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1 Introduction

The dataflow programming model is attractive because it exposes parallelism in
computer programs, a crucial step in compiling for multiprocessing computers.
Once a program has been converted into a dataflow graph, only necessary con-
straints among the operations remain, and the program can, ideally, be spread
across many processors. In the past, this has been done by special-purpose data-
flow machines such as DDM1 [5], the Manchester Dataflow Machine 7], Monsoon
[13], and Sigma-1 [15] that directly execute dataflow graphs. In addition to re-
search in pure dataflow architectures, there is a growing interest in developing
hybrid architectures, such as the EM-4 [14], that take advantage of the parallelism
found by dataflow methods without sacrificing the straight-line efficiency of von
Neumann machines [6]. Our approach is to develop a system to execute dataflow
programs on the J-Machine, a massively-parallel general-purpose computer [2].

The J-Machine was not specifically designed to support dataflow execution but
instead to provide universal mechanisms for concurrency, synchronization, and
naming that support many parallel programming models. Having universal mech-
anisms allows the separation of programming model issues from issues of machine
organization [4]. Our task was to find ways to utilize the J-Machine’s mechanisms
to meet the requirements of dataflow programs. Additionally, we sought to find
the best possible representation of dataflow programs to match the J-Machine.

Specifically, our first system involved translating each node of a dataflow graph
into a sequence of code, where execution proceeded sequentially within each se-
quence, but the order of the sequences was determined at run-time. The second
approach, motivated by a desire to lessen run-time scheduling overhead, made
use of Iannucci’s work on hybrid architectures [10] and Traub’s work on dataflow
graph sequentialization {21] to produce a single sequence of code for several data-
flow graph nodes, allowing some scheduling to be done at compile-time. Both
systems used dataflow graphs produced from the dataflow language Id (11]. This
paper describes our experience and results with these systems.

1.1 Background
1.1.1 Id

Id is a mostly-functional language originally designed for programming dataflow
computers {11]. Interesting features include I-structures and mechanisms for loop
parallelization. I-structures are data structures that bypass the inefficiency of
array modifications in purely-functional languages, where an array must be copied
every time it is modified. Copying is not necessary for I[-structures. Slots are
initialized to empty, and read requests of an empty cell are silently deferred until
the data is available. Writing a cell more than once denotes a run-time error.




While I-structures prevent Id from being purely functional, the language remains
deterministic, an arguably more important property. The unbounded latency of an
I-structure read is one of the reasons fine-grained scheduling is needed, in order to
use the time efficiently that would otherwise be wasted waiting for a read request
to complete.

A major source of parallelism in Id programs comes from loops. The semantics
of Id is such that instructions from different iterations of a loop can be executed
out of order as long as data dependencies are obeyed. More details about loop
statements will appear later in the paper.

1.1.2 The J-Machine

The J-Machine (2] is a massively-parallel MIMD computer based on the Message-
Driven Processor (MDP) {3], a custom chip. For this iesearch, we used a simulator
of a 32-node J-Machine [9]. Each processor has 260K (4K on chip) of 32-bit words
augmented with 4-bit tags. Tag typesinclude L.uoleans, integers, symbols, pointers,
and cfutures. A cfuture is used for synchronization to represent an empty location
and typically is written into a memory location before the actual data value is
ready. If an attempt is made to operate on the cfuture, a fault occurs.

The MDPs communicate with each other by sending messages through a low-
latency network. When a message arrives at its destination, it is placed on the
message queue, and a new task is created when the message reaches the head of
the queue.

1.2 Overview

In the next section, we describe a straightforward method of implementing Id on
the J-Machine, based on Papadopoulos’ explicit token store (ETS) [12]. In the
following section, we describe the system we built to simulate [annucci’s hybrid
architecture on the J-Machine, focusing on the run-time data structures used to
support the style of synchronization used on his hybrid architecture, and on loop
parallelization. In the conclusion, we discuss the strengths and weaknesses of the
two systems and describe our plans to combine them into an efficient implement-
ation of Id.

2 ETS on the J-Machine
2.1 The Exi)licit Token Store

In a dataflow graph representation of a program, nodes represent operators, and
arcs represent dependencies. Tokens are the mechanism for carrying data values
on these arcs. Abstract dataflow machines have a waiting-matching unit that

2




matches tokens destined for dyadic (two-input) operators with their partners. A
token consists of several components:

1. A value to be operated on.

2. A contezt, indicating what instantiation of the graph it belongs to. (This
will be more fully explained in the section on dynamic dataflow.)

3. The destination address, corresponding to the node to which it should be
delivered.

4. A port number, indicating whether it is the “left”, “right”, or sole input.

Left and right tokens with the same context and destination address must be
matched with each other and sent to their destination address together to be
executed. It is usually more efficient to ezplicitly store tokens that arrive before
their partners than to implement a waiting-matching unit directly (12, pp. 44-
45]. In an ETS strategy, tokens that arrive before their partners are stored in
ordinary memory. When a left token, for example, is processed, the appropriate
memory location is checked for its partner. The memory address is a function of
the destination address and context, both of which the left and right tokens share.
If that location is not empty, it must contain the right token, and the operation is
performed. If the location is empty, the left token is stored there, to be retrieved
when the right token arrives and checks that location.

2.2 Static Implementation

Our first experiments with dataflow on the J-Machine involved static dataflow, in
which dataflow graphs must be acyclic and nonreentrant. This eliminates the need
for contexts, because the static discipline ensures that only one instantiation of a
dataflow graph will be active at a time.

For a J-Machine implementation of static dataflow, a token on its way to a
commutative dyadic node, such as plus, can be represented by two words:

1. A header with the address of the destination instruction.

2. The data value.

When a token is sent to a dataflow node, this two-word message is sent to the
processor on which it should run. The code for a plus node, written symbolically,
is:

[(Initialization code]

RO <- CFUT:0

R1 <- MSG.VALUE + RO

[Code to send result to destination]




The first time this code fragment runs, the first line loads a cfuture into RO,
signifying that the needed data is not present. When the second line tries adding
the cfuture in RO to the new argument, a cfuture fault occurs because no arithmetic
operations can be performed on cfutures. The cfuture fault handler, which is not
built into the hardware, encodes the arriving token’s value into the location of the
first instruction and then suspends.! After this happens, the code looks like:

[Initialization code]

RO <- [value of first token]

R1 <- MSG.VALUE + RO

[Code to send result and clean up]

When this is executed, the value of the first argument will be loaded into RO, and
the new argument will be added to it by the second instruction. The sum is then
sent elsewhere to be processed by one or more other nodes.

While the above example only works for commutative operations, it is simple
to extend the strategy to non-commutative operations, such as subtraction. This
can be done implicitly by having different entry points for the left and right argu-
ments, reflected in their destination addresses, or explicitly by having code at the
beginning of each node to check which token has arrived and to branch accord-
ingly. Dally [1] goes into more detail about implementing static dataflow on the
J-Machine.

2.3 Dynamic Implementation

Because static dataflow is too restrictive for most purposes, we extended the system
to support dynamic dataflow, where multiple invocations of a dataflow graph can
be active at once. To implement dynamic dataflow, we added an additional word
to each token to hold the context pointer. Every instantiation of a dataflow graph,
corresponding to a procedure application, for example, has its own context. In
order to allow the code corresponding to a node to be reentrant (by keeping tokens
from different invocations separate), unmatched values are not stored within the
code but in a separate area of memory where the locations are determined as a
function not only of the destination address but also of the context. This way, two
left tokens waiting for their partners at the same node will be stored in different
locations.

This process is illustrated in Figure 1. In Subfigure A, a token with the value 3
and the context C1 arrives, causing the appropriate location, a function of C1 and

1This approach would be less efficient if the encoding of the instruction to load a constant
into RO on the J-Machine were not so simple. To load the constant X into RO, one simply places
X in the instruction stream. When it is encountered, because it is not tagged as an instruction,
the decoder knows to interpret it as a constant to load into R0. Thus, creating the instruction
to load X into RO is trivial.
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Figure 1: Snapshots for Dynamic Dataflow ETS

the destination address DI, to be checked for its partner. Because the location
is empty, a cfuture fault occurs, and the value 3 is stored into the location. In
Subfigure B, a token with the value 4 and the context C2 arrives. Because tokens
with different contexts do not interact, this token checks a different location for
its partner. Finding that location empty, it stores its value there. In Subfigure C,
a token with the value 5 and the context C! arrives. When this token checks the
appropriate location, it discovers its partner, and the operation can be performed
on this stored value and the newly-arrived value. Similarly, in Subfigure D, the
second token with context C2 arrives, and that operation can complete.
The MDP code for a plus node in the dynamic system is:

Al <- MSG.CONTEIXT

R1 <- MSG.VALUE

R1 <- (A1] + R1 ; This line may fault
[{Code to send result and clean up]

First, the context pointer is loaded into address register AI. Next, the value of
the just-arrived token is loaded into general purpose register R1. The addition will
cause a cfuture fault if the previous token has not been stored into the location
pointed to by A1. If the first token has arrived, A1 will point to it, and the
additionn can take place.

The cfuture fault handler is simply:

(a1] <- Rt
suspend

This stores the value of the newly-arrived token into the location pointed to by the
context pointer and then suspends. Note that there is no unnecessary overhead in




fact n =
if n <= 1 then
n
else
n *« fact (n-1);

Figure 2: Id Code for Factorial

the code for the node or for the fault handler. Each only contains instructions to
do essential loads, stores, and ALU operations.

The recursive factorial program shown in Figure 2 takes 431 ticks to compute
4!, compared to the 315 ticks the same algorithm takes on the J-Machine under
Concurrent Smalltalk [8, p. 110]. A tick is the time unit used by the simulator:
one tick equals one instruction, even though not all instructions on the J-Machine
will take the same time. Spertus [16] describes more details of the dynamic ETS
system on the J-Machine, such as the calling convention used and the mapping of
instruction nodes to storage slots.

3 A Hybrid Approach

An obvious shortcoming of the ETS system is that every dataflow instruction
is scheduled separately. After even the most trivial operation, such as a single
addition, tokens must be built, sent, and matched. In contrast, on a hybrid system,
the compiler groups threads of instructions into scheduling quanta (SQs). While
this lessens the amount of run-time parallelism available, it minimizes scheduling
overhead. Additionally, even dataflow computers do not attempt to exploit the
maximum possible parallelism. For example, on Monsoon, a specific invocation of
a procedure is generally not divided among processors but takes place on a single
one. Instead, the parallelism comes from pipelining and from running iterations
of a loop concurrently on separate processors [13]. A major benefit of a hybrid
architecture over a pure von Neumann architecture is that the hybrid shares the
latency toleration found in dataflow machines: When one branch of execution is
waiting for a result from elsewhere, other instructions whose data dependencies
are satisfied will be executed. A fuller justification of hybrid architectures can be
found in [10, Chapters 1-2].

We did not devise our own methods to partition instructions into threads but
relied on Traub’s methods [21]. We built our compiler on top of Iannucci’s hybrid
Id compiler and, in many cases, imitated mechanisms from his hybrid architecture

[10].
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Figure 3: Run-Time Data Structures. The data for slot 5 has not arrived. The
presence of a continuation list indicates that instructions in the codeblock have
tried to access slot 5. When the data arrives, the SQs indicated by the continua-
tions will be restarted.

3.1 Run-Time Structures

A procedure is divided into many SQs that together constitute a codeblock. When a
codeblock is invoked, a contiguous region of memory called a frame is allocated for
its arguments and scratch variables. The frame is given a unique global address,
built by combining its processor number with its local address. Its first slot is
initialized to point to the caller’s frame. Because frames provide each invocation of
a procedure with its own data area, the same procedure can be executed multiple
times on one processor, with execution of the invocations interleaved. After a
codeblock starts executing, it will probably fault on a slot in its frame; that is,
it will look for a value in a specific slot of the frame in which no data is present,
and execution of the codeblock will thus be unable to continue. In this case, a
continuation is created encoding the address where execution should restart when
the data arrives, and this continuation is stored into the empty slot. When the
data arrives, it will be written into the slot and the continuation will be re-enabled,
i.e. placed in the message queue for subsequent execution. When all of the SQs
in a codeblock have successfully completed and any return values have been sent
to the caller, the frame can be freed. These structures are shown in Figure 3 and
are described in greater detail in {17]. Our compiler took hybrid code produced by
Iannucci’s compiler [10] as input, outputting MDP code.




def unsched x =
{p=12>o0;
a if p then bb else 3;
b = if p then 4 else aa;

aa = & + 5;
bb = b + 6;
c = a + b;
in

c}

Figure 4: A Statically Unschedulable Codeblock. It is impossible to determine the
order in which a, b, aa, and bb can be computed without knowing whether z > 0.

A:| it pthen B:| it pthen
a<-bb be 4
else else
a<-3 b <- aa
aa<-a+5 bb <- b +6

C.'I C<a+b I

Figure 5: Scheduling Quanta for Statically Unschedulable Codeblock

3.2 Execution Within a Codeblock

To understand the execution of a codeblock, consider the procedure in Figure 4
and originally from [19, p. 2]. The order in which the statements are executed
depends on whether the argument z is positive. The orders of evaluation are:

e Ifz>0,b—-bb—a—aa—c
eIfz<0,a—aa—-b-obb—c

Observe that in both cases, b is evaluated before bb, a before aa, and c is last.
These static dependencies allow the partitioning of the code into four scheduling
quanta, as shown in Figure 5.

The order in which the SQs are executed when z > 0 is shown in Figure 6.
P is the first SQ to run, forking A, B, and C, in that order, then suspending.

8
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Figure 6: Snapshots of Message Queue and Frame Memory for Program in Figure 2

A begins, then suspends, because bb is needed but not available. B, next in the
queue, begins and runs to completion. When it stores bb, it sees that A is waiting
on the value and sends a message to restart A. C then begins executing and faults
on a, suspending. The second request to execute A is now at the head of the
message queue and completes, sending a request to restart C. C runs, performing
the addition and whatever else follows, such as returning tLe resulting value.?

3.3 Loops

As encouraged by the semantics of Id, up to K different iterations of a given
loop can be active at a time, where K is the dynamic loop-unfolding constant.
Because iterations of an outer loop nominally run on the same processor, individual
instructions are not executed concurrently. Instead, the parallelism comes from two
sources: First, when a calculation within one iteration is waiting for data, such as
the result of a procedure call to another processor, instructions from other active
iterations may be executed, subject to data dependencies. Second, if there are
subroutine calls or inner loops within the loop, these may be spawned onto other
processors and run in parallel, as will be described in more detail below. Because
up to K iterations of a loop may be active at once, there must be K iteration
areas allocated to store the intermediate values. Thus, frames for codeblocks with
loops are larger than frames for non-loop codeblocks. The methods for ensuring
correctness when parallelizing ioops are inherited from Iannucci’s compiler, and
the interested reader is referred to (10, Section 4.3.5]. :

Figure 7 shows a simple program to sum the results of a function applied to
the first n positive integers. The keyword nezt allows the circulating variable total
to be referred to in a functional way. The loop variable count is also a circulating

2The reader may have observed that the sample procedure could be totally statically scheduled
by observing that it returns 14 if z > 0 and 11 otherwise. The example is still relevant, because
procedures exist for which no such reduction is possible, for example, if the bindings for a and b
were changec .2 a = £ x bband b = g x aa, where f and g were passed in as parameters (19,
p. 2]. The sii ler program is used purely for ease of exposition.




def add_em_up £ n =
{ total = 0
in
{ for count <- 1 to n deo
next total = total + f count
finally total }}

Figure 7: An Id Program to Sum a Function Applied to the First n Integers. Loop
keywords are “for”, “next”, and “finally”.4

variable, i.e. it is read and written by iterations of the loop. Iteration areas
with space for these variables, plus temporaries to handle the procedure call, are
allocated within the frame when the procedure is invoked. The initial values of
count and total are set in the first iteration area, which gets marked as enabled,
meaning it may run. For each enabled iteration, the following steps occur:

1. Compare count to n.
2. If count < n then

(a) Write count+1 into the appropriate slot of the next iteration area and
mark it as enabled.

(b) Spawn the procedure call, f count.

(c) Add the result of the previous step to total, writing the sum into the
total slot in the next iteration area.

(d) Because all reads of the incoming circulating variables have been per-
formed, set a flag in the previous iteration area to indicate that the
iteration area may be reused.®

3. If count > n then write the current value of total to a frame slot outside the
iteration areas.

After the final result has been written to the outside frame slot designated for
the finally value, the appropriate SQ will run, sending the value to the caller
and freeing the codeblock frame. Figure 8 illustrates the process by showing the
contents of the first three iteration areas as the loop begins. Enabled iterations

4A more efficient way to perform the same function would be to use a tree, but this program
is better for illustzating relevant parts of our system. .

5For the full details on how iteration areas are recycled, i.e. when the dynamic number of
iterations is greater than the number of iteration areas K, see (17, pp. 20-25].
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Figure 8: Snapshots for Loop Example

are denoted with bold borders. Because up to K invocations of f will run at once,
this method can give substantial speed-up if f is slow.

The reader will observe that this scheme does not address nested loops. These
are lifted out of procedures at compile-time and form new codeblocks that will be
called by the original procedure. Thus inner loops can run in parallel on separate
processors.

3.4 Performance

Because we used a simulator of the J-Machine, we only were able to run small
programs and to simulate a small number of processors (up to 32). Larger-scale
experiments await the construction of the J-Machine. The two programs we ana-
lyzed in greatest depth were a recursive factorial procedure and a simple procedure
that used the loop constructs.

3.4.1 Factorial

One test program was the recursive factorial program shown in Figure 2. In our
preliminary system, load-balancing is not performed by the compiler. We modified
the MDP code to spawn the factorial call with argument n to processor n to
distribute processor usage. The total code length is 180 MDP instructions, not
counting code in library routines {17, Section 4.1)].

11




Handler Name | # Calls | Ticks/Call | Total Ticks |
Lookup 25 5 or 6 + 6w 212
Cfut 21 18 378
Move-Remote 16 13 + Tw 264
Continue-Test 14 7Tor 20 189
Get-Context 3 24 72
Allocate 3 12 36
Total 136 n/a 1061

Table 1: System Calls for (fact 4)

When 4! is computed on the MDP simulator, it takes 1263 ticks for the result to
be written to the original calling frame. With four processors enabled, utilization
is 37% — i.e. on average, a processor does useful work a little over a third of the
time. The hybrid system does not use the operating system written to support
object-oriented programming on the J-Machine (8], so the library routines and fault
handlers constitute the entire operating system. The functions of these routines
are:

e Lookup — Check if a frame slot holds a disabled continuation before writing
to it. If a continuation is present, enable it to signify that the data has
arrived.

e Cfut — Store the current continuation in the slot on which the cfuture fault
occurred, then suspend.

e Move-Remote — Send a value into a frame slot of a parent or child procedure,
usually on another processor.

e Continue-Test — Test whether a continuation will be able to run, before
enabling it.

e Get-Context — Allocate and initialize a frame locally, send the address to
the calling procedure, and enable the first SQ in the codeblock.

¢ Allocate — A low-level memory allocation routine used by get-context and
cfut.

Fault and library usage are shown in Table 1. As the totals show, 84% of the
time is spent in the operating system. The routine that consumes the most time
is the cfuture fault handler. It is called 21 times, and each time takes 18 ticks. It

12




Argument || Ticks/Call | Ticks/Skewed Calls | Ticks/Nonskewed Calls
1’¢ Result 2" Result | 1* Result 2"¢ Result

4 1263 1864 2163 1992 2271
8 2691 4204 4590 4332 4611
12 4119 6544 6846 6672 6951

Table 2: Latencies for Factorial. This table compares the number of ticks required
to compute one and two calls of factorial. For each case, the number of processors
used is the same as the argument. The first data column shows how long it takes
for one call executing alone to complete. The second set of columns shows how long
it takes to complete two factorial calls initiated at the same time, skewed among
the enabled processors. The last set of columns shows the completion times when
the two calls are not skewed among the processors.

takes so long because it must allocate space to store a continuation and fill in the
necessary data.

As described in Section 2.3, the ETS implementation takes 431 ticks, compared
to the hybrid system’s 1263. The cost of using library routines to simulate Ian-
nucci’s architecture was very high. A more efficient approachk would involve less
run-time interpretation. .

Another reason why computations take a relatively long time to complete is
that many design decisions favored throughput over latency. This is due to the
decision to break apart any transaction of unbounded latency, which increased the
latency of tasks but improved throughput. Table 2 shows that computing two
invocations of factorial concurrently on the J-Machine takes significantly less than
twice as long as computing a single call. This is true for two reasons:

1. Each task suspends itself when it is waiting for a result from another pro-
cessor, allowing the processor to be used by another task.

2. The factorial calls can be skewed among the processors, i.e. by mapping the
calls to processors in such a way that interference between the two calls is
minimized.

Table 2 isolates these factors by including results for when the procedure calls are
skewed and when they are not. Even when two factorial calls are executed on the
same processors, in the same order, throughput is increased over the single call
case. This is because subtasks of the second factorial call can run when no work
can be done on a given processor toward the first factorial call.
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def
{

{

in

loop n =
sum = O
for i <- 1 to n do

sum_increment = sum + i;
next sum = sum_increment
finally sum }};

Figure 9: Id Code for Loop Example®

3.4.2 Loop Parallelization

The loop program we used is shown in Figure 9. The program returns the sum

of the first n integers.

There is a straightforward method for choosing processors for procedure calls

made from loop bodies so that they do not conflict with each other: If there are
K iteration areas, each can be assigned unique processors to send subcalls to; for
example, iteration area i can spawn its subcalls to processors i, i + K, etc.

This program is a useful benchmark in that it shows the overhead to set up

iteration areas and to launch iterations of a loop in parallel. The number of ticks,
as a function of K (the number of iterations to unroll) and n (the argument) was
50+5+ K +135+n. The three addends of the formula can be interpreted as follows:

1. The constant term, 50, indicates that the additional cost for a procedure

to use loop parallelization is low. There is thus little inhibition against
parallelizing loops. '

. The 5% K term is a pleasant surprise: Once the base cost for loop paralleliza-

tion has been paid, it only costs 5 ticks to add and support each iteration
area. This makes it reasonable to unroll many iterations of a loop.

The 135 * n term shows the overhead involved in managing the flags and
circulating variables in each iteration of the loop. If each iteration of the loop
spawns a long subroutine, as in the example in Figure 7, the only additional
code that will run on the home processor is that to spawn a procedure call.
This means that each iteration of the loop will use fewer than 200 ticks on
its home processor, regardless of how big a computation it performs. As
described above, it is trivial to distribute its procedure calls so that they do
not interfere with those of other iterations.

%The body of the loop could have been written more succinctly as next sum = sum + i, but
compiler compatibility issues dictated the use of the more verbose form.
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Number of input tokens waiting in structure
Slot for first token
Slot for second token

Slot for last token

Figure 10: New Frame Format

4 Conclusion

4.1 Future Research

Our implementation of two dataflow systems demonstrates that the J-Machine
has the necessary mechanisms to execute dataflow programs. However, certain
aspects of each system can be improved. The hybrid system did too much run-
time imitation of Iannucci’s architecture, which was especially costly because his
compiler was optimized for operations cheap on his architecture but expensive on
ours. The ETS system gave better results, but a large percentage of its execution
time went to overhead which could be avoided if nodes of the dataflow graphs were
combined.

We now plan to build a system that exploits the strengths of each method.
Specifically, we want to retain the scheduling quanta and loop parallelization of
the hybrid system and the low overhead of ETS. We believe this can be done by
basing our new system directly on the Id compiler used by the MIT Computation
Structures Group [18] instead of using Iannucci’s machine language as an interme-
diate step, only making use of his routines to parallelize loops and Traub’s routines
to partition a dataflow graph into scheduling quanta [21]. With Traub’s SQs, we
expect the new system to be several times faster than our ETS system.

We now plan to build a hybrid ETS system based on the observation that each
SQ has a fixed number of tokens used as inputs, where the number of input to-
kens is known at compile-time. Instead of performing a single operation, as the
ETS system does, when the argument tokens arrive, this system would execute
an entire SQ after all the input tokens arrive. Because SQs created from Id pro-
grams typically consist of a relatively small number of instructions, this will not
significantly lessen the parallelism, and the runtime overhead will be substantially
reduced. Figure 10 shows what the data structure would look like. Its first slot
would hold a count of the number of arguments to the SQ that have arrived, and
subsequent slots would hold these arguments. When an argument arrives, if it
is the last one, the SQ will be executed; otherwise, the token will be stored and
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the count incremented. This system would be more efficient than the ETS system
because of the less fine-grained scheduling: Instead of scheduling one machine in-
struction at a time, it schedules several. Its primary advantage over the hybrid
system is that the expensive lookup system call and cfuture fault handler used to
imitate Iannucci’s architecture (Section 3.4.1) would be entirely unnecessary.

4.2 Implications for the J-Machine

Our results with dataflow on the J-Machine demonstrate the ability of its mech-
anisms to support fine-grained asynchronous programming models. For example,
although loop support was not specifically built into the J-Machine, the existing
mechanisms allowed the implementation of Iannucci’s style of parallelizing loops.
This research has also identified areas where the mechanisms could be improved
to reduce overhead. The high costs of the cfuture fault handler and the lookup
system call (Table 1) of the hybrid system suggest the need for more hardware sup-
port for synchronization, such as hardware mechanisms to suspend a task when
a cfuture is encounted and to automatically restart a continuation when the data
arrives. This would greatly reduce overhead for the dataflow model as well as for
shared-memory and object-oriented programming models. Even though the pro-
posed system could avoid those relatively slow routines by using the ETS system’s
less expensive routines, the hardware mechanisms would be useful for providing
I-structure memory, an important item in dataflow systems, which now must be
simulated in software.
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