
T
for the stronger constraint E [x] < P* used in Theorem 1.

Proof: Write E [x})=m (). From the previous corollary

T
12
€= 0 r?;‘[wlm(t)b(dt) ©

where T is the class of nonnegative functions

T
I=(m@):m()20, —;:lm(t)b(dt)sPZ].

The square root function is nonengative, increasing, and concave so by a "waterpouring” argument [6]
m(t) is optimally chosen in () to be the constant m(t)=P2% Thus C=2P/e and the corollary is
proved.

We now tumn to the case of nonzero noise intensity. This case is not as tractable as the case of
zero noise intensity treated in Theorem 1 and its corollaries and at present, with one exception, only
bounds and asymptotic results can be given. The exception referred to is the "on-off keying” case - the
case in which the encoder intensity switches between only two values (neither of which are necessarily
zero). For "on-off keyed" encoder intensities, we can and do (Theorem 2) give an expression for the
capacity. It is clear that when the encoder intensity is restricted to only two values, then one of these
values should be chosen t0 be zero (to maximize the channel information rate.) Transitions of the
encoder intensity between its zero value and its second (positive) value might typically be accomplished
by turning on and off a power source. Hence the nomenclature "on-off keying."

For x 20, define

x+1
k(x)=5-[1+—i-] -x. (10)

€

Also, for channel parameters A and P, let
A =(a20:a%(A/a)2P?).

The function f (a)=a%* (Ma) is increasing. Therefore A is a semiinfinte interval of the form [a, )
where a2k (Ma,)= P2 Theorem 2 follows readily from the following lemma.

Lemma 4: Lot IIX1=E[(X +M)In(Y < 20— (F[X]+MIn(E [X]+A) and define B, for cach P >0
to be the class of nonnegative random variables X having two possible values and such that E X3<P2




Then
max P2, ai(Ala)+A

S rix)= .
X)=aea; NP (alPa + A

XEBP

1mn

Proof: For P =0, the RHS of (11) is zero. Therefore, in this case (11) is true. Thus we only
address P >0. Let Bp, be the class of nonnegative random variables X of the form

a, p
X = . 12
for 7 )

Then as was observed above

su su
XEgPI[X] =XE gPol[X]'

Hence we need to show that

2
SUp sy =maxLIn ak(Ala)+A ‘ 13
Xe By XK1= aea; P2 (Da/Pdla +A 13
The proof (13) is conducted in 3 steps.
Step 1: For X € Bpg 2s in (12) with G<p <1, suppose a <P and write
+8,
Y P
0, 1-p
Y € Bpg for 8€ [0,P —a]. Define I5=I[Y]. We have
as a+d+A
% P pl@a+8)+A’
dls
=g 20for 8€ [0,P-al 5o/ [X]=/o</p_, and
P rx)=, S rix) (13)

XEBPO XeB’s

where DBpg is the class of random variables X € Bpg as in (12) such that a 2 P.

Step 2: Fix P >0. Suppose X € Bps with a fixed (P <a). Then, as a consequence of the inequal-
ity E[XZ}SPZ,p =P (X =a} is restricted to t:* range
P2
0<p < —5. (15)
a

Let us identify the value of p which maximizes /[X ). Define
m = WTM b = Alnk

where ¢(x ,y)=(x +y)In(x +y)—ylny. Then, for X € Bps,
IX}=E{X+M)InX + )] - EXI+M)InE XTI+ N)
=E[X+M)In(X +A)-mX -b]+ mE[X]+ b
—(EXI+MInEX]+A)
=mEX]+b - (E[X]+M)In(E[X]+A).
Define 7 (aj=mx +b - (x +A)In(x + ). For all x 20,
dl d

Z=m—l—ln(x+l). F

1
-(x+l) <0.




Thus /(x) has a unique maximum at x =e¢™~'—=A. Using k(x) defined in (10}, p =E [X}a, and the
identity
&a .A) = aln(ak (la)+2) ~a,

we have that, subject to the constraint in (15), the choice of p which maximizes /(X ] is

2
p=k(Na)~ T 06
a

Let B; be the random variables X € Bps with p given as in (16). Then

su su
xeB, /XK1= yxe R, X1, (17)

Step 3: For X € By, I[X] assumes one of two forms depending on p in (16). After some algebra,
one has

ak (Ma) + A
ak (Wa)dk (W(ak (Ma)) + A’
1>21 ak(Ma) + A
o ,
a PUNWP¥a)a + A\

ak (Wa)ln a’k(a)<P?

I[X}= {18

ak(wa)>P*

Consider the first case in (18) in which a%k (Wa)<P? Letting a=a/A, we have /[X 'A=G (ak (1 a)
where

s+1
G(S)—Slnsk(1/3)+l )
Now
d (1+0.)M"°[ J
d—aak(l/u)= ——ea—z——— a-In(l+a); 20

for all @>0. Thus ak(1/a) is a nondecreasing function of a. Then, also, G (s) is a nondecreasing func-
ton of s. Therefore, for a’k(Ma)<P? the maximum value of /{X] is found at a satisfving
a%(Ma)=PZ Hence

2
sup _ max P—ln ak(Ala)+A 19
xeBp!X1=aea a PY%Xa/P¥a+\’ 19

Therefore, by (14), (17), and (19), our desired result (13) is obtained.

Theorem 2: For the Poisson channel with noise intensity A, mean <quare constraint parameter P,
finite b, and "on-off keyed" encoder intensity, the information capacity is € =D, (A, P) where

P2 ak(A/a)+ A
D,(\,P)=m&X "L .
cMPY=aea a anlc(lasz)/a+k
Also, as P — oo,
D,0.P) - 2P 20)

for any fixed A.

Proof: By Jensen's inequality,

su
C<yop, X1




By the usual choice of sequence of random telegraph signals {6’} and using Brémaud’s averaging
principle in taking the limit as m — oo, we find that

€ 2,00 1x).

By Lemma 4, then, €=D, (A, P).
To prove (20), first observe that

max P2, ale 2

DQ(O'P)—aGA a 1 le/e =:P.
Thus D, (A, P)<2P/e. Consider a =eP.We have a € A s0O
ePk (N (eP))+A

D,(\P) >
*.F)2 P P (eP P (eP )< A

Q k(l(eQ))+1/(eQ)
=32 e N e 0)rei0

where for convenience we have used Q =P/A. Expanding k(x) as in [4, Lemma 2] and using the loga-
rithm expansion In(1+x)=x +0 (x) for x — 0, we obtain

23

+o(l.Q)
D,(mP)212Q + A21n—12 Q
€ ¢ 1+2 00
2o °F
2paal[B me o)
_)\eQ+xe 12 eQ 12 0 O(I/Q)J
-leQ+ 121 +o(1).
(20) follows and the proof is complete.
In terms of the dimensionless quantities
P a
Q - l ’ a= l ’
we have D, (A,P)=1D,(1.Q) where
D,(1.0) = , SUP Q _ak(lla)+]

k()0 a 0% (/01

The shape of the curve defined by D,(1,0) is remarkably similar to that defined by C(1.Q). Both are
increasing concave functions. Kabonov found in (8] that C(1.Q) - Q‘e. Thus the two curves each have
linear asymptotes. These comments are illustrated in Figure 2.




00 4

001

00 4

L] 10 0 100 ¢

Figure 2. Log-log plots of D, (1.Q2) and C(1 @) and their large-Q linear
asymptotes in terms of the dimensionless quantity Q=P /A.
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It will be useful to have a notation for the information capacity of the Poisson channel with
mean-sqyuare constraint. Define D (A, P ) 1o be the capacity of the channel with constant noise intensity A
and mean-square-constrained encoder intensity E[x’]<PZ In this notation Theorem 1 states that
D(0,P)=2P/e. Analogous to the fact that C (Az,cz)=2C (A,c) for Kabanov’s capacity function stated
in (5), we have

D(Az,Pz)=zD(A,P). (21)

To see this we use w(x)=xInx and write

[
D(M,P:):Sgpmfl‘gzp)zzl [w(x,+zl)—w(2,+zl)}b(d1)

T
T
- Sgpg[(szu)g]st 2 {E[{{w(x,/z +AN)-w(f /2 + l)Jb(dl)J

T
+ E[ i [(x,/z +MInA - (/2 +x)1nx}b(dz )}}

The second term within the braces is zero so (21) follows.

From (21) we have D(A,P)=AD(1,P/A) for P >0. Thus, determining D (A, P) is reduced to the
problem of finding the one-parameter function D (1,).

Theorem 3: For the Poisson channel with noise intensity A, mean-square constraint parameter P,
and finite b, the information capacity € =D (A, P) admits the bounds

D,\,P)<D(,P)< —z-P . _ (22)

Also, as P — o,
D(\.P) - %P (23)

for any fixed A.

Proof: The first inequality in (22) follows from Theorem 2 and the second from Theorem 1. (23)
follows directly from (21) in Theorem 2.

The next theorem is related to and motivated by results obtained by Davis for polarization modu-
laton and bv Frey [6] for peak-constrained encoder intensity. Davis [4] showed that, when operating
two orthogonally polarized, separately modulaied Poisson channels, channel capacity is maximized
when encoder intensity is not distributed over both channels but, instead, is concentrated solely in one
channel. This was because of the convexity of the channel capacity function C(x.,y) in y. Frey [6]
showed that for this same reason it is also better not to distribute encoder intensity over time but,
rather, t0 concentrate it into as short a time interval as possible. This result, obtained for peak-
constrained encoder intensity, is equally valid for mean-square-constrained encoder intensity. Thus con-
sider the Poisson channel with continuous finite base measure b, nonrandom noise intensity A(r), and
encoding intensity x,. Suppose the encoder intensity is mean-square-constrained 0<E [x2J<P*(r) but
that P (¢) is not some given function. Suppose, instead, that P (1) may be chosen freely subject only to
the constrauit

T
1
7;1[1’ (t)dt <Q 29)

for some given Q >0. Then, in Theorem 4, the channel capacity is found to be

C- -2}9- 25)




- -— 12

Notice that A(t) is missing from this expression. In the procf of (25) the power P (1) available to the
encoder is concentrated into as short a time interval as possible to obtain a rate of average mutual infor-
mation in the channel closer and closer to 20 /e. Concentration of the encoder intensity into a short
time interval permits it 1o be very large without violating the constraint (24) on P (¢). By concentrating
the encoder intensity into a short time interval, it can be made so large that it completely overshadows
whatever noise intensity is present in the interval in which the encoding intensity is applied. In passing
to the limit, the magnitude of the noise intensity becomes irrelevant.

Theorem 4: Suppose the noise and encoded message processes, N and X, in a Poisson channel
have intensities A(1) and 7y, with respect to a finite continuous base measure b. Also, suppose the
encoder intensity ¥, is FF,®~ FY-adapted and mean-square-constrained 0<E [x7]<P*(t) and allow P (1)
to be chosen freely provided only that P (¢)e I” where T is the class of nonnegative functions

T
= (P(t)20: —%—iP(r)b(dt)sQ}.
Then the channel capacity is € = zeQ_

Proof: By Corollary 1 of Theorem 1,
T
1
€= 52?7{0 (@), P ()b (dr).
Define

T
- L1 N =
I =(P@1)20: TJ;P(t)b(d‘)—Q}.
D (x,y) is nondecreasing in y so

T
C= Psg%%lD(k(l),P(t))b(dt).

D (x,y) is nonincreasing in x and D(O,y)—Zy/e SO

T

1 17 2P (1) 2

€<,7 ID(o P = S0 L2200,y - 20,
1Ty e e

Next we show €2>2Q/e 10 complete the proof. Let G ={re [0,T): A(t)<L) and choose L so

that b(G)>0. Define A (t)=L on G and A (t)=- elsewhere on ([0T]. Then
D (M1),P(t))2D (AL (t),P(1)). Therefore

€20 ;.z[D(kL(r) P ()b ()

_sup 1

= Pel, Tl,D L. P)b(dr).

Let S be the set of all nonnegative b -measurable simple functions on [0,T]. Then
¢ ZPeSI“IE\S T(['D(L L )b ()

= M>pP Per,r\S —£D(L P (0))b(dr)

sup 1 -
= 3%, Perns T[DWLPUNb @)
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where 0,=QT’b(G) and S, S is the set of all functions in § which vanish outside G. For each
M>0,, let Ppyy1)=M1,(¢) where A cG with b(A)=QT/M. Pyel'inS, so

o
€235, [P @ Puteibia)

sup 1
2,000, THADL.M)

- sup 1
PM>Q, MD(L,M).

We have

sup D(L.M) _ sup = -
Map, e = 4ap, DM, 1) =DO1) = Ve

so the proof is complete.

Final comments: Much more could be said about the Poisson channel with the mean-square con-
straint considered here. Following Wyner [16], one could derive the channel coding capacity by consid-
ering the Poisson channel as a discrete binary Z-channel [7] and taking the appropnate limits. One
would find that the coding capacity and the information capacity were equal. Also following Wyner,
one might try to calculate the channel error exponent. Whether or not an analyvtic expression exists for
the error exponent in the present case and what its form might be are unknown. Even to obtain only the
cut-off rate (4], [12], [16] would be interesting. All these various results could be extended to the case
of time-varying channel parameters A(t) and P(¢). Then, as in [6] for the peak-constrained Poisson
channel with noise intensity A(f), the optimal jamming solution could be pursued. For the mean-
square-constrained "on-off keyed" Poisson channel, the information capacity D,(A,P) is nonnegative,
decreasing, and convex in A. Therefore, the optimal jamming intensity will be nonrandom and
"waterfilling” [6]. If D(A,P) proves to be convex in A then in this case too, one would obtain a
"waterfilling” solution to the jamming problem.

In the peak-constrained Poisson channel the capacity with and without an "on-off keying" restric-
tion on the encoder intensity is the same. Based on this, some computer calculations, and the fact that

D©,P)=D,(0,P) { 2P],

€

we conjecture that the same holds true for the Poisson channel with mean square constraint; i.e.,
D\ P)=D,(A,P). Note that this amounts to showing that D (1,P)=D,(1,P) for all P 20.

Finally, it is worth noting that the encoder intensity ¥, is [F®~ IF Y -predictable in the Poisson
channel model considered here. Thus our capacity results are all results for the Poisson channel with
causal feedback. However, the possible presence of channel feedback was exploited in none of our
proofs; in fact, implicily or explicitly only the trivial encoding ¥,(8)=8, is used in the proofs. Thus
the capacity results presented in this paper are equally valid for the no-feedback Poisson channel with
FFO-predictable encoder intensity.
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