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1. THE PROBLEM

The means and mechanism for translating lamina level properties into laminate properties

has been available for many years under strongly limited conditions loosely referred to as

those of a "thin" laminate. This procedure is known as classical lamination theory, and it

neglects the interface conditions between individual lamina and directly sums, by algebraic

formulas, the inplane lamina properties to obtain the integrated inplane laminate properties.

This two-dimensional (2-D) procedure is widely used and has contributed greatly to the

effectiveness of fiber composites. Unfortunately, the 2-D procedure provides little guidance on

how to proceed in the much more complicated three-dimensional (3-D) case. However,

Pagano (1974) has provided a complete aid general 3-D lamination procedure, and it has

been implemented by Sun and Li (1988). The 2-D, classical lamination procedure is

approximate in the sense that it implies plane stress conditions. It is the ;ntention here to

develop a 3-D lamination procedure which retains the essential simplicity of the 2-D procedure.

Of course, it will not be possible to assume plane stress conditions in the 3-D case, an,. some

other approximations will need to be introduced here to accomplish -he objective.

The starting point in the materials characterization is the properties state at the uni-

directional lamina level. Taking these properties to be characterized by a state of transversely

isotropic symmetry leads to the properties specification through five independent properties.

These five independent elastic properties can be specified by the longitudinal Young's

modulus, E,, meaning the modulus in the fiber direction, the longitudinal Poisson's ratio, vI,

meaning the transverse strain response when the composite is strained in the longitudinal

direction to determine E, as well as the transverse Young's modulus, E,, the longitudinal shear

modulus, !i, and finally the transverse shear modulus, p1 . These five lamina level properties

can be differentiated by grouping them into fiber-dominated vs. matrix-dominated properties.

The two grouping are:

Fiber Dominated Matrix Dominated

E, Et
VI .11
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For the fiber-dominated properties, the fibers act as the direct load transfer agent. In the

matrix-dominated properties, the fibers effectively act as "inclusions" in a continuous matrix

phase. This distinction is fundamental, and reveals itself in all credible micro-mechanics

models of fiber composites. High performance fibers translate into a fiber-property dominated

composite. Accordingly, in a fiber-dominated composite, the matrix-dominated properties are

of lesser importance than are the fiber-dominated properties. Leaving the fiber dominated

properties unchanged, we specificdlly seek to develop an averaging procedure for the less

important three matrix-dominated properties. The procedure is intended to simplify the

constitutive form, but it must not significantly alter basic physical behavior. Needless to cay,

the matrix dominat,.d properties averaging procedure will be of no interest or use if it does not

permit the development of a 3-D lamination theory and the subsequent detailed evaluation

there of. Furthermore, it remains possible tha. the entire procedure could be "exact" in special

cases, as will turn out to be true.

2. THE FORMAL METHOD

The macroscopic elastic properties for the aligr3d fiber reinforced medium are taken to be

those of transversely isotropic symmetry with

C, C12  C12  0 0 0

C22  C23  0 0 0

C22 0 0 0
[Cij] (C22-C23 )/2 0 (1)

C6 0

C68

2



where o = and with

01 = 011, 02 = 022, 03 = 033, 04 = 023, C5 = O31, 06 = 012

and

Cl C11, C2 = £ii,1 C3 £3, 4 = 2C23, c5 = 2F-31, c6 = 2el2.-

The five independent properties in (1), with axis 1 in the fiber direction, can be written in terms

of the usual measurable properties, Ell, v12, E22, 1-12, and 923 through:

V2

C1 1 = El1 + 4V12K 23

C12 = 2 23V12,

C22 = 23 + K23 , (2)

C23 =-23 + K23

C66= 912 •

Here

23  _V E 22
4 [1 -v2 E22 1EJ - E22/p 23

with E,1 and E22 being uni-axial moduli, Vl 2, the axial Poisson's ratio, and 1,2 and g23 the

shear moduli.

The grouping of five independent properties, Ell, v 12, E22, 1±2, and 923 contains the three

matrix-dominated moduli, E22, 912, and 923 which were discussed previously. To permit

developing a formalism, two interrelations are taken between the three matrix dominated

properties. After obtaining the relevant forms, consideration will be returned to material

systems for which the two interrelationships do not apply, which is the case of primary

interest.

Begin by taking the two shear moduli, 4,12 and 923, as being equal, i.e.,

1112 = 123 • (4)
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The second relationship between the matrix-dominated moduli is taken as

9 23  v12)E 22  (5)
2(1 - V2 E22/E1 1 )

(This form actually results from a corresponding relationship between the C. moduli, namely,

C12 = C23.) Examining modulus C11 in light of the two forms (4) and (5), C,1 can be

expressed as

C,, Ell - E+ Oil, (6)

where

E= (12-v) E22 = 2(1 +v, 2) ; 1 2 =2( +v1 2)l923  (7)
1 -v 2 E 22 /El

and

= (1 -v 1 2)2 E 22  2(1 -v, 2)91 ,2  2(1 -v 1 2) 23  (8)

(1 -v 2 E22/E,1 )(1 -2v, 2) (1 -2v,2) (1 -2v, 2)

With C11 so defined, for the other Cj's take

dij = Cj, when i, j * 1,1 (9)

Then the full vector of C.'s subject to (4) and (5) can be written as

2(1 -v 1 2) 1 1

1-2 2 v ,2 11 1

1 -2v, 2  (1- V12) E22  1 P12  1 = P23  1 . (10)

1 _2v12 623 1 1
2v,2 zI

1 1 L J
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The form (10) rigorously applies only when (4) and (5) are satisfied, but it does provide a

guiding formalism in the more general case of interest here.

At this point, consideration is returned to fiber reinforced systems which do not satisfy the

two interrelationships, (4) and (5), and accordingly accommodate five independent properties.

For such systems, it is our intention to develop an averaging procedure for E22, 19, 2 , and 423

which depends explicitly on all three properties. Of course these moduli cannot be averaged

directly since E2 2 is a uni-axial modulus, while the other two are shear moduli. From (10),

however, a format is evident by which E22 can be compared with 1-12 and g23 . Define

generalized mocluli by:

(1 - v 12) E22

2(1 -v 1
2 E22/E,)

22= -12

= 3 (11)

An averaged, generalized modulus, st, could be established from (11) by arbitrarily writing,

= (S1 + S1 2 + S)/3. However, a better and more physically meaningfully averaging

procedure now will be developed.

To establish a base-line accessible case for physical interpretation, examine the special

form of transverse isotropy which results when the two Poisson's ratios are taken as

vanishing, i.e.,

v 12 = 0 and v23 = 0. (12)

From (2) it immediately follows for v12 = 0 that C12 = 0. The identity E22 = 2(1 + v23)923

combined with (12) produces E22 = 2923. Using this latter result in (3) and then (2) results in
C23 = 0. Finally, using E22 = 21123 again in (3) and (2) gives C22 = E22, so that (12) with (2)

yields C1, = E11. Combining all these results into (1) gives it the diagonal form

5



E1 1  0 0 0 0 0

E22  0 0 0 0

E22  0 0 0
[ c,1] -(13)

C 23 0 0

.112 0

P12

Thus, (13), with E22 = 22 3, is the form assumed by transverse isotropy for vanishing

Poisson's ratios, (12), with no other restrictions.

Now form the strain energy density, U, associated with (13). This gives

2 2 2 2 2 2 22U = (Ell - E22 ) 11 +E 22 el +E22 +E22 C33+ 2p.g, 2 1 2+2 2 3c 23 +2p. 12 31 . (14)

The term (Ell - E22)C,, is the fiber-dominated effect, which obviously must vanish as the fiber

reinforcement contribution goes to zero in an isotropic matrix phase. For the remaining

matrix-dominated terms in (14) let

E22 2 2 2 2 2 2
0 = UMUnxDominated E (1 + 122 + 33) + 2 3 23 + 9.12(112 + e31 ) (15)2

In the spirit of considering fully 3-D deformation conditions take all strain components as

Cj = 0 (5), and using this in (15) gives

0 [0[3 _.E2 2. 12 + 23j 52]. (16)

It is seen that the three matrix-dominated moduli contribute to the strain energy (16) in the

proportions

6



E22 I 2 " 23 as 3 2 • 1. (17)

Returning to the generalized moduli, (11), an acceptable generalized averaging procedure

must recover the result just found. Specifically, for the generalized moduli in (11) (specialized

to v12 = V23 - 0) to recover the results (16) and (17), it is necessary that the moduli be

averaged with the weighting factors shown as follows:

SE1 • g2 " g3 as 3 : 2 : 1. (18)

Thus, this generalized averaging procedure gives the generalized shear modulus, g, as

1 3( V2
.9 =1 -- --2-- 2 + 21.2+ 923 •(19)

1 2(l 1v2 E221I~I) (19)

Finally, then the .ij coefficients formalized by (10) are now taken as

1 -2v1 2  6
2(1 -v 12)

1 -2v12  612

2v12

1 -2v12  622 = 1 (20)

2(1 -v, 2)

1 -2v 12  623

2v12

7



where p. is now given by (19). Relation (20) also applies in the "exact" case when (4) and (5)

are identically satisfied.

Next, write the C.'s in (20) in matrix form and compare them with the appropriate isotropic

material form in Green and Zema (1963). It is quickly seen that the forms in (20) are those

for isotropic behavior with isotropic shear modulus given by p. and with isotropic X given by

X - 2 (21)
1 - 2v 12

The relation between and C.. is given by (6) and (9). The 6J form is isotropic, as just

established. Thus, using (9), the Cj form is isotropic to within the presence of the (Ell - E)

part of C,1 . It directly follows that the stress constitutive relation, corresponding to the C#.

form, is given by

Oij = .-kk j + 2plj + (Ell - E)8li~ljC11 (22)

where X is given by (21), gi by (19) and Eis given by

E = 2(1 + v12)9.. (23)

The form (22) was previously identified by Christensen (1988); however, in that work the

associated interrelationships (4) and (5) were taken as restrictions, rather than being

developed into the generalized averaging procedure given here and culminating in expression

(19). Also in the work of Christensen (1988), emphasis was given to using (22) to develop an

associated failure criterion. Attention here is given to using the form (22) to identify a specific

3-D lamination procedure and to evaluate it.

The lamina level constitutive formulation is now complete with the forms (19) and (21-23).

It should be emphasized that the lamina constitutive equation (22) does not imply the

interrelations (4) and (5), although it only is "exact" when they are satisfied. In the most

general case, all five transversely isotropic properties enter the constitutive form (22). The

8



two fiber-dominated properties enter the constitutive forms directly, while all three matrix-

dominated properties enter through the generalized averaging procedure result (19). Using

the form (22) to specifying the lamina-level behavior, the corresponding laminated medium

characterization will be now found. This is the so called 3-D lamination theory or procedure.

Express constitutive relation (22) in coordinates other than in the fiber direction. Take the

angle of rotation of the coordinate system as 8 from the fiber direction, rotated about axis x3.

With agj being the direction cosines matrix, the constitutive relation (22) takes the rotated form

Oij = 4-kl j + 2pjzj + (Ell - E)alialialkalk , (24)

where

[alj = [cosO, -sine, 0], (25)

with (25) being the first row of aj. Now take N similar lamina in bonded contact, each with its

individual direction, On. The 3-D constitutive form (24) for each lamina is directly combined to

give the 3-D laminated medium constitutive form

(E,11 -E) N
c = X iJ 8 + 2 p., + N M(n) I?) (n mn , (26)

n.1

wherein from (25)

m ' = [coso n, -sine., 0]. (27)

Relation (26) along with (19), (21), (23), and (27) constitute the 3-D constitutive theory for fiber

composile laminated media assembled from a single lamina type, and involves all five

independent properties.

It is readily verified from (26) that the interlaminar stress components 03, 0 3 2 , and a31 are

continuous across the interfaces between lamina because the last term in (26) vanishes for

these three stress components. By definition the displacements are continuous across the

9



interfaces since the entire constitutive form (26) is expressed in terms of the single strain

tensor, f1j" Thus, the laminated medium constitutive form (26), as derived from the lamina

constitutive form (22), is an exact 3-D result. No approximations are involved in satisfying

interface conditions. It is implicit in obtaining (26) from (22) that the strain gradients are small

over the number of lamina of interest, N. This condition will be generalized (relaxed) in the

section on utilization. Although form (26) takes all lamina to be of equal thickness, it is easily

extended by including thickness related weighting functions in it.

The constitutive form (26) for the laminated medium is extraordinarily compact and easy to

use. If the two interrelations (4) and (5) are satisfied (to within experimental accuracy) by a

given set of five transversely isotropic properties, then the entire procedure up through and

including the final constitutive result, (26), is "exact" within the theory of linear elasticity. In

this case, the results are identical to the G, matrix in Pagano (1974). If the two interrelations

(4) and (5) are not satisfied, then the result, (26), is an approximation based upon the

generalized averaging procedure for the three matrix-dominated properties. Under this

condition it will be necessary to carefully evaluate the nature of the approximation as will be

done in the next two sections.

3. A TEST CASE

Judging the total accuracy of the proposed constitutive relationship against the exact form

necessitates comparing more than just the resulting effective lamina moduli. Although direct

comparisons between individual moduli show the differences expected from "uni-axial" load

states, they do not accurately capture the coupling between components which occurs

naturally under a general 3-D load state. This section formulates a specific BV problem which

first allows direct comparisons of various field quantities obtained by using both the exact and

proposed constitutive relationships, and second shows the finite regimes where classical long-

wavelength (LW) theory (essentially plane stress or classical flat lamination theories) is

appropriate. To aid the reader in distinguishing variables associated with the constitutive

formulation from those associated with the BV problem, direction notation and an X - Y - Z

coordinate frame are employed in defining and solving the test problem.

10



In adopting a test case for the 3-D lamination theory, it is necessary to select a particular
lay-up pattern. There are two limiting cases for lay-up patterns. At one extreme is the

degenerate case of all lamina being aligned, thus the laminate retains aligned-axis character.

At the other extreme is a quasi-isotropic lay-up involving the most dispersed pattern of

directions. The aligned laminate is a trivial application of lamination theory, since there are no

true interfaces. The quasi-isotropic lay-up is in fact, the most extreme case, and provides the
most severe test of a lamination theory. It requires the highest degree of interactive coupling

between all lamina properties to produce laminate behavior.

3.1 The Boundary Value Problem. The problem considered herein is a "homogenized"

solid lying parallel to the X- Z plane. The laminated solid consists of many identical

transversely-isotropic laminae oriented in a repetitive [00, ±600] order and is considered to be

quasi-isotropic in the X - Z plane. A sufficient number of laminae exist through the thickness,

in the Y direction, such that the macroscopic composite properties are well represented by
those of a homogenized single [00, i60 0] sublaminate.

Without loss of generality, the coordinate positions X, Y, and Z are non-dimensionalized to

the coordinates x, y, and z by half the thickness of the solid, h/2, (i.e., x = 2X/h, y = 2Y/h, and
z = 2Z/h) so that the upper and lower surfaces lie in the planes y = 1 and y = -1, respectively.

Displacements in the z direction, as well as all derivatives taken with respect to z, are taken to

vanish identically (yielding plane strain conditions). Imposed on the lower surface, y = -1, are

traction-free boundary conditions; while on the upper surface, y = 1, a sinusoidal normal

traction is applied which has the form

tn = -P sin("). (28)

Here a = i (29)2L

P, the load magnitude, has units of stress, 2L is the loading wavelength, and the convention

that positive normal tractions produce normal tensile stresses is employed. The solid extends
"infinitely" in the x direction, but only the region from x = 0 to x = 2Uh need be examined, due

to periodicity. Furthermore, all body forces are identically zero. This problem has been

11



chosen because by varying (x, essentially the ratio of h to L, many different loading conditions

can be achieved. For values of h/L << 1, classical LW conditions result, and, as hIL

increases, fully 3-D load states develop.

3.2 Material Formulation. Using the homogenizing procedure used by Sun and Li (1988),

the effective sublaminate stiffnesses are assembled. Using the appropriate tensor

transformations, the ±600 material stiffness tensor components are expressed in the 00 lamina

material coordinate frame. (For transversely isotropic lamina whose plane of isotropy lies

perpendicular to the lamina- or ply- plane, Christensen (1988) gives the explicit stiffness

tensor components in any cartesian coordinate frame where the rotated inplane axes remain

parallel to the original ply-plane.) Unit macro strains are individually imposed along the

boundaries of a combined (unit-square) ±600 lamina pair. After enforcing continuity of

inleriaminar displacements and tractions, the resulting net forces yield the effective ±600

stiffness components when properly normalized. Next, the 00 and effective ±600 laminae are

weighted appropriately and assembled using the same method to produce the effective

properties of the entire sublaminate.

The quasi-isotropic lay-up produces a set of transversely isotropic properties in three

dimensions. With x3 being the axis of symmetry for the laminate, the non-zero effective

stiffness properties, j, for the [00, ±600] quasi-isotropic laminate are given by these newly

derived (exact) closed form expressions:

C, = C22 = .(CI +C22)+ I C 2 + 1.- (C,2 - C23)2, (30)

1 2 3iC C2 )2C1_ 1 1 ,(1

C22 = 1 (c 8 1 +cP2) + 3 C . c66 + - (C12 - C23) 31)

= C=(C 1 2 + C23) (32)

C33 = C22, (33)

C = C5 = 2C(C 22 - 23 ) (34)
2 C6 + C22- C23

C6 1 = 1 (C,, - C,2) . (35)

12



Here the upper case Cj refers to the individual lamina components given in the lamina

coordinate frame; i.e., axis 1 in the fiber direction. Substituting (2) and (3) into (30-35) allows

the quasi-isotropic stiffnesses to be expressed in terms of the usual five properties, specifically

Ell, E 2 2 , v 1 2, I2, and 123.

3.3 Solution Formulation. The general solution to the test-case BV problem has been

fully derived, following the method employed by Timoshenko and Goodier (1970) to solve a

similar isotropic problem. First, the equilibrium equations, infinitesimal strain-displacement

relationships, and compatibility equations are reduced by incorporating the plane strain

assumption. Next, the individual stress component forms are found by using the reduced

equilibrium equations and by assuming a separable solution where a Fourier series represents

the x dependence and some function of F(y) represents the y dependence. The strain

component forms, determined by substituting the stress forms into the constitutive relationship,

along with the sole remaining compatibility equation yield the governing differential equations

for F(y). Solving the linear homogeneous differential equation and matching the original

boundary conditions uniquely determines F(y) which, when substituted back into the original

stress and strain forms, yields the complete closed-form BV problem solution.

The effective laminate properties and BV problem, in conjunction with actual material

properties, allow an objective and realistic evaluation of the proposed constitutive relationship

in a fully 3-D load state. In the following section, laminate properties and solutions to the BV

problem will be compared for two specific composite systems, and the effectiveness of the

proposed lamination procedure relationships will be demonstrated.

4. EVALUATION

4.1 Properties. To evaluate the proposed constitutive relationship, two sets of lamina

properties are chosen which approximately satisfy the restrictions of transverse isotropy. A

graphite/epoxy (Gr/Ep) composite [AS4/3501-6] is chosen for its extremely anisotropic (axial to

transverse) moduli, along with a glass/epoxy (GI/Ep) composite, chosen as representative of a

lesser fiber-dominated system. Table 1 lists the elastic lamina constants for both systems,

13



Table 1. Lamina Properties Used in Evaluation

Gr/Ep t GI/Ep 1"1"

E11 GPa 144 53.7

E22 = E33 GPa 9.65 17.9

v12 0.31 0.25

v23 0.52 0.25

12 GPa 5.24 8.96

113 GPa 3.17 7.17

t Data from Kim, Abrams, and Knight, 1988.
1- Data from Sun and Li, 1988.

and to satisfy the restrictions of transverse isotropy, namely 23 = E2 /2(1 + v 23), the actual

moduli are adjusted slightly from the reported values.

Table 2 contains the effective quasi-isotropic laminate properties calculated via (30-35)

using the proposed forms from Section 2, namely the Cj properties corresponding to the

lamina constitutive equation (22), and, for comparison, using the exact C, properties from (2)

and (3). [The proposed C,, properties are explicitly given by (6), (9), (19-21) and (23).] The

ratios of these results are shown in Table 2 as well. Generally, less discrepancy exists

between the inplane moduli (1 and 2 directions) than the out-of-plane components. Also

tabulated in Table 2 are the quantities Ell /(1 -v 2) and E11/(1 - v12) which represent uni-axial

and bi-axial inplane extensional stiffnesses, respectively, associated with classical flat

lamination theory. For the two composite systems examined, the exact and proposed quasi-

isotropic moduli and inp!ane extensional stiffnesses differ typically by less than = 10%.

4.2 Test BV Problem. The previously formulated BV problem is now explored, utilizing

the Gr/Ep and GI/Ep laminate properties listed in Table 2, to quantify results from a 3-D

problem. By judiciously selecting several variables at two locations, a meaningful and

representative comparison is possible without having to examine the entire field. The

variables chosen for comparison are: first the flexural stress and strain, o,,(y = 1, x = Llh)
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able 2. Effective Quasi-Isotropic Laminate Elastic Constants and Inplane Extensional
Stiffnesses Calculated Using the Exact Transversely Isotropic and Proposed
Lainina Constitutive Relationships for Gr/Ep and GI/Ep Systems

Gr/Ep GI/Ep

Proposed Exact Proposed Proposed Exact Proposed
Exact Exact

El = E22 GPa 55.0 55.5 0.99 30.7 31.1 0.99

E33 GPa 13.4 12.5 1.07 20.4 18.3 1.11

v12 0.329 0.309 1.06 0.283 0.245 1.16

V13 = V23 0.302 0.348 0.87 0.239 0.225 1.06

912 GPa 20.7 21.2 0.98 11.9 12.5 0.95

913 = 23 GPa 3.95 3.95 1.00 7.61 8.00 0.95

E1110 v 2 ) Gra 61.7 61.3 1.01 33.4 33.1 1.01

E11 /(1 -v 1 2) GPa 82.0 80.0 1.02 42.8 41.1 1.04

and c,,(y = 0, x = L/h); second the upper-surface normal displacement, uy(y = 1, x = Lh); and

third the mid-plane shear stress and shear strain, oxy(y = 0; x = L/h) and cXY(y = 0, x = L/h).

At these locations, these variables are the dominant components present as well as the

minimum or maximum values achieved by these variabies (almost) anywhere in the body.

The normal displacement probably best captures the 3-D aspects in that it reflects an

integrated value, where as the other terms are more indicative of the material properties

directly associated with that particular component.

Table 3 lists the normalized flexural stresses, as a function o4 the thickness-to-length ratio,

h1L, evaluated using both the proposed and exact constitutive relationships for both composite

systems. The stresses have been normalized by the asymptotic solution obtained as h/L -+ 0,

i.e., essentially LW or classical plate theory, using the exact transversely-isotropic lamina

relationship. Reasonable agreement exists between the two solutions from h/L = 0 to an

astonishing value of h/L = 10. Note how rapidly the BV solution deviates from classical LW

theory as h/L increases beyond approximately 0.10. Figures 1 and 2 show the mid-plane

shear strain and flexural strain, respectively, normalized by their LW solution for both

15



Table 3. Normalized Flexural Stresses for Gr/Ep and GI/Ep Systems
Verses Thickness to Length Ratio hIL

Gr/Ep Gi/Ep

h/L Proposed Exact Proposed Exact

0.01 1.000 1.000 1.000 1.000
0.05 1.006 1.006 1.001 1.001
0.10 1.023 1.023 1.006 1.006

0.50 1.663 1.638 1.221 1.216

1.00 3.824 3.965 2.319 2.406

5.00 86.18 90.39 51.60 54.78

10.0 343.1 359.8 205.4 218.1

Note: Normalized flexural stisses are defined by o, (y = 1, x - L/h)A3XX.Lw(Y - 1, x 
where the normaliziig value,, 0 xx-Lw represent the asymptotic solution obtained as WL - 0;
i.e., LW theory.

composite systems as a function of hIL. The agree -ent between the results shown in

Figures 1 and 2 is typical of all the variables considered. Examining the figures reveals that

the components calculated from the proposed and exact consti'utive relationship differ only

slightly even as xy --- 0 as hIL -* o. Unfortunately, plotted at this scale it is not evident how

drastically the BV and LW solutions drift apart, e.g., exx > 2 exx.LW for hL > 0.75 and

Exy < 0.75eyLW for h/L > 1.0. Nonetheless, the proposed lamina relationship captures

rermiarkably well all characteristics of the BV problem, neglecting small differences in numerical

values.

To quantify precisely the differences arising from the proposed relationship, the five field

quantities have been normalized by their corrmsponding exact va!jes and plotted verses h/L in

Figures 3 and 4 for the Gr/Ep and GI/Ep systems, respr-tively. Recognize that as h/L -- -,

Oxy --+ 0 and ry -+ 0, and thus their normalized ratios ior increasing h/L represent differences

in decreasingly smaller numbers. Ignoring the regions where a and EXY approach zero. the

errors in the five normalized field quantities for h/L < 10 are less than 11% in the GI/Ep

system and 7% in the fiber-dominated Gr/Ep system.
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Overall, the BV problem results invariably reflect the differences in effective lamina

properties between the proposed and exact constitutive idealization. Keeping in mind that Me

BV problem is intrinsically stress controlled, underestimated properties, like GI/Ep 13, produce

overestimated strain values and vice versa.

This test problem is ideally suited to discriminate thin laminate conditions (LW theory) from

thick laminate conditions. The ratio of laminate thickness to the loading wavelength (h/L)

directly gives the parameter of variation. As hIL - 0, long wavelength, thin laminate

conditions are recovered as a limiting case. As h/L becomes larger, more complex physical

effects enter the BV problem. Somewhere in the range 0.1 < hL < 1 a transition from thin

laminate conditions to thick laminate conditions occurs, e.g., see Figures 1 and 2. Certainly,

in the neighborhood of h/L = 1 fully 3-D deformation conditions exist in the laminate. The

lamination theory developed herein properly models all major effects, and it even remains

effective up through h/L = 10.

4.3 Constitutive Error Relative to Experimental Uncertainties. As stated in Section 2, this

work aims to formulate a practical and workable 3-D lamination theory which retains algebraic

simplicity while providing "reasonable and useful" composite representation. In actual

application both constitutive approximations and material property variations, arising from

experimental uncertainties, contribute to overall analysis inaccuracies. Thus, comparing the

absolute mathematical error from the constitutive approximations with that from the material

properties appears appropriate. This section compares the magnitude of experimental

uncertainties to the resulting constitutive error in quantifying the lamina properties.

Large scatter in measured iamnina properties is common, especially with all the difficulties

encountered in obtaining them. For example, Kim, Abrams, and Knight (1988) report

coefficients of variations in measured uni-directional Gr/Ep lamina moduli between 2.0% and

12.2% even though 3 to 10 specimens were used in each test. Clearly the lamina constants

most difficult to experimentally determine and most prone to uncertainties are the three matrix-

dominated moduli, namely, E22, l12, and g23.

The differences between the proposed and exact lamina relationships stem solely from

assumptions made regarding the matrix-dominated properties. Since variations in fiber-
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dominated properties produce (nearly) identical results in either constitutive relationship,

attention is focused only upon uncertainties associated with the matrix-dominated properties.

Plotted in Figures 5 and 6 are the normalized BV problem quantities for the Gr/Ep and GI/Ep

systems, respectively, calculated by decreasing the three matrix-dominated lamina properties

by 10% (an amount typical of their actual variation) from their base values given in Table 1.

As before, the BV problem values are normalized by their corresponding exact quantities.

The variations in field quantities and, thus, lamina properties caused by uncertainties in the

three matrix-dominated properties are the same order of magnitude as those introduced by

the proposed constitutive relationship; i.e., compare Figures 4 and 5 with Figures 2 and 3.

Therefore, we conclude that use of the proposed method in actual engineering analyses

should produce results with uncertainties which, for all practical purposes, cannot be-

realistically differentiated from inherent experimental error in the matrix-dominated lamina

properties.

5. UTILIZATION

This section explores how the proposed constitutive relationship can be beneficially utilized

in analyzing both thin and thick composite structures.

5.1 Classical Lamination Theory. The proposed lamina relationship can be incorporated

into classical lamination theory. Using the previous averaging approach on the four constants

required by classical lamination theory, the generalized shear modulus becomes

1 [ 3(1-V2)E22 1

5 2(1-v__E__/E, ) + 2p(12 . (36)

Using (6), (9), (20), and (36), the transformed n-th lamina stiffness matrix Qn, defined such

that
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n -n nl

G, 0, 012 016 E

0F2 12 22 02 2 *(37)

(1 16 22 06C

is directly obtainable. Because of the lamina relationship form, Qn is decomposable into an

effectively isotropic and homogeneous term, QlniH, and a reinforcement term, 0jnR as

Q Un = Q inJ.H +Q i-R, (38)

where

(QJ.HJ- X 0, (39)

0 0

and

cos'8n COS 2 0 nsin 2O0 -cosp 0.sin 0

[ 0 IP-RJ~ (Ell - E) cSon Osin2 0, sin4 () -coso, sin3 9 (40)

L- COS3 0 sineP7 -cose, sin38 COS2 Onsin 2o n
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Since A23 does not enter into classical lamination theory, the form of g± given in (36) should be
used. When evaluating the extensional, coupling, and bending stiffness matrices for a
laminate composed of a single lamina type, the contribution of (39) factors through the
integration, as a homogeneous isotropic material, leaving only the reinforcement contribution

to be calculated on a ply by ply basis.

5.2 Finite Element Procedures for Thick Composite Structures. Currently, to analyze a
thick composite structure either each lamina in the component is discretized and assigned its
own material constants or the laminae are homogenized, represented by a single or several
sets of effective properties, allowing the component to be discretized as an equivalent
"homogeneous" solid. When defining each lamina as its own continuum layer, obtaining a
satisfactory solution with modest to ',rge through thickness gradients generally requires
several elements through each lamina thickness; and because typical composite structures
contain tens to hundreds of plies and because element aspect ratios must be maintained, the
total Droblem size, i.e., degrees of freedom (DOF), quickly escalates. In structures where
adjacent parts mandate non-linear, presumably iterative, solution procedures and contain
thousands to hundreds of thousands of DOF, implicit FE methods become economically
unfeasible. On the other hand, when dynamic responses necessitate explicit FE schemes,
e.g., impact loadings, the maximum time increment permitted is limited by approximately the
minimum time required for a wave to propagate across the smallest element (Bathe 1982).
With such small elements, an unacceptable large number of time steps results and may
render the solution technique impractical.

To circumvent some of these difficulties, consider incorporating the lamina constitutive
form (24) into displacement-based solid elements, using conventional FE methodologies.
Following the usual procedures, the laminated structure to be analyzed would be discretized
as a homogeneous solid (presuming it is manufactured from a single composite system).
However, when evaluating the elemental stiffness matrix K Cii is allowed to vary with position
representing the differently oriented lamina within the element. Symbolically, Kj is thus

calculated as

K~j f B C,,, (x, y, z) BM, dv (41)
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where v designates the element volume, Clx, yz) is the position dependent stiffness matrix

whose form is given by (24), and B,, is the strain-displacement transformation matrix. Note

that (41) homogenizes the laminate material within each element to the same kinematic order

as the element, without sacrificing stacking sequence related behavior. This procedure

guarantees continuity of interlaminar displacements and tractions while ensuring that both the

global sotuti., and homoyenizatic,4 method converge, in the FE sense, as the number nf

elements increases. Simplifications in calculating (41) can be made by requiring the elements

be oriented so that one surface is parallel to the plane of the lamina. Although the resulting

strains would be the individual lamina strains, some post-processing is necessary to recover

the inplane lamina stresses. In general, this approach should make analyzing thick laminates

involve nearly the same degree of (analysis) difficulties as encountered in analyzing thick

homogeneous solids.

6. CONCLUSION

A 3-D constitutive theory, which rigorously enforces continuity of interlaminar tractions and

displacements, is developed for thick laminated media and is evaluated by direct comparisons

with exact solutions. The lamina constitutive relationship, almost isotropic in mathematical

form but arbitrarily anisotropic in physical content, simplifies lamination theory without

sacrificing physical meaning or even significant accuracy. The accuracy level of this theory is

well inside the range of experimental uncertainty contained in the properties themselves.
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