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i. introduction

The study of an important and challenging problem in science and engineering has been the

understanding of the strength and fracture behavior of stressed solid systems. This is particularly

true of failure behavior and its prediction in viscoelastic material systems. Both the structural and

functional application of these materials demand a better understanding of their behavior and failure

mechanisms. When sufficiently large tensile stresses are associated with these materials, various

modes of damage develop. To elucidate these, one common mode of response, namely crazing

under an applied simple stiess, must first be understood.Major advances and breakthroughs in the

crazing behavior in microscopic and macroscopic levels of understanding will yield tremendously

useful information not only theoretically but also practically. Considerable technological and

scientific significance is attached to this :oposed endeavor. The initiation and propagation of

crazing as quasifracture, the time dependent fracture strength of oriented polymers, the associated

molecular orientation and ultimate strength in and around a craze, and the interaction of crazes in

polymeric and composite systems are just some of the features to be understood. The determination

of the time dependent fracture strength of polymers and composite systems, the displacement field

and the stress distribution in the vicinity of craze-crack transition regions as well as the propagation

behavior of craze and crack are important problems to be solved prior to the consideration of many

other relevant topics. Currently a firm foundation has been established. It appears that continued

research in the relevant outgrowth topics will result in a truly fruitful understanding of the subject

matter and lead into future fundamental investigations in mesomechanics, the connection between

microstructure and mechanics.

II. Background information and objectives, with references

Advanced reinforced plastics, consisting of a polymer matrix and fibres, continue to generate great

interest in their application to high performance structural components. Fracture of these composite

2
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systems may result from flaws in fibres or matrix as well as the failure of the bonds. Thus the

strength of any such composite is governed by the time dependent strength characteristics of the

matrix, the fibres and the bonds. Because of the difference in the mechanical behavior of the three

constituents of composites, up to now many strength criteria have been considered and developed

by scientists and engineers all over the world as reflected by, for example, several recent references

[1-3].

The studies of time-dependent failure of composites have been relatively scarce in spite of

the strong dependence of the failure characteristics on time. The formulation of the models must

now be based upon the microstructural peculiarities of deformation, the molecular orientation,

temperature and time [4-6]. Aside from the phenomenological models, perhaps, statistical models

[7-9] should also be considered concurrently so that they may reinforce each other's findings and

development.

References

1. Handbook of Composites Series (Strong Fibres, Structure and Design, Failure Mechanics
of Composites and Fabrication of Composites). Edited by A. Kelly and Y. N. Rabotnove,
North Holland (1985).

2. Proceedings of International Symposium on Composite Materials and Structures. Edited by
T. T. Loo and C. T. Sun, Beijing, China (June, 1985).

3. M. F. Kanninen and C. H. Popelar. Advanced Fractures Mechanics. Oxford University
Press, New York; Clarendon Press, Oxford (1985).

4. A. S. Krausz and H. Eyring. Deformation Kinetics. Wiley-Interscience, New York,
London, Sydney, Toronto (1975).

5. C. C. Hsiao -nd W. Chen, A Constitutive Representation of Inhomogeneous Polymeric
Systems, in Polymer Networks, Structural and Mechanical Properties. Plenum Press, New
York, London, 395 (1971).

6. C. C. Hsiao and S. R. Moghe, Characterization of Random Micro-structural Systems, in
Proceedings of the International Conference on Structure, Solid Mechanics and
Engineering Design in Civil Engineering Materials, Part II (Southampton, England). John
Wiley, London, 1203 (1971).
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7. W. Chen and C. C. Hsiao, Nonlinear Viscoelastic Constitutive Behavior as a Statistical
Dynamic System, in Advances in Polymer Science and Engineering, Plenum Press, New
York, London, 115 (1972).

8. D. R. Axelrad. Micromechanics of Solids. Elsevier Scientific Publishing Co., Amsterdam,
Oxford, New York; PWN: Polish Scientific Publishers, Warszawa, 1978.

9. D. R. Axelrad. Foundauios of the Probabilistic Mechanics of Discrete Media. Pergamon
Press: Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1984.

Ill. Micromechanics of polymers and composites

The phenomenon of crazing and its relation to some fractre analyses are considered as follows:

The formation of a craze comes about from a physical transformation in the deformation

processes of the microscopic material molecules under tensile stress. The transformation takes

place from a homogeneous deformation to a craze configuration when a critical condition is

reached. Subsequently, the craze boundary propagates as a function of applied stress, time,

temperature, physical and chemical influences as well as the actual microstructural changes

subjected to geometrical constraints. As a result, usually minute voids are generated among

oriented molecules and the density of the medium in the crazed region is nonuniformly reduced

whereas the bulk of the homogeneous material body deforms more uniformly. The interface

boundary layer enveloping crazes of many solid materials is capable of being drawn and

transformed into bundles of highly oriented molecular domain structure in the craze region. Further

stressing will eventually initiate craze-crack transition. It appears necessary to take these physical

variations into consideration in any mathematical modeling and formulation in analyzing the

stresses from the time when crazes incept to the time when they propagate and transform into real

fractures.

The science of crazing, a quasifracture state, and subsequent cracking, a fracture state, of

solid material systems under tension has been making large strides in the recent past. The crazing

mechanism has been associated with molecular orientation and fracture strength [1 to 5].

4
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Subsequently various methods have been utilized to determine and confirm the molecular

mechanism with respect to craze formation and fracture in thermoplastics [5, 6]. Essentially under

tensile stresses certain solid materials deform from sites where high stress concentrations are

created and crazes develop. Because of geometrical constraints and energy requirements, the

material molecules orient themselves in the direction of stressing with voids among them. As stated

earlier, the presence of oriented polymeric molecules in a craze region bounded by surprisingly

smooth interface layers is visualized as an actual physical phase transformation in the deformation

processes from one orientation state to another depending upon the magnitude and rate of applied

tensile stress [8], material characteristics as well as, of course, temperature and physical and

chemical environments, etc., surround the solid body. As a result, the mechanical behavior of the

material is greatly affected by the macroscopic geometry and the distribution and interaction of the

individual crazes as well as the microscopic molecular configuraion and voids within each craze

region and along its immediate boundaries enveloping the area. Macroscopically the development

of crazes and their distribution can be detected statistically by laser diffraction techniques [9]. The

geometry of an individual craze which can be studied by focused laser beams [10] is of primary

importance in understanding the processes of its initiation and propagation as well as the

deformation, quasifracture-fracture transition, and eventually the fracture behavior of the medium.

Knowledge of craze initiation and geometry helps in determining the craze displacement field, the

stress distribution and the craze-crack transition and propagation under load [11, 12]. An eventual

understanding of the true mechanism of molecular strength and fracture behavior of a simple solid

matrix and a complex composite system can be obtained if fundamental microscopic information is

utilized in macroscopic analyses.

In a craze the highly strained molecular bundles act as boundary tractions with great

strength; any governing mathematical formulation must include this feature for any adequate

analysis. Crazes of different forms and properties have occurred in polymeric materials (13, 14]

5
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and other solid systems including even single crystals [15]. An analysis is highly aesirable and

may be useful for studying general solid systems.

Both long- and short-range programs may be considered. It appears fruitful that emphasis

be placed on the study of micromechanics of individual craze-crack transition, the scurce of failure

under various internal and external stresses for the matrix and the composite systems.

The nature of the stresses in and around a craze-crack transition region is the key to the

understanding of the morphology and nucleation as well as the propagation of crazes and cracks.

The first attempt in calculating the state of macroscopic tensile stress field in the direction of the

applied load as a function of craze length has been based upon a model with an assumed craze

boundary displacement as a crack opening in an infinite elastic sheet [16]. The stresses were

calculatdd as though the craze were a continuum and the craze boundary developed no stress

perpendicular to the direction of applied stress. The solution of the two-dimensional-homogeneous

biharmonic equation for a semi-infinite elastic medium due to the application of an external

pressure to the surface has been used [17, 18]. This implies that the craze behavior is independent

of the craze medium [18, 19] under stress. The solttions were obtained using a Fourer transform

technique [20] or a complex variable method of analysis [19, 21, 22]. With proper assumed

boundary conditions the latter method of approach gives probable stress and displacement fields

surrounding a craze. A model for craze growth has also been considered with the creep of craze

material as the cause of craze propagation. The craze growth was found to be linear with respect to

the log of time [19].

The aforementioned stress analyses have been made essentially on the basis of the classical

elasticity theory for a homogeneous elastic medium with either an assunmed stress distribution for

certain portions of a crack without considering any time dependency.

:: i 'i ' iII 1 IFIP" I'- 'lr~ "t "'.'x..'v---'Lv~''''--:o'j''j''' ... " " I
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The development of crazing is not only a function of stress but also a function of time [23,

24]. Using th current theory and by taking into consideration the isotropic and anisotropic material

constants the mathematical model describing the crazing mechanism have been successful [25-29].
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IV. Progress during the first year-publication

A paper on "Noncontinuum Craze-Crack Transition" by C. C. Hsiao was presented at the 1988

Annual Meeting of ASME, Boston and published in Damage Mechanics in Composies-AD-I

Vol. 12 (Eds. A. S. D. Wang and G. K. Haritos), (Book No. G00376).

V/. Progress during the second year-publications

1. "Analysis of Crack-Induced-Craze in Polymers", by B. N. Sun, H. S. Hou
and C. C. Hsiao, published in Eng. Fracture Mechanics 30, 595 (1988).

The analysis of the crack-induced-craze in polymers is believed to be a fairly general phenomenon

in fracture studies. This work will deal with the use of a viscoelastic boundary element method for

analyzing a polymer quasi-fracture. A time dependent boundary stiffness will be considered and

the viscoelstic solution in the time domain may be obtained by applying the collocation Laplace

inversion technique. Using these methods, the quasifracture problem with tine dependent stiffness

fractions in a two-dimensional case may be analyzed. Both the craze opening displacement profile

8



Crazing in Polymeric and Corsposite Systems Finat , echnical Report, April 23, 1990

and the envelope stress distribution around a craze can be computed. This will pave the way in

evaluating the propagation history of both the crack and the craze. Results thus obtained may be

compared with those obtained by previous considerations such as the use of the Dugdale model

and the concern on the stress concentration phenomenon.

2. "Analyzing Polymer Crazing as Quasifracture", by B. N. Sun and
C. C. Hsiao, published in J. Polymer Science, Phys. 26, 967 (1988)

Before any real fracture develops under stress in polymeric or composite systems, it seems that, in

a fairly general picture common to most solid systems, crazing incepts first. Following the

previously state craze-crack transition and crack-induced-craze, the initiation of crazing is simply

a special case. In the absence of crack the craze as quasifracture has been studied by many

scientists. Since the boundary element method has become recently a powerful technique for

solving boundary value problems including some nonlinear ones, it is especially important as a tool

to be used in problems having viscoelastic deformations and fractures. Therefore, it may be fruitful

in developing proper procedures for calculating the stress distributions around a craze envelope.

3. "Time Dependent Fracture Strength of Solid Bodies", by 0. M. Ettorney
and C. C. Hsiao, published in J. Appi. Phys. 64, No. 10, Part 1, 4884
(1988)

Statistical theories in fracture kinetics constitute a very important role in investigating the fracture

strength of solids and their utilization in modem engineering. In this short report, a review of some

of the recent concepts and models is provided. The main concern is the effect of the breaking stress

on the time-to-break. Based upon the consideration of the fraction of integrity of a medium, a

number of models have been evaluated and compared. Two basic considerations used for

evaluation and comparison are Zhurkov's empirical kinetic relationship and Hsiao's statistical

absolute reaction rate model. Other considerations reducible from these two are also given for

comparison. Using a well-known numerical analysis method, it appears that the nonlinear

mathematical consideration is more realistic in describing the time-dependent fracture strength

9
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behavior of a medium over any linear ones. The computed results seem to fit reasonably well with

the general observations.

4. "Temperature Variation During Polymer Failure", by C. C. Hsiao and
Y. S. Cheng, published in Europhysics Conference Abstracts, 20th

% Europhysics Conference on Macromolecular Physics and 3rd Lausanne
Polymer Meeting on Physical Mechanisms in Polymer Failure,
(Lausanne, Switzerland) Vol 12J, September (1988)

This paper attempts to discuss the temperature variation during polymer failure using a statistical

absolute reaction rate theory. At fracture, the temperature may increase or decrease depending upon

a quantity named fraction of integrity f and its rate f and accelerator f as well as a stress modifier

P .

For over a century, scientists and engineers have observed temperature variations during

loading and testing of solids. Most work in this area focused on metallic systems: temperature

changes during elastic and/or plastic deformations, as well as theoretical investigations based on

mechanics and thermodynamics.

Using the statistical absolute reaction rate theory, the present work attempts to analyze the

temperature variation during polymer failure.

5. "A New Generalized Damage Criterion for Polymers" by C. C. Hsiao,
published in Europhysics Conference Abstracts, 20th Europhysics
Conference on Macromolecular Physics and 3rd Lausanne Polymer
Meeting on Physical Mechanisms in Polymer Failure, (Lausanne,
Switzerland) Vol 12J, September (1988)

Since the dawn of human culture, the problem of strength of solids has been experienced and

utilized empirically. Probably not until the past 500 years has the problem of strength and

deformation of solid bodies been investigated quantitatively. The phenomena of yielding and

strength have been carefully considered during the past 100 years. It is only during the last twenty

years that special attention has been given to the study of craze initiation criteria of polymers by

Sternstein and Ongchin (1969), Gent (1970), Bowden and Oxborough (1973), and Argon et al.

10
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volume variations among others. Using series expansion the damage resistance is given in terms of

internal and external energies. As a result a new general anisotropic damage criterion is

constructed.

2. "Kinetic Strength of Solids", C. C. Hsiao, Advances in Fracture Research,
Proceedings of the Seventh International Conference on Fracture (ICF7),
2913 (1989)

The time dependent kinetic strength of solids has been studied for over half a century. In general,

two levels of approach have been employed. One is submicroscopic atomic consideration and the

other may be referred to as supermacroscopic continuum investigations. The latter is mostly

phenomenological which results in numerous empirical relationships. One of the most extensive

experimental investigations is that done by Zhurkov [1]. Under a state of constant stress creep

condition more than 50 different kinds of solids including metallic and nonmetallic, amorphous and

crystalline, oriented and unoriented systems were recorded the stress dependent of the time-to-

break data. Even data on the temperature variations were tested and analyzed. It was found that the

logarithm of time-to-break and the applied uniaxial tension were linearly related as

tb = to exp[(U -'y)/kT] (1)

where

tb is time-to-break,
to is a constant,
U is a constant which may be related to the activation energy of the solid,
y is a positive definite constant,
a is the applied constant stress,
k is the Boltzmann constant and
T is the absolute temperature.

However, in reality, there is deviation from this empirical linearity when either super high

stresses or relatively low stresses beyond the meso-stress range is encountered.

12
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This short report is to address this point using an equation derived from the Tobolsky-

Eyring-Hsiao expression [2]. Essentially, the theory is based upon considerations at a

submicroscopic atomic level. At !his level, the statistical nature of any system behavior can be

calculated according to the rates of forming and breaking of bonds. To make it easily accessible to

engineering applications, the mathematical model used is a matrix of oriented submicroscopic

bonds randomly distributed in an arbitrary domain. The fraction of intact bonds "f' measures the

degree of integrity of the system. The integrity or strength of a solid body is identified by

calculating f, the rate of change of f, as follows:

f = Kr(-f) - Kbf (2)

where

Kr is the rate of reformation of broken bonds.
Kb is the rate of breaking of intact bonds.

These rates can further be expressed in terms of the following submicroscope quantities:

Kr =O) exp(- U/RT- pWt, (3)

Kb =COb exp(- U/RT + 3). (4)

where

(or is the frequency of motion of the broken bonds,
U is the activation energy,
R is the universal gas constant,
T is again the absolute temperature,
p is a positive definite stress modifier,
M' is the stress in the bonding direction,
otb is the frequency of motion of the intact bonds and
3 is a positive definite stress modifier.

13
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It would be interesting to compare the high kinetic strengths with experiment valule Up to

now little or no data have been found yet However, it is felt that expression (2) should predict the

kinetic strength benavior adequazely.

As stated, Zhurkov's model was and is an enmpiical relationship where s the present model

is based upon submicroscopic atomic as well as molecular considerations. It is also quite apart

from Hoff's [3] or Kachanov's [4, 5] models. Using an atomistic approach, the current model

should not be looked upon as a one-dimensional model as it is easily extended to a three-

dimensional situation by introduction of a molecular orientation mechanism as a result of

deformation [6]. This mesomechanics approach is considered to be very sound as it makes the

connection between microstructure, micromechanics, and macromechanics. Therefore the kinetic

strength is given in terms of the basic atomic and molecular quantities, so that the mechanical

properties can be deduced for solids exhibiting creep, diffusion, or dislocation glide and so on as

the time, temperature, molecular motion, and elementary bonding stresses, etc. have been

i,,orporated into the model in the first place [7, 8, 9].
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3. "Analyses of Three-Dimensional Crazing in Polymers -- in preparation
for publication

Polymers and polymeric composites usually fail by first developing crazing on the surface of the

material system. Internal crazes can also be initiated when sufficient and necessary conditions

exisL The time-dependent craze failure prccess, whether two-dimensional or three-dimensional,

may be characterized by several stages: deformation, development of microporosity, craze

initiation, craze-crack transition and propagation until complete failure occurs. The interrelationship

among the applied stress, craze initiation, time and temperature has been established and a fairly

general time-dependent theory on craze initiation in viscoelastic media has been formulated.

In 1982, C. C. Hsiao et al proposed and analyzed a two-dimensional craze growth on

surface of polymeric materials. It gave information on the time-dependent nature of craze growth in

viscoelastic media. In many actual cases of damage, however, the craze growth in a polymer is of

3-dimensional nature. But till now it does not seem that there is any work available in the literature

describing time-dependent 3-dimensional crazing-cracking behavior in polymers.

To gain a better understanding for the craze behavior in polymers, here in this report an

analysis for the time-dependent crazing in polymers is developed. The analytical work is divided

into two parts. In the first part of this report, a "DISK" model of the 3-dimensional craze is

proposed, and then a complete set of governing equations is given on the basis of viscoelastic

principles, energy theorem and variational considerations. Basic time dependent unknown

functions are the craze envelope stress (CZES), craze opening displacement (CZOD) and craze

radius (CZR). Using the variational considerations, conditions for admissible envelope stresses

(CZES) are given by singularity analysis of the stresses at the craze tip. In the second part, an
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important class of craze growth, i. e. "self-similar" solutions is proposed and considered. In this

case, any unknown field, say w,, is not considered to be directly related to the polar radius r and

time t, but only with one variable, r/c(t), here c(t) is the craze radius at time L Thus, mathematical

simplifications could be obtained in the treatment of the quadrature of the basic equations with

complexity and nonlinearity. The complicated basic equations are reduced to a single nonlinear

ordinary differential equation for the craze growth. Analytic expressions are obtained for the craze

opening displacements in terms of elliptical integrals of the first and second kinds.

Two types of simple viscoelastic media, i. e., the Maxwell and '. ,igt solids have been

considered. Numerical quadrature is used to evaluate the integral expressions containing elliptic

integrals. The nonlinear equations are solved by Runge-Kutta method numerically, to obtain the

craze opening displacements (CZOD).

Computed 3-dimensional results of craze growth are also compared with those of two-

dimensional cases.

Introduction

The study of craze initiation and growth has lasted around four decades since the first paper given

by C. C. Hsiao and J. A. Sauer in 1950 [1]. Some questions and concerns related to the

understanding of the crazing problem may be stated as follows:

a. For polymers under a set of given conditions will craze occur [2,3,4] ?

b. What are the temperature and time effects on craze initiation and growth [5-9,20] ?

c. How to model the real process of crazing behavior in polymers [9-14] ?

The knowledge obtained from crazing research is important in predicting the durability of plastics

and polymeric engineering components. Besides the theoretical approach in modelling and
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analyzing the craze growth, certain other experimental work has also been reported [15-23]. In

studying the craze growth processes, many different models have been considered and analyzed.

Knight [11] has proposed a craze critical initiation stress in the local craze tip area. When the local

tensile stress reaches this critical level, crazing is produced. This model gives rate insensitive craze

initiation which contradicts to the experimental observations [15,16]. Heymans et al [12] presented

a craze model, in which craze was divided into two zones with the polymer inside the craze as

being deformed plastically and outside as elastic. The results show that the craze length increases

as a logarithmic function of time, in agreement with their experimental data on polycarbonate.

Chem and Hsiao [14] analyzed a two-dimensional craze in which the viscoelastic behavior of the

bulk polymeric medium and the nature of molecular orientation within the craze region are taken

into account. Based upon this time-dependent viscoelastic model, both craze opening

displacements and craze length extensions have been computed. To obtain a better understanding

on crazing in a polymeric medium, a time-dependent theory and analysis of craze growth in

viscoelastic solids is given in the present report to elucidate the fundamental mechanism of a 3-

dimensional crazing behavior in polymers.

In this report, the work is divided into two parts. The first part is concerned with a 3-

dimensional DISK model of the time-dependent craze growth. A complete set of governing

equations and solutions are developed on the basis of viscoelasticity theory [24], energy theorems

and variational considerations. Basic unknown functions are the time-dependent craze envelope

stress (CZES), craze opening displacement (CZOD) and craze radius (CZR). Using the variational

methods, the admissible conditions for the craze envelope stress are given by singularity analysis

of the stress at the craze tip. In the second part, the complex nature of the mathematical equations is

discussed and the self-similar solutions have been proposed. Important mathematical

simplifications are obtained in the treatment of the quadrature of the basic equations for the craze

size. Analytic expressions in terms of elliptical integrals are also obtained for the craze opening

displacements [25].
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Two types of simple viscoelastic media: i. e., the Maxwell and Voigt solids are considered.

Numerical quadrature is used to evaluate some integral expressions containing elliptic integrals in

their integrand appearing as parameters in solving the nonlinear ordinary differential equation for

crazing by Runge-Kutta method [26]. The craze opening displacements. (CZOD) are then

computed. Results are compared with those for the two-dimensional cases.

A 3-dimensional DISK model of craze

To deal with the analysis of a 3-dimensional craze growth problem, it is desirab!e to consider the

following DISK model as shown in Fig. 1 and Fig. 2:

In the above figures and below, the following notations are used:

c(t): Radius of the craze at time t

w(r,t): Craze opening displacement at r and time t

d(r,t): Diameter of fibril bundle domain at rt in a craze
(yc(r,t): Craze envelope stress at r,t
(Yf(r,t): Stress of fibril domain at r,t
Vf(r,t): Volume fraction of fibrils in a craze at r,t

GO(t): Remote applied stress at t

N(rt): Number of load bearing fibril per unit craze area

Wm(r,t): Thickness of primordial layer from which fibril domain is drawn out

wo(r,t): Equals to w(r,t)-wm(r,t)

Figs. 1 and 2 describe a 3-D symmetrical craze in a simple stress field co. In the craze region,

oriented molecular fibrous bundles and voids are formed. Surrounding the craze region there is the

viscoelastic bulk polymer. The fibril connections are load bearing which can take stress af(r,t). The

craze envelope stress ac(r,t) is an average engineering stress which may be calculated by dividing

the applied force with the volume containing both the fibrils and the voids. Based upon

experimental observations, an idealized craze structure is composed of cylindrical fibrils domains

of diameter d(r,t), which may vary from position to position. During crazing process, the diameter
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of each fibril domnaip. chatjoges with finne a~s its length changes. The craze fibr.ils re for med by

conitinuous drawing firom the unoriernted bulk polymer. This drawing process causes mass to flow.,

fromi parent phase (unoriented bulk polym~er); into new phasi: (highly oriented fibrils). The general

state of stress in the bulk polymner is expressed by a(rz,t) as shown in Fig.2. 111t is easily seen that

the volume fraction of fibrils in a craze Vf(r-,t) can be ex-pressed by c(r,t)fc Kr,t). in Fig. 1, the

fibril density distribution N(r,t) is defined as the number of load bearing fibrils passing through a

unit craze area at r,t. Permitting some possible fibrils breakdown under high loading conditions

from time to time, the function N(rt) is considered time dependent.

Governing equations for the craze opening displacement

Using cylindrical polar coordinates, the equations for the viscoelastic boundary value probiemi

governing the 3-dimensional DISK craze growth problem are given as follows:

Equilibrium Equations

GYj'j(r,O,z,t) = 0 (i~J = rO'z) (1),

Geometrical Equations

ejj(r,o,z,t) = I ( ui.,j+ uj;i) (i~j = rG'z) (2)

Constitutive Equations

t
Sij (r,oxzt) f G I (t-) deij (r) (3)

-00

t
aYjj(r,O,z,t) =f G2(t-x dEjj(tr) (4~
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ij (ij =r,0,z) (5)

1

eij = eij- 3 jkk (6)

where (r,e,z) are the cylindrical polar coordinates and t is time.The symbol ";" means co-variant

differentiation. aij, ejj are stress and strain tensors respectively, and ui are displacements. S j,e,

are deviatoric stress and strain tensors, 8ij is the delta symbol and G I(t), G2(t) (t >o) are

respectively the deviatoric and dilatational moduli of the bulk polymeric media.

To complete the boundary value problem, the following boundary and initial conditions are

introduced:

Boundary Conditions (t 0):

aUzr (r,o,o,t) = cz0 (r,o,o,t) = o (r < c(t) ) (7)

(Yzz (r,0,o,t) = %(r,0,t) = q(r,t) (r < c(t) ) (8)

crzz (r,o,z,t) = c (t) (r 2 + z2 - + ) (9)

re =  r' = G %0=o ( r2 + z2 - + ) (10)

Here so (t) is the applied stress given for t _ to

Initial condition:

c(t) = co, (t = to) (11)
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In general, for the DISK craze model, in standard cylindrical coordinates it allows an

axisymmetrical solution, The individual equations can be expressed in the following form where all

the stresses, strains and displacements are functions of time:
aarr 1rO arr-Oooee

1 + - =0 (12)

D r Do r az

1- +D +2 + -o (13)
r DO ar r DZ

az7  1 DO Drr -+--+-= 0 (14)

5urIr=T3 (15)

Ur +I Duo (16)800 T r Do (6

1 1 ur + DU Ur (17)
-2' r Do Dr r

1rO 2 D O + -u- (18)
2 az ar

1 I auz aue (198zl 2 r D az

auzzz =-z (20)

~az

The time dependence of these equations can be eliminated by taking the Laplace transformations in

the following manner:
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00

f(r,e,z,s) = f est f(r,0,z,t) d., (Re(s) >_ so> o) (21)

0

where f(s) is the Laplace transform of f(t) with s as the Laplace parameter and then the above basic

governing equations in the s-domain become time independent:

lijlj(S) = o (ij = r,0,z) (22)

JNs) = 1 (Uilj(S)+ujl(s) ) (ij = r,O,z) (23)

Sij = s G2(s) e i(s) (ij = r,O,z) (24)

Yi = s Gl(S)eii(s) (ij = r,O,z) (25)

Here, a E ui, G1, G2 , Sij, ei are the corresponding Laplace transforms of aj, Ej ui G1,

G2 S and e.. respectively.

In order to avoid the varying boundary conditions, we let ao, c and c remain constant as

piecewise step functions in each of the infinite intervals and finally sum up all the contributions.

Therefore the boundary conditions become:

azr (s) = azO (s) = 0 ( r< c, ) (26)

Gzz(s) = Go(s) = Cb/ s ( r< c, ) (27)

zz(s) = 6/s (r2 +z2 -4 + - ) (28)

22



Crazing in Polymeric and ComLosite Systems Final Technical Report, April 23, 1990

0r-re = rr = Gzr=  z = 0ee o ( r2 +z2 -4 + ) (29)

Using the linear elastic and viscoelastic correspondence principle the corresponding viscoelastic

and 6lastic parameters and variable functions are as follows:

s1 sG2 Co/s /as "S ij '', i

I I I I I I I (30)
G1  G 2  G0 ac Sii eij u.

l~ U 1

Then from the governing equations of the time dependent viscoelastic boundary value problem

(12)-(28), a corresponding elastic problem may be expressed in the following form:

0 ij;j = 0  (31)

Ci =L ((32)

siG =G 1 ei (33)

C = G2q (34)

azr = CzO = 0  (r<c) (35)

Ozz = a eS (r<c) (36)

azz =1s ( r 2+ z2  +,- ) (37)

ar of rr =  zr =z= 0 0=o ( r 2+ z2 2 +) (38)
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Using this approach, the elasticity solution in the s-domain may be obtained. Inversion of the

solution will give the time dependent results.

Now consider the case of an axisymmetrical problem with respect to 0:

Uo= Cr z= OZ0 = = 0 (39)

a
()=o

where () may be any given function.

The governing equations become:

DaY. Crr-000 D(rz
+ - = o (40)r az

a +a aa M = °  (41

az or r

= r (42)
rrar

0= r (43)

i2 =1aur auz (44)-zr = 2 (' (44

auzEZZ = -z (45)

S-i = G 1 eij (46)

24



Crazina in PoMric and Coa,osile Svstems F'ial Tec u c T Re=TL Pua 23. 19-90

aii = G2 -i 47)

Similarly the boundary conditions can also be reduced:

when z =o:

cGr,o) =o, (r _o) (48)

Oyz,(r,o ) = -p(r). ( r< c) (49)

Uz (r,o ) =0, (r>c) (50)

when Iz] - 00:

ui = G ij = 0 (51)

Here

p(r) = O -oc(r) (52)

This set of equations (40 )-(52) correspond to a crack problem shown in the following figure:

Fig.3.

In solving this problem, Hankel transform and Mellin transform methods have been

employed [27, 28]. Using minimum potential energy considerations and the variational principle,

the craze envelope stress has been calculated as a function of time as it is not only dependent upon

position but also on time as shown in Fig. 4.
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In order to effect a solution, a self-similar type of envelope stress has been considered as

illustrated in Fig. 5. After a lengthy analysis, the final form of a nonlinear equation governing

craze growth has been obtained. Preliminary results have been computed [29-31] and compared

with those of the two-dimensional cases for both Maxwell and Voigt media as shown in Figs. 6

and 7. It is hoped that this work will be continued and the mathematical details will be presented in

a report.
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attempt is made here to observe and characterize the behavior of polymers under simultaneous

irradiation and stress conditions. The results obtained from this approach can be combined with

those from chemical and other relevant experiments to formulate a better and broader explanation

and description of the physical process undergone by polymers when exposed to stress and

irradiation. In order to achieve a model description of the phenomenon under these conditions the

physical process of crazing, which has been known about for more than thirty years [11-13], will

be emphasized in the light of earlier work on craze initiation [14], propagation [15], and energy

absorption of crazing [16].

Exposure of polymers to irradiation results in a number of physical and chemical changes,

either temporary or permanent. Polymers can undergo one or more of the following processes:

cross-link, depolymerization, evolution of gases, change in color and/or change in crystallinity.

Among these, degradation and cross-linking are fundamentally important, because these processes

strc.gly affect the mechanical properties of the polymer, The behavior of a polymer depends

directly upon its molecular weight and chain entanglement. The variation of the aforementioned

processes can take place simultaneously. However, the ratio between the changing rates depends

on the structural configuration of the polymer, the nature of the substance present in the system and

the type of irradiation energy.

Both the degradative and cross-link processes originate from an initial bond breaking

reaction which occurs as a result of the absorption of the influential wavelength of electromagnetic

radiation. In the case of degradation, the initial reaction may represent the total extent of damage or

it may be the prelude to a series of secondary bonding reactions leading to further scission,

recombination or substitution of bonds. However, in the case of cross-linking, the process leads

to the formation of three-dimensional network structures.

As for the role of mechanical action at the atomic level, electron spin resonance

spectroscopy has graphically demonstrated that stretching, grinding, milling or any type of
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polymer shearing process can also produce free radicals as a result of the fracture of the main chain

of the polymer [17, 18].

This article devotes special attention to the study of the craze density development and craze

propagation in samples subjectedto simultaneous irradiation and mechanical action. Results are

them compared with those found earlier in samples subjected to mechanical action only.

By piecing together the results and observations obtained thus far, a paper is being

prepared for possible publication in the future.
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5. "Propagation of Crack-Induced-Crazing in Unidirectional Composites"

This paper is in preparation for publication.

The paper deals with the propagation of a crack-induced craze which bisects a

unidirectional lamina of composites into two regions with orthotropic viscoelastic properties. This

complex crack-induced crazing problem has been separated into two modes: normal mode and

shear mode. Using the superposition principle and the Fourier transform technique, the associated

elasticity solution has been obtained for the determination of the time-dependent crack and craze

propagation velocities (t) and (t), employing the elasic-viscoelastic and Laplace inversion

technique numerically. It is interesting to find that the crack propagation will be arrested if the

initial crack length ao is less that a critical length ac. The viscoelastic properties of the composite

matrix is considered. The crack-induced crazing displacement at any point on the envelope surface

and the propagation history have been calculated numerically for two viscoelasticity model

matrices: Maxwell linear model matrix and generalized Kelvin model matrix.

It is well-known that the strength of a lamina composite is much greater than that of a single

matrix material of the same geometry. But the strength of individual lamina in a laminate varies

over a wide range. In many cases the composite structure will contain a number of weak sheets.

These weak lamninae will fail first due to craze-crack transition and subsequent crack-induced

crazing. As a result, the load-bearing capability of the composite may be greatly reduced
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Therefore, it is significant to investigate the crack-induced crazing in a single lamina which

contains an initial crack after craze initiation and craze-crack transition. Because of the

development of minute voids and the orientation of the polymer molecules in front of the crack tip,

craze is induced; thus it is referred to as crack-induced craze. On the other hand, the matrix

material of the composites, such as epoxy resin, is a typical time-dependent viscoelastic medium,

and so is the lamina. In this case both the stresses and the displacements are time-dependent, as

the are functions of the viscoelastic properties. Obviously it is important to study the time-

dependent crack-induced craze propagation.

However, in the past twenty years, most analyses of crack-induced craze growth

considered only the time-independent behavior of the stresses and strains. G. C. Sih [1]

considered the unidirectional composites as homogeneous anisotropic or nonhomogeneous

isotropic elastic media, and applied his criterion of minimum energy density for studying the crack

propagation. This is linear elastic fracture estimation only; the rate of crack-induced craze

propagation cannot be predicted. Some other scientists did consider the time-dependent crack-

induced craze propagation: for example, McCartney [2, 3] applied the linear isotropic viscoelastic

model to study the crack propagation and Schapery [4] developed the study of crack growth in

nonhomogeneous viscoelastic media for normal crack mode. However, these results still could not

be applied to the composite materials because the lamina of composites usually consist of

anisotropic viscoelastic media and each cracking lamina should be represented by a complex

fracture mode composed of a combination of normal and shear modes.

Experimental results revealed that the rate of crack propagation can be modified

significantly by controlling resin properties [5] in composite materials. Therefore the fracture

characteristics of the matrix are controlling parameters in crack-induced craze for aligned composite

materials. Some scientists thought that the crack propagation might be dependent upon the

polymer yield strength beyond the crack tip [6]. In that case, the Dugdale model of fracture was

borrowed to consider the propagation of crack in polymers [7]. However, it appears that the
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Dugdale model is unlikely to be suited for studying the quasifracture problem of polymers because

new phases are created as a result of molecular orientation and many bundles of fibril domains are

usually found beyond the crack tip in the matrix of the composite. Such Fibril structure of the

craze beyond the crack is the feature that distinguishes it from other localized fracture in metals.

The small fibril domains, which can range from 5 to 50 nm in diameter, are loadbearing members

of the craze. Embedded in voids, the fibril domains can break down to form larger voids causing

crack propagation until fast fracture ensures [8-11]. The stress distribution along the envelope of a

craze has been successfully considered as simple step functions [12-14]. Using this crack-induced

crazing model together with energy criteria the propagation rate of cracking and crazing along the

fiber direction of a composite is studied in the present work.

For most composites there exists an angle between the fiber and the load direct. The crack-

induced crazing is a complex quasi-fracture. Some experimental work [15, 16] has shown that the

crack-induced craze propagation in a lamina is located in the matrix between the fiber domains

originated from initial d-fects such as voids or other flaws. Based upon these experimentally

observed failure models, this paper is directed toward the analysis of the lamina composite

consisting of a crack-induced craze formation in a sheet having orthotropic viscoelastic properties.

The crack-induced crazing of finite length is situated in the matrix and parallel to the fiber domains.

That means the unidirectional composite contains an initial crack-induced craze surrounded by

orthotropic viscoelastic materials. The analysis is separated into two parts: one dealing with the

normal mode and the other, the shear mode. An integral transform technique is used to reduce the

problem to the solution of dual integral equations. Then applying the superposition principle and

Laplace inversion technique, the associated elasticity solution in the Laplace domain has been

obtained and correspondingly the stress distribution, the crack and craze opening displacement

have been inverted into the real time domain. According to the universal energy rate balance, the

crack and craze growth rates (t) and c(t) in the unidirectional composite material have been derived

and calculated numerically.
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VII. Current research development and possible future impact

As a natural outgrowth several ;mportant phases of research have been considered and preliminary

breakthrough investigations have been made. It appears that very fruitful results are forthcoming.
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1. "A New General Unified Strength Theory and Damage Criterion for
Anisotropic Solids and Composite Systems"

Preliminaries

Using an energy approach, the concept of a new general unified strcngth theory and damage

criterion is put forward. The total critical energy, including distortional and dilatational energies,

must be overcome for damage initiation in any solid or composite systems. Using variational

principles, the extremum critical energy is obtained with respect to the specific mean free volume of

the microstructural material system. An application of the calculus of variations yields a differential

equation identifying the specific mean free volume variation of a material system as a function of

time-dependent microstructural parameters. Solutions of the differential equation will yield the

energy required for damage initiation in anisotropic solids and composite systems.

However, if the total energy representing the intrinsic damage resistance function is given

simply in terms of a series, a general time-dependent expression can be easily established.

Eigenvalues of specific mean free volume and eigenfunctions of extremum energy quantities are

obtainable. Damages by yielding, crazing and/or subsequent fracturing are associated with these

energy quantities. The new general theory can be reduced to most existing individual prominent

strength theories and damage criteria for time-independent material systems.

The damage mechanism of material systems under stress may be associated closely with

shear deformation, molecular orientation, and microcavitation. From th,. microstructural

viewpoint, stressing may be visualized as a source of energy which develops an instable process,

causing the field of homogeneous deformation to develop into localized flow and cavitation

characteristics. Thus, the creation of microcavities and the formation of micromolecular slippage

and orientation occur in regions as crazes. This bifurcation creates variations of the vacant spaces

or the free volume, in contrast to the volume occupied by atoms and molecules, and sharp flow

which is provided by the existence of loading and the available work done to the material system.
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As a resulh, the compatibility condition for a continuum analysis breaks down. This non-

continuum behavior creates singularities. The transition from a homogeneous to non-

homogeneous state must be taken into consideration in the analysis if the strength and damage

behavior of the solid systems is to be better understood-

It is the purpose of this paper, based upon mesomechanics and energy considerations for

material systems, to develop new concepts and new governing equations in terms of eigenvalues-

eigenfunctions appropriate to different given conditions. Since the emphasis is placed on time-

dependent solid and composite systems, a few words on polymeric glass transition, the

thermodynamic aspect of the glassy state, and the equation of state of the material may be relevant.

In this study dimensional changes of polymeric matter are important. There are many

factors which can cause the dimensional change of matter. Among the most important ones are

temperature, mechanical stresses, materials structure, and the effects of time. Then physical

phenomena such as the formation of voids and crazes during mechanical deformation, fracture

initiation and propagation, and shape changes are second order transitions. Most of these changes

are related to the variation of volume. In certain situations, when a medium is in an equilibrium

state, its volume can be expressed by an equation of state which describes the dependence of the

volume on several other state variables. However, in the solid state the properties of a material,

including the volume, may depend on external stresses and temperature. Their path and time

dependency is intimately tied to specifying the degree of precision of the specific free volume used

in analyses. Nevertheless, the behavior of the specific free volume has served well in describing

the equilibrium and quasi-equilibrium transitions for amorphous polymeric systems.

While the concept of specific free volume is still qualitative, it has been useful in explaining

many properties and phenomena for polymers in their glassy state. Based upon the consideration

of the effect of time, the specific volume of a material may be written as:
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S current volume - original volume
Specific Volume -original volume

where the current volume is the volume measured at time t and the original volume is that

deteimined at original time to. The current volume at time t equals the vacant space or the free

volume plus the actual volume occupied by atoms and molecules at time t. Thus the specific

volume may be written as:

actual volume + free volume - original volume
original volume

where the actual volume is not considered to vary greatly with respect to stress, temperature, and

time. This is particularly true when a polymer is below its glass transition temperature. This

means that the actual volume is essentially a constant. Then the variation of the specific vacant

space or free volume can be approximated by the variation of the specific volume. That is, in

dealing with the volume change, the specific free volume can be used approximately in place of the

specific volume. Therefore the specific free volume is considered in the analysis. The term

specific free volume is preferred because it characterizes and dominates the internal microscopic

damage behavior of a material system whether it be simultaneously due to microstructural

distortion or dilation or both as an internal state variable. In dealing with time-dependent

mesomechanics it may be convenient to employ the term specific mean free volume in a

mesodomain in any kinetic analyses where various degrees of free volume variation can occur, and

it may be satisfactory to consider their average information.

General Approach on Strength Theory and Damage Criterion

Using the stress tensor components a1,, the magnitude of the total energy is expressible for

an anisotropic state of stressing in terms of an anisotropic tensor Bij:
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e=Bij(,ij. l

At any locale in a medium, when the magnitude of this energy is greater than or equal to a critical

value Cc (i.e. P >_ Cc), damage will develop. Here Cc is seen as an intrinsic damage resistance

associated with the non-uniform and non-gradual behavior of yielding, crazing and/or subsequent

fracturing, representing, among many others, distortional and/or dilatational changes.

The intrinsic damage resistance is dependent upon the intermolecular forces and in turn the

intermolecular and interatomic spacings. The average intermolecular distance may be related

closely to the specific mean free volume, characterizing this distance. Hence it may be useful to

consider the critical energy as an intrinsic damage resistance function of the specific mean free

volume.

(2)

where V is the specific mean free volume, a dimensionless quantity identifying the variation of the

specific mean free volume in a small domain in a given medium. Assuming this is accurate

enough, then to a first approximation, it may be adequate to establish a fairly general theory of

strength and damage initiation criterion for material systems in the following form when a critical

energy is overcome.

C > Cc = ( ), (3)

where the function D is to be determined for initial yielding, crazing and/or subsequent fracturing.

The material system is considered as an ensemble of microstructures in mechanical

equilibrium but not necessarily in thermodynamic equilibrium. The cohesive energy, the internal

energy, and the entropy of the system are intimately associated with the stress and strain tensors
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through derivatives. Based upon the'nodynamics and statistical mechanics considerations, the

macroscopic mechanical properties may be deduced from the microstructure by neglecting the

entropy contribution [1]. And the total potential energy becomes a dominating quantity in

determining the constitutional internal stress and the anisotropic relaxation moduli as a function of

the straining. This deformational strain gives rise to the total energy variation as a function of the

specific mean free volume in a mesodomain of the microstructural system. The critical energies are

the minima and maxima of the specific mean free volume vs. energy curve. The minima

correspond to the natural conformation and configuration of a system of microstructures in their

most stable free energy states through natural molecular arrangements which give the stable

equilibrium states, while the maxima identify the unstable nonequilibrium behavior of crazing and

fracturing. Between any adjacent minimum energy and maximum energy states there exists a

transition region at which the damage due to "yielding" may occur. Usually "yielding" is

interpreted as the inception of plastic flow without considering any other possible damage

microscopically or macroscopically. It does not seem accurate enough to describe the true behavior

of a medium under load when both its shape and its volume change simultaneously. It may be

adequate to state that "yielding" describes the energy transition region of a material system under

straining when the energy rate changes. In other words, yielding should describe the inflection of

the energy rate between a stable minimum energy state and an unstable maximum energy state.

Further explanation on this point will be given later.

Complex Material Systems with Time-Dependent Microstructural Characteristics

First let us look at this theory as an extremum problem. Whether it involves the

extremization of a definite integral or just a function, the general concept is to determine the

stationary value at a function. The necessary and sufficient condition that a function (D of n

variables shall have a stationary value at a certain point is that the n partial derivatives of (D with

respect to all the n variables shall vanish at that point. However, in analyzing the thermodynamic
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aspects of materials in their glassy state, a certain nonequilibrium state of the microstructure exists.

Aside from temperature and pressure, a set of structural parameters [z1, z2 , ... , zn] should be used

to characterize the nonequilibrium thermodynamic state. At the glassy state, some of the structural

parameters are locked in and would not attain their equilibrium value and thus the variation of the

free energy with respect to each of the structural parameters which deviates from its equilibrium

value would not vanish. Therefore the attention is fixed on the multiple integral in the application

of the variational principle in a definite region of multiple space.

Utilizing the method of calculus of variations, the critical strength and damage resistance

function of any material system (D may be obtained through the application of the extremization

process. Collectively consider that the specific mean free volume representing the straining

characteristics of the material system under load as a function of time and temperature as well as

other parameters associated with the material system zj(j=l, 2, ..., n) where these variables can be

pictured as coordinates of a point in a space of n dimensions. In motion, this extremum problem

involves a definite integral in such a way that the total energy & of the system is to be made an

extremum by suitably determining V as a function f of zj corresponding to points in the boundary

of the surface zlz2z3 ... Zn in the n+l dimensional space. Mathematically the energy is represented

as a surface by the following multiple integral containing an integrand function r:
=f f ... f r"(Zi, Z2, ...,1, , qj, q2, ..,qn) dzldzpdz3 ... dzn . (4)

where

...,=jz qn= -Z .

The integration is over a given surface area in the ziz2.. .Zn plane, V being given for all

values of zj (j=0, 1, 2,..., n) corresponding to points in the boundary of the surface area.
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Here the. variation of the specific mean free volume V is the increment produced in V by

altering the form of the function f, zj's being held fast, and is a function of zj (j=l, 2, ..., n).

If 8q, , qn = ,then 5qj, ..., 8qn are the increments produced in qj,

8V, ... , q= 7 5

.... qn respectively. Now let E be a small quantity and

V= :f(zi, z2,.., Zn) + E 8v. (5)

is one of a family of surfaces which is slightly different from the original one:

f(z 1 , Z2 , Zn). (6)

Then

(E)=f f..f "(Zz," .,- - Zn, V+8-v, ql+ E 5iql, q2+ E 5q2, ..,qn+ E 5qn)

dzldz 2 ... dzn (7)

(O)=f . +7-1 8q , + 8q2 + +  qn

dzldz 2 ... dzn (8)

or

F,-(0) 8f f ... f Tdzldz2 ... dzn=5C . (9)

The necessary condition is that P shall be an extremum when 89--0.

Now in order to find the form of the surface or the differential equation which renders the

integral an extremum,
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e=f f ... f (1+Yq )1 2dzldz2 ... dzn (10)

must be taken over the area bounded by the projection of the given curve in the ztz2. .. zn plane.

Thefi the variation

f... f J q 2j dzld7, ... dzn

... I J (i+ q2)i12 dzldz 2 ... dzn (11)

Integration by parts for any Zk (k=1, 2, ... , n) results in

f q94 qkSv a qk
(1 - dzk =/2 - f -k (l+y 8vdzk (12)

In each of the Zk integrations, other Zk'S (k=l, 2, ..., n) are held fast. The limits are the abscissas

of the points on the projection of the given boundary which corrcspond to the value of the Zk in

question, and for these points 8v--O. Thus the term outside the integral sign vanishes and

(i+zq dzk k ) vdzk , (k=1,2, ... , n) (13)

Hence

n

n_f f .f y ( qk(Xqj"qj)

= I I (1+q) 3/ 2  8 dzdz2... dzn (14)k=1l

8,-0 when and only when
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q(1+q ) _qkqj aqj -0. (15)
k=1

This is the differential equation of the required extremum energy which can be put into the

following form:

T I+k I T- - =0. (16)

k=1

After this differential equation is solved, the specific mean free volume variation as a

function of material parameters zj(t) will determine the stability, transitional and ultimate damage

behavior, i.e.

v(t) =f(zj) . (j=1, 2, ... , n) (17)

Equation (16) may have many solutions. The individual possible solutions when they are

minima will indicate the stable situation of the material system, while the maxima will correspond

to the unstable damage condition such as crazing or fracturing when their corresponding energy

values are overcome. That is, for any time..dependent material system in motion, the new unified

strength and damage criterion at any spatial position x may be specified and expressed as follows:

(x, V, zI , ... , Zn) > Fc (X, ;d, Z1, ... , Zn) (18)

where Fe is the critical energy for stability or damage initiation corresponding to specific mean free

volume Vd which makes the energy integral an extremum.

This work is being extended. A paper will be prepared in the future.
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2. "Significance of Critical Energy Theory for Damage of Anisotropic Solids
and Composite Systems"

Using an energy approach, a general unified strength theory and damage criterion is developed in

terms of a microscopic specific mean free volume concept. The general time and temperature

dependent formulation is reducible to most individual existing specific strength theories and

damage criteria for linear elastic material systems as special cases. Damages including the initiation

of yielding, crazing, fracture and fatigue as well as propagation of cracks are a result of

overcoming complex energy quantities in terms of a measure of the specific mean free volume.

Associated with an eigenvalue of the specific mean free volume there exists an eigenfunction of

energy which governs the stability, transition and instability of the material system. In this paper

the significance of the strength and damage is interpreted and analyzed. The various possibilities

of utilizing the fundamental concept and formulations are discussed.

Based upon mesomechanics considerations [1-16] the damage mechanisms of solid

systems under stress may be associated primarily with both shear deformation and volume

variation, as a result of molecular slippage and orientation, microcavitation and microfrature.

From the microstructural viewpoint, stressing may be visualized as a source of energy input into a

system which develops localized unstable processes. As a result, the compatibility conditions for a

continuum analysis breaks down. Transitions from homogeneous equilibrium to non-equilibrium

states involve nonlinear, kinetic deformational analyses.
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3. "Mechanical Strength and Damage of Polymers and Composites"

Introduction

The macroscopic propeities of polymers and their composites are determined to a large extent by

the mclecular structure of the constituent chains. Up to now, however, the explorations of material

properties are mainly qualitatively descriptive rather than quantitatively predictive.
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The statistical mechanical theory of amorphous molecular system in bulk polymer provides

methods to deal with the random molecular system. With the advent of modem computers, it is

possible to apply the principles of statistical mechanics to real life systems. Computer simulation

has provided some needed insight on the properties of polypropylene.

Preliminary work has been started and continued which attempts the step from chemical

structure to the damage and mechanical strength of amorphous polymeric glasses and their

composites.

Briefly, the objectives of this project are:

1. To develop a quantitative computer model of molecular structure for an amorphous

polystyrene below its glass transition temperature. It provides detailed information

on the conformation and relative arrangement of chains in the bulk.

2. To simulate a mechanical deformation of the model mentioned above. Damage

point will be predicted by studying the breakage of molecular chains.

3. To develop a quantitative computer model of molecular structure in a unidirectional

fiber-reinforced amorphous polymer composite.

4. To determine some elastic constants of the composite material by simulating a

small-strain mechanical deformation which is perpendicular to the fiber direction on

the model for the composite system.

Background information

From the microscopic viewpoint, amorphous polymers and their composites are inhomogeneous

materials. Although bonding lengths and bonded angles in the molecular structure can be consider

to be rather rigid, the molecular configurations are random because of the rotational possibilities

around the bonds.

45



Crazing in Polymeric and Composite Systems Final , echnical Report, April 23, 1990

Flory has introduced a statistic theory to consider the amorphous polymer system. The

basic idea is to replace the random system by a crystalline system so that once a model molecule is

available, the whole molecular system can be set up. To reasonably represent the actual molecular

system, the model molecule having the average information of an amorphous system must be

considered.

The basic approximation of Flory's molecular configuration theory is [1, 2]: each

molecule, or bond, is treated as appearing in one or another of discrete rotational states. These

states ordinarily are chosen to coincide with potential minima. Fluctuations about the minima are

ignored. This is the so-called rotational isomeric state (RIS) approximation.

The probability of each discrete rotational state is determined by the potential energy of that

state, by considering the atomic interactions in a molecular structure, one can calculate the values

of the potential minima. Then the statistical weight of the minima can be obtained. Using the

Monte Carlo method, the configuration of model molecular structure can be generated. The

sequence of states of the model chain is an equivalent Markov chain. If the model chain is

sufficiently long, it can represent the average information of the amorphous system.

Using Flory's theory and Suter and Flory's work on potential energy analysis of

polypropylene, Theodorou and Suter [3, 4] have constructed a model for a polypropylene

molecule. By introducing a small deformation to the model system, the change of the molecular

structure and corresponding bonding force across a specific surface may be calculated.

Subsequently the elastic coefficients can be accurately determined.
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Research already developed

We consider atactic polystyrene and atactic epoxy composites at room temperature (210 C).

Atacticity of the polymers makes their molecular structure completely amorphous. At room

temperature polystyrene and epoxy are glassy polymers.

Our molecular model rests on the following assumptions: a) the model does not

incorporate thermal motion, i.e. it is static; b) bond lengths and bond angles are kept fixed.

Molecular rearrangement can occur exclusively through relation around skeletal bonds; c) we

concentrate on the purely elastic response to deformation.

It is verified that these assumptions are reasonable.

Foi the atactic polystyrene molecular system, Rotational Isomeric State Theory can be

directly used in generating molecular conformation. A two-state RIS model, developed by Yoon,

Sundararajan and Flory [5], will be used for this new program.

For the atactic epoxy, a program, CHEM-X, which is designed to calculate minimum

potential energy states for small molecules, is ready to calculate the isomeric rotational states for the

molecular system [6].

For the fiber-reinforced epoxy composite, it is more difficult to use RIS theory because

interaction between fibers and polymer matrix is introduced in the system. The molecular model

has to cover this kind of interaction. Probabilities of the minimum potential energy states for

molecular conformation must be obtained. The quasi-Newton matrix-updating algorithm of

Broyden, Fletcher, Goldfarb and Shanno [7] will also be used for relaxing the molecular system.

To date the program of determining the elastic coefficients for polystyrene has already been

half done. A program dealing with composites is being prepared.
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4. uComputer Model for Amorphous Polystyrene"

Introduction

In polymer science, physical properties of materials and their relationship with spatioconfigurations

and conformations have been subjects of intensive study.

Flory established a statistical treatment for macromolecules [1, 2]. By using Flory's

rotational isomeric state (RIS) theory, detailed computer simulations for linear polymer chains (e.g.

vinyl polymers) are possible due to the simplicity of its simple spatial configurations.

Theodorou [3] utilized RIS theory and generated a computer model which successfully

predicted the properties of polypropylene under small elastic deformations (el<<l% ), where e is

the simple swain.

It is possible to study more complicated behavior (such as defects inside the materials,

crazing, microcrack initiation, etc.) by detailed computer simulations on the atomic level.

48



Crazdi in Pohr edc and Cor te Svste ms Fmal , chncal Re:or. AMI 23. 19s)

Theoretical considerations

Polystyrene is an ideal material for computer simulations because of its brittle behavior at room

temnerature and the readiness of crazing under relatively small deformations.

From thermodynamic and statistical mechanics analyses, under the temperatures below

glass transition temperature (T<Tg-20C), the entropic contributions and vibrational contributions

to the internal energy can be neglected. Thus the molecular potential energy will be the dominant

factor which characterizes the internal energy of polymer chains.

Computer generation of model polystyrene

Molecular dynamics (MID) and Monte Carlo (MC) methods are two effective means of computer

simulations. Two methods have their own advantages and disadvantages [4, 5].

Molecular Dynamic simulation can only cover for an exceedingly short time span due to the

limited calculating capacity of computers. In contrast, the Monte Carlo method can be used in a

step by step manner with well relaxation procedures in each step. MC method showed its

successful usage in the study of plastic deformation in a model amorphous metal.

Statistical weight matrices of amorphous polystyrene

The two rotational stages are assigned [8] to be at 4k=10 ° and g=1 10° .

The principal conformations can be represented by two statistical weight matrices of 2x2

order.

The statistical weight matrices for the pair of bonds may be expressed as

(0" 1/m

U" m =( %42(for meso dyad)
1/ri cq2
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The complementary matrix U'for the pair of bonds flanking the substituent carbon Ca may

be represented by

The expectation of meso-dyads for conventional atactic polystyrene is given by

0.3 _< om -< 0.5

A priori probability and conditional probability

In Flory's RIS theory, each molecule, or bond, is treated as occuring in one another of several

discrete rotatic-al states [2].

The a priori probability for bond i in states is

ri-hr n-i1Pq:i =Z1IJ [ 1 U h U'.q:i In~lUjI ,

*L h=2 I J= -+1 J

where Z is the rotational partition function of the chains and defined as

Z= Jexp [-PUPOt(o)] do

=Jull (2 UkJUx -lJ*T

and

J =[10],

J* [1 1].
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The statistical matrix Uk is defined as

Uk = U'TJk (2 k_ x-2)

with

U-k = U"m (if dyad is meso)

UTk = Ur (if dyad is racemic)

and

U1 = Udiag(1,li)U-'

Ux-1 = UlUdiag(1,l)

where U"is either U"m or U r, because

U'diag(1,T1)U"m = U'diag(1,q)U"r

and

U'TJmdiag(1,ii) = UT'rdiag(l,rl).

The a priori probability for bond 2 to be in state is

P A:2 = ZlJUoU' diag(1,rl)U"[ Uk Ux-1 JT

where U' symbolizes the matrix obtained from U' by replacing all of its elements by 0, except

those of column .
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The a priori probabilities P;t that bond i- will be in state C and bond i in state are given

as follows:

For bond 3,

p = Z-1U'diag(,1W,)U4:1 [l Uk Ux 1 j*T

For bond i (4<i<x-1)

Pf;2h = Z-IJU 1 [ ri U k] UC Uh [h IUk] Ux-1J*T

h-1 x-2

Pt;2h+1 = Z-J 1 [r 1i U k] " U h [ X k Ux-J*T

P;;2x-2 = Z'IJUI [ Uk U'U"g;x-j diag(lT)J * T

Pk;2x-i = Z-IU1 R'2 Uk UTU"U;x-I diag(lT)J*T

where U'C is a matrix obtained from U' by replacing all of its elements by 0, except the one lying

at row and column . U".,k is obtained from U"k the same way.

The conditional probability q for bond i in state {, given that the bond i-I in state

(_<i _2x-1), is

q;P;i -Mq ;j = P ;i-1 --~;~pW- PF- ;i-1

S

The conditional probability rests on the assumption that the interdependence of the bond

rotation does not extend beyond first neighbors.
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In Theodorou's treatment for polypropylene, the conditional probability is modified to take

into account long range interactions which gives a more realistic model. The rotational isomeric

state conditional probability is then modified as [3],

exP RT]
q 4; %4= j q;i 

AuLR1

~q .exp - RT i

where AUL; is the increase in long-range interaction energy upon addition of the skeletal carbon

i+l and the substituent of carbon i, if bond i is assigned the rotational state 4.

Intermolecular forces and potential 'energy

1) Non-bounded potential energy

It is found that the short-range repulsion forces between two atoms (or two molecules) are

proportional to 1/r6. The non-bonded potential energy is usually approximated by [10]

V(r) = -A/r6 + B/rn  (n > 6)

This is known as Mie(n,6) model.

The Lenard-Jones potential is given where n is equal to 12,

Vij= ( j' i

or

Vij = 4eij ri 1 -rij J
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where cij is the London dispersion parameter following the Slater-Kirkwood formula [10] by

which the London dispersion energy EL [11, 12] for unlike molecules or atoms is calculated by

3e/ih OAaB 1
EL =- 1/2

2me (0A/nA)l/2+(aB/nB) 1/2 ' 6

i,e

3e/h aio_ 1cij = - 2ml2e (a-i/ni)l/2+(aj/nj)l/2 r6

where a is polarizability, n the effective number of electrons, and r the distance between interacting

atoms.

The constants aij are assigned to minimize the potential V(r) and

1
aij = gcij r

Parameter Yij is the separation of the particles where V(r)=0 and eij is the depth of the

potential well at the minimum in V(r),

1 1J- * cij,

1J

ij= 21- rij.

2) Bonded potential energy

The bonded potential energy is calculated as an intrinsic three fold potential having a barrier of

k=2.8 kcal mol -1 for each skeletal C-C bond [2].

VO(D) =:- (1--cos35)
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where 0 is the bond torsional angle.

Parameters used in energy calculations for polystyrene are listed as follows [7, 8],

Atom rO(A) C(CA3) ni

C 1.8 0.93 5
H 1.3 0.42 0.9
c ar  1 1.95 1.23 5

Phenyl group

The distinguishing feature of the phenyl group is that it has a plane of symmetry. The phenyl

substituent is confined to the orientations such that its plane is approximately perpendicular to the

plane defined by the skeletal bonds flanking the ca to which it is attached. The more detailed

analysis justified the mean value of rotation angle of the phenyl group , X, is at 0° .

In our model, we treat the phenyl group as 11 single atoms following Flory's treatment in

calculation of conformational energy of polystyrene [8]. The exact calculation avoids the

inaccuracy of being an approximation of the phenyl group in the expense of the increment of

calculating time and the relatively smaller model.

In future developments, a good approximation of the phenyl group by a relatively much

simpler atom-unit(s) is need,,d in order to decease the computing time such that the model can be

reasonably large so that the accuracy of simulation of large deformation, where the model size is

also a critical factor [4], can be improved.

Size of cubic model

The cubic model is filled with one single parent chain according to the experimental density of the

material.
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For polystyrene, the cubic size and the polymerization x of the parent chain has the

following volume relationship

V =a (b xc)

1 [(2x+l)MC + (8x+4)MH]
pNA

where a, b, and c are edge vectors giving the volume V. p is the density of the polymeric system.

NA denotes the Avogadro number, and MC and MH are respectively the atomic weight of carbon

and hydrogen.

According to the minimum image convention [13] which allows each atom in the center

cube to interact at most with one image of another atom either in the center cube or within its 26

neighboring cubes.

The edge of each cube a is decided as

a __ 2r

where r is the effective range of L-J potential.

Based on the calculating time and the restriction on the size of the model, the

polymerization x can be chosen. The cubic size is usually of the order of 10 A.

Further development

Theodorou [3] showed that the computer model based on Flory's RIS theory can be used to

predict properties in small elastic deformations. Since the repeating methods of deform-relaxation

was successfully applied to the amorphous metals dealing with plastic deformation [6], it is
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possible to use this procedure to study the large deformation, the phenomenon of crazing and the

formation of microcrack which are two characteristics of brittle polymer materials.

The local structure defects along with atomic level stresses and strains need to be studied.

1. Atomic stresses (Atomic-level stresses)

The concept of atomic stresses or the atomic-level stresses were first introduced by K. Huang [14]

in his paper dealing with atomic elastic theory of crystalline solids, and was stated by Born and

Huang [15].

For a central force model, the atomic interaction is described by a central force pctential

(D(rij), where rij is the separation of atom i and j.

The cx3 components of the stress tensor of atom i is given,

Cr(j~i)
°1()-20li j drij rij

kwhere r* is the kth component of vector r.

The atomic elastic modulus tensor of the ith atom is defined as

i j "r_;F r--rijX 1 + Ur2 - Lr "I r=rij  .

where 92i in equation 0 and 0 is the atom volume such that the total cell volume,VceU, is calculated

by the following equation.

VceU = X.Gi
atoms
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Atomic stresses are the quantities which can be used to characterize the deformation,

defects and potential energy of the model studied.

2. Structure Defects in Amorphous Materials

The concept of structural defects such as point defects and line dislocation were introduced in the

study of crystalline materials.

In the last ten years, structural defects in the amorphous material have been studied [16,

17].

In the study of structure defects of amorphous solids [16], the structural defects are defined

as the regions of high stress and low symmetry. By comparing the stresses and symmetry-

coeffient distributions of those in the cores of dislocations in crystals, the region consisting of

compressive and tensile parts is then defined as a dislocation-like structural defect. A collection of

split vacancies which determine a region of lower density under tension is a vacancy-like defect

while an interstitial-like defect is a crowded region under compression.

Large concentrations of defects may aggregate and form precipitates (and will form extra

lattice plane in crystals). Ofie of the possible results of such motions and aggregations of defects is

the formation of the micro-surface which is a critical condition of crazing and the formations of

microcracks.
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Research Objective

The overall research objectives of this program are to analyze and to obtain a better understanding

of the role of crazing in polymeric and comosite systems. Following a basic and fundamental

consideration of microstructure and its connection with the mechanics of the material system, these

interdisciplinary mesomechanics studies are to develop time-dependent mathematical models of

crazing as global damage for polymeric solids and composite systems.

Research Summary

The approach used in this program emphasized the study of the damage problem of

polymer and composite materials. The strength and fracture behavior of stressed systems has been

closely associated with microstructural information. The initiation of crazing, the transition of a

craze to crack has been analyzed for a viscoelastic system with time-dependent characteristics. A

viscoelastic boundary element method has been employed to analyze the opening displacement and

the envelope stress of a crack-induced craze. This quasifracture problem has been successfully

studied to give good results comparable with theoretical micromechanics predictions.

The effect of time on breaking stress was also investigated. It was found that Hsiao's

statistical absolute reaction rate nonlinear model considerations were more successful for

interpreting many general observations.

This statistical model has also been used to study the temperature influence on polymer

fracture. The mathematical expression was satisfactorily examined to account for temperature

variations at fracture. As a result, a new generalized fracture theory and damage criterion has been

initiated and an initial attempt to formulate a general damage theory for simple solids and

composites was very encouraging. It appears that this multiphase approach has rapidly achieved

the initial goals. The results obtained this far have given very fruitful understanding of the subject

matter and the research findings have converged toward a truly mesomechanical investigation of
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the damage mechanics of composites. Since the research effort has involved many phases of

interdisciplinary studies, the available time did not permit the studies to be brought to a conclusion.

Individually published materials showing results are attached herewith. Research papers

presented as invited lectures and speeches are listed. Unfinished phases of research are also given

as references for possible future continuations of research in this field.

Reprints of published papers (please see Appendix):

IV.A* "NONCOnINUUM CRAZE-CRACK TRANSITION,' C.C. Hsiao. American Society
of Mechanical Engineers AD-Vol. 12, Damage Mechanics in Composites 25-37
(1987)

V.A "ANALYSIS OF CRACK-INDUCED-CRAZE IN POLYMERS," B.N. Sun, H.S. Hou,
and C.C. Hsiao. Engineering Fracture Mechanics 30(5), 595-607 (1988)

V.2 "ANALYZING POLYMER CRAZING AS QUASIFRACTURE," B.N. Sun and C.C.
Hsiao. Journal of Polymer Science B: Polymer Physics 26, 967-979 (1988)

V.3 "TIME-DEPENDENT FRACTURE STRENGTH OF SOLID BODIES," O.M. Ettouney
and C.C. Hsiao, Journal of Applied Physics 64(10, pt.1), 4884-4888 (1988)

V.4 "TEMPERATURE VARIATION DURING POLYMER FAILURE," C.C. Hsiao and Y.S.
Cheng, Europhysics Conference Abstracts, 2 th Europhysics Conference on
Macromolecular Physics and 3rd Lausanne Polymer Meeting on Physical
Mechanisms in Polymer Failure, Lausanne, Switzerland, Vol. 12J (1988)

V.5 "A NEW GENERALIZED DAMAGE CRITERION FOR POLYMERS," C.C. Hsiao,
Europhysics Conference Abstracts, 20th. Europhysics Conference on
Macromolecular Physics and 3r L Lausanne Polymer Meeting on Physical
Mechanisms in Polymer Failure, Lausanne, Switzerland, Vol. 12J (1988)

VI.1 "A NEW DAMAGE CRITERION FOR COMPOSITES," C.C. Hsiao, Y.S. Cheng, S.J.
You and Y.H. Yuan, Proceedings, 71h International Conference on Composite
materials (ICCM VII). International Publishers and Pergamon Press 3, 340 (1989)

VI.2 "KINETIC STRENGTH OF SOLIDS," C.C. Hsiao. Advances in Fracture Research.
Proceedings, 7Vh International Conference on Fracture (ICF 7), 2913-2919 (1989)

* Roman numerals rcfcr to the chapters in the original Final Technical Report.
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Invited lectures and spoken papers:

"UV-IRRADIATED POLYMERS," High Polymer Physics Meeting, American Physical Societ-, New
York, March 1987

"MODELNG QUASIFRACTURE BEHAVIOR IN VISCOELASTIC MEDIA," International Conference on

Fracture and Fracture Mechanics, Shanghai, April 1987

"CRAZING AND MESOMECHANICS" Beijing Materials Research Institute, Peking, May 1987

"COMPOSITES AND MESOMECHANICS," Lanzhou Railway Institute, Lanzhou, P.R. China, May
1987

"LASER AND CRAZING OF POLYMERS," Zhong Shan University, Guangzhou, P.R. China, May
1987

"NONCONTINUUM CRAZE-CRACK TRANSITION," The Winter Annual Meeting of the American
Society of Mechanical Engineers, Boston, December 1987

"STRENGTH AND DAMAGE OF POLYMERS," High Polymer Physics Meeting, American Physical

Society, March 1988

"DAMAGE MECHANICS," University of Hong Kong, Hong Kong, December 1988

"GENERAL DAMAGE CRITERIA FOR SOLIDS," International Conference on Fracture, Houston,
March 1989

"KINETIC STRENGTH OF SOLIDS," International Conference on Fracture, Houston, March 1989

"UNIFIED STRENGTH THEORY FOR ANISOTROPIC SOLIDS AND COMPOSITES," University of
Sydney, New South Wales, Australia, August 1989

"KINETIC STRENGTH OF SOLID BODIES," University of New South Wales, New South Wales,
Australia, August 1989

"STRENGTH AND DAMAGE OF SOLIDS," University of Newcastle, Newcastle, Australia, August
1989

"TIME-DEPENDENT FRACTURE STRENGTH OF SOLIDS," University of Melbourne, Melbourne,
Australia, August 1989

"CRAZING AND DAMAGE OF POLYMERS," Polymer and Composites Group, Victoria, Australia,
August 1989

"MICROSTRUCTURE AND MECHANICAL BEHAVIOR OF POLYMERIC SYSTEMS," Aeronautical
Research Laboratories, Melbourne, Australia, August 1989

"CRAZING AND MESOMECITANICS OF POLYMERS," University of Auckland, Auckland, New
Zealand, August 1989

"VISCOELASTIC BEHAVIOR OF POLYMERIC SYSTEMS," University of Canterbury, Christchurch,
Ntw Zealand, August 1989
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General content of some of the invited lectures and spoken papers:

"A NEW UNIFIED STRENGTH THEORY FOR ANISOTROPIC SOLIDS AND COMPOSITES": Using an

energy approach, a new unified strength theory is developed. The general time and temperature

dependent formulation is reducible to almost every existing theory put forward during the past

centuries for linear elastic material systems as individual special cases. It is found that the initiation

of yielding, the nucleation of crazing, the inception of fatigue cracking, and the propagation of

fracture under stress are a result of overcoming the distortional and/or dilatational energy.

"KINETIC STRENGTH OF SOLID BODIES": The kinetic strength of solid bodies has been studied

theoretically. Using the statistical absolute reaction rate theory, the nonlinear time-dependent

fracture strength can be satisfactorily analyzed. Results thus obtained fit very well with the

experimentally determined empirical linear relationship of the logarithm of time-to-break and the

fracture strength.

"NONCONTINUUM CRAZE-CRACK TRANSITION": An approach in studying the damage problem

of solids and composite material systems is reviewed. It appears highly desirable to investigate the

strength and failure behavior of stressed systems by connecting the macro- and micro-mechanics

analyses with microstructure of the material body. Starting from the nucleation of craze, the

process of transition to a mature crack in an infinite viscoelastic medium under stress is described

physically and analytically. Emphasis is placed on the nature of its time dependency. The

propagation of both the external and internal craze and crack is analyzed theoretically under a

simple state of tension.

"A GENERAL DAMAGE CRITERION FOR SOLID BODIES": A general damage criterion dealing with

yielding, crazing and fracturing of solids is introduced. Using a unique free volume concept,

damages under both quasi-static and dynamic loading conditions can be analyzed by considering

distortional and dilatational variations of the media.
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Unfinished research (Please refer to the original Report):

VI.3. "Analyses of Three-Dimensional Crazing in Polymers"

VIA. "Crazing as Damaging Behavior of iradiated Polymers"

VI.5. "Propagation of Crack-Induced-Crazing in Unidirectional Composites"

VII.I. "A New General Unified Strength Theory and Damage Criterion for Anisotropic
Solids and Composite Systems"

VII.2. "Significance of Critical Energy Theory for Damage of Anisotropic Solids and

Composite Systems"

VII.3. "Mechanical Strength and Damage of Polymers and Composites"

VII.4. "Computer Model for Amorphous Polystyrene"

List of Professional Personnel Involved in the Program:

C.C. Hsiao Principal Investigator
B.N. Sun Visiting Research Fellow
H.S. Hou Graduate Research Assistant
O.M. Ettouney Graduate Student
Y.S. Cheng Research Fellow
S.J. You Graduate Research Assistant
Y.H. Yuan Graduate Research Assistant
M.A. Morales Graduate Student
R.J. Lippert Graduate Student
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NON-CONTINUUM CRAZE-CRACK TRANSITION

C. C. Hsiao
Department of Aerospace Engineering and Mechanics

University of Minnesota
Minneapolis, Minnesota

ABSTRACT d I average diameter of fibril domain under craze

An approach studying the damage problem of envelope stress a1I

polymeric and composite material systems is reviewed. It
appears highly desirable to investigate the strength and d2  average diameter of fibril domain under craze
fracture behavior of stressed solid systems by combining envelope stress ("2
microstructural information with macro- mechanical
analysis. E(t) relaxation modulus

Starting from the initiation of crazes, the process of eij deviatoric strains
transition of a craze to crack in an infinite vis.. lastic
medium under stress is described. The actual physical
change of a craze into a crack is considered. Emphasis is f fraction of integrity of microstructural system
placed on the nature of its time dependency. The
enlargement of both craze and crack is analyzed under a G I(t-,c) time-dependent deviatoric relaxation modulus
simple state of tension. Suggestions on future research
upon temperature influence on crazing and craze-crack G2(t-C) time-dependent dilatational relaxation
interactions are also given. modulus

NOMENCLATURE c(t) rate of energy absorption of quadrantal craze

A,B material constants II , 12 constants

an integer constants (-0 < n <J 2( -'Q) time dependent bulk creep compliance

a(t) time-dependent length to high stress level C2  function

b(t) time-dependent crack length measured from K1, K2, K3, K4  differential or integral functions
center of symmetry Kb = O)bexp[- U/RT +D4'(t)] rate coefficient of broakage

c(t) time-dependent craze-crack length measured
from center of symmetry Kr = 0rexp[- U/RT - '"'f(t)] rate coefficient of reformation

Cb(t) time-dependent material creep compliance kf(t) rate of kinetic energy of craze fibril domains
function

n integers
Df (t) rate of energy dissipation of craze fibril

domains ni, nj unit vectors (I, j = 1,2 Of 3)

d(x,t) time- and position-dependent diameter of P(t) time-dependent load
craze fibril domains

25



dP infinitesimal elemental vector in reference z x3  third coordinate axis
frame XK (K = 1,2 or 3)

NO constant linear thermal coefficient of
dp infinitesimal elemental vector in current frame expansion

Xk (k= 1,201 3)
,6 positive parameters

q craze-crack system depth measured from
center of symmetry 8ij delta function

R universal gas constant [b, Fc material constants

S magnitude of deviatoric stress tensor orientation strain (- 1 <e <
S orientation strain tensor <oo

S deviatoric stress tensor Ekl strain tensor (k, I = 1,2 or 3)

s Laplace parameter e, 4 spherical coordinates

Sij deviatoric stresses (T) temperature function

S(t) rate of creation of craze fibril domain surface 2.(xt) time- and position-dependent draw ratio

T absolute temperature X I draw ratio beyond craze mid-section

t real time under stress C I

ta time when a(t) reaches position x .ml draw ratio of craze mid-section at
stress level C'I

tb time-to-break
?om2 draw ratio of craze mid-section at

tc craze initiation time stress level a2

tf craze-crack transition time v strain ratio

th time when b(t) reaches position x = tt(T), il = "')(T) shift times

tn nucleus incubation time n strain ratio

tx time for tip of craze-crack system to reach p density of the probability distribution
position x function of molecular orientation

t2  period of time fibril domains subjected to C applied stress
stress o"2 fo(T,t) constant temperature, time-dependent stress

U activation energy
oa, all principal stresses

Of (t) rate of strain energy absorption of craze fibril
domains C"1, a52  craze envelope stress levels

Vf volume fraction of craze fibril domains o'b tensile strength or fracture strength

ui, j displacement gradients oc craze envelope stress

w(x,t) craze opening displacement measured from oaij stress tensor (I, j = 1, 2 or 3)
center of symmetry

wo(xt) uz (xot), lxi < c (t)i. opening displacement time derivative of the isotropic stress tensor
measured from center of symmetry of amax maximum breaking stress
craze-crack system as defined

x M xI  coordinate along first coordinate ax:s o5min minimum breaking stress

XK coordinates in reference frame (K = 1, 2 or 3) V time or dummy parameter

Xk coordinates in current frame (k = 1, 2 or3) (D(x, t) stress function Pt spatial position x and time t
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4(T) temperature-time shift function macroscopic behavior. However, little attention has been
given to make this connection for many decades.

Taxial stress of an element One of the first analyses of the growth of crazing

dw solid angle was modeled as a continuum theory. Under a critical
tensile stress the linearly elastic material initiates crazes

(0b frequency of motion in breaking process which are rate insensitive.2 Several other analyses using
elasticity theory have also appeared more recently. 3.4

of motion in reforming process Similar to the analysis of a craze, many craze-related
r frequency omocrack problems have been investigated in viscoelastic

media.5-10  The intention of these studies was to take
PRELIMINARIES AND INTRODUCTION care of the energy dissipation which takes place in the

viscoelastic bodies not considered in the elastic theory.
For a long time, the analyses and prediction of the The time-dependent size and shape of cracks in linearly

mechanical strength behavior of engineering components viscoelastic isotropic continuum media have been
have been dependent mostly upon the application of analyzed. No microstructural nature is considered
continuum theories. This is true even in failure studies. however. Subsequently, approximate methods of
Elasticity, viscoelasticity, plasticity and linear elastic analysis have been presented and illustrated with a
fracture mechanics have dominated much of the analytical failure zone to obtain viscoelastic stresses and
investigation in solid mechanics. Failure criteria for displacements for elastic solutions. In the analysis, in
continuous media are considered to be independent with order to satisfy the developed governirg equations, the
respect to the integrity of the media. There is no failure zone in the elastic problem is modified to meet the
introduction of noncontinuum damage mechanics based traction boundary condition for the crack faces. In
upon microstructural behavior, and discrete interactions general, the connection between the mechanics of the
among discontinuous flaws are not predictable. problem and the noncontinuum microstructural nature is

not made in these investigations. Therefore, in the
Recently, however, a new research direction has following example a noncontinuum craze-crack transition

emerged to connect microscopic material behavior with is analyzed in light of the actual microstructural behavior
macroscopic structural mechanics. This is motivated and the mechanics of the problem. Equations governing
primarily by the strong desire to design the constitution the rupture of the fibril domain structure in the middle of
and configuration of the microstructure of material systems the craze envelope surfaces subject to a uniform tension
for obtaining required macromechanical properties and is considered for an isolated craze in an infinite
functions. In doing so, the integrity of the medi a is viscoelastic polymer sheet. Solutions yield both
included in failure criteria as well as in the constitutive information on the time dependent craze-crack transition
description. Micromechanisms and their interactions are and the displacement field around the craze-crack
taken into consideration in analyses aside from their time envelope profile describing the shape of the craze-crack
and temperature dependencies. region. Before this is done relevant noncontinuum

information is reviewed. Justifications and significance of
In failure investigations of solids and composite using the noncontinuum microstructure are described.

material systems, an important and challenging problem
in science and engineering has been the attempt to TIME DEPENDENT DEFORMATION AND
understand the strength and fracture behavior of stressed MECULPENDENT ATION
solid systems. Either continuum or noncontinuum method MOLECULAR ORIENTATION
of approach has been used to study the problem. The By incorporating microstructural information, the
continuum damage mechanics approach deals with the deformation of a material system may be analyzed under
phenomenological behavior of matrix cracking in fiber- stresses with the help of classical continuum theory. For
reinforced composites using quantities such as stress, some polymeric and composite systems, the deformation
strain, strain rate and temperature fields. The processes may be characterized to contain a molecular
noncontinuum approach deals with the individual micro- orientation mechanism with a microporosity sensitive to
damages such as minute crazes and cracks formed in the oienan mecan t r y i

matrix together with the matrix-fiber interfaces in
composites. Usual field quantities appropriate to the A realistic medium may be represented by a system
problem as well as unusual parameters are introduced to of microstructural elements which translate and rotate
effect a satisfactory solution. During such a course of under stressing. As shown in Figure 1, an elemental
investigation, both micro- and macro-structural information vector dP in the reference frame XK (K = 1 2, or 3)
is connected. This noncontinuum approach relies on the tor dP in the rrenc frame XK (k = 1, 2 or 3)
mode of damage and micromechanism. Aside from usual transforms to dp in the current frame Xk (k = 1,2 or 3) under
parameters, the ultimate results can depend upon other a time-dependent load P(t). Then the stress tensor Oij at
quantities such as a function of the fraction of integrity any point can be calculated under certain conditions.11

and/or a distibution function of molecular orientation, etc.
The following gives an example concerning a
noncontinuum micromechanics and craze-crack transition oij(Ekl,T,t) = Jp(e,+,Ekl) - f(e,+,c,T,t)
behavior.

Since the first publication of the pioneer work on (,+,e,T,t)ninj do (1)
crazing, 1 there was an inadvertent attempt to connect the
microstructure of the polymer medium with its
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Xl P(t) where the nonlinear deformational behavior of an
isotropic continuum medium must be modified by the
molecular orientation behavior to give a more realistic
combined constitutive description. This no doubt will1 affect the further response of the material system to

3 dstressing such as the initiation of crazes and the stability
d Xor instability of the system... / x2

ENERGY STATE, TEMPERATURE AND
0 ,X 3  0 CRAZE INITIATION

At a constant temperature, the stability of the
homogeneous deformation of a real material system

X2  xunder a simple uniform tension will eventually be upset at
some time when a specific energy state of the
microstructural system develops. The possible responses

Fig. 1 Molecular Entanglement and Orientation in Deformation may be described with the help of Figure 3. Under load,

where EkI is the strain tensor, TIME

T is the absolute temperature, 0 tn  tc tf

>- U - I I(D 0 IZ l-Z
is time, cc w,,io g.iS

Z D2 C] r- 'l
p is the density of the probability distribution LU 0i , 15

function of molecular orientation, w - - i0

0, # are spherical coordinates, u"-. . ------ -SHEARING

W N
f is the fraction of integrity of the

microstructional system, 0 ----- CRAZING

E is the orientation strain (- 1 < E < 00),

T, is the axial stress in an element, CRACKING

ni, nj are unit vectors, and Fig. 3 Lowest Free Energy State and Deformation Behavior

dw equals sined0d+ representing the solid angle the stability or instability of a material system may best be
from which statistical expectation may be determined by its free energy state. The material system
evaluated. readjusts its microstructural configuration to maintain its

lowest energy state until certain dominating

Since the stresses are functions of the orientation characteristics develop. After an incubation period is
it is likely that the constitutive behavior will be reached the material system may deform in shearstrain, at simple iostatin bhor in e primarily as a result of the rotational motion of certain

greatly affected. A simple illustration is shown in Figure 2 microstructures. Thus, a simple shearing band develops

cin the system. The material system may develop cracks
,6 as a result of a basically translational motion of the

8 microstructure including possibly the slipping and
.. rupturing of molecular bonds. This may be the simple

,_ ,- cracking of a material system. When a complex kinetic
z 6 -4 z situation occurs, both the rotational and translational
WO 5- / ) motion of the microstructure may take place. Crazing may
) • -3 u) develop as a result.4 / L

3o / i- For a two-dimensional craze, the isocnronousu) 3 ,,OR.NTATION/.BEHIOR 2 U) biaxial locus for craze initiation is given in Figure 4.
2 BEH"- Various criteria put forward to date are plotted for

_ iON comparison. Detailed information can be found in an
KON, , 6 1 10 o earlier reference. 12 Only the three-dimensional craze

'0 1 2 3 4 5 6 initiation criterion is given below in a series form with an

as an integer constant and n an integer.
SIMPLE STRAIN

Fig. 2 Simple Stress-Strain Constitutive Behavior
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Fig. 5 Stress, Temperature Effects on

Craze Initiation in Polymers

Stress in MWa
Biaxial locus for criteria of craze initiation in polymers by: MICROSTRUCTURE AND
1. Sternstein and Ongchin, MECHANICAL STRENGTH
2. Bowden and Oxborough,
3. New Criterion, Based upon the microstructural behavior and the
4. Argon, dynamic nature of molecular motion, the fraction of
5. Distortion strain energy, and integrity can be determined and utilized to establish a
6. 450 reference line fracture criterion for a material system. Subsequently the

connection between the microstructure and the
macromechanical strength can be made. This has been

Fig 4 Biaxial Locus for Criteria of Craze Initiation in Polymers done by means of the statistical theory of the absolute
reaction rate. Not only can the microstructural orientation

00 and the rupture of the microscopic structural units be
S(Xk, T, t) an[3Co(T) incorporated but their reformation can also be included in

the theory to obtain the time-dependent mechanical
n=.oo strength particularly for long times as illustrated in Figure

6.11,13-15 This tensile strength which is the fracture
tdzjn strength as a function of time has been well established

+ JJ 2(-Oii(Xk) n  (2) as shown. The tensile strength of a stressed solid
.oo material system for both short or long times tends to Lvel

off as shown. This means that the tensile strength
where S is the magnitude of the deviatoric stress tensor S becomes independent of time for very short times as well
which must overcome an intrinsic flow resistance, an are
constants, Oo is the constant linear thermal coefficient of
expansion, O(T) is the temperature function, J2( - 1q) t amax
is the bulk creep compliance function with =t4(T) X
and i" = "z4(T) as shift times defined by the "temperature-
time shift" principle for "thermorheologically simple" z
viscoelastic media and orii is the time de-ivative of the cc
isotropic stress tensor. This three-dimensional craze I-

U,initiation criterion is reducible to any of the other criteria by L
introducing appropriate values for an. In Figure 4 this new MODIFICATION DUE
criterion is represented by line 3 for the two-dimensional Z ETO INFLUENCE OFrersntdb REFORMATION PROCESSES
situation. This line reduces to each of the other curves W
from 1 through 5 when appropriate values of an and n are min ------------------ ----
introduced. "--

The influence of temperature motion on craze- LOGARITHM OF TIME-TO-BREAK In tb
initiation is also plotted in Figure 5 together with the
applied stress for the polystyrene material system
computed with ao = - 30 MN/m 2, a-1 = 0.3 MN/m 2 and Fig. 6 Microstructural Orientation and Reformation Effects on a
a, =o. Time-Dependent Mechanical Strength
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as for very long times. In between these times, the tensile '4(t)f(t) = o" (4)
strength is linearly proportional to the logarithm of time.
The temperature effect on the time-dependent mechanical
strength is given in Figure 7 to show that temperature is The functional relationship between ',' and t is
an important entity in this complex situation which must be 2
taken into consideration in the analysis for any material - r (
system. I Kr(1 -yKbW(5

Integration results in the time-to-break tb. With zero initial
w Ftime

tb= (6)

O--wd

.0 I tb [Kb+Kr(1.&P/O5)].(6

< Usually near fracture, Kr becomes unimportant, and
< the time-to-break may be approximated to

a.J d4'
Wtb = exp(U/RT) (7)
_ - f b'Pexp( ,8 ) '

OH-

W /
... ,. which can further be simplified to

LOGARITHM OF TIME-TO-BREAK In tb tb = Aexp(- B) (8)

Fig. 7 Temperature Effects on Time.Dependent with A and B as material constants.
Mechanical Strength Now let us consider the craze problem as shown in

Figure 8. Under a temperature and time dependent stress

Consider a material system composed of a large 'o(T,t) a three-dimensional craze may develop from the
number of randomly oriented similar molecular units or surface of a material body. In general the microstructure
elements which elongate and rotate in a stress field. In on the surface of the material body is composed of a
order to formulate a temperature- and time-dependent network of highly oriented fibril domains drawn out of the
failure criterion for such a material system, one can use envelope profile and separated by cavities. This
the quantity f(t), the time-dependent fraction of integrity, combined structure propagates along the surface of the
By calculating its time rate of change as follows: material body and penetrates into the body as indicated

respectively by c(T,t) and q(T,t) which are measured from
" Kr(1-f) - Kbf (3) the center of craze at the origin 0. The stress at any point

in the material is designated as (5(x 1,x2 ,x3,T,t) and the
where Kr = brexp[- U/RT - "'I'(t)] is the rate coefficient of craze envelope stress by OCc(X ix 2,x3,T,t) as shown.
reformation of the disconnected units and Kb =
wbexp[- U/RT + D'4(t)], the rate coefficient of breakage of X3 Oro(T,t)
the connected elements, b)r and (Ob are respectively the
frequencies of motion with respect to forming and
breaking processes of these units, U is the activation
energy, R is the universal gas constant, and W and D are G(Xl' x2' x3,T,t)
positive parameters which modify the true axial stress '(t) x2  x
in each elemental unit.

The failing of a material system is when I Yc(xj' x2' x3Tt)

approaches zero. In these formulations, Kr and Kb, are
both functions of temperature and the true stress in
individual elements. Once a stress cr is applied to the
material system, the energy state is altered and the time-
to-break tb can be calculated. 0 x,b(T~t)c(T,t)

The fracture strength, the statistical mean strength
in the vicinity of any point in the system, has been Fig. 8 Microstructure of a Three-Dimensional
analyzed and found to be proportional to the modulus of Craze-Crack System
individual elements, their length and the number of the
elements per unit volume. For an oriented system, the
fracture strength is a function of deformation as briefly A strong interest has been the determination of the
reviewed in the previous section. For a fully oriented displacement field since it is not easily measured. This
system11 under a ronstant applied stress (5, we may noncontinuum feature is easily seen in Figure 9, in which
write the randomly oriented microstructure is being drawn into

30



X3  exists a corresponding curve between tb and the applied

constant stress c'. When the applied stress varies witht '0 time, one can use the linear summation damage ruleI ' "which states that the same number of damages
accumulate during identical time intervals. Thus the time-

.- .- . .to-break is determinable by the equation: 16

L.: . . ---: ---. xi tb
tbdt

=J (9)
0

- By adopting this microstructural behavior, the
I topening displacement w(xt), the craze-crack system

Go length c(t) and the crack length b(t) in this craze-crack
transition problem can be calculated. To facilitate the

Fig. 9 Microstructural Formaton of a Two-Dimensional possibility of obtaining numerical solutions, a three-step
envelope stress distribution, as shown in Figure 10, is

Craze-Crack System introduced:

highly oriented fibril domains. A schematic diagram of a o o < x < b(t),
two-dimensional craze is given in Figure 10 to show the
pertinent quantities. For simplicity in sequel x3 is ac(x,t) = b(t)< x <a(t), (10)
replaced by z and x 1, by x. -(52  a(t) < x < c(t).

(1o It is hoped that this assumed step stress function will yield
good approximations in both the displacement field and
the lengths of the craze-crack system.1

With the three-step envelope stress function, the
c Xt) =(72  stress sustained by the fibril domains in the thin mid-

section where under certain conditions, failure has been
observed to occur more often, is

ao(X'I) = r a = Xm20.2 a(t) < x < c(t),
G ((11)

C 1 10Lac = XimI 0'  b(t) <x <a(t),

where 2Xm20"2 is the true stress born by the fibril domains
and .m2 is the draw ratio at the stress region a"2 .

0 b(t) a(t)c(t) ' Similarly >.mli 0
1 and XmI denote the correspondingquantities under region a",.

Fig, 10 An idealized TwoDimensional CrazeCrack SystemSrsDstiuinAs discussed earlier, under large stresses, the
with Assumed Step Envelope Stress Distrbution time-to-break tb can be obtained by first dropping Kr in (3)

to get (8), then introducing (11) in (9), one can obtain:
ANALYSIS OF CRAZE-CHACK TRANSITION

tb = Aexp(- BXm 0a1)
Considering this two-dimensional model, an

analysis can be made to obtain the time dependent - t2{exp[B(m2C2-),ml1)] - 1} (12)
displacement field and the craze-crack lengths by
incorporating the microstructural behavior into the where t2 is the period when the fibri! domains experience
macromechanics problem. the higher envelope stress a"2.

Starting from the highly oriented fibril domain
structure in the craze region, the required time-to-break tb To review briefly the time-dependent viscoelastic
is calculable based upon a perfectly oriented molecular problem, the opening displacement measured from the

center of symmetry of the craze-crack system in a
system under a constant stress a.'1,15 A general curve tb viscoelastic polymer sheet can be obtained by using the
vs. a" is given in Figure 6. The maximum applied stress is well known correspondence principle in linear
indicated by a max. With reformation processes viscoelasticity.
considered, the tensile strength of the material system
begins to deviate from the dotted curve. There exists a The field equations are:
minimum strength value (5min for which tb goes to infinity
asymptotically. 14 Therefore for a given medium there a"jji(x,z,t)=o, (13)
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1 x
2j(x,z,t) =-[ui,!(x,z,t) + uji(x,z,t)], (14) + 2f C( J) ln(x + d

0

t
S1j(t) = f G i(t-V)deli(z), (15) c

-00 +I .rc( ,t) lntd , (24)

t Xx

orij(t) = J G2(t-V)dEij(V) , (16) Cb(t) = L1 [(2(2G1 +G2)) / (s2G1 (G1 +2G2))] (25)
.00

with L- I designating the Laplace inversion and barred
where oij is the stress tensor, Eij, the strain tensor, ui,j, quantities being in Laplace domains.
the displacement gradients, G I and G2 are respectively
the deviatoric and dilatational relaxation moduli of the If the strain ratio V is constant, Cb(t) reduces to
original bulk medium, and the deviatoric stresses and
strains are respectively Cb(t) = L-1 [(2(1 - s 2V2)) / s 2E] , (26)

1 (where E is the relaxation modulus of the originalSi1(t) = aij(t) - 8ij~rkkt), (17) unoriented bulk polymer medium.

eij(t) = cij(t) --ISijEl,k(t), (18) Taking into consideration the thickness of theprimordial layer from which the fibril domain structure has

with i, j and k = x or z denoting dummy variables in two- been pulled out, the actual opening displacement of the
dimensional problems. The boundary conditions are s
described as:

(5zx (x "t) = 0, Ixi < c(t) (19) w(x,t) = Cb(0)(x,t) + f tb(t-')0(X,r)d'"
0

czz ,. ) = oc (x,t), IxI < c(t) (20) t .,(x C (27)
t1 2.(x,'U)

clzz(X,Z,t) = Cro(t) ,-[x

cOxx(X,z,t) = o, as (x2+z2 ) --> 00 (21) where tx is the time when the tip of the craze-crack system
first reaches the point x, X is the draw ratio. Since the

Cxz(X,Z,t) = o, midsection is relatively thin in a craze, the X function canhe taken as
The opening displacement wo(x,t) is defined by

Wo(X,t) = Uz (x,o,t) , xi < c (t). (22) X1(x,t) = [ (28)

To solve this viscoelastic problem. The Laplace LX1 2 , a(t) < x < c(t),
transform with respect to time is applied to all of the field
equations and the boundary conditions. The solution to where X I is the draw ratio outside the mid-section under
the transformed equation can be found by using the well the envelope stress a 1. The opening displacement
established complex variable conformal mapping method finally is obtained as
or the complex variable stress function method for elastic
medium. 2Xm2mdu.w(x,t) = . Cb(O)(x,t)

The time dependent solution of the problem is =m2
1

obtained by Laplace inversion. This solution is valid only
if the boundary conditions are independent of time, i.e., t
c(t), b(t) and Cc(X,t) remain unchanged. These + j (b(t-)D(x,v)dr], for a(t) < x<c(t), (29)
restrictions can be removed by using a sequence of 0
loading and unloading steps,17 which yields, Itw(x,t) = .1[Cb(O)O(x~t) + 0f( b(t- "V)O¢(x,'r')dv ]

t O

Wo(X,t) = Cb(O)D(x,t) + J 6b(t-V)(xZ-)dv (23)
+01 " ." + )w(Xta), for b(t) <x <a(t), (30)

where
C t

D(x,t) = C'o/4c-xq - fc( ,t) ln(c+ 4c- 2  )d w(x,t) = Cb(o)t(Dx,t) + f Cb(t-")-D(x,v')dr
0 0
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1 ) 1stress o'c(x,t) must balance the applied external load
+ ( - :w(x,ta) + X th) corresponding to an applied simple tension 450 to ensure

that the stress field within the uncrazed bulk material is
for o < x < b(t), (31) finite everywhere for all times t. In mathematical form this

means:
where ta and th respectively denote the times when a(t)
and b(t) arrive at the point x. c

Sc(x,) dx =E(50  (36)

CRAZE AND CRACK LENGTHS o

With regard to the length of the craze-crack system When the three-step envelope stress function (10) is

and that of the crack, suppose that the fibril domain substituted in, it yields:

nucleation rate at the craze tips is proportional to the
at) ( 2- O a in-1  c(t) (37)

growth velocity (t) of the system. Then the energy rate a(t) = c(t) sin(E si2-n (37) ' t
required for the growth of craze tip is 'c.(t) and that for

the crack tip is rb 6(t), where rc and rb are material The other equation is from the consideration of the
constants. Based upon the assumption that the rate of nature of the failure of the craze material, which obviously
energy required for drawing the fibrils out of the craze provides a relation between the craze-crack system and
surface envelope is proportional to the rate of creation of crack lengths,
the new fibril domain surface S (t), using the
proportionality constant rs, the following local energy b(t) = c (t - tb). (38)
balance equation can be written as:

It should be noted that the time-to-break tb is spatially
tlc(t) = "cC(t) + Pb6(t) + FsS(t) dependent and it is evident that

+ ch(t) + bi(t) + K(t) (32) b(t) = c [t - tb(b(t))]. (39)

where Hc(t) is the energy absorption rate of the quadrantal RESULTS AND DISCUSSION
portion of the craze system, 01(t) is the strain energy
absorption rate of fibril domains, Dr(t) is the energy Generally speaking, c(t) and b(t) can be obtained
dissipation rate by the craze fibrils, and RI(t) is the rate of as functions of time by solving Equations (35), (37) and
kinetic energy. due to the motion of the craze fibril (39). But it is still rather complicated because of the

domains. Uf, Df and Kf are negligible when compared unusual form of Equation (39).

with the other rate quantities in the quasi-static conditions. If the craze-crack system and the crack propagate
With this simplification and the terms expressed by steadily without drastically change in their propagating
elementary parameters defined earlier, the following speeds, Equation (39) can be simplified to the following
equations can be established. Since the stress each fibril form

domain sustains is X o'c which equals arc/V1 if V1 is the

volume fraction: b(t) = c(t) - tbC(t), (40)

C 8w(x t) where tb has been evaluated and displayed as Equation

Hc(t) = f Oc(x,t) jT. dx, (33) (12), i.e.,
0

tb = Aexp(-B)Lmir I)
__V___t 8w(x t)

(t) =f 4 dLxLt)-w-xT- dx, (34) -t 2{ exp[B(%2mo 2 - X .I)]- 1)
d~~)at

0 Usually, the distance c(t) - a(t) is relatively small since

where d(x,t) is the time and position dependent diameter it is associated with the region of stress concentration.
of craze fibril domains. Now using these, Equation (32) Thus t2 can be expressed as

becomes an implicit nonlinear differential equation of the
craze-crack system length c(t) and the crack length b(t) as t2 = (c - a)/ . (41)

follows: Using the envelope stress profile proposed earlier,
c Equation (24) turns out to be

S(ac- 4- -dx= rcc+ 'bb. (35)d ( = 1.InIa2-o'x2x In
0 1 I(C%2-aI)X I a4c62-x-2 + 4Y-a

This implicit differential equation has three
unknown quantities, a(t), b(t) and c(t) to be determined. In bNc 2 -7 - xq1c2b
order to solve this equation, some subsidiary equations + alx In bc + xJcb
are necessary. One of them is that17 the craze envelope b -FP'x- + x'
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- Lo626 )g tNe r- .rC-=-s

C
- ,jc2* = .b Z

- ~bn % - -R-b " (42)

a
Since the product of the average fibril domain damter = a (
and the envelope stress has been found to be constant. = (
that is. didI = d2C = constant, thus let

d,. b(t)<x<a(t) and subs u.ing them in:o (44). we have
d{x. t) = (43)Q d2 , at)<x x< c).( Kia()+Kzb{t+K 364f+K,=o. (49)

and noting that Vf = l/ and Equation j32) then, bl- where
substitution, Equation (35) becomes

8 ¢'ac ,aob,~
((-4rs c aw K =Cb(o)[ (1Q, 1)0(a.t)+ -a + 2, (50)

(Cr- s ) f- j- dx O ~
m2 a K2  0 + aOba D

+(d-4rs~ a Bdx -c= ~+rb6. (44)+ la f j~~)+- b . ()
K3 = Cb(O)( lZ-b--+ 11 [1b8t )-r. (52)

4F- ac

Since Of(c, t) = o, obviously.
and

f W dx 'Xm2 {Cb Ao;4(a~t)K ()1
Sat Xm2-1 " K4 = Cb(O)(2ac ' l 0 ba)

a

t t
c + 12 f Cb(tl-)acd-" + I! f -b0t-1)0bad r, (53)

dt0 0
a

C( with iI and 12 being constants, and

+ t J'b(O) c!(x,d)dx 4rs=(2d

aC t2 d 2 i m2l+ f" f" Ct-VA'))(x,,r)drdx}. (45) 12 =(Cd2"dXn ) m2-1" (55)

a o

The explicit forms of those quantities in expressions
a aw x A-of K's are given in the Appendix.
Ja-t-d = ~--{Cb(O)[fb(b,t) - a¢(a,t)

The calculations should be divided into two st6ps.
d a First, the x.ginal craze propagates during the absence of

+d J4(xt)dx] a crack. This can be calculated by simply setting b(t) = o
bf in Equations (38) and (44), which degenerates into the

case discussed earlier.1 7 After certain time elapses, the
a fibril domains first poduced in the mid-section of the craze

breaks down and crack commences. Second, the crack
+ bJ C(())O)(xt)dx comes into play and the Equations (38), (41), (42) and

b (44) must be used to calculate simultaneously the
at propagations for both the craze-crack system and the

a t crack.
+f fJ Cb(t-'C)4(x.,)d'dx1. (46)

o Now to illustrate the changes of a craze-crack system
in polystyrene, a Voigt solid is taken as an example. The
material properties are taken to be18-23
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= ("9 + 5.0911 - exp,-tj] + 2+ Mi - exov-tI1cO) complex phenomena are yet to be considered in thefu.ture aaye.
+ 6.59 (1 - exp-t 1102)] + 12.72(1 - exp(-t 1104)]a

+ 0.71(1- exp{-t/10S)J + 14.71 [1 - exp(-t10 6)] Pm

+1.0211-exp(-tl10 7 )} - 10-s m2 /MN. 4.0
Z
LU

A = exp(11) secs. d = 20 nm. 32
Lu 32-0

B = 0.05 m2iLc, d2 
= 0 nm "  <

X1= 2.0. rs =0.125.1lm 2 . smes

Xi=2.5. AI0 = 0.085 J /m 2 .1.94se.

2=4, Fb=300JIm 2 . 13- 0.8 TIP

v for polystyrene is 0.395, a constant, and the applied
stress is considered to be 36 MN / m2 , that is: ao = 36 0 20 40 60 80 100 pm
MN I M2 . In addition, based upon some experimental
evidence, (11 and a 2 are assumed to be respectively CRAZE-CRACK LENGTH
40 MN I m 2 and 80 MN / m2 for numerical calculations.

The normalized length of the craze-crack system F 12 Noi-ear Crack and Craze-Crack Length Behavior
and that of the crack are shown in Figure 11. where the

60 90

50- 75
Z
W

40- 60
Z N
W <-J n-

0 30- O0 45W30

< 20 -' 30
0 C'
Z 10 0 15

150 300 450 600 750 900 0 2 4 6 8 10 12

TIME IN SECONDS TIME IN 102 SECONDS

Fig. 11 Time-Dependent Crack and Craze-Crack Fig. 13 Nonlinear Behavior of Normalized Craze Length
System Lengths

normalization is made with respect to the initial length of REMARKS AND SUGGESTIONS
the craze-crack system. The opening displacements at
different times are plotted in Figure 12. From the review of the connection between

microstructure and macromechanics as well as the
For ease of visua!:zation, the normalized craze analysis of the craze-crack transition it is seen that, in

length as a function of time is also given in Figure 13. The general, the complete frz -re processes tale time to
non-linear nature of the craze behavior is self-evident, develop and mature. Depending upon the degree of

energy absorption by the microstructure of a medium,As can be seen from the calculations, both the shear flow, craze or crack may occur. If craze occurs first,
veluc es of the craze-crack system and that of the crack then the transition from craze to crack is likely to be highly
become larger and larger. Thus further calculation is not nonlinear. Results are important in studying the tim3-
accurate since the unsteady propagation gives rise to dependent strength and fracture behavior of poiymeric
irregular growth, branching and/or bifurcation. These and compositR systems. By averaging alt the microscopic
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belavior specific in each rnoecu ar orientation, a fracture a
criterlon may be ertabished to analyze the time and + (Oz-o r  - a-4aIn)
deformion dependent breaking strength of an oriented
polymer seofd. Utilizing spherical functions and the
double Fourier series expansion, the statistical - .)- b
microscopic behavior in the vicinity of a point in an "(;2 2)(a arl2" + b +b E
oriented medium may be converted into several
symmetric tensorial terms. Then the time-to-break can be -%c-b2 ?ay
synthesized and incorporated in calculating the -b ln-:b i1 (A3)
macroscopic behavior. By taking into account the
individual values of the cirectional fract'on of integrity, the
fracture time as well as the most probable direction of a 1 . . b c 2-2b 2

fracture init;ation within any volume element in the -- [cz(sin-- ----
medium can be prediced. However, results thus obtained 8b
governs only the localized behavior of a material. For a -%Gc-_a 2  b
layered composite system, the interactions among craze- - a a - -b- 4bln-)
crack regions must also be determined. Perhaps a joint

distribution function of the characteristic parameters can . a 4 c= - b4c2-a 2

be introduced to obtain the final analytical result of the - a-c 2 -b + b4c 2-a2
strength and fracture of a composite system. In addition,
since the material systems are viscoelastic, 4 - a
measurements of temperature fields in and around a -aln )]c-b2 - 4 = (A4)
craze-crack system are extremely important in connecting
the properties of the microstructure and the analysis of the
energy dissipation of the macromechanical behavior. a'ba 1 a b

- = =1f(c 2-C'1) 4 2 a '14TT

APPENDIX
a lb

(sin-= - sin- 'Z)c
Substituting Equation (42) into (47) and (48), yields

a a 2  b2  ab
J ~dx =-f Pj c 2 -Cr1) aNC-a7 +(5- c)E a1 c cN-a~4 b

b
+ i 1b4c2- J(sin-' "- sin-t)[( 2-" 1)b2 

- aa 2 (a"2-20 1)c21}, (M)

+1 (2(I-G2) (a
2 + b2) in a~fc 2-b2 - b4cT-aT

aNc 2 b2  + b4c 2-a2  a(Dac 1 c2-2a 2  aa b 6- ClI [ r .- r )( Cos- , + a + 4a m -)

_- '-'' qJ 2 a c-a
(26o'-or2)ab In Nc--- 4_ -

(2cr + _- coa-aT a4PT 2 - b4-c -a

+ 2(cr-cr2)a2 In+ 2a 1 b2 Inb}, (A1)
- iJc-T

ac 0 6 1 C2-2b
2  Ia

- ( cos-la 4c=-

1 (a2+b2 ) In " -2 + b 4 c-a -. - 2 -b -b q/c-
+ ~aqJ-b 2  

- bqJc-a"
~bI11.a4c2_-b2 + b._Ta2

" a-,z , -+-, -
+ 2 abc= n,.+. 2" '6 + 4--a (A7)

+ 2( 2 .- )3 2 Inn}. (A2)
" C 3 ac 1 a b a

Differentiating (Al) and (A2) yields ac - ,n {[("cYO) 4c2 2 c c

80Igba = 1 a" . b c2-2a 2  a2  aoc 2 -a
aa -(C 2 -50(Sin -sin c)-c2 2 - (- 2  - c "T }" (AB)
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Abstract-In this paper, the viscoelastic boundary element method is used to estimate the
opening displacement and the envelope stress on the surface of an isolated crack-induced-craze
system. To predict the propagation history of both the crack and the craze in a polymer sheet,
the material properties of the glassy polymers are represented by a generalized linear viscoelastic
model. In the calculation, the energy absorption criterion is utilized to determine the initial
breaking time and the propagation rate. A sequence of numerical calculations of crack-induced-
craze propagation by means of the boundary element method are carried out. Results are
compared with the theoretical micromechanics predictions. Good agreements are obtained. This
investigation illustrates that the three-step envelope stress profile is reasonably adequate for use
in analysing polymer quasifracture problems. The stress concentration phenomenon, neglected
on the Dugdale model, is taken into consideration in the present work.

INTRODUCTION

THE QUASIFRACTURE and fracture behaviors of a crack-induced-craze system in glassy
polymers have been investigated extensively by many researchers both theoretically and
experimentally up to now[I-8]. Generally speaking, the crack-induced-craze model in micro-
mechanics accentuates the opening displacement, the envelope stress distribution around the
interfaces of a craze, and especially the propagation processes of the craze and the crack. For
some of the studies[5-7] the opening displacement profile has been determined experimentally
first, from which the envelope stress distribution was evaluated by some analytical methods such
as Fourier transform, whereas others obtain the envelope stresses based upon experimental
observations first, then the opening displacement profile analytically. Some scientists[6, 9]
considered that the yield property beyond the crack tip would determine the cracking and
crazing properties, thus the Dugdale model was employed. Although the Dugdale model is
thought to be able to predict the overall effect, it is questionable whether it is good enough in
representing the true behavior of cracking and crazing properties in glassy polymers. Based on a
number of experimental observations and theoretical analyses[6, 7], Hsiao et al. proposed the
stress step-distribution model some years ago[2], which seems more reasonable and- accurate in
representing the properties of the region behind the craze tips.

Until now quite a lot of investigations on this subject matter have been reported, among
which most were done by an experimental or analytical method. Papers using numerical methods
for predicting the cracking and crazing behaviors have also appeared. Bevan[10, 11] studied the
craze micromechanics by using linear boundary element method, in which the craze at crack tip
was modeled by linear springs with constant stiffness. However, the linear elasticity and constant
stiffness are not accurate enough to represent the properties of crack-induced-craze system in
glassy polymers since it is well known that glassy polymers behave viscoelastically rather than
elastically, and the drawing process is the dominant mechanism in polymer crazing. Therefore,
some scientists considered the time dependent crack-craze propagation, such as Chern and
Hsiao[2], McCartney[12] and Schapery[13] who appplied the linear viscoelastic model for
studying the craze or crack propagation, and Schapery[14], also studied the crack growth in
nonhomogeneous viscoelastic media for opening crack model. Some others[15, 16] investigated
the nonlinear quasifracture properties using finite element method, and the time-dependent
behavior of a craze using a viscoelastic boundary element method. In these studies, the polymer
material around the crack or craze has been regarded as viscoelastic represented by a
generalized Kelvin model. The relationship between the tractions and the displacement of fibril
domains in a craze was represented by a convolution integral: Using the correspondence
principle in linear viscoelasticity aad the boundary element method, the time-dependent opening
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displacement field and the stress distribution along the craze surface envelope have been
calculated numerically.

In this article, the viscoelastic boundary element method is utilized to study the propagation
of a crack-induced-craze system. Meanwhile, the opening displacement profile and the envelope
stresses on the craze interface surface have been obtained for different propagation steps. For
comparison, the theoretical analysis using an energy balance method was formulated, with a
three-step stress distribution for calculating the propagation of the crack-induced-craze system.
The opening displacement profile of the crack-craze contour was also evaluated. Because of the
change of the boundary conditions during the propagation of both the craze and the crack.
Salamon's[17] superposition principle of a step-like propagation has been applied to this
problem, and a numerical calculation sequence of the boundary element method has been
derived. Comparing the numerical and analytical results, good agreement has been obtained. It
appears that the step distribution of the envelope stress used in the analysis is a good
approximation suitable in dealing with glassy polymers. The viscoelastic boundary element
method has the advantage of ease in preliminary preparation, economical in computing time.
and the required accuracy for studying the.crack-induced-craze system propagation problem
may be achieved without much difficulty.

THEORETICAL CONSIDERATIONS

Craze is filled with load bearing highly oriented fibril domains and cavitated networks
formed by continuous flowing of the bulk polymer during the crazing process. Based upon some
experimental observations[18, 19] and the craze model developed earlier[2], referring to a
central fixed (xj, x3) coordinate system, an idealized symmetric crack-induced-craze system in a
constant simple stress field a-o is shown in Fig. 1. Figure 2 shows c(t) as the half-length of the
crack-craze system and a(t), the half-length of the crack only at time t. The stresses acting on
the interfaces are called the envelope stresses with notation o-(xi, t) as a function of position and
time. The half distance w(xi, t) between two craze or crack interfaces is known as the half
opening displacement.

The half opening displacemenL of the crack-induced-craze system in a viscoelastic polymeric
sheet can be obtained by using the correspondence principle in linear viscoelasticity theory[20].
The field equations and the constitutive relations are:

o'1 .(x1, x3, t) = 0, (1)

eCi(x,, x3, 1) =1[ .i(xI, x3, t) + U1,1(x, x3, t)], (2)

130
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Fig. I. Schematic fibrillar structure of a two-dimensional crack-induced craze system.
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X3  110

at c(t)

Fig. 2. A two-dimensional quadrantal crack-induced-craze system.

eqi(t) J (t - r) di , (3)

Ckk(t) = J2(t - r) Ookk(7) d-, (4)

where o-i is the stris the strain tensor, Ui,, the displacement gradients, and J, and J2
are respectively the shear and isotropic creep compliance functions of the original bulk medium.

S1 (t) = o.,j(t) - ,,o-kk( t), (5)
3

e,1(t) = ECi(t) -S 8,'ekk(t), (6)

with i, j and k = 1, 3 denoting dummy variables. The boundary conditions are,

o-31(x,, 0, t) = 0, lxIi < c(t), (7)

o-33(x, 0, t) = ,,-(x,, t), IxIi < c(t), (8)

O33(XI, X3 , t) = 0O(t) (9)

o 11(x, 3, t) = 0 as (x1 +3x)*o. (10)
O-13 (Xl, X3 , ) = J (11)

The opening displacement wo(xi, t) is defined as

Wo(X 1 , t) = U3(x,, 0, t), IxII < c(t). (12)

To solve this viscoelastic problem, the Laplace transform of the field equations and the
boundary conditions is applied to reduce the time dependency. Then the solution to the
transformed equations can be found by using Muskhelishvili's complex variable conformal
mapping method[21] or Westergaard's complex variable stress function method[22] for an
elastic medium when c(t), a(t) and o-,(x, t) remain unchanged with respect to time[23].

The time dependent solution of the original problem is obtained by a Laplace inversion.
This solution is valid only if the boundary conditions are independent of time as mentioned
earlier. These shortcomings can be surmounted by using a superposition method, i.e. a sequence
of loading and unloading steps[17, 24], which yields,

wo(xI, t) = Cb(O)F(xI, t) + Cib(t - T)"4(xi, r)dr, (13)
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where

~x0= - o-,(, t) In (c+, n2) d q

o'(q, t) ln(x + xf-, .2) d.0+- - J o(r. t) In rid o, (14)
I 0  

or(

and with an assumed constant strain ratio v, L - being the Laplace inversion:

Cb(t) L - 2(1-sv) (15)s2E(s),

where E is the relaxation modulus of the bulk polymer and E(s) represents the same in the
Laplace domain s.

Taking into consideration the thickness of the primordial layer from which the fibril
domain structure has been pulled out. the actual opening displacement of the system
becomes[25, 26]:

w(x,, t) = Cb(0 (XI, t) + Cb(t - ')D(x1, ") dr+ V(xl, T) dr, (16)
I,, A (x I ,)

where tx, is the time when the crack-craze-system tip first reaches the point x1 , and A is the draw
ratio. The values of A are found to be virtually unchanged along the periphery of the craze[8,
27-31], with only a slight increase in the central region and near the craze tip. Therefore, A can
be considered as a constant and the opening displacement reduces to:

w(x, )= -- i [C'b(O)(x,, t)+ f Cb(t-')rD(x,, T)d'],

for a(t) <s x, :- c(t), (17)

w(x, 1)= Cb(O)ID(Xb t)+ Cb(t- r)D(x1, T)dT+ W(xT, ta),

for 0: x, - a(t), (18)

where t,, denotes the I ne when the crack tip arrives at the point x, = a.
The crack and craLe lengths can be obtained by considering the energy balance. The energy

absorbed by the craze [32] is spent to nucleate fibril domains near the craze tips, to pull fibrils out
of the craze envelope surface and to break the fibril boundles[4]. With the supposition that the
fibril nucleation rate at the craze tips is proportional to the system growth velocity e(t)[33] the
energy rate necessary for craze tip growth is Fre(t). Similarly, the energy rate required for the
crack tip growth is r,,a(t), where r, and r,, are material constants. Based upon the assumption
that the energy rate required for drawing fibrils out of the craze envelope surface is proportional
to the new fibril domain surface creation rate S(t), and use the proportionality constant rs, we have
the following local energy rate balance equation:

/'.At) = r +(t) +Fa +i(t)+ (t) (19)

where -h,(t) is the -:%ccgy absorption rate of the quadrantal system. Here the strain energy,
energy dissipation and kinetic energy have been neglected since during steady state they are
negligible )mpared with the other rate quantities. With this simplification and the terms defined
earlier, it tollows that[2, 3, 32-34]

-/(t) = o o'C(xI, t) Ow(x 1 , 0t d x t '  (20)
0dat
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f' VA(xI, t) O w(xl, t) dxi. (21)
S d(xI, t) at

where Vf is the volume fraction of the crazed polymer and d is the diameter of the individual
fiber domains.

Substituting into (19) results in

o'c - 4 V w(x1 , t) dx, = Fce + F,. (22)

BOUNDARY ELEMENT CALCULATION

The viscoelastic boundary element method is applied to a polymer sheet with an isolated
crack-induced-craze centrally located. The sheet is subjected to a unit step tension stress
o'oH(t), where H(t) is the unit step function of time t. The material properties of the bulk
polymer around the crack-induced-craze system is considered to be linearly viscoelastic. The
constitutive equation can be expressed by convolution integrals eqs (3) and (4). For a linear
viscoelastic polymer, a very convenient expression for the creep compliance J(t) is obtainable by
using a generalized Kelvin model [2, 35, 36] composed of a series of Voigt elements as described
below:

n

J(t) = Jo+ J(1 -e-/',), (23)
i-I

where Jo and J. are constants and 'i, retardation times. Since some experimental results [32] have
shown that the strain ratio v(t) remains virtually unchanged for long creep times, the viscoelastic
relaxation modulus E(t) can be shown to be of the following form:

E(t)= L-'[ [ (] =L-[s(Jo+ J 1 -S,)] (24)

where the bar indicates Laplace transform and L', Laplace inversion. Taking into con-
sideration of the fibril structure of the craze beyond the crack tip, the two opposite interfaces of
the craze region are connected by the fibrillar structure as shown in Fig. 2, which is formed by a
fibrillation process due to the advances of the crack. These connections are capable of
transmitting load and can sustain large deformations. The stress state of an individual fibril
domain is considered as an uniaxial tension. The relationship between the traction T3(x1, t) and
the opening displacement U3(xi, t) of the crack-induced-craze system can be shown as follows:

rT(XI t)=- g(xl, t - T) aU3(x,, T)dT

= K(xi, O) U3(x,, t) + Ko (x1, t - T) U3(xz, ) dr, (25)

on xl < c and x3 = 0,

where K(xi, t) is the stiffness per unit area on the craze surface and K(x,, 0), the initial value of
K(xi, t) at x1. Using the molecular orientation theory[16], the stiffness turns out to be:

K(xi, t) = L' [K(xi,,OJo (26)

It should be noted that the drawing process is the main mechanism of craze thickening. Thus

ZIN 30:5-D
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K(xi, t) here is not stiffness in the usual sense. It must take the drawing process into
consideration.

The traction T3(xi, t) acting along the craze envelope becomes

T3(x1, t) = - L-'[sK(x,, s) U3(x, s)]. (27)

Because of the symmetry of the problem, only a quarter of the uniform sheet of width B.
length L is considered in the boundary element calculation. The boundary conditions around the
quadrantal sheet with isolated crack-induced-craze system are:

T3(xi, t) =0, 0:- x, a(t), xj = 0, (28)
T1 (xi, t) =0,

T3(xI, t) = -  g(xj, t- ") 0 U3(xI, T) d'r,

T(xi, t) = O, aT a(t) :- x, :- C(t), X3 = 0, (29)

U3(X1,1 , c(t) < x, -5 B, X3 = 0, (30)TI(xi, t) = 0,

TI(x3, t) = 0,

T(xt, 0 -x, - B, x3  L, (32)T3(xj, t) = o'oH(i),

Tx3, t) =O x0,0-x 3 -L. (33)

As the crack-craze-system propagates, new crack and craze surfaces are created. The associated
energy release rate is

/D(t) = ra(t) + Fce(t), (34)

where [,, and r, represent, respectively, the coefficients of fracture work for crack and
crack-induced-craze, and d(t) and 6(t) are, respectively, the crack and the system propagation
rates. The energy absorption rate for the crack-induced-craze system is expressed by eq. (19).
The energy absorption criterion claims that

D(t) =

i.e. Fai(t)+ F,(t) = o' (xi, t) a 3(x ' t) dxl. (35)

In addition, sometimes the constant crack opening displacement criterion can be used as the
propagation criterion of the crack-induced-craze system. However, these two criteria are the
same if the deformation associated with the crack tip is fixed with respect to time, a situation
which occurs when the applied stress is constant. Thus both the crack and the craze propagate at
the same velocity[37]. In this case, the opening displacement of the crack-induced-craze system
is of the form:

U3(x,, t) = f[xi - c(t)], (36)

which means that the shape of the crack and that of the craze are conserved during the
propagation, i.e.
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dU 3 - d(t)f'[xl - c(t)]. (37)

If the envelope stress is considered as the following step functional distribution:

Icalro a(t)<- x, :-b(t), (8

{a20O b(t) < x, <- c(t),

where c(t)-b(t) is a small quantity representing the stress growth at the craze tip, then in the
analysis, the energy absorption criterion formula (35) will be:

alo U3 dx, + J a20o dxl, (39)

Fa + I. = o-o(a, U3(a, t) - (at - a2) U-4(b, t)], (40)

where U3(a, t) = U3(xi, t)Ix,., and U3(b, t) = -U3(x,, t)Ix,-b, are the opening displacements of
the crack tip and the craze tip, respectively. Noting that U3(b, t) < U3(a, t), eq. (40) becomes:

[,a + Fc
U3(a, t) = ,(41)

which is the constant crack opening displacement criterion in linear fracture mechanics.
Therefore, in the theoretical and numerical analyses of the propagation of crack-induced-craze
system, either the energy absorption criterion or the crack opening displacement criterion may
be applied to determine the propagation rates at different times.

The viscoelastic boundary element method for analysing crack-induced-craze system in
polymers has been described in detail in an earlier study[16]. Using the correspondence
principle in linear viscoelasticity theory, a series of transformed simultaneous algebraic
equations can be solved. The displacement Uk and traction Tk on the boundary involving the
crack-craze surface can be obtained in the Laplace domain. Based upon Schapery's collocation
numerical method[38] for Laplace inversion, the components of the stress and displacement
fields at any point can be represented for the fixed time t by the series:

M

F(t)= Co+Ct+ Z Arn , (42)

with Co, C,, A, and b, being constants. Taking the Laplace transformation of eq. (42) and
multiplying by the transform parameter s yield:

CM Am

sF(s) = Co + C Z (43)
S ,-1 I+ bm

S

where F(s) designates the Laplace transform of a time function F(t). When time t goes to infinity
the function F(t) should remain finite. Therefore the constant cl has to be chosen as zero. After a
sequence of Sk (k = 1, 2 .... M + 1) is selected, the constants CO and Am can be calculated by the
viscoelastic boundary element method, and the opening displacement 3j and the envelope
stress T3, on the jth boundary element of crack-craze system surface for time t become

M
U1 = Doi + F D, e-"', (44)

m1

M
T3j = Goj + 2 G,,, 0-'..Z (45)

ra-!
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Substituting the above two equations into the energy absorption criterion (35) for fracture, the
breaking or the initial propagation time t of the crack-craze system for discreted boundary
elements will be of the form:

b = N IT(ra + r,,) (46)tb---- ) dU3i (6

z T3j-4 f ) Ii,

where 1T is the length of the boundary element on the crack tip and Ij the jth element length on
the crack-craze system, U3j and T3j are respectively the displacement and the envelope stress on
jth boundary element of the crack-craze system surface before propagation. After the
commencement of the propagation of the crack-craze system, both the boundary shape and the
boundary conditions will change as a function of time. Therefore, the numerical solutions U3j
and Tj are not valid for propagating crack-craze system because the linear viscoelastic
correspondence principle can only be applied to the problem with time independent boundary
conditions. These restrictions can be removed by a generalized method of superposition
principle, which uses stepwise development boundary conditions formulized by Salamon[17].
This method is utilized here to deal with the changing boundary conditions. A time dependent
function F(t) after n steps in the time interval t, < € < t,+, may be expressed as follows:

N-I

F(t) = Z {F[ri, (t- ti)] - F[ri, (t- ti+,)]} + Fn[r., (t- t,)], (47)

where ri is some critical linear dimension and F the solution, i.e. the opening displacement or the
traction, which can be solved by the linear viscoelastic correspondence principle in the ith time
step, t. and t,,, are the nth and the (n + 1)th time steps. Similarly, the envelope traction T31 and
the displacement U3j on jth element of the crack-craze system after the nth element propagates
can be written as:

M
US = DV))(e-"uI,- 1) e-2('-'34-*'" -o)

i-,I

M

+ D1 (e - ,'t2 - 1) e - 93
+

f
+ ' ' "

d ......
I,,1

M

+ G On - 'D (e-"'3- - 1) e-t-
i,-I

M

+ yD , e -0'n + Q (48)
iul

M
T } = Z O J' (e- 0 , i - 1) e - 0a('24- '34 '  '+4-'

i-l

+ Gi'- (e-O,,o- - 1) e- ,4-a +
i-I

+ E G I e-1 '" + G } (49)

According to the principle, the calculation procedures are expounded as follows. The first step is
to calculate the coefficients Dij and G1 on the jth element using the viscoelastic boundary
element method, in which the length of crack is al and that of the crack-craze system c,. Then
substituting Dj and Gij (i = 0, 1,... M) into eq. (35) the tfansition or the initial breaking time
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can be obtained. After that, both crack and craze propagate a distance of one element length for
the steady state propagation case. Correspondingly the boundary conditions on the craze surface
will shift forward by a length of one element. The second step is the calculation of Diq and Gij
(i = 0, 1 .... M) on the jth element using the same viscoelastic boundary element method. But at
this time the length of crack is a, + I and that of system cl + 1, where I is the length of an element.
Substituting these coefficients, together with Dii and G1, into eqs (25) and (26), the opening
displacement U31 of the system surface, the envelope traction T31 can be obtained. The breaking
time t for the system to propagate to the next element can again be calculated from the energy
absorption criterion eq. (35). The same procedure continues to be iterated until the system grows
to the nth element. At that time, the coefficients Dj, and Gij are evaluated. And the opening
displacement U3 and the envelope stress T3j on the jth element can be obtained at time t,.

RESULTS

A quarter of the sheet used in the calculation using th? boundary element method has unit
thickness, width B = 500 p.m and length L = 600 ptm. The initial lengths of the system and the
craze are taken to be c(O) = 98 .m and a(0).= 38 pm respectively. The total number of the
boundary elements is 155 with the smallest element of the length 4 pzm located on the craze
surface. The mesh construction is shown in Fig. 3, where the elements around the craze tip are
drawn in an enlarged scale. The surface of the crack-induced-craze system is divided into 23
boundary elements. Beyond the craze tip there are 10 elements in 40 p m span.

The viscoelastic material properties are represented by a generalized Kelvin model (23)
with other material constants taken to be as follows:

n =4,

Jo = 4.17 X 10-4 m2/MN,

Jt = 0.71 x 10-4 m2/MN,

J2 = 0.62 X 10-4 m2/MN,
J3 = 0.43 x 10-4 m2/MN,

14 = 0.31 X 10-4 m2/MN,

x3  (10
t tt thu fitt it it

Crack Tip

Craze Tip

X3  Crack Tp Craze Tip

F I I ho ae

Fig. 3. Boundary element mesh with craze tip shown 11 an enlarged scale.
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v=0.3.

= I.Oh.

2= 10.0 h.

= 80.0 h.

1. 100.0h.

r, - 0.3 Jim:.

r. = 2.72 J/m2.

a, = 1.21.

= 2.58.

The following quantities occurring in the calculations of theoretical method are also
used[39-41]:

A =2.

r, = 0.231 JIm2.

d = 4.4 nm.

which represent the properties of polycarbonate. The applied stress is O-o = 37.4 MN/m 2.
The first kind of calculation is based upon the stiffness distribution shown in Fig. 4.

Correspondingly, the instantaneous opening displacement of the crack-induced-craze system is
plotted in Fig. 5 against the distance measured from the center of crack. The data points
indicating the experimental observations[6, 8], tr'ingles represent the theoretical solutions, and
the solid curve is the result obtained by the boundary element method. Initially the distribution
of the stress normal to the surface is shown in Fig. 6.

When the applied constant stress O-o is maintained, the opening displacement of the system
increases as a result of creep and the drawing of the fibril domains. According to the energy
absorption criterion, the craze-crack transition time tb = r, can be determined numerically. Then
the crack-craze system propagates steadily and the case that the crack and the system have the
same velocity[9] is considered here. During the calculation of the propagation rate the stiffness
on the craze-surface is shifted stepwise by one element. Figure 7 shows the time dependent
normalized lengths of the crack-induced-craze system, where the points are obtained by the
boundary element method and the solid line is calculated by theoretical method. As can be seen
from the figure, the propagation rate at the steady state is almost constant. After a certain period
of time, both the crack and the system propagation rates increase drastically. The opening
displacement profile of the crack-craze system as a function of time is shown in Fig. 8. The

181.

16 [
141

WIZ

U, 12.
W

C 60z
4

2
v, v , , i

40 53 60 70 80 90 109 120

DISTANCE FROM CRACK TiP IN tim

Fig. 4. Stiffness distribution in craze region.
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Fie. 5. Opening displacement profile of crack-craze sytem.
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Fig. 6. Initial envelope stress on surface of craze region.
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Fig. 7. Time dependent normalized length of crack-induced-craze system.
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Fig. 8. Opening displacement of crack-craze system-A several time steps.
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-:2

.u h: ecjesl.

0 22 -3 83 3 so L0 "20 IZ3

CRACK-CRAZE LENGTH IN pm

Fig. 9. Comparison of opening displacements by boundary element method and theoretical analysis.

opening displacement profiles at different times exhibit somewhat similar shape. Figure 9 shows
the comparison between the results obtained by the boundary clement method and the analytical
results at time t= 12.21 h. A very good agreement is obtained. Figure 10 shows the envelope
stress distribution in the craze region.

The closeness between the theoretical results and those obtaincd by the boundary element
method in Figs 5, 7 and 9 connotes that the boundary element results are generally in good
agreement with the analytical results. The accuracy depends on the mesh construction and the
type of element used. Constant el.lnts used in the boundary element calculation procedure
yield satisfactory results in this case. TIL,. use of higher order elements, such as first and second
order elements, or much smaller elements would improve the accuracy. The stress distribution
on the craze surface has almost the same shape and magnitude throughout the propagation. In
fact, it has been suggested that !he Dugdale model is not fully adequate for analysis in describing
the craze envelope stress. Nevertheless, the analytical formulation using the three-step dis-
tribution function has been shown to be a reasonable and good approximation for analysing the
isolated crack-craze system. As can be seen in Figs 6 and 10, there is a deep stress minimum just
behind the tip of the craze. This characteristic feature persisted during the course of this
investigation. This is somewhat similar to the results obtained earlier using the finite element
method. Two extreme values in the envelope stress distribution have occurred. Like in the
present case a minimum envelope stress is located at some point behind the craze tip where the
stiffness gradient changes sharply and a maximum one occurs at the tip. Both of these extremes
have been obtained by either analytical or experimental methods[1, 2, 42, 43, 44]. It is hoped
that this phenomenon will be studied further to acquire a better understanding of its behavior
with respect to the crack-craze system.

120

100 •

9 80

I.. 60
U)uJ

) 60 40
~Applied Stress

U)1 2

Crack Tp Craze Tip

0 20 40 60 80 100 120

DISTANCE FROM CRACK CENTER IN pm

Fig. 10. Envelope stress on craze surface at tfne = 12.21 h.
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V.

Analyzing Polymer Crazing as Quasifracture

B. N. SUN and C. C. HSIAO, Department of Aerospace Engineering
and Mechanics, University of Minnesota, Minneapolis, Minnesota

Synopsis

This paper deals with a viscoelsti:: boundary element method for analyzing a polymer
quasifracture usually called a craze in polymers. A time-dependent boundary stiffness is consid-
ered on the quasifracture envelope surface. The viscoelastic property of the glassy polymer is
represented by a generalized Kelvin model with multiple retardation times. According to the
linear viscoelastic correspondence principle, the associated elasticity solution can be solved by
applying the general integral boundary element method. Then the viscoelastic solution in the
time domain can be obtained by applying a collocation Laplace inversion transformation. Using
these methods, the quasifracture problem composed of an isolated craze opening with time-depen-
dent stiffness traction in a stressed rectangular plate is analyzed. The displacement profile and
the stress distribution around the craze envelope surface are computed.

INTRODUCTION

The craze or quasifracture behavior of glassy polymers has been studied
recently by many scientists using theoretical and/or experimental methods. 3

Only a few papers reported the linear elastic quasifracture behavior using
numerical methods. Bevan' applied both the elastic finite-element method
and boundary-element method with linear boundary condition for investigat-
ing the craze problem. Recently, using the nonlinear finite element method,
the stress distribution around the envelope surface and the displacement
profile associated with a craze have been reported." However, since the
boundary element method has currently become a powerful technique for
solving boundary value problems, including some nonlinear ones, it is worthy
of utilization, since it has several advantages over the finite-element method.
The number of unknowns in the calculation system depends only on the
boundary discretization rather than upon the discretization of the whole
volume of the material body as in the finite element method. The singular
kernels in the integral equations weigh the unknown quantities near a singular
point more heavily than those far away, and the resultant matrices are
generally well behaved. The physical quantities obtained by differentiation of
the primary variables such as the stresses obtained from displacements are
determined pointwise inside and on the body. Thus there is less chance to
have discontinuities. This is especially important in problems having visco-
elastic deformations and, in particular, viscoelastic fracture mechanics prob-
lems.6 In addition, this method takes less computing time and yields greater
accuracy than those problems analyzed using the finite element method under
somewhat similar situations. Therefore, in the case wherein highly localized
stresses may exist, more elements can be introduced 6o that any possible
singularities will not be suppressed by the analysis. Since the quasifracture

Journal of Polymer Science: Part B: Polymer Physics, Vol. 26, 967-979 (1988)
© 1988 John Wiley & Sons, Inc. CCC 0098-1273/88/050967-13$04.00
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behavior of crazing is important for studying engineering plastics and polymer
composites, in this paper a viscoelastic boundary-element method for analyz-
ing polymer quasifracture and determining the displacement field has been
developed. In this attempt, emphasis is placed on the procedural development
of the method. T he measured displacement field obtained earlier has been
employed3 in the computation.

it is well known that glassy polymers behave viscoelastically. Using the
correspondence principle in the linear theory of viscoelasticity, the quasifrac-
ture behavior of a polymer can be calculated from the solution of an associ-
ated elasticity problem by means of a numerical method; then inversion yields
the required time-dependent response. Therefore, in this paper the boundary
element method is applied to solve the associated elasticity problem in the
Laplace domain. By applying the numerical Laplace inversion technique
developed by Schapery7 and Cost,8 the associated elasticity solution can be
transformed from the Laplace domain back into the time domain. There are
several reports dealing with the use of the viscoelastic boundary element
method. For simple specific viscoelastic models, Kusama and Mitsui9 devel-
oped an improved collocation method and applied the boundary element
method to solve a Kelvin viscoelastic model. Rizzo and Shippyl ° used the
direct boundary integral method to solve a standard linear viscoelastic model.
Wang and Crouch applied the displacement discontinuity boundary element
method and collocation inversion technique to solve a rock mechanics problem
represented by a Burgers model. In this paper the general boundary element
method together with the collocation inversion technique is used to solve an
isolated quasifracture having a generalized Kelvin model behavior with multi-
ple retardation times. In using such a method, the prescribed boundary
condition may be either the displacements or the tractions. For a quasifrac-
ture problem the boundary condition on the craze envelope surface
is prescribed in a stiffness form. By considering the molecular orientation
mechanism12 of the craze fibril domains, the boundary displacement of a craze
envelope surface may be represented by a convolution integral. Then the
displacement field and the stress distribution along a craze surface envelope
can be calculated in several time steps. It is interesting to show that the
calculated stress distribution along the craze envelope surface did not change
very much with respect to initial zero time and several hundred hours.

FUNDAMENTAL BOUNDARY VALUE PROBLEM

The governing equations for the quasifracture boundary value problem are
the equilibrium equations in terms of the stress components aij, relations
between displacements, ui and strain components ejj together with a set of
constitutive equations. The stress and displacement fields must satisfy the
prescribed boundary conditions on the craze envelope surface and other
boundaries. They are, in a rectangular coordinate system (0 - x 1, x 2, x3),

Oijj(Xl X 3 , t) 0, (1)

,Eij(X, x 3, t) = 2[Ui,j(X, X3 , t) + UjX X3, t)]. (2)
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The constitutive equations can be written in integral form as

e 00= J(t - a )-;, (3)

ft dokk( )

)kk(t) f j B(t - -dr, (4)

where J(t) and B(t) are, respectively, the shear and bulk creep compliances;
kk and kk are, respectively, the hydrostatic stresses and strains by implying

the summation convention. Sj and ej are, respectively, the deviatoric compo-
nents of stress tensor a- and strain tensor cij and are related to other stress
and strain components as follows:

i -ij 3 ijAk' (5)

eij -cij - 83 ijkk,  (6)

where 8O are delta functions.
In a linear viscoelastic polymer, a very good approximation 3"3"4 for the

tensile creep compliance D(t) is obtainable using a generalized Kelvin model
composed of a series of Voigt elements, or simply it can be mathematically
represented in the following form:

n [ (D(t)=Do0 +  D, 1 -exp -(7)

where Do and D, are constants and r, are discrete retardation times. Now if
one adopts the notation and definition that

, X3, s) = oo (x, x3, t) e-t dt, (8)

where f(x 1, x3, s) is the Laplace transform of the time-dependent function
f(xI, x 3, t) with s as the Laplace parameter, then it can be shown that the
shear and bulk creep compliance functions can be obtained through Laplace
inversion:

J(t) = L'(J(s)) = L'[( + sP(s))J(s)], (9)

B(t) = L-'((s)) L-'[(1 - 2s(s))B(s)], (10)

where P(s) is the Laplace transform of the time-dependent strain ratio. It is
to be noted that in analyzing a problem involving the time-dependent visco-
elasticity, P(t) is time dependent. The quantity Poisson's ratio in the classical
theory of elasticity is meaningless in viscoelestic behavior; thus P(t) is tenned
the strain ratio. Experimental results" have shon that, the strain ratio v(t)
became approximately a constant for long creep ti-ms. With t.s inforoation,
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Fig. 1. Schematic diagram of a two-dimensional craze.

the viscoelastic tensile relaxation modulus function E(t) can be shown as

E (t) = L - l [ 2 ( ) j -  " (1

s) Do+ D,,s

In the crazo region, oriented molecular domains and voids are formed as
shown schematically in Figure 1. Since the domains are composed of groups of
cormected fibrils of molecules, they bear load and are subjected to large
deformations. When a craze elongates, its displacement field in the direction
of stressing also increases. Although a part of the contribution of the displace-'
ment field is due to the creeping of the fibril domains, the major contribution
comes as a result of the drawing of the molecules from the bulk of the
polymer. This drawing mechanism coupled with a simultaneous neckdown of
the fiber domains dominates the local crazing behavior composed of the

iolecular orientation mechanism and the formation of pores. A local strain
field r (- 1 < F < oo defined as A - 1, where X is the draw ratio) identifies the
degree of moleculax orientation termed the orientation strain and has been
found assentially constant 2, , 6 throughout the craze length as it is intimately
associaed with the natural draw ratio of the polymer. During the process of
deformation, individual fibril domain is considered to be under uniaxial
tension. Under a uniaxial stress a33(x,, t), a corresponding small strain
c33(x,, t) << c(x,, t), the orientation strain, of a fibril domain will occur. The
relationship between the small strain and the tensile stress of each fibril
domain at x, is

f dE 33(X,, T

r33(X1, t E(x,, t -0 d-, on x, < c, x 3 = 0, (12)
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where EI(t) is the viscoelastic tensile relaxation modulus of the fibil domain
while the orientation strain E contributes no additional stress. In preparation
for computation using the boundary element method, the traction T3(x,, t)
acting on the craze envelope at x, may be written as follows:

T3(xl, t) = f~ K(xl, t - T)d U3(x 1,T)

K(x,,O)U'(x1, t) + f tK(XI, t - T)U3(xI, T) dT,

0

onx 1 c,x 3 = 0, (13)

where Ua(x,, t) is the opening displacement measured from the horizontal
center line of symmetry of the craze corresponding to c3a(xl, t) at the
boundary of the craze envelope at x 2,'12 as the thickness of the primordial
layer is small as compared with U3. By writing

K(xl, t) = E(x,0) (0 _< t < oo), (14)
U3(x IY)' (O c),(4

it becomes the stiffness per unit area of a craze fibril domain. K(x, 0)
K(xl, t)J,-o is the initial stiffness at x,. Now we use the convolution integral
relationship (13) as the boundary condition on the craze envelope. The tensile
creep compliance D,(t) of a fibril domain can be found. By referring to the
molecular orientation theory,1 2 the tensile relaxation modulus Ef(c) of a fibril
domain may be represented as follows:

E(f) = C( )E, (15)

where, as stated before, c, the orientation strain, is essentially a constant.
Thus, C(c), being a function of the orientation strain, is also a constant, and
E is the modulus of elasticity of the original polymer medium. Therefore, if
the time dependency is introduced as given in the following equation:

E,(c, t) = C(c)E(t), (16)

both the nature of molecular orientation and the time-dependent viscoelastic
behavior of the moduli are preserved. In the Laplace domain, we treat C(c) as
constant:

Ef(C, s) = C()E(s), (17)

and

( = 1. (18)

For indivdual fibril domains a similar relationship may be written as

s'E (S ) = 1, (19)
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where D1(s) is the tensile creep compliance function of the fibril domain in
the Laplace s domain. Solving for D1(s), one gets

Df (s) C -(f)[s2 (s)] -  (20)

or
D,(s) - C-1(E)D(s) •  (21)

Thus after inversion

D,(t) = C-1()D(t). (22)

At position x,, let us write

D(x 1 , t) = C-'(xl, c) D(t) = C-I(x, c)(Do + E D,[1- exp(-tI)]

(23)

where

C-'(x,,c) = DI(xl,O)/D o  (24)

is a spatial parameter. Then the stiffness becomes

K(xjL t) = L-1 - K(xi,0)Do (25)K~~~xX , tI I aXl s2D-(s) ]

And the traction T3(x,, t) acting on the craze envelope surface is

T3(xl, t) = L-'[sK(xl, s)U3(x,, s)]. (26)

According to the correspondence principle in linear viscoelasticity, we can
transfer the boundary value problem of quasifracture into the s domain
merely by replacing the elastic parameters by their corresponding time-depen-
dent viscoelastic parameters in the Laplace domain s as follows:

E -s(s),

K - K(xl,0) Do/s 2D(xl, s),

(T) o - (T)o(s) = (T)oS ,

(Uo- (U)0(s) = (U,)o/s, (27)

where (T) 0 and (U) 0 are, respectively, the prescribed constant boundary
traction and displacement at point i. Once the associated elasticity solution is
obtained, then the Laplace numerical inversion will yield the time-dependent
solution of the problem.
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CALCULATING PROCEDURE

In order to solve the associated elasticity problem, the general integral
boundary element method may be applied. The detailed investigation of these
methods and others may be found in the literature. 7 '9 For simplicity only
one approach is utilized, and the basic formulation for the linear elasticity
problem is described here. In the two-dimensional elastic continuum R with
boundary r, which is assumed to be isotropic without body force, the
governing equation may be obtained from pages 125 and 126 of Ref. 17 as
follows:

Ci~Ui + f T'*U, dr = f U1*T, dr, (k, = 1 or 3) (28)

where Ci = 1/2 for point i when it becomes a boundary point on a smooth
boundary, U is the displacement in the k direction due to a unit force acting
in the 1 direction at point i, Uk is the displacement at any point on the
boundary F in the k direction, Tk is the traction at any point on the
boundary P in the k direction, and TZ is the traction in the k direction due
to a unit force acting in the I direction at point i. The fundamental solutions
for the two-dimensional isotropic plane strain problem are easily written
following the equations given on pages 126 and 141 of Ref. 17. They are

-1 ( r[ ar ar]TZ (31~ - [() lkV> - + - - J
4v( - ) I r d X1 aXk

ra r ar

Tlk 417(l -- )r dn (1 - 2v) 81k + 2"O-"-

-(I - 0 k Or n]} (29)

where G and v are elastic shear modulus and Poisson's ratio, respectively, nj
is the outward normal to the boundary, and r is the distance from the load
point to the point under consideration. Equation (29) is known as Kelvin's
singular solution due to a point load in an infinite elastic medium.

At first, the boundary r was divided into N elements with assumed
constant values of Uk and Tk in each element. By applying the viscoelastic
correspondence principle, the following equations are obtained in the Laplace
domain:

N fr kd N JrT P (k,/= lor3)ciuli + F, T , kd r E f Ul*Tk d r, (30)
q-1 r. -I rq (q =1,2,..., N).

As shown above, there are 2N simultaneous algebraic equations. When 2N
boundary tractions and boundary displacements are given, another 2N un-
known boundary tractions and boundary displacements can be obtained. For
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some boundary elements, beginning a, say, such as Fq (q = a,..., N), on
which the stiffness boundary condition was prescribed, equation (30) becomes

a-1N

= f U Tk dF, (q =1,2... a N). (31)
q-1 rq

By solving the above simultaneous algebraic equations, we can obtain the
values Uk and Tk successively for discrete values in the Laplace domain. Based
upon the thermodynamic principle, Schapery7 developed a collocation method
for numerical Laplace transform inversion. This method shows that the
components of stress and displacement at any point can be represented by a
series F(t) defined as follows:

'M

F(t) = C1 + C2t + , Amebmt, (32)
m-i(

where C1, C2, Am, and bm are constants. Taking the Laplace transform of eq.
(32) and multiplying by the transform parameter s gives

M Am (3sp(s) = C1 + C2+ M A_ ins (33)
s m-1+bm/s

When time t goes to infinity, the function F(t) should be finite. Therefore,
the constant C2 is chosen to be zero. In order to determine the constants in
this equation, a value for M and a sequence of values of s must be selected,
i.e.:

s = sp, (=1, 2,..., M + 1), (34)

Based upon Schapery's suggestion, the relationship between s and t is
s = 1/2t. The M values of bm are taken to be the first M + 1 values of s.
Then eq. (33) can be written

M Am
s#F(sfl).= C, + Am/s (P = 1,2,...,M, M + 1), (35)

which is a set of M + 1 linear algebraic equations with M + 1 unknowns C1

and Am solvable using standard procedures. The guidelines for selecting the
discrete values of s can be found in Rizzo and Shippy.10

BEHAVIOR OF A CRAZE

According to the aforementioned theory and method, an illustration is
provided by calculating the displacement field in the neighborhood of a hole
in a linear viscoelastic infinite plate. The load applied was expressed as a step
function. The contour of the circular hole was divided into 24 boundary
elements as shown in Figure 2. The radial displacements calculated by either
the viscoelastic boundary element method or an analytical solution are shown
in Figure 3. The radius of the hole is 3 m. The applied internal pressure is 100
MN/n 2. For linear viscoelastic behavior the tensile creep compliances of the
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Fig. 2. Mesh division for viscoelastic infinite plate with a hole.

material was represented by a generalized Kelvin model with multiple re-
tardation times, as shown below:

Do= 0.238 x 10-3 m2/MN, 0.33,

D = 0.071 x 10-3m2 /MN, T, 1 lh,

D= 0.062 x 10-3 m2/MN, T2 = 10 h,

D)3= 0.045 X 10-3m 2/MN, T3 = 80 h,

D)4= 0.031 X 10-3 m2/MN, T4= 110 h.

0.3*

-ANALYTICAL SOLUTION

E 0 DATA POINTS OBTAINED FROM

0. BOUNDRY ELEMENT METHOD

F-

W 500 HOURIS

0. 0.1- 0HLM

-j

1 2 3 4 5 6 7

DISTANCE / RADIUS

Fig. 3. Radial displacement of viscoelastic infinite plate with a hole.
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As seen in Figure 3, the data computed by the viscoelastic boundary
element method produced excellent agreement with the analytical results
obtained by transforming the classical elasticity solution of a circdar hole in
an infinite plate into a time-dependent solution in linear viscoelasticity using
the well-known correspondence principle.

Now for studying the quasifracture, an idealized symmetrical craze in a
constant stress field has been considered. The craze basic structure was
represented by a slit with fiber domains di"i.'buted along the craze envelope
boundary. The distance between the top and the bottom craze envelopes has
been referred to as the craze-opening displacement measured from the center
of symmetry. The stress acting on the interface of the craze was referred to as
the craze envelope stres. The total craze length considered was 2 rm; thus,
c = 1 mm, which is usually referred to as the craze length measured from the
center of a craze. The width of plate was B = 11.2 mm, and the length of the
plate was L = 14 mm, with unit thickness throughout. Because of symmetry,
a quarter of the plate containing an isolated quasifracture was divided into 58
boundary elements as shown in Figure 4. The properties of the bulk material
were again represented by a generalized Kelvin m~iel. The tensile creep
compliances D. and retardation times Tm were the same as before. The shape
of the applied stress po was a unit step function H(t) modified to 42 N/mm2 .

X3

- '4:";;iiif:I I I I I I I I I I ---l.
t Xi

CRAZE TIP

Fig. 4. Mesh division for a quarter plate with a craze.
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The bouriary conditions used on the plate are

T3(xn, t) = f t -r) dt0

T(x,, t) = 0

U3(x1 2t)= 01 (c5x,<B,x3 =0), (37)

T1(x3, t) = o0

T 1(x 3,t)=0 , (0x B, x 3  L), (38)
T3 (x 3 , t) =0)

T1(x 1 ,t) 0 (0 :gx, gBX 3 = L), (39)
T3(x 1 ,t) = p0 H(t))

U(x 3, t) = 0 (xI =0,05x3 < L). (40)
T3(x3, t) = 0

Initially by using the finite element method and considering the molecular
orientation of the fibril domains in the quasifracture,4 the initial instanta-
neous craze-opening displacement U3(x1 ,O) and the craze envelope stress
a,(xl, 0) were calculated. They agreed fairly well with the experimental results.
Subsequently the instantaneous stiffness K(xl, 0) was calculated and K(xl, t)
determined from expression (25). In applying the viscoelastic boundary ele-

E 10 1. TIME = 500 HOURS
ZL 2. TIME = 50 HURS

C 3. TIME = 5 HOURS
z - 4. TIME = 0
Z

w
0
< 6:E
UJ

a

0

4 0z
z

o 2

N

0 0.2 0.4 0.6 0.8 1.0

CRAZE LENGTH in mm
Fig. 5. Creep opening displacement of the craze surface.
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60

50

E APPLIED STRESS

C 3

W 20a:.
o.
0 - TIlE = 0

z 10 0 TIMFE = 500ORS

0 a 0.2 0.4 0.6 0.8 1.0 1.2

GRAZE LENGTH in mm

Fig. 6. Comparison of stress distribution of craze surface in time = 500 h and time = 0.

ment method, the values of the s parameter were selected ranging from 10- 3

to 102, and time t was chosen as 1/2s as given earlier.7-10 Figure 5 shows the
opening displacement U3 = w between the quasifracture envelope surfaces
versus the distance from the center of craze for various times corresponding to
500, 50, 5, and 0 h. It is seen that the quasifracture opening displacement
increases as time increases at a rate which is relatively high from 0 to 50 h.
Beyond 50 h it changes slowly. However, it is interesting to find that the
stress distribution remains constant as shown in Figure 6. These results
indicate that the craze quasifracture behavior can be successfully analyzed
using .this viscoelastic boundary element method.

This work was supported in part by a grant from the Air Force Office of Scientific Research.
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Statistiwal theories in fracture kinetics constitute a er important role in investigating the
fracture strength of solids and their utilization in modern engineering. In this paper, a review
of some of the re,ent concepts and models is provided. The main concern is the effect of the
breaking stress on the time-to-break. Based upon the consideration of the fraction of integrity
of a medium, a number of models have been evaluated and compared. Two basic
considerations used for evaluation and comparison are Zhurkov's empirical kinetic
relationship and Hsiao's statistical absolute reaction rate model. Other considerations
reducible from these t%%o are also given for comparison. Using a well-kno%% n numerical analysis
method. it appears that the nonlinear mathematical consideration is more realistic in
describing the time-dependent fratture strength beha% ior of a medium oer any linear ones.
The computed results seem to fit reasonably well with the general observations.

INTRODUCTION K, = w, exp( - U/RT-pb),

Under load the time-dependent fracture processes of K, = wDb exp( - U/RT+ 3tb),
solid bodies can be characterized in several stages- first is the with K, and K, as the rate of reformation of broken and
nucleus incubation overlapping with an apparent homoge- oreakage of unbroken microelements, respectively, o, and
ncous deformation of the material body, followed by either (ob as the frequency of motion of the broken and unbroken
the instable possible craze inception " or simply a d:rect microelements, respectively, and b3, andp as material con-
crack formation Eventuall, either craze-crack transition stants. They are positive definite. R is the uniersal gas con-

takes place or crack propagation results Thus, fracture oc- stant, and t i) da(t)/f(it) as the axial stress subjected by

cur These feature behaviors depend on many factors, duch the indvidual)mcroelements of an oriented material system.

astcr,perature, time, composition, and microstructural con- Ths statistical model on the rate theory of fracture has

fiauration of th, medium, as well as environmental condi- strong phystical implcatons. It deals wth thermally acthvat-

tions_ ManN inestigators in the past - "' have studied and ed atomic-bonding formation and breakage processes as the

interpreted the time-dependent fracture phenomenon ofsol-

ids. It has been shown experimentally that the logarithm of
time-to-break has been found to be linearly related to the
applied uniaxial simple tension for a large number of solids, 12 1 Silver Chlonde

as shown in Fig. 1, ranging from seconds to months. Zhur- 2 Polyvinyl Chloride

kov2" represented this linear relationship betwcc, the loga- 4 Polymethyl

rithm of time-to-break tb and the applied tensile stress o, as 6 ,iMelhcrylalefollows U) 6 Celluloid
follows: 

7 Rubber1 t " 8 Nflocetuo
, = to exp[ (U - yor)/kT ], (1) '0 8 8Niroclluloid

Z5 9 Platinum
where k is the Boltzmann constant, Tis the absolute tem- E hosphoriSver
perature, and to. U, y are constants. However, there is devi- Z I2Caprone Onenled)

ation from this empirical linearity, as shown in Fig. 2, when % 40
either large or small applied stresse! are involved in the ex-
perimental measurement. This deviation was not clearly _
mentioned or considered for any material system by Zhur- u()3

U)kov. The present report addresses this point by taking into W 9-.
account the nonlinear behavior of the system based on the 1 8
statistical theory of the Absolute reaction rate.21 " The W 2
mathematical model used is a matrix of oriented microele- D
ments representing primary and/or secondary bonding < 4

forces embedded randomly in an arbitrary matrix domain. ,r
The fraction of unbroken mnicroelements, identifying the 3

fracton of Integrity of the system as "f," and its rate of
change is as follows: 0

-10 5 0 5 10 15 20 25 30
di LOGARITHM TIME-TO-BREAK In Ib(SEC)

\s here FIG I I ine-depcndent fracture strength for sod,, (after Zhurk on)
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3 and
( ) S: ?rCdea:2Z3 C t, = (1/ao)exp(U/RT- 2,3cr), (8)
t2) A'rmrun a: 4C0 C
(3) Orqa- .Gss 70 C which is similar to Eq. ( 1) given by Zhurkov. Equation (5)

can be rewritten to give

6Z =- I - exp( . - a. (9)
0,( 2or) IRT

Comparing Eq. (1) with (9), it can be recognized that t. in(1) can be a function of the applied stress o, instead of being a
constant as suggested by Zhurkov.

U) To determine the influence of reforming processes on

2 * the fracture strength, Hsiao and co-workers1921.23 used Eqs.
(2) and (4) to obtain an expression for the average rate of

2 - stressing on the unbroken microelements in the mathema'-
< ical model

ot 20 tbI~nL, exp(fi3') - ( 0 - I~ ,e p( - o0 1 dt 11
10 -5 0 5 10 15 20 (10)

LOGARITHM TIME TO-BREAK In tb (SEC) where fi,, and fS, are constants associated, respectively,
with 0ob and wt, as wvell as some other quantities independent

IG. 2. Fracture stress %s logarithm tinic-to-break, after Hsiao and Zhur- o tress.
kov. of stress.

kov.
An expression for the fracture stress and the time-to-

break behavior was then evaluated to give

fundamental kinetic mechanisms of fracture initiation and d(ln fi,,) ( 1)
propagation. In this atomic level, the theory is valid for me- d(f/o-)

talli , ,crami,, and pol)mcrl,, material s)stems. Foi either Figure 3 shov s a qualitative representation ofEq. ( 11 )
,r)stalhne or amorphous materials, the behakior of thL Nith high and lo\ stresses of frature bounded. This behax-
broken and int.it bonds meay be differcnt and thL rates of ior is nonlinear %hili de atcs from the linear behavior of
breaking and mending ate also ooisidercd different. Zhurko%'s Eq. ( 1 ). It should also be noted that in Eq. (2) if

Based upon the analyses of Hsiao, this rate theory well K, - 0, the cur~e w ill have steeper slopes?" (see Fig. 4).
describes the stress, temperature dependence of the time-to-
break for a laige number of,,rystallinc and am-orphous solids THE FRACTION OF INTEGRITY f
at different temperatures, and for a wide range of appliedhighandlowstrsse. Tis vil besee thoug th folo~ing The integrity of a material body may be described, in
ni and stere Tatios undercnsantouh stee own- addition to other dominant quantities such as stress, strain,tinlyis Td nexprets uercnstis, eresson 2)anelastic modulus, etc., by a measure of the material's damage(3) Tesoldforthisechaictv eistics, eresions () a under stress, or its opposite, the fraction of integrityf(3) are solved for a hnuttng value of zb(t), where V'(I,, V5,¢'

for a constant applied stress a, then

4,(th) =cr/f(t), (4) -------------

to give 30

In-o, 0, exPy ..- exp(236-)exp(ln th,) =0. 25-
(5)

This turns out to be not only satisfactory for the observed 20
middle range of stresses as Zlurkov has reported but also (n
consistent with very small stress behavior as shown in Fig. 2. w 15
In addition, it also yields information on fracture for very
high stresses and very short durations as will be seen later.

For relatively large values of a, within the observed mid-
stress range, Eq. (5) may be approximated by

exp(2fla) > In(2r/¢,,). (6)

Equation (5) is then solved to show a linear relationship i I

between the logarithm of time-to-break t, and the constant 0 -30 20 -10 0 10

applied stress ar, then LOGAR. 1.1 TIME TO-BREAK In Qb~b

0r ( 1/2/3) ( U/R T - I ), (7) ft(, Quahiaoe \trctidependentinmc-to-hrkak
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FIG. S. Qualitative rcpr-sentation of fraction orinlegrilyfvs limec t.

Changes in the velocity of ultrasound propagafion in the
material, its density, volume of deformation, and other char- a ,=1frwihAepBrn,.,) 0
acteristics are used to establish the degree of damage in a a j=IfrwihAcpBe,, .e, 0
material system. Most often, a qjuantity D is identified with and
the density of microcracks in the vicinity of the examined at t= tb.f= 0 and A exp(Blc .....e,,,e~ - 1
point or with thle relative quantity of the broken bonds. Dur- -usnoan aus 4 dduea xrsinfra
ing the loading process the value of D varies within the limits functino me Ttrs diad cost anteeson for a~.
[0, 1]. In general, the rate of damageD is a function of many fucinotmesrsso adosatsaadie.
arguments,24 such as stresses u, ,stress rates 6r,, strainis c,,, f = (I - ao) 1/' (16)
strain rates i,, time 1, and other parameters. It was not clear from the author's description whal wi#.s Ohe

b = b~,b,..) (12) origin of Eq. ( 16). However, by expanding and si~Iifying

wvhere A, are material constants. In a simple state of stress- Eq. (2). a simnilar expression as ( 16) can he o'btained. If Eq.
ingb cal b expesse a(16) is differentiated, the followving expression is obtained:

b = b(aD), (13) -'= -(1an)f(,7f)n. (17)

where a, represents an applied simple tension. Ani expression Also, the same authors did' troduce another expression fov'
for cal b fomultedsimlarto hatgivn i ( 3),since f based on a model that utilizes a statistical overstress distri-

forfcanbe frmuatedsimlar o tat gvenin (3),bution and a kinetic theory of strength2 ;

f= A -D ) (14) f f{t 0 (ykn'exp[ (U- o-yf )/TI, (8

As illustrated earlier, Hsiao'9 used the statistical theory or
of the absolute reaction rate and obtained anl expression for f - expi + ----. (9
the fraction of integrity f as shown in Eq. (2). Then, he (t0oy/kT) \ k1T fT/
introduccd an approximate solution foif (during the load- The main disad-,antage of the theory, as hasbicerLnientikined
ing process) in the form in their analysis, is the assumption that the stress conctentrii-

f = 1 + A exp (Ble,,,,, e ,e,(5 tion around the broken bonds can be disregarded. For t1'i-

where reason, the theory is unable to account for the fact that flual
fracture begins in the presence of a considerable number of

Ki,/Kr = A exp(Ble,,,,e,e, unbroken, highly overstressed bondls. The theory limits itseif

6,,,nSi,~n is the sealar strain in individual elements in the de- with modeling of breaking of a bundle of fib.-rs.
formation process, e,, and e,, are unit vectors, A and B are COPTT14ADAA
constants, and I is the length of each microelement. CMUAINADDT

The frac-tion of integrity f ma) be used to descriibe the For comparison, the previoislyx nentined exptessions
bchlA6io Of a specLific. n1Idiurn during the loading proes, have been evaluated with the help of it ornputer p4e;kage
This qUalitati e factor Lan be of treentdous help in closed cailled d) ikarlik; sy stem --imulation (DYSYS ). ' DYSYS \,as
1001) cntrol systerns to predikt pointsof instability and frac,- dc': elo)peduo'Lr ape-iod f yeatrs ,at MIT for I he siial-aton of
ture In general, it may be used to followN the behav'Or Uf a dynatnic systems. 11s key function is thv. solution of thec aji-
rncdium under loading conditions. Inlitlbj the ftation of pi opi iatc- differential equation.~d dcscribtng a Sys(CM It Le, a
inltegrity f decases slowly as time in~r eases, then it falls, fourLh order Runge-Kutte. integratfonl to obtain an Appia0-
first gradually for some time and finall ,harply neat the priate solution to the differ-ntdl cquation,
timeL to break. This relationship is, a highly nonlinear one. As has been mentioned earlier, the inaiii ob~.ctive jj'this
TO ill Ustr ate this stcmatically, Fig 5 showsthe ~ariation of report is to assess the 'valxdity of the differen~t expres .. nb
the fraction of inte-grity f s time t This theoretic.a: .urve dexetloped for describing the !inke-deptidcni fracire
ma) Also be re-presented by Eq. (15) in the following man StLeiig'th of solids. Trhis, in turn, would enato1e -vie ti., seict
tier: the ni.)st appropriate theory for describing the fracture be-
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havior of-4 medium. The empirical relationship and the theo-
retical mathematical models that have been used in this eval- 20 O-o. \
uation are: Zhurkov's kinetic relationship, Eq. (1); Hsiao's 0 Xq
sitatistical absolute reaction rate considerations, Eqs. (2), 18 , G- (1/2P){1Tar.,ntdor

(7), (9), and (11); and Kuksenko and Tamuzs' kinetic ex- 0. X (lI0biexp(U/RT.2Pc;3

pressions, Eqs. (16), (17), and (19). Data were collected 0 b

and plotted for ease of comparison of polymeric sys- . 14
teins 1 '2° '2- -24 as discussed and illustrated in the following %?
section. X 12

z

RESULTS AND DISCUSSION b to
')

Variations of the breaking strength with respect to the 8

logarithm of time-to-break are shown in Fig. 6 for various
expressions! (1) Eq. (7) (after Hsiao' g ) was plotted with uj 6
13= (0.041X 10- 7 in. 2/lb) 0.285x10 - ' m2/N, U!

RT= 65, andw= 1.778X10 - 6 rad/s, (2) and (3) Eq. (1) <4 \

(after Zhurkov2° ) was plotted for kT/V = 13.629 N/m 2  
': 2 1=(1IO,)(In'vb2(o)exp(UI/-2l)"o \

with two different values for U/y, as designated. Each of the 2
three curves shows a linear relationship between the loga- 0 L A 1 °
rithm of time-to-break and the applied fracture stress and .50 .30 -10 10 30 50 70

thus is not realistic for very short or long time load applica- LOGARITHM TIME-TOBREAK In tb in SEC.

tioas. It should also be noted that, for the purpose of clear FIG. 7. Fracture stress vs trie-to-break for organic glass at 70*C.
illustration and comparison, different constants have been
used for different expressions. However, tie linear relation-
ship between the logarithm of time-to-break and the fracture rithm of time-to-break. Finally, as the stress becomes very
stress has not been altered. low, the stress-time relationship takes a nonlinear behavior

In Fig. 7, the variation of stress versus logarithm of again with the magnitude of stress decreasing considerably
time to-break is plotted for an organic glass at 70 *C using as the logarithm of time-to-break approaches to infinity. On
Eqs. (7) and (9) or (11) with /3-0.0027X!04 m2/ the other hand, Eq. (7) gives only a linear relationship be-
N(0 00324"' 10O7 in 2/lb) over a long period of time. Equa- tween fracture stress and the logarithm of time-to-break for
tor (1)) or (1t) gives essentially a nonlinear relationship the range of time indicated without any nonlinear behavior
betweein fracture stress and the logarithm of time-to-break beyond. From these curves, it is seen that Eq. (9) or (11)
with partial linearity behavior Three stages are recognized obtained from the consideration of the statistical theory of
during the time span- At the beginning, when the stresses are the absolute reaction rate does give a more realistic behavior
very high, the time-to-break is very short and the relation- for a medium under load.
ship approaches a nearly constant fracture stress indepen- Similarly for the same polymer medium, in Fig. 8, the
det of time As the stress decreases, the curve exhibits a variation of the fraction of integrity f vs time t for several
straight line having a constant slope with increasing loga- different expressions is shown: ( 1 ) the simplified form of Eq.

(2) withKr = 0 (after Hsiao22'23 ) and Eq. (19) (after Kuk-
senko and Tamuzs 24); (2) and (4) the original form of Eq.

140 (2) with K, :-0 and3a = 5 and 7, respectively, and finally
3(3) shows Eq. (17) (after Kuksenko and Tamuzs 24 ) with

120 r p -0.285 x 10.-M2,N given data as labeled. It is clear that Eq. (2) with K, #0 is
z 1) a-!1201(oR.T- noYt ) ( 041 10 ,n2 b) the most sensitive one for describing a nonlinear behavior of

" UtRIT 65, (0 = 1778 x 10.6 tad/sot
100 UiR. a medium during the loading process. On the other hand,

S802 Eq. (2) with kr = 0 and also Eq. (19), shown together on
z 80 -A _a 'L, top of Fig. 8, are not sensitive at all and show only a linear
.o 6 27T u/y_ _A0 0 " straight line behavior while Eq. (17) seems to be a variation

(0 b 0 (14 286 x 104 lb/in2) of Eq. (2) and does behave similarly. However, it is not
- 6....T 29 N rn/n 3 ,3 04 N m1J clearly defined how the determination of the constants in the

40 -expression a and it can be made.
cc The curves in Fig. 8 indicate the importance of a realistic

S20 • - Uo'-.t So x 1 7 x 2 io o/no nonlinear consideration for describing the behavior of a me-
c t .. .. .- 13629 N rn,a 3 06,1 N M/M3) dium during loading. This consideration can be used to iden-
L 1 2 3 4 6 7 8 tify points of instability and fracture for a specific model

LOGARITHM TIME-TO-BREAK In tb IN SEC. through a parameter: the fraction of integrityf, which repre-
sents a measure of the integrity of the material under stress.

F. 6. . ,,Il .f ',iii V'. iV8'%aihAm ttuni-tu-btak l ui pumprii. sy- On the basis of these comparisons, it seems reasonably
tens clear that the nonlinear statistical absolute reaction rate the-
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(21) (1958).

RT 2  f f 9C. C. IlIsiao, Pliys. Today 19, 49 (1966).
2'S. N. Zhurkov, Int. J. Fract. Mccli. 1, 311 (1965)
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TEMPERATURE VARIATION DURING POLYMER FAILURE

C. C. Hsiao and Y. S. Cheng
Department of Aerospace Engineering and Mechanics

University of Minnesota, Minneapolis, MN 55455, U.S.A.

Using the statistical absolute reaction rate theory for thermally activated fracture processes an attempt is
made to investigate the temperature gradient during polymer failure. By considering the broken and intact
bonds in a polymeric system, the fundamental mechanisms of failure initiation and propagation are analyzed
through the application of a quantity f(t) describing the fraction of integrity of a material system as a measure
of the bond breaking and connecting at time t under stress. As a result the variation of temperature at fracture
is formulated and examined.

By considering different broken and intact bonding densities, the net rate of change of the fraction of
integrity f can be established as follows [1,2]

= Kr[-f(t)] -Kj(t) (1)

Kr = (cr exp [-U/RT(t) - p p(t)] (2)

Kb =  6)b exp [-U/P 7(0 + P3V1i(t] (3)
where Kr and Kb are rr vely the rate of connecting of the broken and breaking of the intact bonds, or and
Cob are the frequencie! motion of the broken and intact bonds, U is the activation energy, and R is the
universal gas consta-. T(t) is the absolute temperature and p and P3 are respectively positive, definite
constants modifying the longitudinal stress NI(t) per bond at time t.

In a random molecular system, the dominating bonds are those oriented in the direction of stressing.
For simplicity, consider a fully oriented system which is thought to well represent the kinetic behavior of
either a brittle or ductile polymer system.

The stress along each individual bond in a system under a simple stress a(t) is:

V, (t) = a(t)/f(t) (4)

In the case of monotonically increasing stress as a linear function of time,

3Pv(t) = 3ot (5)

and p becomes increasingly unimportant, thus the governing equation for the rate of change of the fraction of
integrity becomes:

f = -cob fexp[-U/RT(t)] exp(P3ot) (6)

By differentiation with respect to time, the acceleration of the fraction of integrity can be obtained:

fJ = co(UtI/RT2(t) + po + f/f(t)] exp[-U/RT(t)] exp(13ot) (7)

Using (6), it becomes evident that

UT/RT 2(t) =f/f - f/f - Po (8)

Here 3o is likely to be positive, since 3,','(t) and t are all positive, therefore when

?f/- f/f < Po, T < 0 is negative (9)

the temperature must decrease. However, when

/ - f/f > Do 10)
the :cmi)eratture of the sy.:em muist increase, i.e.

T> 0, 1% . .. ,



This is especially true when f -4 0 at fractu.-e. Fig. 1 shows the temperature risc at the lower right edge of a
brittle polystyrene specimen stressed vertically just prior to the occurrence of fracture. Similarly, for
polycarbonate which is som ewhat ductile under tensile load, an increase in temperature was also observed at
fracture (Fig. 2) in a region on the right center edge of a circular hole after a large plastic deformation had
taken place.

Fig. 1. Temperature Gradient at
Fracture of Polystyrene

Fig. 2. Temperarure Gradient at
Fracture for PolvCarbonate

It is interestine to floze thzt the initial increase in temperature for the polystyrene specimen (lower righ,
edge in Fig. I) just before the catastrophic fracture is no more tin 2*C, whereas for the polyearbonate
'pecilenl at 5' C tei pera itire rise is shown on ie right central periphery of the dcormed circle tFig. 2).
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V ' . A NEW GENERALIZED DAMAGE CRITERION FOR POLYMERS

C. C. Hsiao
Department of Aerospace Engineering and Mechanics

University of Minnesota, Minneapolis, Minnesota 55455, U.SA

Since the dawn of human culture the problem of the strength of solids has been experienced and
utilized empirically. Probably, not until the past 500 years has the problem of strength and deformation of
solid bodies been investigated quantitatively. The phenomena of yielding and strength have been
carefully considered during the past 100 years. It is only during the last twenty years.that special attention
has been given to the study of craze initiation criteria of polymers by Stemstein and Ongchin (1969), Gent*
(1970), Bowden and Oxborough (1973) and Argon et al. (1973). More recently S. S. Chem and C. C.
Hsiao (1985) have developed a generalized time-dependent theory of craze initation for viscoelastic
materials. Since the mechanical damage behavior is intimately associated with deformation and yield as
well as crazing and fracture, a generalized damage criterion is described to account for the initiation of
yield, craze and fracture of polymeric systems in a unique theory.

The damage mechanism of polymers under stress may be associated closely with microcavitation
and molecular orientation. From the microstructural viewpoint stressing may be visualized as a source of
instable process which causes the field of homogeneous deformation to develop into localized flow
characteristics. Thus the creation of microcavities under hydrostatic tension and the micromolecular
slippage form highly oriented molecular domains occur in regions of crazes. This bifurcation creates free
volume and sharp flow which are provided by the existence of the deviatoric stress tensor S. In terms of
stress tensor components aij the magnitude of the deviatoric stress is expressible as follows:

S = {[(a,11 - (y22)2 + (a22 - a33)2 + ( -: " a11)2 + 6 (a 2 + a 23 + 21)]}1 2  (1)

At any locale when the magnitude o1 the deviatoric stress reaches a criticai val., e Sc (i.e. S > Sc), flow will
develop. Here Sc is seen as the intrinsic flow resistance associated with the damage including the non-
uniform and non-gradual behavior of yielding, crazing and fracturing.

The intrinsic flow resistance is dependent upon the intermolecular forces and in turn the
interatomic spacings. The average intermolecular distance may be related closely with the specific free
volume characterizing this distance. Hence

Sc = ¢(V) (2)
where V is the free volume. That is the critical deviatoric stress is a function D of the dominating specific
free volume V among others.

Therefore it may be adequate to establish a generalized criterion for damage intiation when

S >_ 1(V) (3)
where the function ¢ is to be determined for initial yielding, crazing or fracturing.

A general expression for 0 may be obtained by series expansion with respect to V:

(V)= XCnVn
n=-oo (4)

where Cn are material parameters dependent upon the microstructural conformation of the medium. For
example when Cn = Co = constant, V" = V° = 1, the above theory subject to certain restrictions gives the
well known von Mises theory of yielding--the distortional strain energy criterion. This indicates that the
criterion s not affected by volume variation. When n is not zero, volume is permitted to change, therefore
craztng and Iractunrg criteria can be formulated. All the criteria put forward eadier are reducible as special
cas, s from Ihe !ollowing time dependent generalized damage criterion-



eadiecr are reducib~le as special cases fromithe fov ring ti-r-- }~ig ie &draag- criterion [ll.

S(xk. -1. t) a.~ Cn 13cco0(i) + J J12 ( - , ij ~ ) dtj0  (5
fl=-oo

where the symbols designate quantities as belowm.

S maonitude of the deviatofic stress tensor S.

Xk ~coordinates in current frame of ref erence (k =1,2 or 3),

T absolute temperature,

t real time,

Cn expansion inateijal coefficients,

n integers n o<rio)

ao constant linear thermal coefficient of expansion,

0(T) temperature function,

J2 ( -q'j bulk creep compliance function, with
=t i(T) and I #Mr4I as shift times defined by the 'temperature-time shift" function <for

'thermorheologically simple viscelastic media,

and oj derivative of the isotropic stress tensor with respect to time -c.

This three dimensional generalized damage criterion is reducible to any of the other criteria by
introducing appropriate values for Cn. In the two dimensional situation for craze initiation this new criterion
is represented by line 3 as shown in Fig. 1. This reduces to each of the other curves from 1 to 5 when
appropriate values Of Cn and n are introduced.

q1 and all designate principal stresses
5 in MPa

Biaxial locus for criterion of craze initiation in
4 polymers by:

-3 2 1. Sternstein and Oncichin, n =-1, 0

0 30 60 15 2. Mohr-Coulomb (Gent,
Bowden and Oxborough). n = 0,1

6 3. New Criterion,

4. Argon. et al., n = -1

5. Distortion strain energy, n = 0,1; 01= 0

6. 450 reference linE.

Fig. I 20 Biaxial Locus for Criteria of Craze Initiation in Polymer Matrix

ThiL gencraiized 3D Damnage Criterion is also applicable to fractt -e including fatigue failure for combined
cyclic stress for fiber reimorced composites [2].

Re'erences

1 C C llsirio. 0--ae Mechanics in Composites AD12,7- ASMEI (1987)
2 C C iio ar: ' S. Cheng,"A General Damage Crilerion for S,)IdS - proc. ICF7. ln'ernaliowaI

Cc~:~ncc~ c , -clure, Houston, TX, M,1arch(18)
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A NEW DAMAGE CRITERION FOR COMPOSITES

C.C. Hsiao, Y.S. Cheng, S.J. You, and Y.H. Yuan
Department of Aerospace Engineering and Mechanics
University of Minnesota, Minneapolis, MN 55455 USA

A new general damage theory for anisotropic viscoelastic composite

material systems has been constructed. The theory is expressed in terms of the

stress tensor function and the microstructural intrinsic damage resistance.

Deformational damages such as localized sharp flow and molecular orientation,

cavitation, and time-dependent volume variation including temperature effects

are considered. The bifurcations and instabilities associated with the average

molecular distances resulted from unbonded atomic forces and intermolecular

attractions create the dominating free volume variations among others. Using

series expansion the damage resistance is given in terms of internal and

external energies. As a result a new general anisotropic damage criterion is

obtained.

A composite material may consist of many phases of reinforcement such

as whiskers, particles, or fibers which are bonded together by interphase

matrices. The strength and failure behavior is critically important in analysis

and design. Damages such as yielding, crazing, and fracturing of the

composites are natural consequences of deformation under stress and are

considered the result of the variation of the energy density in the media. From

the microstructural viewpoint stressing may be visualized as a source of

instable process which causes the homogeneous deformation to develop into

localized bifurcation. This in turn creates distortional and dilatational changes.

In general at any locale when the magnitude of the total energy density 9



reaches a critical value ,c damage will develop. That is when the following

condition is met, damage will occur.

G > -c.(1)

Here &c is seen as the intrinsic damage resistance to yielding, crazing, and/or

fracturing.

The intrinsic damage resistance is dependent upon the intermolecular

forces and in turn the interatomic spacings. The average intermolecular

distance may be closely associated with the specific free volume Av

characterizing the distance. Hence the damage resistance can be

approximated by a function of the specific free volume Av which is a

dimensionless quantity identifying the variation of the volume of the media:

%=4(Av). (2)

A general expression for (D may be obtained by series expansion with

respect to Av [1]

00

'1(Av) = an(Av)n (3)
n=--o

where an are material parameters dependent upon the microstructural

conformation of the medium.

Since most composite systems may be regarded as viscoelastic, the

volume variation is expressible by summing the principal strains si(x,t), eli(x,t)

and clll(x,t) or e1(x,t) the normal components of the strain tensor where x

represents the spatial coordinates and t is time:

2



Av(x,t) = e(x,t) + -II(x,t) + e111(x,t) = -1 = 1 (x,t) + e22(x,t) + , 33(x,t). (4)

From anisotropic linear viscoelasticity, ii(x,t) can be written as the sum of

thermal expansion volume and dilatational change as follows:

t

Av(x,t) = J JiMi -11) .'kl(X,t) d-t + cziiO(T) (5)
--00

with =t (T) and ij=t4(T) as defined by the temperature-time shift principle for

thermorheologically simple viscoelastic materials. Using (5), the time-,

temperature-dependent damage theory can be rewritten as

00 t n
_(x,T,t) E aan[oqiO()+ fJ1"-) o,,,) (6)

n=-o-o -00 J

where the symbols are reviewed as follows:

&is the specific energy per unit volume,

x are the spatial coordinates,

T is the absolute temperature,

t is real time,

(:zii is the summation of the thermal coefficients of expansion,

0(T) is the thermal function,

Jijk(-q) is the time-dependent anisotropic compliance function with t=t(T)

and l=tc4(T) as the temperature-time shift functions for

thermorheologically simple viscoelastic materials,

4(T) is the temperature function,

kl is the stress tensor,

is a dummy time variable, and

Gkl is the time derivative of the stress tensor kI with respect to r.

3



Since a material system can be loaded under a complex state of

stressing, multiaxial conditions must be taken into consideration. The available

input associated with the deformation up to damage may be divided into two

parts. One part is the internal strength that the system possesses and the other

part is the energy introduced into the system by stressing. The total energy may

be considered as proportional to the product of a tensor Pij and the stress tensor

aij as given below:

"9 ~ pijoij (7)

where 3 j are the tensor coefficients which are related to functions of the internal

and external energies. That is

Dij = bij + bijklOkl (8)

where bij represent the internal tensor coefficients of the second rank and bijkl

are the anisotropic tensor coefficients of the fourth rank.

The total energy then introduced in the material system at any time t,

temperature T, and position x becomes:

C(x,T,t) = bijuij(x,T,t) + bijkITkI~ij(x,T,t) . (9)

The first term on the right hand side of (9) represents the potential energy of the

system. The energy introduced by complex loading conditions is represented

by the second term.

Combining (9) and (6), a new damage criterion for composites can be

written as follows:

4



00 t n
bijoij + bijkIIoIj , an[ ii0(T) + " -(x,T,t) dt] (10)

n--oo ---0

At this stage when a01-0, and an=0 (n 0), the above equation reduces to Tsai-

Wu's tensor theory [2] and in turn to Tsai-Hill's theory [3,4] for anisotropic

composite systems.

The development of their strength theories was originated from the

distortional energy theory for yielding of solids. However, it is generally

accepted that distortion cannot be separated from dilation in anisotropic

composite systems. But based upon the structure of their theories there is no

provision for considering the dilatational change of the material system. On the

other hand the present theory does provide the possibilities of dealing with both

distortion and dilatation. Detailed information will be published elsewhere in

the future.

The validity of the present theory can also be seen by considering the

strength theories of isotropic material systems [5]. By simplification and

reduction of (10) it is also found that the general theory is applicable to not only

static but also dynamic loads.
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VI. 2.

Kinetic Strength of Solids

C. C. HSIAO
University of Minnesota, Minneapolis, Minnesota 55455, USA

ABSTRACT

The kinetic strength of a solid has been analyzed empirically and theoretically. It is
found that the statistical reaction rate theory can explain satisfactorily the nonlinear
behavior between fracture strength and time while the linear empirical relationship is
limited in its scope.

KEYWORDS

Strength of solid bodies, Kinetic strength, Fracture strength, Time dependent
strength, Reaction rate theory

The time dependent kinetic strength of solids has been studied for over half of a
century. In general, two levels of approach have been employed. One is
submicroscopic atomic consideration and the other may be referred to as
supermacroscopic continuum investigations. The latter is mostly phenomenological
which results in numerous empirical relationships. One of the most extensive
investigations is that done by Zhurkov (1965). Under a state of constant stress creep
condition more than 50 different kinds of solids including metallic and nonmetallic,
amorphous and crystalline, oriented and unoriented systems were recorded the
stress dependent of the time-to-break data. Even data on the temperature variations
were tested and analyzed. It was found that the logarithm of time-to-break and the
applied uniaxial tension were linearly related as

tb = to exp[(U -'f)kT] (1)

where tb is time-to-break,
to is a constant,
U is a constant which may be related to the activation energy of the solid,
y is a positive definite constant,
ais the applied constant stress,
k is Boltzmann constant and
T is the absolute temperature.
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Fig. 1. Time-dependent fracture strength for solids, (after Zhurkov).

This result has been very useful as it was found to be reasonably consistent within a
meso-stress range. Figure 1 shows the results of a variety of solids. It is seen that
the time dependent fracture strength is indeed linearly related between the logarithm
of time-to-break and the stress at fracture.

However, in reality, there is deviation from this empirical linearity when either super
high stresses or relatively low stresses beyond the meso-stress range is
encountered.
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Fig. 2. Fracture stress vs. time-to-break.

tb = (1/o)b)(InAJ2a) exp(U/RT-2pra). (8)

Using proper values (Ettouney and Hsiao, 1988) for the various quantities, (8) is plot-
ted in Fig. 2. As can be seen, not only the mesostress range is satisfied, as the cen-
tral section shows the linear relations between the logarithm of time-to-break and the
fracture stress but also the nonlinear portions for both the high and low stresses be-
yond the linear region. From the expression (8), it is seen that Kr has been assumed
zero; otherwise, the low stress region would move up as shown in Fig. 3 with Kr - 0.

All these tell us that using equation (2), the nonlinear relationships between high and
low levels of the fracture stress and the logarithm of time-to-break can be r,,atched.
Indeed, this can be illustrated in Fig. 4 in which the data points for solids tested at
elevated temperatures when low stress values become dominating were obtained
earlier by Zhurkov and the curves were computed to show the possible
representation at all stress levels.
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It would be interesting to compare the high kinetic strengths with experimental
values. Up to now little or no data have been found yet. However, it is felt that
expression (2) should predict the kinetic strength behavior adequately. If this is
accepted ihen the time-to-break tb vs. f, the fraction of integrity, for a solid will be
related as shown in Fig. 5.

It should be pointed out that this report seems to give the appearance of the
extension of the classical one-dimensional Zhurkov model, however, it is
fundamentally different from it. As stated at the beginning of this write-up that
Zhurkov's model was and is an empirical relationship whereas the present model is
based upon the submicroscopic atomic as well as molecular considerations. It is
also quite apart from Hof's (1953) or Kachanov's (1958) models. Using atomistic
approach the current model should not be looked upon as a one-dimensional model
as it is easily extended to a three-dimensional situation by introducing molecular
orientation mechanism as a result of deformation (Mun and Hsiao, 1986). This
mesomechanics approach is considered to be very sound as it makes the
connection between microstructure, micromechanics, and macromechanics.
Therefore the kinetic strength is given in terms of the basic atomic and molecular
quantities, thereby the mechanical properties can be deduced for solids exhibiting
creep, diffusion, or dislocation glide and so on as the time, temperature, molecular
motion, and elementary bonding stresses, etc. have been incorporated into the
model in the first place (Hsiao and Moghe, 1971; Hsiao, 1971).
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