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I. INTRODUCTION

The Poisson channel model addressed in this paper is represented in Figure 1. The channel out-

NOISE INTENSITY, A(2)

MESSAGE, §, —— ENCODER ® I S?'gpm
INTENSITY, %, (0,Y) N =% +7\'(f )

|

Figure 1. Poisson channel model.

FEEDBACK

put Y=(Y,)os:sr is a Poisson-type (simple) point process [10] directed by the stochastic intensity
M, =% +A(t). Y and the message process 6=(86, Jos:sr are defined on a common probability space
(©,F ,P) with respective completed natural histories F Y and F®°. The message 6 is encoded into the
channel encoder output via the encoder intensity ¥,. X =%:(8,Y) is required to be an F,%F) -adapted
encoding of the message process 8 and channel output Y permitting causal message encoding and
noiseless, nonanticipative, instantaneous feedback. The channel noise process N, is a nonhomogeneous
Poisson process with (nonnegative) intensity function A(z). A(z) is sometimes said to represent dark
current in the channel model. We take the processes 6 and N to be independent and impose, on the

encoder intensity, a time-varying peak constraint

O<x <c(r) )

for all ¢ « [0,T] where c (¢) is positive, bounded, and Lebesgue-measurable and an average constraint

T

E[{x,dz]SkoT )

for some positive constant ko. The Poisson channel model is elsewhere referred to as the Poisson-type
point process channel or as the direct detection photon channel. Further discussion of this channel

model can be found in (2], [5], [6], [9], and [14] and the references cited therein.

The Poisson channal infoination capacily for time-varying channel parameters A(r), c(t) is

known, as is the channel coding capacity in the case of nontime-varying noise intensity and nontime-
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varying peak constraint. The information capacity for the case of time-varying parameters was obtained

in (6] by applying simple function approximation to Kabanov’s capacity result [9] for the Poisson chan-

nel. Wyner [14] obtained the coding capacity for the nontime-varying parameter case by reducing the

Poisson channel to a binary discrete memoryless channel. In this paper, we combine the method of

approximation by simple functions and Wyner’s result to give the coding capacity in the case where the

channel parameters are time-varying. In particular, we address the case in which the noise intensity A(t)

and the peak constraint function ¢ (r) are each periodic with periods T; and T, respectively. Using a

similar approach we also obtain the coding capacity for the case of almost periodic channel parameters.

Periodic and almost periodic channel parameters are considered for their physical relevance and also to

impose a degree of stationarity on the channel; the classes of channel parameters considered here ensure

that the information capacity exists in the limit as T — oo,
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II. CHANNEL CAPACITY DEFINITIONS

Coding capacity is defined within the context of codes, decoding schemes, and decoding error
probability. A code (M,T,P,) for the Poisson channel is a set of M equally likely waveforms . (1),

te [0,T), m=1,..,M satisfying the peak constraint

Ln(t)<c(), O0=t<T

and the average constraint
M 1 T
Z?t[xm(t)dt < k.

L
Mmsl
Let Sy be the space of tajectories of ¥ on [0T]. A decoding scheme is a mapping

D:Sy — {12,...,M}. The error probability associated with D is

P, =

M
LSPDED) # mita ()
1

where YZ e Sy denotes the path (Y,: te [0,T]). A code M,T,P,) has rate R =(1/T)InM . A code rate
R is said to be achievable, for all £>0, there exists a code (M,T,P,) whose parameters satisfy
M 2e®T with P, <S¢ for T sufficiently large. The coding capacity €__ . is the supremum of achiev-

able rates.

To define channel information capacity let Mo, Mr, and Her be the marginal and joint measures
induced by the message and output processes, 8 and Y, on the path spaces Se, Sr, and SexSy. Wrile
the induced product measure as [Lexr - Then, the average mutual information in § and Y over the interval
[0,T] is

dl.[ey
T = hadonL 0
! [O,Y]-E[lnd }

) 4

provided [ler << Hexr; Otherwise / T[8,Y]=oo. Expressions for the average mutual information specific to

the Poisson channel are given in [8). The channel information capacity is

rore BT ] T
o= P 710

where 0 is any jointly measurable process on [0,T] and ¥, =X.(6.Y) is any F%F/ -adapted mapping.
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The information capacity of the Poisson channel with time-varying channel parameters is [6]
1 T

Coro= T {cp (ko Mt).c (1))t
where Cp(kgA,c) is the information capacity found by Davis 5] for the Poisson channel with
nontime-varying channel parameters A(t)=A and ¢ (t)=c. We have

Cp(x.y.z)=m(x.y 2)0(z.y)-dm(x,y.2)y),
¢(x.y) = (x+y)ln(x+y) - ylny,

and m(x,y z)=r,(x,2)~r,(y 2} is the minimum of r,,(x ,z) and r, (y,2) for r,,(x,2)=x/z and
1 1+y/z
=221+2 _X
ro(y.2) ez[+y} g

r, (A(t).c (t)) can be interpreted as the instantaneous optimum ratio of average 1o peak signal intensity.
rm(ko.c (t)) is the instantaneous maximum ratio of average to peak signal intensity. In this connection,

we note that
Lsrameons:
e ° ’ 2

for all A(t), ¢(¢t), and k.

Fano’s inequality provides an upper bound for the coding capacity in terms of the information

capacity:
CmDINO < li;n_s:_up Cm.

In the Appendix we prove that, in the case where A(¢) and ¢ (r) are periodic, the RHS is just the limit

T\T,
. 1
Hm € oo = g | [ ColloMtd.c G ). €)

Thus, for the case of periodic channel parameters, the coding capacity is upper bounded by (3).
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III. CODING CAPACITY FOR PERIODIC CHANNEL PARAMETERS

Our main result (Theorem 3) is that, for periodic channel parameters A(t) and (bounded) c (1)
with respective periods T and T,, the Poisson channel coding capacity is

T,
1
€ covma = T, J; "[CD (ko A(tic (8 ))ds . dt, .

Thus, for periodic channel parameters, the coding capacity is the same as the channel information capa-

city [6] as T — oo,

We find the coding capacity with the aid of several lemmas. First, we construct simple periodic

channel parameters A(t), #(¢). Let A +x={t:t1-x € A} and define

E; = IE; + KT},
k=0

Fi= OUF: +4T,).
k=0

where {E;} and (F;]) are each Lebesgue-measurable partitions of [0,T;] and [0,T, ] respectively. Then,
we write

Ry
A=A g0,

j=

£() = Yailg ().

i=]

Second, the channel with simple periodic parameters X(¢) and ¢ (¢) is transformed by changes of time
into an ensemble of nyn, parallel Poisson subchannels (Lemma 1). Then, the coding capacity of the ori-
ginal Poisson channel is shown (Lemma 2) to be lower bounded by the sum of the nan. coding capaci-

ties € é’;mm of the ensemble of parallel Poisson subchannels:

Ry lc

COODINO 2 j;li-lcgomNG )

The proof of Theorem 3 uses Eq. (3), Wyner’s expression {14] for € gmm, and the preceding lemmas

to give the result for simple periodic channel parameters. To complete the proof, a limiting argument is

used to extend the result to general (not necessarily simple) periodic ¢ () and A(r).




Lemma 1: Let .

% =10 = s [ 1gp 024 _ @

where

m;(T) = |E;nF;A0.T]I.

The channel with time t=1;;, message process 8,=9,, noise process N.=N,, encoder output X.=X,,

and channel output Y.=X.+ N 1s 2 Poisson channel.

Proof: To be able to assert that a channel is Poisson, we need to check that 1) Yf.-,-’ N,‘,j, and X %
are Poisson-type point processes, 2) causality is preserved, and 3) 91',,_ and N v, are independent
processes. But it is well-known [4], {8] that a change of time preserves the Poisson character of a pro-
cess so requirement 1) is satisfied. T=1;;(t) is nondecreasing so 2) is satisfied. Also, requirement 3) is

obviously satisfied so the assertion of the lemma is valid.

The transformed time T=1; is indexed by i =1,..,n., j=1,..,n,. Thus the original channel is
transformed into an ensemble of n3n. channels. Each of these nyn. channels reflects a portion of the
events occurring in the original channel and is therefore thought of as a subchannel of the original
channel. The ijth subchannel mirrors events occurring in the original Poisson channel during the time
E;~F;. Scaling the time ¢ causes the subchannel intensities to be scaled; the new intensities are
A =A;m(TYT and x7=x,m;(T)T. Scaling the encoder intensity in this way is equivalent to scaling
the encoder intensity constraints. The constraints in the ijth subchannel are

c;m;; )]

ij
0<y’< T

and

T

E[J;x,‘idz] PRLLIIY

T
Note that because of the choice of time transformation and the periodicity of A(t) and ¢ (¢), the parame-
ters of each subchannel are constant w.r.t. time. We shall want to decompose the Poisson channel into

parallel subchannels for the case of 1 € [0,e0). Therefore, the limiting scale factor m;;(T)/T for T 5 eo is




needed. We show in Appendix 2 that

. m,-,-(T) |E,| IF,I
lim = .
Toe T Tx Tc

Lemma 2: Let € g)wc be the coding capacity of the Poisson subchannel formed by the change of
time (4). Then

B R

> i
CCOD[NG - Zl %Cconmc‘
J.——' =

Proof: Let R;;, 1<i<n., 1<j <n; be achievable rates for the ensemble of parallel Poisson subchan-
nels. Then there exist codes (M;;,T,PJ) such that, for T sufficiently large, M;; >e"iT and Pl<e. Com-

bination of these codes gives a code (M,T,P,) on the original channel with
M= HM'J
iJ
and

P, =1-TIQ-PH.
iJ

The rate R =(1/T)InM =3 R;; of this code is achievable since
iJ

M= HM,-,- 2 Hek""T = ek
W 137

and, for all €,>0, we can make P, <g; by choosing T large enough that P, <1-(1 -£)!" . Since the
supremum of all achievable rates is no less than the supremum restricted to achievable rates of com-

bined codes, the result is proved.

Theorem 3: Consider the Poisson channel with nonrandom periodic noise intensity A(t) and peak-
and average-constrained encoder intensity, as in (1) and (2), such that the peak function ¢ (¢) is periodic
and bounded. This channel has coding capacity

T\,
1




Proof: We have (Appendix 2) that

lim =
Toe T T;' Tc

so, from Lemma 1 and [14],

Dy D)
=T

m-‘,‘(T)

€i_=Cplko nm -

CODING

. .Tllin_ )

il L, IELIF ;IR

= 1)"' Wy
CD(kOT 7. T, T, T, T.

lEI lFl
T,

Aj.ci).

For clarity write € (A.c) for the coding capacity of the Poisson channel with parameters i(r), ¢ ().

CODING

Then, using Lemma 2,

IE; 1 1F;!

mma)_zz Co (kojc:)

_h =] C
7,

ok ovad !Co (ko A(t2).2 (¢, ))dr, dts.

Let A, (1) belong 1o a sequence of simple functions converging downward 10 A(t) and let , (1) belong
to a similar sequence converging upward to ¢ (t). Since, for each n, A(t)<X,(¢) and ¢ (¢)2Z,(t), we

have (Appendix 3)

c c)y2¢ Xair), n=123..

CODING('A' CDDING(

Then,

T,T,
conmoo“‘c) 2 T 1[ ICD (kguhn (120,85 (2 V)t dit 2

and, by Fatou’s Lemma [11],
Tch

mnmoa’ ) 2 T { £CD (ko,A(t2),c (¢ )t  dty,.

This and (3) proves the result.
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Wiyner -[14] showed that the coding capacity of the Poisson channel with constant parameters is
not increased by feedback. The foregoing proof preserves this feature of Wyner’s result. Hence we find
that the coding capacity for the case of periodic channel parameters is the same with or without feed-

back.
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IV. CODING CAPACITY FOR ALMOST PERIODIC CHANNEL PARAMETERS

Definition: A real function f (¢) defined on the nonnegative real line is almost periodic if, for any
+ >0, there exists a number [(g)>0 with the property that any interval in the nonnegative real line of

length /(g)>0 contains at least one point & such that

Fe+8 - f(@Ml<e, 0<1t <00,

This is the definition of almost pe.iodic functions given by Bohr [1] (or see [3].) It is easily checked
that the function f (#)=sin(z)+sin(ns) is almost periodic but not periodic. Thus we are motivated to
consider almost periodic channel parameters of the Poisson channel. We note that not all periodic func-
tions are almost periodic [3]. In particular, almost periodic functions are bounded and uniformly con-
tinuous. Thus periodic channcl parameters cannot be treated as a special case of the Poisson channel

with almost periodic parameters.

We mention some properties of almost periodic functions which will be needed. Proofs can be

found in [3].

Property 1. Suppose the function 9(zy,...,2,) of n real variab'cs is uniformly continuous over its
domain and let the functions f (), ..., f.(t) be almost periodic. Then the composition &(f (1), ..., f. (1))
is almost periodic.

T
Property 2: Let f (¢) be almost periodic. Then the limit Tlim % { f (0)dt exists.

Property 3: Almost periodic functions are bounded.

Theorem 4: Suppose a Poisson channel has almost periodic noise intensity A(r) a.d an aimost

periodic peak function ¢ (¢). Then the channel coding capacity is the limit

T
Cocoma = Tﬁ_r:‘_%b[cb (kg M )c (e . )
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Proof. The proof hinges on the properties of almost periodic functions quoted above. By Property

3, ¢(t) is bounded so [6]

T

Como= T [eatkor®rc et

By Property 1, Cp (ko A(t),c(r)) is almost periodic. Property 2 then assures us that Cmo exists in the

limit as T — oo. Therefore
CODING

T
€ oo S 1im = [Co (koAt).c ()t
T —ee TO

By Property 3, A(t) and c (¢) are bounded. Therefore, define

My=TEN), M.=Tq).

Define, also, the simple functions

My [ ]
An(t) = > | MO

M, o
&)= F_MCCO)_-

We can write

2*
Ka() = S OM;

j=l

>
2.(0) = T1r,(0)c

i=l

where

M
Aj = 12: . Ej=(:X,0)=%),

(i-M.
€= ————

i Y Fi={r:2,()=¢]}.

Define m;;(T)={0,T]NE,NF;|. The limits

©
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exist. For , j such that o;; #0, detine the changes of channel time

4
-y =
<it) = % 6151"".‘(5)“'

These changes of channel time transform the channel with parameters A, (1), Z,(¢) into (up t0) 2#* Pois-
son subchannels - each with constant channel parameters. @;; =0 corresponds to a subchannel with a
peak constraint function which is identically zero; such subchannels have zero capacity and can be

ignored. Cp(-,-,0)=0 so we have

2® 28

Ccoomc(x" ) 2 ZI %CD (ajko,00; }‘j Qi i)
= l:

28 28

> >0 Cplkoh;j.ci)

i=lj=l

it

[}

. 1 28 2»
Jim — 2. 2.Cp (ko ci)mi(T)

islj=l

T
= lim % {c,, (ko (1), (1))t -

A, (1), Ex(t) were defined so that A()<A, (¢)and c(t)2Z,(t). Therefore (Appendix 3),

Ccoomoo"c) 2 Ccoome(x"‘ 'E")

for all n. Then, using Moore’s theorem (8] (Appendix 1),
Cconmca‘c) 2 }i_x,n_ccwmca" £n )
1 T
2 lim lim — gcp (kohn (1).2, (1))t

T
= lim = Jim [Co (ko (0.2, ()

T
= lim % JCD (koM ).c (1))t -

This and (6) combine to complete the proof.
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Observaticnis made in the last section with respect to coding capacity for periodic channel param-
eters apply as well o the almost periodic case: the coding capacity is the same with and without feed-

back and the coding capacity is the same as the information capacity in the limit as T — oo,

€ coomio = }lﬂcm

Also, it is clear that expressions for the coding capacity can be given in cases of mixed channel param-

eter types: periodic ¢ (¢) and almost periodic A(t) and vice versa.

The reader has perhaps noted the similarity of the approaches used 1o obtain the coding capacity
in the case of periodic channel parameters and in the case of almost periodic channel parameters. This
similarity suggests that there is a class of parameters which contains both periodic and almost periodic
parameters such that the same basic approach could be used to obtain the coding capacity. The
Stepanoff-almost periodic functions [12], [13] (or see [3]) contain both periodic and almost periodic

functions. For channel parameters of this or some other general class, we conjecture that
1T
Coonmo = Jim 7 [Cotkor)c )

and, also,

T:Tl

c = lim lim J z[CD (ko A(t2).c (1. )1, dts, .

CODING T —reaTy—ren Tc Tl
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V. RANDOM CODING BOUND

The optimal error exponent for the Poisson channel was derived by Wyner [14] for the case of
nontime-varying channel parameters. In his derivation, he used a random coding exponent to lower
bound the optimal error exponent. Upper bounds were obtained by “sphere-packing” and “fixed compo-
sition code™ arguments. He then combined these upper bounds to generate a "straight line" upper bound
on the optimal error exponent. This last upper bound coincides with the random coding lower bound,
thus exactly determining the optimal error exponent. It appears that Wyner’s approach would also serve
to derive the optimal error exponent for cases of time-varying channel parameters; however, the deriva-
tion would be long. Therefore, in treating the case of time-varying parameters, we just use Wyner’s ran-
dom coding bound to give a lower bound on the optimal error exponent. This bound then leads to an
upper bound on the overall error probability. In deriving the lower bound on the optimal error exponent
for the case of time-varying parameters, we actually only use Wyner’s random coding lower bound.

Therefore we refer to this lower bound as a random coding bound.

Recall that, for a given decoding scheme D, the Poisson channel probability of decoding error is

1 M T
Po= 3 ZP (D@ T#mitn()).

A probability of decoding error P, is achievable if there exists a code (M,T,P,) whose rate R is
achievable. For fixed M and T, define P, (M ,T) to be the infimum of all achievable error probabilities
P,. For achievable rates R, 0 <R <C, the optimal error exponent (also called the reliability function

[7}) is defined to be

i -InP (M .T)
ER) =" ————=

where M=[e®T]. For large T we can write
P (MT)=eEtRT+eM,

The optimal error exponent derived by Wyner for the Poisson channel with nontime-varying

channel parameters A, ¢ is expressed in terms of the following functions:

1/(14x)
't(x)=[l+{-] -1,

q'(x)=ﬁn 1 c m— 1
c T(x) | M1+x)t(x) w(x) |’
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R(x) = k[l+q'(x)‘t(x)]x a ”i’fl “E) a1+ e
. x+] .
- l[1+q (x)‘r(x)] In(1+¢q (x)1(x)),

Eiey) =y + 2[1-teg ey,

Also, we define ¢°(0) to be the limit [14, Appendix 1)

*(0) = limg*( )=ﬁAl 1+ < T
1 —p—>0q P c |¢ A cl’

For nontime-varying, constant parameters, A, ¢, the Poisson channel information and coding capacities

are identical; we use € to denote their common value. Then

{RO—R , 0<R <R,
ER) =) (p.q o) -pR . R. <R <C

where pe[0,1] is an implicit functon of R through R =R‘(p), R. = R°(1) is the channel "critical rate”,
and

. k k 2
Ro= cE(1,4°(1)) = c{{a%] {1 - [TO%H (e -

is the "cutoff rate” of the channel. Where necessary to show explicitly the dependence of these various

quantities on A, ¢, and k,, we shall use the notation
T=1Ac),
q°(x) = ¢ (xihe ko),
R'(x)=R"(x:Ac),

El(x’y) =El(x9y;lac)a

R. =R.(Ac ko),
Ro=Ro(Ac ko).
Note that, for a>0,
Wodoc) =1(A.c),

g (x;0hac ,ako) = ¢°(x;h.c ko),
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R(x;oh0c) = oR “(x;h.c),
Ei(xyiohoc) = Ey(x.yihe),
Ey (odé 10, 0c ,ako)‘ = aEw (R;Ac ko).
R, (od,0c ,0ko) = aR, (A,c ko),

Ro(o,0c ,0kg) = AR o(Ac ko).

We seek a lower bound on E(R) for the Poisson channel with periodic channel parameters. First

consider periodic simple channel parameters

i
@) = ijlgj(r),

j=
&)= f;c,-lfi(z).
i=1

as in Section III. By changes of channel time, the Foisson channel with parameters A(t), Z(r) can be
transformed into nyn, parallel Poisson subchannels. This is not necessarily the cnly way to operate the

channel. Therefore
P,MTY<P ,MT)
where P, , is the infimum of achievable error probabilities for the Poisson channel with parameters

A(t), €(¢) and P,’, is the infimum of achievable error probabilities for the parallel combination of n3n,

Poisson subchannels. Equivalently,
ER)2E?R)
where E(R) is the optimal error exponent of the original channel and EP(R) is the optimal error

exponent of the paralle! combination of subchannels. If each of the Poisson subchannels in the parallel

combination is operated as a discrete memoryless channel 3 Wyner then
P:,p(M ,T) < Pc..p.DMC(M vT)’

EP(R) 2 EP-PMC(R)

where P, , pyc(M,T) is the infimum of achievable error probabilities for the parallel combination of

discrete memoryless subchannels and E?-?M€(R) is the corresponding optimal error exponent. Also
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Ep.DMC(R) > E'p.D. C(R)

where EZ*PMC(R) is the random coding exponent of the parallel combination of discrete memoryless
channels. Using the decomposition for EP*PMC(R) given in [7] and passing to the limit as in [14, Sec-

tion III], we obtain
Z[Ro(&,‘jll ,a,'jC,' ,aijko)‘R"j] . OSR,] SR.(I,QU-A.J ,a,-jc,-) , all lJ

L,/ -
ER)=2 . . . ..
®) ZaijciEl(p’q"j(P);aij)‘-j’aijci)—pRij s 0GR (LA;,c) SR <o R' (A ,ci) alliyj
ij

where g;;(p)=q"(Pi0t;;A; i ko) = (P;A; ¢; 0k o), Where R;; is the rate in the ijth Poisson subchan-

nel, and where

IE;1 IF; |

% = T, T,

For channel parameters A(t), ¢ (1), define

T.T,

: [ [Rr0AE et
0

Tch

Ec ()‘-C) =

Let CAE)=C €+, be the capacity of the Poisson channel with parameters A@), 2(t). Itis a

CODING

simple calculation to show that

R Ry
C= ZZQUR ‘(O;;»j,C,') .

i=lj=1

n. Ry

R =33R;

i=lj=1

so, for R, (A Z)SR <C, p is an implicit function of R through

Re A
R = ZU‘(P,G;,'A,' Wi €;)

i=ljxl

n‘ Ry

= 3 Y0, R (pA;.ci)

inmlju]
T:Tl
=1 l J;R°(p1('x),5(fc)df:.d‘c-

Tc Tl.
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Therefore
RyX2)-R, O<R<R.(A¢Z) .
ER)=2 E\(pAZ)-pR, R.AZ)SR<C 0
where
- R, B
RoA2) = T3 a;iRo(Aj, i ko)
i=lj=l
1 Tch
=TT { z[ieoot(u),a (1) ko)dtadt,
and where
_ _ l ll
E(P.A- Zaljcl ](p ql/(p) al] )‘-] ,(IUC )
|=1]‘1
l "1
= ZZG.IC El(quq(p) )
i=lj=1
Tcrl
7T £ £ & (1. )E 109 (PRt .E (1 )k A(1).2 (1. )t .

Based on the form of (7), Ro(A.&) and R, (X&) are identified, respectively, as the cutoff rate and critical

rate of the Poisson channel with parameters A(t), Z (1).

Consider nonnegative, periodic, Lebesgue-measurable channel parameters A(r), ¢ (t) with ¢ (1)
bounded. Let E(R) be the optimal error exponent of the Poisson channel with these parameters. Let
X, (1) belong to a sequence of periodic simple functions converging upward to A(z) and let &,(r) belong
to a similar sequence converging downward to ¢ (¢). Z,(¢) is chosen to be a bounded function for each

n. Then, for each n,

ER)2E"R)

where E"(R) is the optimal error exponent for the Poisson channel with parameters A(t), Z(t). There-

fore, taking the limit as n —oo,

Ro(Ac)-R, 0<
E\(p:hc)-pR,

ER)ZE,RAc) =
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where €C(A,c) is the capacity of the chanriel with parameters A(t), c (t), Ro(A.c) is the channel cutoff
rate, and fi’; (A,c) is the channel critical rate. Because of the way it was derived using random coding
exponent results, E,(R;A,c) is called the random coding exponent for the channel. Although we have
not made the calculation, we would be surprised if a similar random coding exponent could not be
given for the channels with almost periodic parameters. Also, although it has not been proven, it is rea-

sonable to expect that, in fact,

ER)Y=E,(R:Ac)

for Poisson channels with periodic or almost pzriodic parameters as is true for the case of nontime-

varying channel parameters.
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APPENDIX 1

For convenience of notation, the parameter kg is supressed througliout this appendix. In particular,
we shall write C(y ,2)=Cp (x,y,2).

Theorem: Suppose A(t) and c(t) are nonegative and periodic with respective periods T and T,.
Also suppose ¢ (¢) is bounded. Then
T.T,
Jim — jC(k(:) c(e)dt = —— j j C (M1)€ (0 Ndtadt, .

Proof. Let {E,;, 1sjsmeo} and {Fu, 1<isl<>} be Lebesgue-measurable partitions of [0,T,]
and [0,T. ], respectively (e.g. the E,; are Lebesgue-measurable subsets of {0,7] and the union of the E,;
is [0,T].) m and ! dependon n.Let A +x ={r:t—x € A } and define

E, =\U[E.; + kT4,
k=0

= UlFu +4T,].
k=0

Let {A,) and {&,} be sequences of simple functions converging pointwise to A(z) and ¢ (¢) respectively
with

A@) = le! IE ),

J-l

&)= Zcmlr ),

i=]

where 0sA,j <o0, Oscy <oo for all i ,j 2. By the Dominated Convergence Theorem [11], we have
T T
LIC M) @Nde = lim =[C R0 En 0Nk . (ALD)
T o R =y T 0
This convergence is uniform in T - as we show below - so, by Moore's theorem [8],

!C(l(t),c (O)dt = lim lim - zEC(X,(:)E ()t

= hm lim FZZCO\,‘, Ca)EjNFun[0T]l

T —pee

j=li=l
IE;nFun[0T]l
= lim ZZCO»,.,,C,,)I : 1]
i) T
lEp| 1Ful
= tim 3 3.0 0y )l
l:h-[ c
T,T.

= lim 5.—;— | {C(X,(m.z,(u»dtcdu
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. T,T.
= ﬁuca«o,c (t.)) dt. dts,.

In the string of six equalities above, the fourth equality is justified by the result in Appendix 2. To com-
plete the proof, it only remains to show that the convergence in (Al.1) is uniform in T. We write

T T
1 1
| 7[C G 2ateNal = LfC OO e |

T

< [lEG 2 - €A M

T
+ 2[ICAe ) - COMeE)ldr (A1.2)
0

Now,
ICAc)-CRre £IC[0,c1)-C0,c)l € ley—c4l,

so we have the bound
T T

%I[IC(X,(t),E,(r)) - CR(0)c@)dt < ﬂla,(x) —c(0)ldr .

Consistent with its earlier assigned properties, the sequence (,(r)} may be chosen such that, for every
£>0, there exists an nq such that, for all n >ng,

B, () —c@)l <¢

on [0,T]-A, |Al<e. This is Egoroff’s theorem {11]. c(¢) is assumed to be bounded; let M be an
upper bound. Then

T
FIICA02 ) - COMDc @Mt S T(T-eeveMIse+ e (AL3)
0

Let B={1e[0,T): A(t)>L} for L >0. The second integral on the RHS of (A1.2) can be bounded as fol-
lows:

T
nglca,(z),c(:))dz — COM) ()l de

1

S —
T,

f(}_ IC Ra(t)uc (1)) = CA)uc (1)) dt
B
+ %QC(LO),C ©) = CA)c (1))l dt

< —;-[o' JHD(O,C(I)) P (e)=AGe)1dr + %{C @c@na

where D (x,y) is the absolute value of dC (x,y)/ox. The last inequality above follows from the fact that,
for all y, D(-y) is a bounded decreasing function over the interval [0,%). D (0,") is an increasing func-
tion over the interval [0,e0) so D (0,c(t))<D (0,M). Thus,



-7

T
% [ICAa@)ce)dt — CAt)c 1))l e
0

< DOM)

1
| -2 d =|C(L, dr . Ald
T ij A (@)= A(t) z+,£< c)a (Al1.9)

Once again using Egoroff’s Theorem,
,I IAa(e)=A()lde < (T-1Bl-e)e + €L .
0718
Using this in (A1.4) and then combining the result with (A1.3) in (A1.2) gives
17 17
|7 lc n()2al))dt = {c AW (1) |
se+ed L 2OM) r iBleerer)+ Elow m).

T T T
The above bound holds for all L >0 and, in particular, for all L arbitrarily large. |B{—0 and
C(L M)—>0as L —. Choose L =1/Ve and consider only T >T, for some fixed T, >0. Then

T

T
1% [cta 0.z na - 1 [ca0e @]

sg+s-7—¥—+D(0M)e+2(—;):'A—Q~/€+o(e).

o [4

Thus, for all T>T,, the convergence in (A1.1) is uniform in T.
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APPENDIX 2

Theorem: Let m(T) = |E ~F ~[0,T]| where

E=UlE+K), F=UF +4T,)
k=0 k=0

and where E and F are Lebesgue-measuratle subsets of {0,T5] and [0,T, ] respectively. Then

m@) _EIIF|
T‘—b- T T, Tc )

Proof- Without loss of generality, take T5 <7, . Define £(p)=E-p for each pe [0,T;]. Let Q be
tie set of pe [0,T,] for which there exists a T, such that, for all ¢ 20,

Leonrt+T5) = 15, £ ().
Q is dense in [0,T;]. “hus, for exch pe [0,T5], there exists a T*, such that
Leone(t+T7) = 15,5 (t)

for all t € Xy <(0,T] where 1[0.,T}-Xrl<1. This follows from the fact (Litlewood’s first principle
[11]) that the set £ (p)n F ~[0,T] is very nearly a finite union of open intervals. For each pe " ..T], we
have

T

. E@NFA0,T) _ 1 T-T
il T = Jim | [lenr(d + — Fﬁrf.plﬂmf(’)d’
J
= jim T’ JIEW"(’)‘”
i T—T'p
= jim o T, ); leganris+T p)ds
1 T
= —fll E(p)f‘.P(s +T'p)d.\'
1 T
= lim —{1
Tu..E. Tt’) [nf(S)dS

1 :
+ lim £ L [1err 64T = 1gr(e)]ds
T== 1 01}x,

Now

| L [1E@y,,(s+r'p) - lgh,(s)]dsl <210.T] - Xr1 <2
01}x,
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SO
jim IE-'(p)nI;n[O,T]I Jim 72 S
- Jim 2

Let R be a random variable, uniformly distributed over the interval [0,T,]. By the Bounded Conver-

gence theorem [9],

lim 2@ [nm l_f@)mfm[O,T_]_l_J

Toe T T —ae T
i
= lim TIIIE(RN(z)det
T

= lim TI-' lg gy (t)dR 17 (t)dt

TIE]

1
T lr @

=hm£

El IF!

T, T,
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APPENDIX 3

We use the notation CCODL\,G()\,C) to denote the coding capacity of the Poisson channel with

parameters A(1), ¢ (). In this appendix we show that, if ¢ () dominates ¢,(t) and A,(¢) is dominated by

A, (t), then
Ccoomc()‘l’c D2 Ccoomc(l’l'CZ) : (A3.1)

This fact is obvious from an examination of the formulae given for the coding capacity. However, since
(A3.1) is used in the derivation of those formulae, an independent proof is required. We begin with two
lemmas.

Lemma: Let A(t) be a nonnegative simple function. For the Poisson channel with parameters A(¢),

CO(‘)v
e  a)=SBc  Ae)=€C._ (he,)
c€A™coomngt "/ T c€B% oopvg Y/ TV coomg e

where A is the set of all simple functions ¢ (t) dominating c,(t) and B is the set of all nonnegative
simple functions ¢ (¢) dominated by ¢, (¢).

Proof. The first equality is proved by decomposing the Poisson channel into parallel subchannels.
The proof is straightforward so we omit it. The proof of the second equality is a "proof by contradic-
tion.”

Force A, CCODNG(K,C)ZCCOMG(X,C,) thus

e  e)zc

CODING CODING

Ac,).

Suppose
inf Ac)>C

ceA Ccoomc

(Ac,). (A3.2)

CODING
A is simple so there exists ¢, € A and c,€ B such that
Cmomoa,C1) - CCODING(A’CZ) <A

for any A>0. Choose

A= Clgiccopmc()‘vc) -C (l.c,,) .

CODING
Then
inf
Cconmoa'c") Te Eﬁcmomc(k’c) -4

s Cooomca‘c -4

<C (A.ca).

CODING
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But this is impossible since € (Ac,)2C (A.cy) for co€ B. So (A3.2) is untrue. Therefore

CODING CODING

inf c)=C

¢ eo‘*ccomw:;

rec,).

CODING

Lemma: Consider the Poisson channel with parameters A, (¢), ¢(t). For all A, >0 there exists a
nonnegative simple function A, (¢) dominated by A, (¢) such that

IC Ap.c +A, —Ap) - C

CODING CODING

(lo,C)' < Ab .

Proof: Let A be the set of simple functions dominating A, (¢) and let B be the set of nonnegative
simple functions dominated by A,(t)). Let A, €A, A, e B, and define 8,(t)=A,(t)-2, (1),

S (1)Y=, (#)—Ap(t). 8,(¢), 8,(¢) are both nonnegative. Divert a portion, 8, (¢)~c(¢), from ¢ (¢) to pro-
duce noise. Then

c *c)2C £ ~(Bz~c)).

CODING CODING

(xo + (8a '\C),C - (813 ~C )) =C

conms()"“
Likewise

C ()\b,C +8b)ZC

CODING OODING

(lo 1c ) .
Thus we have
lCCODchb € +8) ~ Ccoomco”" )l < lccobmco‘b £ +8) - CCDDI'NGO‘a L=, ~c)!.
Fix £€>0. To complete the proof we show that there exists A, € A, A, € B, such that
1€ oomaPe € +8) = Cconmco‘ﬂ L£=@rc)l <€ (A3.3)
Write
|CmDmG(lb £+ Sb) - CCODING(A' WL = (sa ~C ))I

<IC (lb,C +81,)*C

CODING CODING

(}‘b N ) I
+ lCmDNGab vca) - CmDNGab L ) l

+ ICCODM(M La) = Cmm(lb )l

+ 1€ P ©) = € e Bhancs)l
+ 1€ Pare) = € (hac = (Banc) (A3.49)
where ¢, and c, are simple functions such that
W)= Ga(tInc) Sco(t)Sc(t) Sca(t) Sc()+8(1). (A3.5)

Let c,(t)—c(t), c,(¢) > c(¢). Then by the previous lemma, the second and fourth differences on the
RHS of (A3.4) decrease to zero. Let A, (1) = A1), Ap (1) > A(t) consistent with (A3.5). Then the third
differcnce on the RHS of (A3.4) decreases to zero since all the channel parameters present in the
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expression of the difference are simple. Also, by the previous lemma, the first and fifth differences
decrease to zero. Thus (A3.3) is satisfied and the proof is complete.

Rroposition: Let A (t) and c,(1) be the parameters of a Poisson channel and let A,(t) and ¢,(t) be
the parameters of a second Poisson channel. Suppose A,(¢) is dominated by A,(t) and c¢,(t) dominates
co(t). Then

Ccomxcal 1) 2 CcoomG(M’cz) .

Proof: Choose Ay, (t) and Ay, (1) to be nonnegative simple functions dominated, respectively, by
Ay (¢) and Ay(r). Write

CCODNG(A-l L£1) = CCOD,NG(M’C 2)
= CCODINGOWC - CCODMQI,C 2)
—A+ A+ A
+ € onaPisiC2tha—Ag) = € Aoy .ca+hp—2Ap)
where
A =€ ncPsc2th—Ayp) =€ (M),
By =€ ncPasiC2tg=Ay) - € (Aacd),
B3=CncPpicatdi=Ay) - € (ac2+da—RAy).

By the previous lemma, A, (1), Ay (¢) can be chosen so that A, (1) <Ay (¢) with A, A,, and A, arbi-
trarily close to zero. For Ay, (£) < Ay (¢),

€ oomaMbC2tA=Ap) = € Ay ca+A2—2p) 2 0.
Also
CooonaMc) 2 € (M.cd).
Therefore

Cmnma(kl 1) 2 Ccoomco"z’c» :
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