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ABSTRACT

A recent paper by Busing on the X-Ray diffraction study of polyethylene
fibers (Busing, Macromolecules, 1990, 23, 4608-4610) has been reviewed and con-
densed. Busing describes a new and improved method for measuring and analyzing
the crystal structure and pertinent morphological parameters of polyethylene in
fiber form. More than a determination of structure in a particular fiber, the
paper is a pointer to how crystallography may be best accomplished in semi-
crystalline polymers in the future. The paper outlines the application of FIBLS,
the full-pattern least-squares fiber-diffraction program. The results of the
analysis include crystallinity, orientation function, paracrystalline disorder
parameters, unit cell dimension parameters, atomic positions, bond distances, and
bond angles. The most complete analysis using the difference Fourier method
reveals, for the first time, three additional sites for carbon atoms in the unit
cell structure, partially occupied by disordered segments of the chain bypassing
their usual route in the unit cell to alternative sites. The importance of the
method goes beyond polyethylene, or even beyond polymers of interest for fibers
applications. An X-Ray study of any semicrystalline polymer is improved in terms
of experimental precision by studying the material in fiber form. This reduces
diffraction line overlap, by separating them into layers, and also improves signal-
to-noise ratio by concentrating diffraction intensity. The reviewer suggests that
further improvement could be made by using a position-sensitive counter to reduce
counting time while improving counting statistics.
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X-Ray Diffraction Study of Disorder in
Allied Spectra-1000 Polyethylene
Fibers
Research by WR. Busing, Macromolecules, 1990, 23, 4608

Condensation and commentary by C. Richard Desper, US Army Materials
Technology Laboratory

CONDENSATION OF THE RESEARCH

PURPOSE OF THE STUDY 7i delfine the ,i.ivallhin tri ture in highl., oriented polyethylene fiber in a
more quanti taive mann': using ihefidl il'rmation available by X-ray fiber
di/'fractonetry: additinally, to demonstrate the application of thefull-pattern
last-squaresfiber-di/)-action (FIBLS) prograim

WHAT RESEARCHER The paper is much more than a report on polyethylene fiber morphology; it is a

ACCOMPLISHED pointer to how crystallography should be accomplished in polymers in the fu-

ture. The author has demonstrated the method for precisely determining, for a
polyethylene liber sample. I) the crystallinity, 2) the orientation function,
3) the paracrystalline disorder parameters. 4) the unit cell dimension param-
eters. 5) the atomic positions and their mean square displacements, and 6) the
bond distances. bond angles. and the "setting angle" between the unit cell
edges and the zigzag carbon-carbon backbone. The method is of general ap-
plicability and represents an important advance in polymer diffractometry.

In addition, the author demonstrated the existence of sites in the crystal struc-
ture attributable to disorders in the crystal structure, suggesting the wandering
of polymer chains laterally in the b direction as well as the usual c direction.
This could be due to either internal disorder or could be associated with regu-
lar chain folding.

BACKGROUND Polyethylene is a typical semicrystalline polymer that has been extensively
studied over the years. Bunn' first determined the basic crystal structure of
polyethylene in 1939, then, with Alcock,2 related the broadening of the dif-
fraction lines to the small crystallite size in the 100-300 A range. Kavesh and
Schultz' more closely defined the crystal structure, including paracrystallinity

CHEMTRACTS- MACROMOLECULAR CHEMISTRY 1.405-409 (1990)
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contributions into the analysis of line broadening for more precise determina-
tion of the crystallinity, atomic position parameters, and disorder parameters.
However, they worked with bulk unoriented samples, rather than using ori-
ented fiber specimens for possible improvements in the refinement.

Others studying a variety of polymers, for example Allcock et al. ,4 Burkhart et
al. 5 and Grasso et al. ,6 took a different tack, dealing with oriented specimens
to separate the diffraction peaks into layers. For the most part, however, such
studies worked with data from exposed film rather than from counter dif-
fractometry. thus limiting the precision of their intensity measurements and
precluding the possibility of evaluating paracrystalline disorder from line-
broadening analysis. In the most sophisticated analysis of such fiber diffrac-
tion data, a modeling approach called LALS (Linked Atom Least Squares) was
used to refine the data and provide the best possible atomic position param-
eters. Such an approach begins with certain assumptions about the chemical
structure and bonding and introduces appropriate starting values for bond
lengths. bond angles, and torsional angles before beginning the least squares
procedure. Grasso et al. ' indicate that this method is useful where the data
available is not sufficient for a full matrix least squares refinement.

The full matrix least squares refinement of precision polymer fiber diffrac-
tometry data has been waiting for someone to put all the pieces together-the
diffractometer with its software. and the appropriate least squares refinement
software-in order to make the experiment and data analysis possible. With
Busing's paper. that wait is over.

RESEARCHER'S APPROACH Although computer autoniated X-ra> diffractometry has been available since
the 1960s.'the needs of polymer crystallography have not been adequately ad-
dressed. The methodology developed has been geared towards the single crys-
tal specimen and that methodology has been highly successful, to the point of
automating all aspects of data acquisition and many aspects of dalta'analysis.
Busing was a vital contributor to these developments-his papers7.8 pointed
out the mathematical and crystallographic algorithms that make possible high-
precision single crystal X-ray crystallography on an automated basis.

Turning to polymer crystallography, the major shortcoming hindering the
structural solution is that, since a multitude of crystals are present, the simple
three-dimensional relationships between the positions of various (hk/) reflec-
tions is lackiuug. In the worse case, the polymer is randomly oriented and the
data obtainable is strictly one-dimensional (intensity vs. Bragg angle 20) and
the additional information in orientation space is lost. The use of a polymer
specimen in fiber orientation form has always been useful from the point of
view of separating the diffraction peaks into layers, thus: I) separating peaks in
different layers that would otherwise overlap in their 20 range, with loss of
precision; 2) improving the signal-to-noise ratio by concentrating crystalline
intensity that otherwise spreads over the entire sphere of orientation; and
3) providing, through the separation into crystallographically determined
layers, clues to the indexing of the pattern. Admittedly the use of a fiber ori-
ented specimen still does not provide the richness of information of the single
crystal diffractometry, since diffraction information over only one (X) of the
two (X, 4 ) Eulerian angles of orientation is obtained, while the second (4)
remains an angle of cylindrical symmetry.
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Busing obtained 25 diffraction scans, systematically covering layers 0 through
4, for least squares data analysis. (Note that the layer number 1, the third of the
Miller indices h. k. and 1. may assume noninteger values for this purp',..)
Amorphous scattering contributed a varying baseline below all of the diffrac-
tion peaks. which is handled as a series of line segments. The program FIBLS
fits calculated diffraction curves to all of the data by adjusting peak para.n-
eters: peak center positions, peak intensities, and peak shapes. (The back-
ground parameters are also adjustable in the refinement.) The parameters re-
fined by the procedure are the unit cell dimensions. disorientation, crystallite
size and paracrystallinity, atomic coordinates, anisotropic temperature fac-
tors, interatomic distances and angles, and the previously mentioned setting
angle of the carbon zigzag in the unit cell.

The initial solution is the packing pattern, viewed down the fiber axis, shown
in Figure I. The size of the ellipsoids depicting the atoms represents the ampli-
tude of thermal vibrations. Busing's numerical refinement results (not shown)
are in general agreement with those of' previous workers. - 9 " Small quantita-
tive differeces with earlier work are real but are not further discussed.

One unique result from Busing's analysis is shown in Figure 2, ,ihich results
from a more complete treatment than that of Figure I. This difference Fourier
map shows additional sites labeled ZI. Z2. and Z3. Such sites are not occupied
in all such unit cell positions, but have an occupancy factor of 0. 1. These par-
tially occupied sites represent disordered atoms-places in the polymer chain
where the atoms. rather than following their regular zigzag up the c axis, slip
instead to the side to the neighboring crystal unit cell in the b axis direction,

Figure 1. Preliminary refinement of Alijed Speetr~i-1000 pofyethylene; the view
is down the fiber axts. (Reprcduc~d, with permisionm, from EBt~s~ng, W.R. Macro-
molecu/es 1q90. 23, 4608. Copyr, ght C. 1990 tyt th, Amterican Chemical
Society.)
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and below that I value. Thus a given layer would need to be covered by a series
of PSPC patterns since, for instance, a detector position crossing the (011) dif-
fraction peak would miss the center of the (111) peak by an unacceptable
amount. Also, the least squares program must recognize that such a scan is not
at a fixed layer value. These factors would have to be taken into consideration
in using a PSPC for this purpose. but in the long run, might be worth the effort.

Finally, the reviewer also wishes to call attention to a recent paper presented by
Crist and Howard'' (in press) on the analysis of diffraction patterns in oriented
polyethylene, While the method of refinement is not equivalent to Busing's
method, both papers deal with line shape analysis to determine crystallite size
and paracrystalline disorder parameters A comparison of the results should be
of interest.
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