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I. LN RODUCTION

The Poisson channel model addressed in this paper is represented in Figure 1. The channel out-

NOISE INrENsrrY, X(t)

ACHAN74EL 
OUTPUTMESSAGE, 0 - ------ IN CDERr X, (0,Y IN'rENSITY,

Xl, =A,+.)

FEEDBACK

Figure 1. Poisson channel model.

put Y={Y o0,6r is a Poisson-type (simple) point process [10] directed by the stochastic intensity

t =X, +X(t). Y and the message process 0=(0,)0515T are defined on a common probability space

(!,F,P) with respective completed natural histories FT and Fte. The message 0 is encoded into the

channel encoder output via the encoder intensity X. X, = X, (0, Y) is required to be an F,O-FY -adapted

encoding of the message process 0 and channel output Y permitting causal message encoding and

noiseless, nonanticipative, instantaneous feedback. The channel noise process N, is a nonhomoceneon-

Poisson process with (nonnegative) intensity function X(t). X(t) is sometimes said to represent dark

current in the channel model. We take the processes 0 and N to be independent and impose, on the

encoder intensity, a time-varying peak constraint

0 :_ X, :- c (t) (1)

for all t E [0,T] where c (t) is positive, bounded, and Lebesgue-measurable and an average constraint

T

E [X1,dt] k (2)

for some positive constant ko. The Poisson channel model is elsewhere referred to as the Poisson-type

point process channel or as the direct detection photon channel. Further discussion of this channel

model can be found in [2], [5], [6], [9], and [14] and the references cited therein.

The Poisson cb,'4l, infoi-stio,-, capacity for time-varying channel parameters X(t), c(t) is

known, as is the channel coding capacity in the case of nontime-varying noise intensity and nontime-
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varying peak constraint. The information capacity for the case of time-varying parameters was obtained

in [6] by applying simple function approximation to Kabanov's capacity result [9] for the Poisson chan-

nel. Wyner [14] obtained the coding capacity for the nontime-varying parameter case by reducing the

Poisson channel to a binary discrete memoryless channel. In this paper, we combiae the method of

approximation by simple functions and Wyner's result to give the coding capacity in the case where the

channel parameters are time-varying. In particular, we address the case in which the noise intensity X(t)

and the peak constraint function c (t) are each periodic with periods Tx and T, respectively. Using a

similar approach we also obtain the coding capacity for the case of almost periodic channel parameters.

Periodic and almost periodic channel parameters are considered for their physical relevance and also to

impose a degree of stationarity on the channel; the classes of channel parameters considered here ensure

that the information capacity exists in the limit as T -- *.
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IT. CHANNEL CAPACITY DEFINITIONS

Coding capacity is defined within the context of codes, decoding schemes, and decoding error

probability. A code (M,T,P,) for the Poisson channel is a set of M equally likely waveforms X,,(t),

tE [0,T], m = 1...M satisfying the peak constraint

,Q(t) < c(t), 0<_t <T

and the average constraint

IM IT

lM cl k .

Let Sy be the space of trajectories of Y on [0,T]. A decoding scheme is a mapping

D:Sy - {1,2,...,M}. The error probability associated with D is

1 Ip,= .H.X P (D(Y~r ) e m Z'}

where YorE Sy denotes the path (Y,: tre [0,T]. A code (M,T,P,) has rate R =(1I/T)lnM. A code rate

R is said to be achievable, for all e>0, there exists a code (M,T,P,) whose parameters satisfy

M -eRT with P, <e for T sufficiently large. The coding capacity CCODMG is the supremum of achiev-

able rates.

To define channel information capacity let go, gr, and per be the marginal and joint measures

induced by the message and output processes, 0 and Y, on the path spaces So, Sy, and S9xSr. Write

the induced product measure as p.. Then, the average mutual information in 0 and Y over the interval

[0,T] is

IT[OY = E[in -'"]

provided Per..c pe1r; otherwise I[0,Y]=-*. Expressions for the average mutual information specific to

the Poisson channel are given in [8]. The channel information capacity is

a X T

where 0 is any jointly measurable process on [0,T] and X, =X,(0,Y) is any F,OF r -adapted mapping. -M
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The information capacity of the Poisson channel with time-varying channel parameters is [6]
T

cs= I ,O\C\m
'M To J CD (ko, .(t ),c(t ))dt,

where CD(koX,c) is the information capacity found by Davis [5] for the Poisson channel with

nontime-varying channel parameters Xt) = X and c (t) = c. We have

CD (x,y ,z ) = m (x ,y ,z ) (z ,y )- O(zm (x,y ,z ),y),

O(x,y) = (x +y)ln(x +y) - y lny ,

and m(x,y z)=r.(x,z),,ro(y,z) is the minimum of r,.(xz) and ro(y,z) for r,.(x,z)=x/z and

r._Z) = - I" z ] +Y/z_+yz
e z[1+ yJ z

r (X(t),c (t)) can be interpreted as the instantaneous optimum ratio of average to peak signal intensity.

rm(ko,c(t)) is the instantaneous maximum ratio of average to peak signal intensity. In this connection,

we note that

1 1
-- 

< r0(t),c ()) < -
e2

for all X(t), c(t), and ko.

Fano's inequality provides an upper bound for the coding capacity in terms of the information

capacity:

CcoDO a _< limsup C .
T--- No

In the Appendix we prove that, in the case where X(t) and c (t) are periodic, the RHS is just the limit
T;.T,

UrnC__--- [ C (k O.(tx),c ( t x. (3)
- TXT0' ((

Thus, for the case of periodic channel parameters, the coding capacity is upper bounded by (3).
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III. CODING CAPACITY FOR PERIODIC CHANN EL PARAMETERS

Our main result (Theorem 3) is that, for periodic channel parameters X(t) and (bounded) c (t)

with respective periods T. and To, the Poisson channel coding capacity is

T;.T,

CeoINGo =  Ift C D (k ',X(t  Qc t )) d t, d t '

Thus, for periodic channel parameters, the coding capacity is the same as the channel information capa-

city [6 as T -- -.

We find the coding capacity with the aid of several lemmas. First, we construct simple periodic

channel parameters X(t), E(t). Let A +x = (t::t-x E A ] and define

E, = tj + kT,)
Fs = UF + kU,

k=O

where (Ej) and (F5 ] are each Lebesgue-measurable partitions of [0,Txj and [0,TC ] respectively. Then,

we write

i.

j=1

i=l

Second, the channel with simple periodic parameters X(t) and E (t) is transformed by changes of time

into an ensemble of n;nc parallel Poisson subchannels (Lemma 1). Then, the coding capacity of the ori-

ginal Poisson channel is shown (Lemma 2) to be lower bounded by the sum of the nxn, coding capaci-

ties Cc o of the ensemble of parallel Poisson subchannels:
CODING

The proof of Theorem 3 uses Eq. (3), Wyner's expression [14] for C and the preceding lemmas

to give the result for simple periodic channel parameters. To complete the proof, a limiting argument is

used to extend the result to general (not necessarily simple) periodic c(t) and X(t).
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Lemmn 1: Let.

s- (T)I 4

where

mij (T ) = Iir)Fi n[OTI I

The channel with time T=Tij, message process 0x=0,, noise process N=N,, encoder output X=X,,

and channel output Y,=X,+N, is a Poisson channel.

Proof. To be able to assert that a channel is Poisson, we need to check that 1) Y,.., Nij , and Xx..

are Poisson-type point processes, 2) causality is preserved, and 3) 08i and Nt.. are independent

processes. But it is well-known (4], [8] that a change of time preserves the Poisson character of a pro-

cess so requirement 1) is satisfied. r=tci(t) is nondecreasing so 2) is satisfied. Also, requirement 3) is

obviously satisfied so the assertion of the lemma is valid.

The transformed time r=r,, is indexed by i = 1,...,n,, j = 1...,nX. Thus the original channel is

transformed into an ensemble of nxn, channels. Each of these nxn, channels reflects a portion of the

events occurring in the original channel and is therefore thought of as a subchannel of the original

channel. The ijth subchannel mirrors events occurring in the original Poisson channel during the time

r Ffi. Scaling the time t causes the subchannel intensities to be scaled; the new intensities are

kXj =Xsm,,(T)IT and XP = X,mij(T)IT. Scaling the encoder intensity in this way is equivalent to scaling

the encoder intensity constraints. The constraints in the ijth subchannel are

.. cimij(T)

and

T k m5 (T)
E [e 5dt -T T.

Note that because of the choice of time transformation and the periodicity of X(t) and c(t), the parame-

ters of each subchannel are constant w.r.L time. We shall want to decompose the Poisson channel into

parallel subchannels for the case of t e [0,.o). Therefore, the limiting scale factor mij (T)/T for T -- ** is
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needed. We show in Appendix 2 that

lir m iq(T ) = IE Fj Iil
--r- T Tx T

Lemma 2: Let C' be the coding capacity of the Poisson subchannel formed by the change of
CODING

time (4). Then

COIN CDING
j=li=l

Proof. Let Rij, li _nc, lj <5nx be achievable rates for the ensemble of parallel Poisson subchan-

nels. Then there exist codes (Mij,T,P,') such that, for T sufficiently large, Mij -e R
"
F and Pij<E. Com-

bination of these codes gives a code (M,T,P,) on the original channel with

M = rM,
iJd

and

P. = 1 - I-(1-P)).
ij

The rate R = (1/T)lnM = _R of this code is achievable since
ij

M = IJMj > HeJ FT = eRT
i.J i,J

and, for all e1>0, we can make P, <5e by choosing T large enough that P, I-(1-l)(. Since the

supremum of all achievable rates is no less than the supremum restricted to achievable rates of com-

bined codes, the result is proved.

Theorem 3: Consider the Poisson channel with nonrandom periodic noise intensity X(t) and peak-

and average-constrained encoder intensity, as in (1) and (2), such that the peak function c (t) is periodic

and bounded. This channel has coding capacity

S1 CD(ko,(tx),c(t,))dt, dt."CO°I.G TaTe
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Proof, We have (Appendix 2) that

lim mij(T) = I F, I
r- T T X T,

so, from Lemma 1 and [14],

CS m.j(T) . (T) mj(T)
= D(k0lira - , lim - ic lm - )

CODION T-- T T..-.- T T.. T

IEJ I j I ,lj I j I F Ej I yF'!
= TDck Tx Tc , XT ci Tx. T )

IE, I lFil
= - CD(ko,,,cj).

Tx T,

For clarity write CcODIo( ,c) for the coding capacity of the Poisson channel with parameters ),(I), c (t).

Then, using Lemma 2,

R;L-R IEj I IFjIl
CODING(.) Z- ' CD (ko-kj,c,)

j ll TX T,

Tx-'c f jC(k°,(t0J,'(tc))dtcdtx.

Let %,,(t) belong to a sequence of simple functions converging downward to Xt) and let E, (t) belong

to a similar sequence converging upward to c(t). Since, for each n, X(t)< R(t) and c(t)> (t), we

have (Appendix 3)

C CODIG (,c ) C ODNG(k.., e.), I ,3..

Then,

C G(XC) 1 lCD (ko,.. (toe. (to))dt, dt %

and, by Fatou's Lemma [I1],

CcoDIN(C ) > T ILT . CD(koXtX),c (tc))dt, dtx.

This and (3) proves the result.
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Wyner [141] showed that the coding capacity of the Poisson channel with constant parameters is

not increased by feedback. The foregoing proof preserves this feature of Wyner's result. Hence we find

that the coding capacity for the case of periodic channel parameters is the same with or without feed-

back.
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IV. CODING CAPACITY FOR AuMOST PERIODIC CHANNEL PARAMETERS

Definition: A real function f (t) defined on the nonnegative real line is almost periodic if, for any

>0, there exists a number /(E)>0 with the property that any interval in the nonnegative real line of

length I(e)>0 contains at least one point t such that

If (t +4)-f (t0 <, C 0< t <0-.

This is the definition of almost peiodic functions given by Bohr (1] (or see [3].) It is easily checked

that the function f(t)=sin(t)+sin(rt) is almost periodic but not periodic. Thus we are motivated to

consider almost periodic channel parameters of the Poisson channel. We note that not all periodic func-

tions are almost periodic [3]. In particular, almost periodic functions are bounded and uniformly con-

tinuous. Thus periodic channel parameters cannot be treated as a special case of the Poisson channel

with almost periodic parameters.

We mention some properties of almost periodic functions which will be needed. Proofs can be

found in [3].

Property 1: Suppose the function b(zj,....z.) of n real variab.cs is uniformly continuous over its

domain anid let the functions f 1 (t),....f,(t) be almost periodic. Then the composition O(f (t),....f,(t))

is almost periodic.

Property 2: Let f (t) be almost periodic. Then the limit lim I f (tdt exists.

Property 3: Almost periodic functions are bounded.

Theorem 4: Suppose a Poisson channel has almost periodic noise intensity Xt) aid an almost

periodic peak function c (1). Then the channel coding capacity is the limit

T

li 0fc(koX(t),c(t))dt. (5)Crn DING T



Proof. The proof hinges on -the properties of almost periodic functions quoted above. By Property

3, c (t) is bounded so [6]

T
camo =  Ic (ko,X(t ),c (t ))dt .

By Property 1, CD (koX(t ),c (t)) is almost periodic. Property 2 then assures us that C exists in the

limit as T -- o. Therefore

. IT

CCODINo < lim. CD (koX(t ),c (t ))dt. (6)

By Property 3, XQ) and c (t) are bounded. Therefore, define

mmax
M;L= T O X(t) Mc = maxC (

Define, also, the simple functions

M,~ 12- 12(t)= - (t

We can write

X.(0= IE. )Xj,

i.1

i-i

where

2. =

_(i-1)M,

c- = ', F = (t: .(t)=C.

Define mij (T)= I[O,T]n EjnF, I. The limits

aij = lim m 1(T)
T ".- T



- 12-

exist. For i, j such that aj, 0, dtne tne changes of channel time

1

,~j -E{IF,(s)ds.

These changes of channel time transform the channel with parameters %., (t), E. (t) into (up to) 22^ Pois-

son subchannels - each with constant channel parameters. ai, =0 corresponds to a subchannel with a

peak constraint function which is identically zero; such subchannels have zero capacity and can be

ignored. CD (-,.,0)= 0 so we have

2? 2"

C CODING E ECD (ak ,c Xj,ci)
i=Ij-l

2,12r

2" 2"2
= lin7  CD(ko,X ,cj)m, (T)

lim__ T jCD(ko,%.(t),E.(t))dt.

%(t), Ec(t) were defined so that X()< .(t) and c(t)>_g(t). Therefore (Appendix 3),

S CO DIN ( ,c ) >- C CO D IN G . , .

for all n. Then, using Moore's theorem [8] (Appendix 1),

C (%,c) lime Xa,CCODING , CODING "

T

lim rn fcD, (ko,% (t),E. (t))dt

T

Thiis aiCD(k0 ,X),th r))dt

This and (6) combine to complete the proof.
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Observations made in the last section with respect to coding capacity for periodic channel param-

eters apply as well to the almost periodic case: the coding capacity is the same with and without feed-

back and the coding capacity is the same as the information capacity in the limit as T - 00,

= limCCODING T-4- WMro

Also, it is clear that expressions for the coding capacity can be given in cases of mixed channel param-

eter types: periodic c (t) and almost periodic X(t) and vice versa.

The reader has perhaps noted the similarity of the approaches used to obtain the coding capacity

in the case of periodic channel parameters and in the case of almost periodic channel parameters. This

similarity suggests that there is a class of parameters which contains both periodic and almost periodic

parameters such that the same basic approach could be used to obtain the coding capacity. The

Stepanoff-almost periodic functions [12], [13] (or see [3]) contain both periodic and almost periodic

functions. For channel parameters of this or some other general class, we conjecture that

T

Coo l _ lCD (k0,X(t ),c (t ))dt

and, also,

TT m
Coow T.li __m li l C

D
(k o'X (t L) 'c ( t, ) )d t cd t x."



- 14 -

V. RANDOM CODING BOUND

The optimal error exponent for the Poisson channel was derived by Wyner [14] for the case of

nontime-varying channel parameters. In his derivation, he used a random coding exponent to lower

bound the optimal error exponent. Upper bounds were obtained by "sphere-packing" and "fixed compo-

sition code" arguments. He then combined these upper bounds to generate a "straight line" upper bound

on the optimal error exponent. This last upper bound coincides with the random coding lower bound,

thus exactly determining the optimal error exponent. It appears that Wyner's approach would also serve

to derive the optimal error exponent for cases of time-varying channel parameters; however, the deriva-

tion would be long. Therefore, in treating the case of time-varying parameters, we just use Wyner's ran-

dom coding bound to give a lower bound on the optimal error exponent. This bound then leads to an

upper bound on the overall error probability. In deriving the lower bound on the optimal error exponent

for the case of time-varying parameters, we actually only use Wyner's random coding lower bound.

Therefore we refer to this lower bound as a random coding bound.

Recall that, for a given decoding scheme D, the Poisson channel probability of decoding error is

1 M1

A probability of decoding error P, is achievable if there exists a code (M, T,P,) whose rate R is

achievable. For fixed M and T, define P:(M ,T) to be the infimum of all achievable error probabilities

P,. For achievable rates R, 0 <_ R < C, the optimal error exponent (also called the reliability function

[7]) is defined to be

Rlimsup -lnP:(M,T)

E(R) =T

where M=[en"l. For large T we can write

P:(M,T) = e

The optimal error exponent derived by Wyner for the Poisson channel with nontime-varying

channel parameters X, c is expressed in terms of the following functions:

q'(x)=k 1

c X(l+x)'(x) -(x)
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R °(x) X 3.11 + q (x),r(x) ( +,t(x ))q*(x) ln(1 + ci A)
l+x

.l +1
- q+q(x)t(x)j ln(l+q (x),c(x)),

E1(xy) = y + [1-(l+q+(x)(x))+1].

Also, we define q*(O) to be the limit [14, Appendix 1]

q(0) = li q*(p) = k° -+ -]l+ c-

For nontime-varying, constant parameters, X, c, the Poisson channel information and coding capacities

are identical; we use C to denote their common value. Then

=RO-R, 0<R <R,
E(R) - L EI(p,q(p))-pR , R, <R <C

where PE [0,1] is an implicit function of R through R =R '(p), Rc = R *(1) is the channel "critical rate",

and

-o _ 2~r
Ro= cE1(1,q()) = c E 1 c 2 +

is the "cutoff rate" of the channel. Where necessary to show explicitly the dependence of these various

quantities on X, c, and k0 , we shall use the notation

'I = x(~C ),

q*(x) = q*(x;X,c,ko),

R "(x) =R (x;X,c),

E(xy) =E(x,y;X,c),

R, = R, (.,ck d ,

R = Ro(Xcko).

Note that, for a > 0,

(CxX,cac) = x(,c),

q'(x;zX,ac,ako) = q"(x;X,cko),
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R "(x ;aX,xc) = R (x ;X,c),

EI(x,y;cX,ac) E1(x,y;X,c),

Ew(R;aX,ac,ako) = oE(R;X,c,ko),

Rc (aX,axc ,oko) = R, (X,c ,ko),

Ro(o.X,ac,ook) = aRo(X,c,ko).

We seek a lower bound on E (R) for the Poisson channel with periodic channel parameters. First

consider periodic simple channel parameters

nXj

j=1

g(t) = ci If .(I).

i=1

as in Section III. By changes of channel time, the Poisson channel with parameters .(t), E (t) can be

transformed into nxnc parallel Poisson subchannels. This is not necessarily the only way to operate the

channel. Therefore

P'*'(M,T) <5 P'*. (MT)

where P *- is the infimum of achievable error probabilities for the Poisson channel with parameters

X(t), e (t) and P,*, is the infimnum of achievable error probabilities for the parallel combination of n %nc

Poisson subchannels. Equivalently,

E(R) > EP(R)

where E(R) is the optimal error exponent of the original channel and E-(R) is the optimal error

exponent of the parallel combination of subchannels. If each of the Poisson subchannels in the parallel

combination is operated as a discrete memoryless channel h Wyner then

P.p(m X"):5 P,*pDUC(m,T),

EP(R) a Ep.DMC(R)

where P,.p,Duc(MT) is the infimum of achievable error probabilities for the parallel combination of

discrete memoryless subchannels and EP DMC (R) is the corresponding optimal error exponent Also
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EP DMC (R) > Ep, D. C(R)

where Ef'DMC(R) is the random coding exponent of the parallel combination of discrete memoryless

channels. Using the decomposition for EP'DMC(R) given in [7] and passing to the limit as in [14, Sec-

tion HI, we obtain

r.[Ro(z(xj,a,jcj,cjko)-R,], O<Rj <R*(1;itaj,ajjcj), all ij
ijE(R _ jiE ~ljP;U )O c)p , (Yq'1 yc)R <(lR(O;X. ,c1) all i,j

where qi(p)=q*(p;aq.j,aijciko)= q (p;.j,ci,xijko), where R1, is the rate in the ijth Poisson subchan-

nel, and where

IEjl IFiI
-Tx. T:

For channel parameters X(t), c (t), define

R (Xc) = T J- ! R (1;X(ix,c(t,))dt .dt,.
T %0

Let C(,)=CCODING= C 0 o be the capacity of the Poisson channel with parameters X(t), E(t). It is a

simple calculation to show that

me 11

C = ,X_._ R "(O;Xj,cj).
i=lj=1

Also,

R = YIRo
ifflj=l

so, for R. (, )< R 5 C, p is an implicit function of R through

R, nx

R = jER'(p,ajjXj, ,)
i,=lj=,1

TT

= T~c-TR(p. cj
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Therefore

E(R) _ (p;X.,e)-oR, ):5 (.)-R <C(7

where

'o(I'Z) = jX aiRo(Xj, c1 ,ko)
i=lj=l

TT,-
1 1 j R ° ( ( t -) ' E( tc ) jk O) &dt .:t

and where

E(p;.,) = l c') Ci E(1,qij (p);aij.j,aijci)
i~lj---

Mie M;
= Z czi cEj(p,qji(p);Xij,c)

i-lj=l

c Txf e (tc )E I(pq *( p ' ( t O) ' ( tc ) k ) ;X(t ;L) 'E( tc ) )d t xdtc "

Based on the form of (7), Ro(le) and kc (I,) are identified, respectively, as the cutoff rate and critical

rate of the Poisson channel with parameters X(t), E (t).

Consider nonnegative, periodic, Lebesgue-measurable channel parameters X(t), c (t) with c (t)

bounded. Let E (R) be the optimal error exponent of the Poisson channel with these parameters. Let

, ) belong to a sequence of periodic simple functions converging upward to X(t) and let e, (t) belong

to a similar sequence converging downward to c(t). Z,(t) is chosen to be a bounded function for each

n. Then, for each n,

E(R) > Em (R)

where E'(R) is the optimal error exponent for the Poisson channel with parameters X(t), Z (t). There-

fore, taking the limit as n- **,

Ro(X,c)-R, o R :5R ,c)E (R) E, (R ; .,c) (P- Xg(p,c)p ,R RX,c )<5R S_ ,c)
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where C(X,c) is the capacity of the chanrel with parameters X(t), c(t), Ro(X,c) is the channel cutoff

rate, and Rc (Xc) is the channel critical rate. Because of the way it was derived using random coding

exponent results, E,(R ;X,c) is called the random coding exponent for the channel. Although we have

not made the calculation, we would be surprised if a similar random coding exponent could not be

given for the channels with almost periodic parameters. Also, although it has not been proven, it is rea-

sonable to expect that, in fact,

E (R) = E, (R;X,c)

for Poisson channels with periodic or almost periodic parameters as is true for the case of nontime-

varying channel parameters.
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APPENDIX I

For convenience of notation, the parameter ko is supressed througlhout this appendix. In particular,
we shall write C (yz) = CD (x,y,z).

Theorem: Suppose X(t) and c (t) are nonegative and periodic with respective periods T; and T.

Also suppose c (t) is bounded. Then

T TT).

lim 1C (%(t),c (t))dt = J- C (X(to,c (to))dtxde,.T-.4- 0 0 0

Proof. Let {E.j, l!j simnoo and {Fi, lsi sl-oo} be Lebesgue-measurable partitions of [0,T)j
and [0,TC ], respectively (e.g. the E,.j are Lebesgue-measurable subsets of [0,T] and the union of the Ej
is (0,T].) m and I depend on n. Let A +x = ft: t-x e A ) and define

E.j = U.{E.j + kTxj,
k=O

F.= t=.{F + kTc }.
k=O

Let { ,, } and {,, } be sequences of simple functions converging pointwise to X(t) and c (t) respectively
with

;,(t) = 'ij lg jwt,

g()= I ci1' lf(t),
i-1

where Osk,,j 0*0, 0scj <- for all i,j,n. By the Dominated Convergence Theorem [11], we have

T T

f(XQ ),c (t))dt = lim (XfC (1v).~(1))dt (A 1. 1)

This convergence is uniform in T - as we show below - so, by Moore's theorem [8],

T-*

(t)t= limn lira . ,tC(X1 t ,,, )dtFnO,

lim lim l
t-4-T-o-T-4 -

1 IEjnF,,ffM0T]I
= lim IC(0X j,c,) li

M
1'1j=liT= T

li '" I aI E ,i  I 1F j I

,,..Tx TT T
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In the string of six equalities above, the fourth equality is justified by the result in Appendix 2. To com-
plete the proof, it only remains to show that the convergence in (AI.1) is uniform in T. We write

T T

T

T

+ _- C(X(t),c (t))Idt. (AI.2)

Now,

IC(X,cl)-C(X,c2)I < IC(0,cl)-C(0,c2)1 < IcI-C2,

so we have the bound

IC(L(t),e,(t)) - C(X,(t),c(t))dt _ 1 le,(t) - c(t)ldt .

Consistent with its earlier assigned properties, the sequence (.(t)} may be chosen such that, for every
e> 0, there exists an n0 such that, for all n >n 0 ,

le. (t) - C (t) I < F

on [0,T]-A, [A I<e. This is Egoroff's theorem [11]. c(t) is assumed to be bounded; let M be an
upper bound. Then

T

T1CO.(t),e.(t)) - C(%.(t),c(t))dt < -[(T-e)e+E.M/] <: e + e-. (A1.3)
To T T

Let B ={te[0,T]: X(t)>L } forL >0. The second integral on the RHS of (A1.2) can be bounded as fol-
lows:

T

" IIO((t')c- C (X(t),ct)) dt
5 IC (OI. (t),c))-C(ktc())Id

-i- L (IC(X (t),c-()) - C(X)c())dI dt

:5 ~ ,D (O~c (t)) 1% (t) - XQ) Idi +I LC(),

where D(xy) is the absolute value of aC(xy)/ax. The last inequality above follows from the fact that,
for all y, D (,y) is a bounded decreasing function over the interval [0,*). D (0,-) is an increasing func-
tion over the interval [0,*o) so D (O,c ())<5D (0,M). Thus,
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T

4-jIC (X. (t ),c (t))dt - C (X(t ),c (t)) dt

D .(0,M) o]-- IX(t)-X(t)Idt + -lIC(L,c(t)) dt. (A 1.4)

Once again using Egoroff's Theorem,

I I% (t) - X(t) Idt <_ (T- [B I-)E + eL.
(0, )-

Using this in (A1.4) and then combining the result with (A1.3) in (A1.2) gives

T T 0

:5 + e K+ D (0,M) (T - IB I-)e + E-L + -LBIC (LN).
T T T

The above bound holds for all L >0 and, in particular, for all L arbitrarily large. B 1--0 and
C (L ,M) - 0 as L --o,. Choose L = 1i'1 and consider only T > T. for some fixed T. > 0. Then

T T
T XA (t),,, (t)dt - 4)JC (X(t ),c (t))dt

:5 F + -K D 0,MF-+D (OM) _ F + o (E).
M fai . 1) is om in

Thus, for all T>To, the convergence in (AI.1) is uniform in T.



- 23 -

APPENDIX 2

Theorem: Let r(T)= IEnFrnO,T]I where

E= U(E + kT,, F = j(F + kT
k=O

and where E and F are Lebesgue-measurable subsets of [0,TxJ and [0,T I] respectively. Then

1.;rm(T) IElI IF I
T--- T TX T "

Proof Without loss of generality, take Tx<T . Define E(p)=E-p for each pE [0,Tj. Let Q be
te set of p E [0,Tx] for which there exists a TP such that, for all t > 0,

lg(aP,(t + T ) = E ,(t).

Q is dense in [0,TJ. Tbus, for ench p E [0,TX], there exists a T'P such that

1j (Pf(t +T' o) = lE,,(t)

for all t E X7 c [0,TI where I[0,T] -XT I< 1. This follows from the fact (Littlewood's first principle
[11]) that the set ff(p)rn(FO,T] is very nearly a finite union of open intervals. For each pE ',,T], we
have

lim EI(p)r F [0,T] I l. T -'p
T = 1 . l + T T' S lg(opyr(t)d11

0 T Vp

= lim 1 T

T-T'p

lim 1 lr(py,,s+Tp)ds

T

= lir - ,-,(s+T'p)ds

= lini{-r,r(S )ds

+ lT0 4 X [lr(p>..r(s+T'p) - lE,,r(s ds .T -., T 10,74TX

Now

]lo'r [lr(P'(s+T'.) - l 1r(s)]ds 1 < 21[0,T] - XTI 2
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so

T

lim IE(p)rFrn[0,T]I rT"- - T T-, JT

lim m (T)
T-.,- T

Let R be a random variable, uniformly distributed over the interval [0,TxJ. By the Bounded Conver-

gence theorem [9],

lim m (T) = E [T m IEf(R)rJ'r[0,T1]

r--- T -- TT

TT;L

T-ira Tf 4 Ig(t)dR IFr(t)dt

= _ l Io I0 ,

T-4- T. - l(t )dt

IEI IF'
Tx T
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APPLNDIX 3

We use the notation C CODING(X,c) to denote the coding capacity of the Poisson channel with
parameters X(t), c (t). In this appendix we show that, if c i(t) dominates c2(t) and X1(t) is dominated by
k2(t), then

CCODING(X1,c I) C CODING(L2,c 2). (A3.1)

This fact is obvious from an examination of the formulae given for the coding capacity. However, since
(A3.1) is used in the derivation of those formulae, an independent proof is required. We begin with two
lemmas.

Lemma: Let X(t) be a nonnegative simple function. For the Poisson channel with parameters X(t),
C.o(I),

inf C (X c) = suC (Xc) = C
ce A CODING C E CODING CODING(%,C)

where A is the set of all simple functions c (t) dominating c. (t) and B is the set of all nonnegative
simple functions c (t) dominated by co (t).

Proof The first equality is proved by decomposing the Poisson channel into parallel subchannels.
The proof is straightforward 3o we omit it. The proof of the second equality is a "proof by concradic-
tion."

For c E A,C C (ODcI ,c) >C CODI(X,co) thus

inf . . _CODINGKN 'C C CODING ' 0cc ,C CODIN(,c ) > .O ~,o)

Suppose

inf C "
IA CCODING ,c) > CCoDING(XCo). (A3.2)

X is simple so there exists c E A and c2 E B such that

CoiCo()Lc 1 - CCOING(X,c 2) < A

for any A> 0. Choose

A inf A o o ( X -C O (X ,C o ) .eA= CODcING xCODIN

Then

inf C " A

- CODIN C ,k.,c ) - A

< C CON(R,c2.
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But this is impossible since Co G(X,Co):> CcoD G ,cD for c 2 E B. So (A3.2) is untrue. Therefore

CODNG CODNG(C2) COIGXc

Lemma: Consider the Poisson channel with parameters X, (t), c (t). For all Ab > 0 there exists a

nonnegative simple function Xb (t) dominated by X, (t) such that

I CDoo °(Xb,c +X, -Xb) - CCOoIN(XO ,c)1 < A.

Proof Let A be the set of simple functions dominating X. (t) and let B be the set of nonnegative
simple functions dominated by X. (t)). Let Xa e A, Xb E B, and define Sa (t) = Xo (t)- Xo (t),

5b(t)= Xo(t)-Xb(t). 5,(t), 5b(t) are both nonnegative. Divert a portion, 5,(t)^c(t), from c(t) to pro-
duce noise. Then

CCODIG(Xo,c) >_ CCODIN(0o +(5.,c),c -( .,,C)) = CCODNG(X.,C -( 8 .,c)).

Likewise

CCoo °G(Xb ,C + 8 b) > CCODIo(Xo ,c).

Thus we have

I CoDIN(Xb ,C + 8b) - CCoDINo(Xo ,Ci )1 -< ICoDNGb ,C + 5b ) - CCODIG(X.a ,- (8. ̂ 0) 1)

Fix E>0. To complete the proof we show that there exists X. E A, Xb ~ B, such that

I C COoDoG, , + 8b) - CCOoDo(X. ,c - (S. ,,C ))1I < e. (A3.3)

Write

ICCoDING(XC + 8 b) - CcODNGo(X.,c - (S. C ))

< ICooIo(Xbc + 8b ) - CCODN(Xb ,c)1

" ICODING b,C.) - CCODo(XbC)l

+ ICCINO(X,,c) - CcCOINo(Xb,cb)l

" IC COING~k.-C ) - CCOING(X.,Cb) I

+ ICCODINo(X ,c) - CCINo(X, .c - (8, ^c)) I (A3.4)

where c. and Cb are simple functions such that

C(t)-(0a. )^C )) :- Cb(t)5 0 ~ ) <5 C.0) -C()+5b(t). (A3.5)

Let c. (t )--4 c (t), Cb(t)"-C(t). Then by the previous lemma, the second and fourth differences or the
RHS of (A3.4) decrease to zero. Let X()-+(t), Xb(t)-+X(t) cunsistent with (A3.5). Then the third
differcnce on the RHS of (A3.4) decreases to zero since all the channel parameters present in the
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expression of the difference are simple. Also, by the previous lemma, the first and fifth differences
decrease to zero. Thus (A3.3) is satisfied and the proof is complete.

Proposition: Let XI(t) and cl(t) be the parameters of a Poisson channel and let X2(t) and c 2(t) be
the parameters of a second Poisson channel. Suppose X(t) is dominated by X2(t) and cl(t) dominates

c2(t). Then

C C~oDINN,c i) 2! CCODIo(X,c 2) .

Proof. Choose Xlb (t) and Xa (t) to be nonnegative simple functions dominated, respectively, by

%lb(t) and X2(t). Write

C CODING(X,c 1) - CCODING(,C 2)

= CODING(l,c 1) - CCODING(X,c2)

- A, + A2 + A3

+ CCODINO(Xb,C2+ )a-X2b) - CCODNG(Xm ,c 2 +X2-X ,)

where

A, = CCODD(Xb,C2+X Xlb) - CCOD,.o(X,c2),

A3 = C DtNG(Xlb,C 2+ XI - X1b) - CCODo(X.,C 2 + 2- X,).

By the previous lemma, Xjb(t), Xb (t) can be chosen so that XIb(t)<X2(t) with A1, A2, and A3 arbi-
trarily close to zero. For Xxb (t) _X, (1),

CCODINGo(Xb,C2+X2-X b) - CCOD,.(X2,c2+X2-XU) - 0.

Also

C COxNo(XIC I) CCoDD, (XIc 2)-

Therefore

CCODIo()",c 1) - Ccoo(2,c 2).
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