
AD-A235 511
_________ Carnegie- Mellon University

Software Engineering Institute

Support Materials for

Software Configuration Management

Support Materials SEI-SM-4-1 .0

ELECTE

91-00325

The fco,,rg statement o! asrance is more than a statement reqused tu comply with the federal law Tabs 4 a sere statement by the unversity to assure that all
peope are octuded a the dvemry which malies Carnege Meton an exotng place. Carnage Mellon wshes to include people wtthcc regard to race. cdor. naial I
orgA sex, hardcap. ret, qOr, creed, ancestry, betl, age. veteran status or sexual orentaton

Carneg e Melon t n vMrty d no discrMnate and Carneg e Meion Unmvrsty is requred not to dscr mate ,n adtnssons and emplyyment on the bass of race,
color, nWt onal or g n sex or handcap in violator of Tre VI of the 00w Rghts Act of 1964 Title IX ot the Educatonal A endments of 1972 ard Secton 504 ol the
Reatb 'tat on Act ot 1973 or otet federat, state, or locl laws or executve orders In addkton Ca rrge Meiton does rot dscrr ate in adm ss.os and employment on
the bass c' rel gon creed ancestry, bea,, age, veteran staes or sexual onentat on in vOat on of any federal, state or local laws or exective orders. Inquies concrn.
, (g appca' o. ct th s po;icy s oud tIe d recteo to the Provovs, Carnog e Mellon Un versty. 5000 Forbes Avenue. Pittsburgh, PA 15213 teephone (412) 2686684 or the
V ce Pres dent e'Cr E wrent. Carrege Me, on Ir.,versty 5000 Forbes Aente. PtIsb;,rgh PA 15213 telepoone (412) 268-2056

Support Materials

for

Software Configuration Management

SEI Support Materials SEI-SM-4-1.0

September, 1986

DVCTAB

Just it A at ioa_ _,.

Edited by c

By

James E. Tomayko Distr i/but-ion/
The Wichita State University v ilabilityr Ocdos

DI I Spooi, o

SCarnegie-Mellon University
Software Engineering Institute

6

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1986 by Carnegie Mellon University.

This document is available throug,. the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly. Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this docLment are also available through the Natiornal Technical Information Service. For information on ordenng,
please contact NTIS directly. National Technical Information Service, U.S. Department of Commerce, Spnngfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents

A Configuration Management Example 1
James E. Tomayko

Examples of Software Change Forms 10
James E. Tomayko

Example of a Software Configuration Management Plan 16
Walter Smith, Jon Lange

Typical Revision Control System Session 30
James E. Tomayko

Presentation Support Viewgraphs 33
James E. Tomayko

Sample Examinations 53
James E. Tomayko

Summary of the SEI Workshop on Software Configuration Management 55
Katherine E. Harvey

Bibliography on Version Control and Configuration Management 63
Daniel Conde

0

0

SEISM4-1 .0 l

Support Materials Software Configuration Management

A Configuration Management Example

James E.Tomayko
The Wichita State University

This section contains examples of discrepancy reports, change requests, and requests for enhancements to
products to show theirdifferences and similarities.

Real-Time Hacking, Inc. (RTH), a defense contractor, decided to write the control software for the elevator in its
new engineering building to provide its programmers some experience with Ada before its use was mandated in
new products. A team leader prepared the following specification and partial design of the program:1

Functional Specification

The program is a procedure RUNELEVATOR that controls an elevator serving 8 floors of a building, num-
bered from I to 8 (no basement).

At each floor in the building are two elevator call buttons-UP and DOWN (except for the first floor which does
not have a DOWN button and the top floor which does not have an UP button). Inside the elevator there are 8
FLOOR buttons, one for each of the 8 floors and an OPEN button. FLOOR button marked I is depressed by a
passenger to get off at floor I and the OPEN button is depressed to prolong the period the elevator door is open.

Elevator Specification: The elevator car behaves as follows:
1. It services the 8 floors carrying, passengers up and down: Its home floor is the first floor (the building

lobby). Whenever them are no requests for use, it stations itself at the home floor.
2. When going up, the elevator services all requests for stops on floors above its current position; similarly

when it is going down. The elevator tries to minimize the number of changes in direction: (No person
waits forever.)

3. The elevator opens its door for 5 seconds: Every time the OPEN button is pressed, the door is kept open
for one extra second. However, pressing the OPEN button when the door is closed has no effect.

Physical Details of the Elevator: Depressing an elevator button causes a hardware interrupt (with a possible
parameter) on the computer associated with the elevator These interrupts are queued automatically: Hardware
addresses corresponding t these interrupts am

Button Address Function

DOWN(l) 8#1000# Request to go down from floor I
UP(l) 8#1010# Request to go up from floor I
FLOOR(I) 8#1020# Stop at floor I
OPEN 8#1030# Delay closing door by one second

A package ELEVATOR with the following specification is available.

1The specification and partial implementation of thi example are adapted by permission from Narain Gehani, Ada: An Advanced

Introduction (Prentice-Hall, 1983, pp. 181-200). Ada is a trademark of the U.S. Department of Defense.

SEI.SM-4-1.0 1

Software Configuration Management Support Materials

package ELEVATOR is
procedure MOVEUPONEFLOOR;
procedure MOVEDOWNONEFLOOR;
procedure CLOSEDOOR;
procedure OPENDOOR;

end ELEVATOR;

Elevator Movement Timing Characteristics: The elevator movement consists of three phases-the car first
accelerates to steady speed, then travels at steady speed and, finally, decelerates to a stop. The elevator takes
1.80 seconds to go from a stationary position at floor I to a stationary position at floor 1+l (the characteristics are
the same whether the elevator is going up or down)-0.40 seconds to accelerate to steady speed while covering
the distance A1B1, 1.00 seconds traveling at steady speed to cover the distance BIC 1, and 0.40 seconds
decelerating to a stop while covering the distance CID,. A1B1 is equal to CID1, A1 coincides with DI-1 and D1
coincides with A1+1.

If there is no need for the elevator to stop at the next floor then it must be given another move command before
it starts decelerating, i.e., at or before position C1. There are two cases:

1. Suppose the elevator is in a stationary position at the time the first move command is given: Then the
elevator should be given the next move command at most 1.40 seconds after the previous move com-
mand

2. Suppose the elevator starts from floor 1-1 or earlier. It does not stop at floor 1 and is not to stop at floor
1+1 either. It was last instructed to keep moving at position CI-1. It must now be instructed to keep
moving at C1. Traveling at steady speed the elevator covers the distance AIB1 or CID 1 in half the time it
takes when accelerating or decelerating. Consequently, it covers the distance Cl-iC1 in 1.40 seconds.
The next move command, as in the first case, must be given at most 1.40 seconds after the previous
move command.

Design

Requests for elevator service, to go up or down, or to get off, are accepted by a task REQUEST_DB (requests
data base), which also keeps track of these requests. Task ELEVATORCONTROL controls the elevator using
commands provided in the package ELEVATOR: It also accepts requests from passengers, made by depressing
the OPEN button, to keep the elevator door open longer than the normal period. Task
ELEVATORCONTROL interacts with the task REQUEST_DB to

1. determine the next elevator destination based on pending requests for elevator serv.ce, and
2. supply information specifying the floors that have been serviced.

The interaction between tasks ELEVATORCONTROL, REQUESTDB, package ELEVATOR and the
elevator itself is illustrated in Figure 1.

At any time, the elevator will be in one of three states-UP, DOWN or NEUTRAL: States UP and DOWN
indicate that the elevator is going in the direction implied by its state in response to passenger requests. The
NEUTRAL state indicates that the elevator is not responding to a request but that it might be headed toward its
home floor if it is not already there.

2 SEI,.SM&4.1.0

support Materials Software Configuration Management

The Elevator System

DI
elevator car

up$ # DOWN. FLR

OV

J.

- - - - ELEVATOR

OeENCOTROL

ElEATIOR

Q~kW

Figure 1

SEI.SM-4-1.0 3

Software Configuration Management Support Materials

Some constant and type declarations used in the implementation are:

HOME: constant:= 1;
N: constant:= 8; --number of floors

subtype STORIES Is INTEGER range 1..N;
type STATE Is (UP, DOWN, NEUTRAL);

NORMALOPENTIME: constant DURATION:= 5.0;
EXTRAOPENTIME: constant DURATION:= 1.0;
NEXTMOVETIME: constant DURATION:= 1.39

--the next move command must be given at most
-1:40 seconds after the previous move command;
-selection of 1:39 is arbitrary except for the
-above constraint

The specification of task ELEVATORCONTROL is
task ELEVATORCONTROL is

entry OPEN; --keep the door open one second longer
--associate hardware interrupt location with entry OPEN
for OPEN use at 8#1030#;

end ELEVATORCONTROL;

The specification of task REQUEST_DB is
task REQUEST_DB Is

entry DEST(CURSTATE: In STATE; CURFLOOR: In STORIES;
NEW_STATE: out STATE;
NEW_FLOOR: out STORIES);

-computes the new destination and direction
-based on the current location, current
-direction and pending requests

entry REQUESTS (B: out BOOLEAN);,
-TRUE returned in B if there is any pending request
-for elevator service and FALSE otherwise

entry CLEARGO(DIR: in STATE; 1: In STORIES);
-picked up passenger(s) going up or down from floor I

entry CLEAROFF(I: In STORIES);
-passenger(s) let off at floor I

-the following entries correspond to passenger
-requests for elevator service

entry DOWN (1: in STORIES);
entry UP(: In STORIES);
entry FLOOR(: In STORIES):,

-associate hardware interrupt locations with entries
for DOWN use at 8#1000#;
for UP use at 8#1010#;
for FLOOR use at 8#1020#;

end REQUEST_DB;

4 SEI-SM-4-1.0

Support Materials Software Configuration Management

RTH's configuration manager placed the Functional Specification and Design documents under configuration. control when the program entered its implementation phase, even though it was an informal development project
and not intended as a product. She also wanted to get some Ada experience. This turned out to be fortunate, as a
flurry of discrepancy reports began to surface during integration testing. A configuration control board consist-
ing of the author of the functional specification, a representative from the test and evaluation team, the division
manager whose engineers were doing the Ada excercise, and the configuration manager hastily convened. The
division chief had the responsibility for the final decision on discrepancy reports and change requests.

A Discrepancy Report

One of the discrepancy reports the board considered was turned ir .y a test engineer (See Figure 2).

The origins of this problem lie in a typographical error that mushroomed across the system. The existing
mechanical elevator control system accelerated and decelerated in 1.4 seconds. The author of the Functional
Requirements mistakenly wrote 0.4 seconds. The engineers designing the changes to the hardware needed to
transition to the digital system, aware of the Functional Specification of the software, interpreted the value 0.4 as
a virtual change request to their equipment. Since the work was being done by RTH's in-house staff and not by
the elevator manufacturer, they did not realize that 0.4 seconds was a little fast, they thought it was a benefit to
be gained by using software control! The engineer writing the discrepancy report, thinking that the software was
the only new element in the system, flagged the software, but put a few question marks next to the hardware
classification because he really did not know.

The configuration control board quickly realized that the software was not controlling acceleration and decelera-
tion rates, but merely had to be aware of them for the NEXTMOVETIME parameter to be correct. Therefore
an easy fix to the documentation and code could be made, but it took nearly a week to run down who hau
changed the hardware. If the system had been organized as a product development effort from the start, a design
review on the hardware side should have detected the error in changing the elevator's existing acceleration and
deceleration rates.

Note that the discrepancy report form used here has provision for tracking the disposition all the way through to
the verification of the actual changes, including forcing the originator to sign off that the analysis of the problem
is understood by him.

A Change Request

During the testing period of the new system, a handicapped secretary sitting in a wheelchair found herself in the
back of the elevator with several people standing in front of her. When she reached her floor, the standees filed
out somewhat slowly. She got near the door as it started to close, hit the 'Door Open' button once, and then
nearly got trapped when she could not clear the doors during the one second delay. The result of this incident
was Figure 3, a change request.

The configuration control board evaluation of this change was fairly straightforward, in that it was obviously
needed. However, the change cost considerable money as the implementation group first tried stacking 'Door
Open' requests so that every time someone pushed the button a one second delay was stored. That way five
pushes equalled five seconds, and the users could actually control the length of the delay. One day the
president's four-year-old hit the button 36 times while the doors were open, resulting in another change request
by the person who had just boarded the elevator wanting to go down. The original change request form used had
no provision for sign-offs by the verfication or quality assurance teams, so the implementor's interpretation of
the phrase 'to 3 seconds' was not challenged. The final fix was to change the value of the constant
EXTRAOPENTIME to 3.0 seconds.

* Requests for Enhancements

After the RUNELEVATOR program finally was in operational use, the president of Death Rays, Inc. visited
RTH. The president of RTH, made aware of the Ada elevator controller due to his son's exploit, bragged to

SEI-SM-4-1.0 5

Software Configuration Management Support Materials

Death Rays' president about the program. It turned out that Death Rays was completing a new corporate head-
quarters, and became interested in purchasing the program to prove that they had some Ada in house. In order to
help keep Death Rays' business, the president of RTH ordered a new version of the program.

The configuration manager was infuriated. What had started as an ad hoc programming project had evolved into
an ongoing product development effort. The program was informally described, had no user or installation
documentation, and no consistent control had been applied to its evolution. The cost of adding discipline at this
point was expensive, yet no formal control board existed to draw attention to this fact. Production of the new
version of the program began. The implementors thought it would be an easy deal: find out how many floors,
check out the constants (this time they called the elevator manufacturer and subcontracted any hardware changes
to them), and everything would be an easy fix.

The program was changed, delivered, and installed. One hour later the customer version of a discrepancy report
(an Information and Assistance Request) arrived by messenger (see Figure 4). The members of the ad hoc
configuration control board met hastily over lunch. The problem and its resolution can be deduced from the
form.

Several months later, after everyone had nearly forgotten about RUN_ELEVATOR, a friend of the president of
Death Rays called the president of RTH. He was building a huge new corporate headquarters. It had three
elevators. The president of RTH, still wanting to keep Death Rays' business, picked up the phone to all the
software shop..

SEI-SM-4-1.0

Support'Materials Software Configuration Management

*j NIEMEOT SOFTWARE PROBLEM REPORT Alp_ _ 140
MPROVEMEN MpgAnusom _______Smith

f"" RunElevator excesivel 1. Theelvatr e onASi

CLAW ATM Th eleato weare testing using the
TeArsonn "oifi soltware accelerates and decelerate-s-

UOFMMAE exesieylat eopile have trouble staying on their re=e.

0 @0OWIMNTATION

MRm BY:
ANA4.YI TO SEOI1f
Dow By ORG _______ AW _______ IGNA1upwE "TV Q//§

MALYaa8 0"WARO GY ftEOPmA SOT1AB 098"a ORGANZATIONS IECEMO ATE
~ Requirements error--- the values stated in

CLUWIATON: Functional Specification, section 1.3 for acceleraticn/
deceleration are 0.40 seconds for each. Actual values are

ODNG 1.4 seconds lor each.

0 COMMrWPOL ___________________________

0 GM P1 0ENT
O NoOW CH ANGE MGM
0 AIONTED ON-

MEIVNOLLY-

fS~U6L..~.. MAYBT..... DATI f-/i rl 1 OMIATON DATE

SVSTM ni Since acceleration and deceleration are functions of the hardware,
the only change needed is in the declaration of NEXT-.MOVE.TIME in the Design

document, as follows:

NEXT ME TIME: constant DUATON:- 2.39
associated comme5t and Functional Spec also $.4,.u... DATE

OCCUM A WMK: IFunctional Specification

MWW~j0. -#& VA"~ NSO. Il........... L OrMAOCN NO. DATE

WW DO. - P041 NO. :. OAOCM NO. DATE -

MW 0NO. _________ AG4 00. OCNIAOCM NO0 DATE

low D No. ________PAWE MD. DCWAOC% 000 DATE

Cwwat APROVAL ZMAU~~A,-.~~/4/P

j OWNWATION: 4CNA~IMEVjIWSE BYS.C.M.1 VERIFICATION- 4CONECION TEBTED

WMNO' CLML011ETEST NO. e ?(- z~

AVAILABLE iN V i IOI

WMTO e DATE .IZ4t(BIGNATUNE C ATE L*Lt

Figure 2

SEI..SM-4-1 .07

Software Configuration Management Support Materials

XY2 J O REQUEST FOR CHANGE
F-100- 12/77 R FC RE-86-34

None Date Prepared Pop Date

Jane Doe 915186
Position Teophone No. Receiving OLC

Handicapped elevator ridr x7611

SDwrzment Name and Location OLC Location

Software QA Bidg.5
Mod/Unit/System Affected

RUN ELEVATOR

5 HARDWARE D oESIGN , -DEVIATION EMERGENCY

X)55?6OFTWARE 5COMPATIBILITY 5COST REDUCTION Y&(U1GENT

5 -FIRMWARE 5 MFG.OPTION OTHER ROUTINE

I use a wheelchair, and have trouble pressing the tDoor Open' button on the
computer-controlled elevator and then getting out without being squashed by
the doors.

Make the door stay open longer when the button is pushed.

i~naur Title Doat
ACEPTED FOR , 4 1 .__________________

NVESTIGATION Chl, c

q2PPROVEO -' REJECTED UM/SOM Dat.

Action Taken ce PRaa fat Rejecime

ECM/SCM Doe'
'Door Open' delay extended from 1 second to
3 seconds. e

Figure 3

8 SEi-SM-4-1.0

Support Materials Software Configuration Management

* XYZJ1-. INFORM AT1ON AND ASSISTANCE REOUEST INCIDENT--UMA

iAo.61623 One

CETAL SlERVICE NAME AND LOCAI"O DAT1E CUSTOMER TEL NO. & EXT. CUSTOMER NO,

RTH 2/5/87 999-555-5555 H-345

CU CO E AND ADESS ORIGINATOR NAME E Q CUSTOMER

Death Rays, Inc. Sam Short
OR TOEL NO. & EXT. SALES DISTRICT NO

999-555-5551

SE ZONE NO. SYSTEM DIV OPERATING SYSTEM RELEASE & PATCH LEVEL SOITWARE FIRWARE RELEASE DEVICE TYPEMOEL NO
CODE AND PATCH LEVEL

MEMORY SIZ TYPE DISC APPLICATION NAME RLEASE A PATCH LEVEL SOFTWARE PROGRAM NAME MODIFIED

RUN ELEVATOR 2.0 YES NO EPLAIN

DOCUMENTATON PiOLLEM DESCRIPTION
ENCLOSED

RUN-ELEVATOR Installation Manual When the elevator call button on the 14th floor
is pushed, the elevator tries to continue upward
when it arrives, refusing to open the door and runni
the motor.

DATE AND IME RECEIVED ASSIGNED TO PRIORITY COOE

2/7/87 John Smith Hi hest
RESPONSE DATE MORE DOCUMENTATION DATE DOCUMENTATION IDATE OF RESPONSE ISPAR DATE S1PAR NO, SOU CODE

OODE RECUESTED RECEIVED
2/7/86

PROSLEM RESPONSE

The software was designed and coded to operate in a 14 story building. Death Rays, Inc.
occupies a building where the floors are numbered 1.2,...12,14. There is no floor
numbered 13, therefore there are only 13 floors. The hardware interrupt requesting
floor 14 causes the elevator to rise, counting as it goes, so it tries to find a 14th
floor where none really exists.

Next time let's send someone over to look at the building before we sign off the
requirements!

SYSTEMS ENGNEERS SIGNATURE

Figure 4

SEI.SM-4-1 .0 9

Software Configuration Management Support Materials

* Examples of Software Change Forms

James E. Tomayko
The Wichita State University

The following five pages are examples of forms used in industry for customers and developers to report software
problems and request changes. Included are:

1. Discrepancy Report Form
2. Request for Change Form (1)
3. Request for Change Form (2)
4. Software Problem Report Form (Boeing)
5. Information and Assistance Request Form (used by customers only)

Pages 11 through 15 are unmbered.

10 SEI-SM-4-1.0

DISCREPANCY REPORT Fii in bold areas. Please print. Report No.:

Name: Date Prepared: Date Needed:

Position: Mail Address: Version:

c Group: Module/Unit/System Affected:
0

0 0Design 0 Deviation _Emergency
-" [Urgent

[OCompatibility QOther cRoutine

a. opue Routnes
I.'

z
Q
a.

CIll

w

< 0
z

0

w
X

Description of changes: PormeHus:to
w

4: Moio:.Dt-..

I Computer Expenses: _

w0
rr Other:____

S TOTAL COST: _

rnACCEPTED FOR Signature Tite Date
INVESTIGATION

z 0 APPROVED [I REJECTED QA:at
wn Action Taken or Reason for Rejection Date

5 Monitor:
aV&V: Date

Z ___________________ Implementor: Date

REQUEST FOR CHANGE Fill In bold areas. Please print. Request No.:
Name: Date Prepared: Date Needed:

z Position: Mail Address: Version:

a: Group: Modlule/Unit/System Affected:
0

L, Oj1Design O1Deviation 0QEmergency
Lu 0 Compatibility 03 Cost Reduction a: 0 Urgent

3 New Feature EBOther a.11Routine

LL

0

0

z
0

0
Cd,
0

Z ACCEPTED FOR Signature Title Date
INVESTIGATION

0APPROVED 0 REJECTED 0 ecito fcags

Action Taken or Reason for Rejection<

zProgrammer Hours: ____

(nComputer Expenses:_____

zTOTAL COST:_ _

Monitor:at

V&V: Date

Implementor: Dt

XY21-ci~ REQUEST FOR CHANGE
) F-1001 12/77

RFC-

Name Date Prepared Page Date
--.1 of _

- Position Telephone No. Receiving DLC

Department Name and Location DLC Location

Module/Unit/Systern Affected

F- 1 HARDWARE DESIGN DEVIATION EMERGENCY

- LISOFTWARE COMPATIBILITY COST REDUCTION URGENT

F!RMWARE MFG. OPTION LIOTHER ROUTINE

Signature Title DateE CCEPTED FOR
INVESTIGATION

UMISDM Date,,o -Io, I-I.o,.

* E APPROVED EREJECTED MS DtAction Taken or Reason for Rejection ________________________

EMISCM Date

CPPM Date

- - ------- - -1
E ERROR SR NO:

IMPROVEMENT SOFTWARE PROBLEM REPORT R 1
I

PROSLUA. ORIGINATOR'S NAME _____________

SYSTEM VERSION FILEIMOOULE
FAILING NO. NAME

RELATED RELATED
sygrams ____________TEST CAME

CLASFICATION: PROBIr OEM IPTION:. .

O SOFTWARE
O HAROWANE
O OCOM NTlPDL _
O DOCUMENTATION
0 INFORMATION ONLY
€0NNElCTION__ _ _ _ _ _ _ _ _ _ _ _ _

RIINEMIO IV:

ANALYSIS TO BE
COME BY ORG Go SIGNATURE DATE

ANALYM&r IREPIAED BV R9WONSISLE SOFTWARE DESIGN ORGANIZATION$ RECEIVED DATE

EXPLANATION:
CLAMPICATION:

o COOING

O COMMENTIPOL
O DOCUMENTATION
" ENVIRONMENT
O NO SIW CHANGE RED
O RIPORTED ON-

PREVIOUSLY
" OTHER CONFIG

* AFFECTED
fw"l P40. -

abGNTtuaSs: - ANA.YgT OATI O4INATOR ,_,, DATE

CORRECTIO. IRIEF 0ESCRIPTION Of WORK AN LIST OF MODULES CHANGEDI

SYSTEM WORK

SIGNATURE DATE'-

DOCUMENTATION WORK: (UIEF OESCrM OF DOCUMNTATION WORKI

lo ONO. PAGE NO. - OCNWAOCN NO. DATE -

$ww 0 NO. -- _ PAGE NO. - OCNAOCN NO. DATE -

51W 0 NO. PAGE NO. -OCIAOCN NO DATE -

S1W 0 NO. PAGE NO. OCWAOCN NO. DATE -

CLOSURE APPROVAL SIGNATURES:

DATE

CONFIRMATION: (CHANGE VERIFIED I S.C.M.) VERIFICATION: ICORRECTION TESTEDI

MTh NO CLOSJRE TEST NO.

AVAILABLE IN VERSION

SIGNA'UR! DATE - SIGNATURE DATE

- e -m . nm a - i- - - nl

Xy YZINC INFORMATION AND ASSISTANCE REOUEST [...iER

IAR NO.61623
CENTRAL SERVICE NAME AND LOCATION DATE CUSTOMER TEL NO. & EXT. CUSTOMER NO.

CUSTOMERCOMPANY NAME AND ADDRESS ORIGINATOR NAME E Y2, I] CUSTOMER

ORIGINATOR TEL NO. & EXT. SALES DISTRICT NO.

SE ZOHE NO. SYSTEM DIV. OPERATING SYSTEM RELEASE & PATCH LEVEL SOFTWARE FIRMWARE RELEASE DEVICE TYPEIMODEL NO,
CODE AND PATCH LEVEL

MEMORY SIZE TYPE DISC APPLICATION NAME RELEASE & PATCH LEVEL SOFTWARE PROGRAM NAME MODIFIED IF YES
CODE FE

YES NO EXPLAIN
BELOW

DOCUMENTATION PROBLEM DESCRIPTION
ENCLOSED

DATE AND TIME RECEIVED ASSIGNED TO PRIORITY CODE

RESPONSE DATE MORE DOCUMENTATION DATE DOCUMENTATION DATE OF RESPONSE SPAR DATE SPAR NO. SGU CODE
CODE 'REQUESTED RECEIVED

PROBLEM RESPONSE

SYSTEMS ENGINEER'S SIGNATURE

I -ANALYST COPY

Software Configuration Management Support Materials

*Example of a
Software Configuration Management Plan

Walter Smith, Jon Lange
Carnegie-Mellon University

The authors of this example configuration management plan were undergraduate students in the course Software
Engineering, taught by James E. Tomayko at Carnegie-Mellon University, fall semester, 1986. This plan was
submitted as part of a class project to develop an operations simulator for a manned Mars research station. Two
implementations were specified: one written in Ada, the other in Pascal, in widely differing development
environments.

Pages 17 through 29 are unnumbered.

16 SEI-SM-4-1.0

Mars Research Station OpSim
Configuration Management Plan

Walter Smith
Jon Lange

CMP-1 DRAFT of 23 September 1986

$Header cmp.mss,v 0.6 86/09/15 23:49:46 wrs Draft $

0

Table of Contents
1. Introduction 1

1.1 Purpose 1

1.2 Scope 1
1.3 Definitions and acronyms 1

2. Management 2
2.1 Organization 2
2.2 CM responsibilities 2
2.3 SCMP implementation 2

2.3.1 Configuration Control Board 2
2.3.2 Central repositories 2

2.3.2.1 Documentation repositories 2
2.3.2.2 Code repositories 3

2.3.3 Releases 3
2.3.4 Change requests and discrepancy reports 3

2.4 Applicable policies, directives, and procedures 3
2.4.1 Release policy 3
2.4.2 RCS usage policy 3
2.4.3 Pascal coding policy 3
2.4.4 Standard routine headers 3

2.4.4.1 Sample Ada file header 4
2.4.4.2 Sample Ada routine header 5
2.4.4.3 Sample Pascal file header 5
2.4.4.4 Sample Pascal routine header 6

3. SCM Activities 7
3.1 Configuration identification 7

3.1.1 Naming conventions 7
3.1.1.1 Documentation 7
3.1.1.2 Code 7

3.1.2 Configuration items 7
3.1.3 Baselines 7

3.1.3.1 Requirements baseline 8
3.1.3.2 Functional baseline 8
3.13.3 Allocated baseline 8
3.1.3.4 Design baseline 8
3.1.3.5 Product baseline 8
3.1.3.6 Operational baseline 8

3.2 Configuration control 8
3.2.1 Change classification 8
3.2.2 Configuration Control Board 9
3.2.3 Change Control Documentation 9
3.2.4 Change processing 9
3.2.5 Discrepancy Report processing 9

3.3 Configuration status accounting 10
3.4 Audits and reviews 10

4. Records collection and retention 11

1. Introduction, This plan is based on ANSIIIEEE Standard 828-1983, section 3. Also used were "Outline for a Configuration
Management Plan for Computer Programs" and "Software Requirements, Baselining, and Control", both from Data and
Configuration Management Workshops of the Electronics Industries Association.

There are two teams for this project, each with an identical Configuration Management origanization. Both teams will
use this plan. In some areas, the teams will differ, for example, they will use different revision control procedures. These
differences will be noted below.

1.1 Purpose
The purpose of this plan is to describe and define the policies and proceedings to be used in the application of

configuration management to the development of the Mars Research Station Operational Simulator (Mars OpSim).

1.2 Scope
This plan provides for the application of configuration identification, control, and status accounting during the

development of Mars OpSim. Included is the assignment of item numbers tc the Computer Program Configuration Items
(CPCI), revision control during development, procedures to be followed to ensure interface control, and identification of
status accounting techniques and procedures.

1.3 Definitions and acronyms
The terms relating to configuration management used in this document are defined by EIA Configuration Management. Bulletin No. 4A, Configuration Managementfor Digital Computer Programs.

0

2

2. Management

2.1 Organization
The Configuration Manager will report directly to the contract monitor. Responsibility and authority has been delegated

to the Configuration Manager by the contract monitor to act for him in all matters relating to the implementation of
Configuration Management in accordance with this plan.

The Configuration Control Board (CCB) is appointed by the Configuration Manager for the purpose of evaluating all
proposed changes to released specifications, computer programs, manuals, design documents, listings, and other items
identified for formal change control.

2.2 CM responsibilities
The Configuration Manager is responsible for

" Writing the Configuration Management Plan.

" Appointing the Configuration Control Board and presiding over its meetings.

" Creating the necessary forms for CM procedures.

" Maintaining easily-accessible central repositories for the current versions of the software configuration items in
machine-readable form.

" Maintaining records of CM activity.

* Preparing releases of configuration items and providing for their distribution.

" Receiving change requests and discrepancy reports and presenting them to the CCB.

" Ensuring that approved changes are made and recorded.

" Conducting audits of the CM process.

2.3 SCMP implementation

2.3.1 Configuration Control Board
The Configuration Control Board will consist of five members: the Configuration Manager (chairman), the Quality

Assurance Manager, the Project Administrator, and one member each of the Design and Coding teams. One member will
be selected by the board to be secretary, and will keep minutes of each meeting.

2.3.2 Central repositories
There will be central repositories maintained by the Configuration Managers for the current releases of all software

configuration items.

2.3.2.1 Documentation repositories
Two directories will be maintained on TOPS machines for copies of the current releases of documentauon itemb.

Current releases of all Ada documentation will be kept in the <WSON> directory on TOPS.D (td. cc. cmu . edu). Current
releases of all Pascal documentation will be kept in the <JL13> directory on TOPS-C (tc . cc. cmu.edu). Copies of
general project documentation will be kept in both directories. Filenames will ue the naming conventions of Se,.uun.

3

23.2.2 Code repositories. The Unix RCS system will be used to manage the Ada team's code. A central RCS directory on the project VAX will be
maintained for source code version control. In addition, a directory containing copies of the current release of source code,
object code, and libraries will be maintained.

The current releases of Pascal source code, object code, and libraries will be kept in the <JL13> directory on TOPS-C.
Backup floppies will be kept by the Configuration Manager.

2.3.3 Releases
A release of a configuration item will result in, the updating of that item in the appropriate repository, the notification of

all project members, and possibly the distribution of human-readable copies.

Releases will be made periodically; the period between releases will depend on the frequency and urgency of changes
made. A release will be made immediately prior to each review.

2.3.4 Change requests and discrepancy reports
Change requests and discrepancy reports will be given to the Configuration Manager for introduction at the

Configuration Control Board meetings. A central mailbox will be established for this purpose.

2.4 Applicable policies, directives, and procedures

. 2.4.1 Release policy
Software will be released and placed under formal change control at the formal request of the group responsible for

developing the software; for example, a Coding team member might send electronic mail to the CM at the completion of a
module's unit testing. After software has been released, it will not be changed unless as a result of an approved change
request. Periodically, as determined by the CCB, a new release containing the changes will be made, and copies will be
placed in the release directory.

2.4.2 RCS usage policy
RCS will be used to maintain all released Ada source code. Those groups working on Ada software are strongly

encouraged to use RCS internally as well.

The RCS Header string will be used in all Ada source files in a manner that ensures the inclusion of the header string in
the object code. The RCS .Log femture will be used in all Ada source files within comments.

2.4.3 Pascal coding policy
It will be the responsibility of those working on Pascal software to use the most recent available versions of released

software, and to keep their working versions up to date.

2.4.4 Standard routine headers
Standard templates to be provided by the Configuration Managers *ill be used for the opening comment of ill modules. and routines to ensure consistency in the information provided. The actual templates will be designed in ,.uperauon with

the Design and Coding teams and made available in the release directories, they may nut necessanly look like the samples

4

below.

2.4.4.1 Sample Ada file header

-- mars OpSim

-- odule: Queue
-- File: queue-insdel.a

-- Routines:
-- Queue.Insert Insert an element into a queue
-- Queue .Delete Delete an element from a queue

-$Header: queuft-iflsdel.a,v 1.1 86/10/23 04:23:33 wrs
-$Log: queue-insdel.av $
-- Revision 1.1 86/10/23 04:23:33 wri
-SCR 25 ; rized MemFull exception bug in Queue.Insert

-- Revision 1.0 86/10/11 01:29:22 wrs
-- initial release

-- --- --- --- --- --- --- --- --- --- --- -e- -

5

2.4A.2 Sample Ada routine header

-Routine: Queue. Insert

-- Author: Joe Progra er
-- Function: Insert an element into a queue.

-- Inputs: q The queue
-- elt The element to be inserted
-- Outputs: q (modified)
-- Exceptions: MemFull
-- Globals used: none

-- Specification:
-- This routine inserts elt at the tail of q. If there is
-- insufficient memory, the MemFull except-.on is raised.

-- Implementation:
-- Memory is allocated for elt. If there is insufficient...etc.

-- Side Effects:
-- none

-- Modification history:
-- 1.1 86/10/23 wrs
-- SCR 25 ; Fixed MemFull exception bug.
-- Missed post-allocation memory compaction problems.

* -- 1.0 86/10/11 wra
-- Initial release

2.4.43 Sample Pascal rde header

(Mars OpSim

Module: Queue
File: queue-insdel .pas

Routines:
QueueInsert Insert an element into a queue
QueueDelete Delete an element from a queue

Last Edit: 10/23/86 by Jll

Revision History:
1.1 10/23/86 Jll

SCR 25 ; Fixed MemFull error bug in QueueInsert
1.0 10/11/86 Jll

Initial release
)

e

6

2.4.4.4 Sample Pascal roufle header{
Routine: QueueInsert
Author: Joe Programmer
Function: Insert an element into a queue.

Inputs: q The queue
alt The element to be inserted

Outputs: q (modified)
Globals used: none

Specification:
This routine inserts alt at the tail of q. If there is
insufficient memory, the Memull handler is callod.

Implementation:
Memory is allocated for alt. If there is insufficiei.. .etc.

Side Effects:
none

Modification history:
1.1 86/10/23 Jil

SCR 25 ; Fixed MemFull error bug.
Missed post-allocation memory compaction problems.

1.0 86/10/11 Jl
Initial release

0e

7

. 3. SCM Activities

3.1 Configuration identification

3.1.1 Naming conventions

3.1.1.1 Documentation
Documentation configuration items will be identified by a two-part code D-R where D is a code for the document and R

is the release number of that document. Releases will be numbered consecutively from one. Unreleased versions of
documents will have an additional number identifying the last change applied. This number will start at one and be
incremented by one at each change. For example, the second release of the Software Requirements Document would be
called SRD-2; after five changes had been applied, it would be called SRD-2-5.

Filenames for the machine-readable versions of documents will follow the same conventions; for example, the Scribe
source for SRD-2-5 would be called SRD-2-5.MSS. On Unix systems, lower-case letters will be used: srd-2-5 .mss.

3.1.1.2 Code
Source code modules will be identified by a module name not longer than ten characters. Releases of source code

modules will be numbered consecutively from one, and will be called "ModuleName Release n", where n is the release
number. Unreleased versions of source code modules will have an additional number identifying the last change applied.
This number will start at one and be incremented by one at each change. For example, the second release of the Queue. module would be called "Queue Release 2"; after five changes had been applied, it would be called "Queue Release 2.5".
RCS version numbers of source files will be made to correspond to module release numbers.

3.1.2 Configuration items
The configuration items for this project (and their codes, where applicable) will be

" Software Requirements Document (SRD)

" Software Specifications Document (SSD)

" Preliminary Design Document (PDD)

" Software Design Document (SDD)

" Software Test Plan (STP)

" User Document (UD)

• Individual software modules (as defined by the SSD)

" Individual software source files (as defined by the SDD)

" Individual object code files (as defined by the SDD)

3.1.3 Baselines
Six baselines will be defined: Requirements, functional, allocated, design, product, and operational. Releases will updaLe

these baselines.

8

3.1.3.1 Requirements baseline
The requirements baseline is established at the Requirements Review. It consists of the Software Requirements

Document.

Once the requirements baseline is complete, the general specifications are created, establishing the functional baseline.

3.1.3.2 Functional baseline
The functional baseline is established at the Specifications Review. It consists of the Software Requirements Document

and the Software Specifications Document.

Once the functional baseline is complete, the preliminary design specifications are created, establishing the allocated
baseline.

3.1.3.3 Allocated baseline
The allocated baseline is established at the Preliminary Design Review. It consists of the Preliminary Design Document,

the Software Test Plan, the User Document, and the components of the functional baseline.

This baseline allows the detailed design process to begin. Once all software components have been designed, the design
baseline is established.

3.13.4 Design baseline
The design baseline is established at the Critical Design Review. It consists of the Software Design Document and the

components of the allocated baseline.

This baseline starts the actual process of coding and debugging. As each routine completes its unit-level test, it will be 0
released, establishing the product baseline.

3.1.3.S Product baseline
The product baseline is established by the integration of all software components and the release of the software to the

Test and Evaluation group. It consists of all of the configuration items.

Once all design descriptions have been validated against the requirements and all software components have passed
acceptance tests, the operational baseline is established.

3.1.3.6 Operational baseline
The operational baseline is established when the product has passed acceptance testing and has been released to the

customer. It consists of all of the configuration items.

3.2 Configuration control
Configuration control is the systematic evaluation, coordination, and approval or disapproval of proposed changes to a

baseline. Forn.al control of the configuration of an item begins with the definition and release of a baseline for that item.

3.2.1 Change classification

Class I A Class I change is defined as any change which affects a customer approved reqirements, functional,
allocated, product, or operational baseline.

Class fl A Class II change is delned as ar.y change which is not Class I or any change witich corrects errors in

9

the documentation of a customer-approved baseline.
All Class I changes must be approved by the contract monitor. Class II changes can be approved by the Configuration

Control Board. The contract monitor may override the CCB's classification of any change.

3.2.2 Configuration Control Board
The CCB will review all change requests and discrepancy reports. The total impact of each request will be evaluated by

the board, taking into consideration appropriateness, cost, technical feasability, scheduling constraints, effects on other
items, and effects on testing.

Class II changes will be approved or disapproved by the CCB. Class I changes for which the CCB recommends approval
vYill be forwarded to the contract monitor for final approval or disapproval. The CCB will designate an implementor for
each fully approved change.

The CCB will be convened on a weekly basis or as deemed necessary by the Configuration Manager. Copies of change
requests and deficiency reports will be made available to CCB members prior to meetings for examination and evaluation.
Minutes of each meeting will be distributed to all project members.

A joint meeting of the Ada and Pascal CCB's may occasionally be called to discuss matters of mutual concern.

3.2.3 Change Control Documentation
Two documents will be used to process and control changes: the Software Change Request and the Software

Discrepancy Report. The Change Request will be used for requesting a change to a released configuration item that is an
improvement rather than a repair. The Discrepancy Report will be used for requesting a change to a released configuration
item necessary because of a failure of the item to meet requirements.

3.2.4 Change processing
A change request will be processed in the following manner

1. A change request is prepared.

2. It is transmitted to the Configuration Manager, who numbers the change for tracking purposes and notifies the
Configuration Control Board.

3. The Board classifies the change and may then
" approve a Class II change, or approve the submission of a Class I change to the contract monitor

" disapprove the change, in which case the change dies

" modify the proposed change, in which case the modifications are made and the change is reevaluated

4. If a change is approved, it is implemented by someone designated by the Board.

3.2.5 Discrepancy Report processing
A discrepancy report will be processed in the following manner

1. A discrepancy report is prepared.
2. It is transmitted to the Configuration Manager, who numbers it for tracking purposes and notifies the

Configuration Control Board.

3 The Board may immediately reject the report, in which case it dies, or assign someone to analyze the report
and prepare a correction.

4 If the report is not rejected, the board may approve, disapprove, or modify the proposed correction.

10

5. If the correction is approved, it is implemented by someone designated by the Board.

3.3 Configuration status accounting
The following status accounting logs and reports will be maintained:

Configuration Item Index
The Configuration Item Index will list each configuration item along with its creation date, current
released version, and the versions of its component items.

RCS change logs RCS change logs will be maintained for each Ada source file. They will show the history of the
changes made to the source files, as well as their release histories.

Pascal change logsEach pascal source file will contain a change log showing the history of the changes made to it, as well
as its release history.

Discrepancy reports
All Software Discrepancy Reports will be retained.

Change requests All Software Change Requests will be retained.

3.4 Audits and reviews
The Configuration Manager will periodically audit the system to ensure that policies and procedures art. being ftllowed.

Audits will be conducted as follows:

Requirements At the Requirements Review, the CM will release the Software Requirements Document and place it
under change control.

Functional At the Specification Review, the CM will release the Software Specifications Document and place it
under change control.

Allocated At the Preliminary Design Review, the CM will review the Preliminary Design Document to assign
configuration items according to the defined software components, and update the Configuration Item
Index. The CM will also release the Preliminary Design Document, the Software Test Plan, and the
User Document, and place them under change control.

Design At the Critical Design Review, the CM will review the Software Design Document to assign
configuration items according to the defined routines, and update the Configuration Item Index. The
CM will also release the Software Design Document and place it under change control.

Product The CM will review the software to ensure that all routines are fully updated and have been tested and
released to the Test and Evaluation group.

Operational The CM will ensure that all software components are fully updated and have passed the appropriate
acceptance tests.

e

4. Records collection and retention
O All records as defined in Section 3.3 will be available for inspection on request. Written logs, change requests, and

discrepancy reports will be maintained in a binder by the Configuration Manager. RCS logs and Pascal revision logs will
be available as part of the source code.

All written memoranda to and from the Configuration Manager will be maintained in the same binder. Electronic mail
will be retained in a log file.

e

Software Configuration Management Support Materials

Typical Revision Control System Session

James E. Tomayko
The Wichita State University

The following annotated typescript is a typical session with the Revision Control System (RCS) tool that runs on
Unix. It demonstrates the tasks needed for checking in and out controlled modules, shows how the simultaneous
update problem may be prevented, and shows how version trees may be created.

Script started on Thu Aug 7 10:20:46 1986

1 /usr0/Jet/adaprograms] emacs synch.a

The editor is commanded to open an Ada source file synch. a, which is about to be placed under configura-
tion control. The configuration manager enters the following at the top of thefile:

--$Header$
--Log

This action marks for RCS the location in the file to place the initial header and later version logs.. /usrO/Jet/adaprograms] ci synch.a

This command tells RCS to check in the module. RCS prompts for a description of the configuration item as
follows:

synch.a,v <-- synch.a
initial revision: 1.1
enter description, terminated with AD or '.':
NOTE: This is NOT the log message!

>> This is a task which synchronizes two simultaneously executing tasks.
>> Programmer: James E. Tomayko

sh: /bin/snoop: not found
done

3 /usrO/Jet/adaprograms] ls
ada.lib adaone.a.BAK calculator.a synch.a,v synch.lib
adaone.a adaone.a.CKP realtime

Note in this display of the file names that the module synch. a is gone, replaced by synch. a, v, which is
where the originalfile and the deltas of the revised versions of the file will be kept.0
4 /usr0/Jet/adaprograms] co -1 synch.a

30 SEI-SM-4-1.0

Support Materials Software Configuration Management

This command checks out synch. afor revision. The -1 option locks the file and prevents any other program-
mer from checking out the same module. RCS replies as follows:

synch.a,v -- > synch.a
revision 1.1 (locked)
sh: /bin/snoop: not found
done

Note in this listing of the files that now there is a synch. a checked out of synch. a, v:

5 /usrO/Jet/adaprograms] is
ada. lib adaone. a.CKP synch. a synch. lib
adaone .a calculator, a synch. a, v typescript
adaone .a. BAK realtime

When the file is opened for editing, the Header and Log comments are found to have been modified:

6 /usrO/Jet/adaprograms] emacs synch.a

--$Header: synch.a,v 1.1 86/08/07 10:21:40 jet Exp $
--$Log: synch.a,v $

Revision 1.1 86/08/07 10:21:40 jet
Initial revision

After the changes have been made to the file, it is checked in, at which time RCS prompts for a description of
the changes:

7 /usrO/Jetadaprogramas ci synch.a
synch.a,v <-- synch.&
new revision: 1.2; previous revision: 1.1
enter log message:
(terminate with AD or single '.')

>> Added to co ments to incomplete exception handling statements.

sh: /usr/local/lib/rdiff: not found
sh: /bin/snoop: not found
done

The next time the module is checked out, the change comments appear in the Log:

8 /usrO/Jet/adaprograms] co -1 synch.a

synch.a,v -- > synch.a
revision 1.2 (locked)
sh: /bin/snoop: not found
done Ak

9 /usrO/Jet/adaprograms] emacs synch.a W

SEI-SM-4-1.0 31

Software Configuration Management Support Materials

--$Header: synch.a,v 1.2 86/08/07 10,24:37 jet Exp $
--$Log: synch.a,v $

Revision 1.2 86/08/07 10:24:37 jet
Added to comments t . incomplete exception handling statements.

Revision 1.1 86/08/07 10:21:40 jet
Initial revision

The changes made to the module during this check out actually created a new line of development, so instead of

checking the module in as Version 1.3, RCS is directed to check it in as Version 2.0:

10 /usrO/Jet/adaprograms] ci -r2.0 synch.a

synch.a,v <-- synch.a
new revision: 2.0; previous revision: 1.2
enter log message:
(terminate with ,D or single '.')

>> Created a divergent form of synch.a by adding a third process to be
>> synchronized.

sh: /usr/local/lib/rdiff: not found
sh: /bin/snoop: not found

* one

Future modifications to Version 1.2 can be made, thus keeping alive its branch of the version tree, by specifying
it in the co command using the -r option. Actually, any version of the module can be recovered.

More information about RCS can be found in [Tichy82].

3

32 SEI-SM-4-1 .0

Support Materials Software Configuration Management

Presentation Support Viewgraphs

James E. Tomayko
The Wichita State University

The following viewgraphs have been used by the author to support teaching software configuration management
i an industrial short course setting. They appear in the order of use.

1. The Role of Configuration Management
2. Functions of Configuration Management
3. Commitment to Configuration Management
4. Typical Configuration Items
5. Configuration Management Library Functions
6. Types of Change I
7. Types of Change II
8. Fundamental Principles to Guide Configuration Control Boards
9. Factors Determining Configuration Control Board Characteristics

10. Hierarchies of Configuration Control Boards
* 11. Key Factors in Evaluating Change 1

12. Key Factors in Evaluating Change 2
13. Key Factors in Evaluating Change 3
14. Discrepancy Report Evaluation Process Flowchart
15. Change Request Evaluation Process Flowchart
16. Simultaneous Update Problem
17. Version Tree
18. Trend Analysis
19. Standards For Configuration Management Plans

Pages 34 through 52 are unnumbered.

SEI-SM.4-1.0 33

12..

Co L
02 00

0)

Cum
CU 0

00

CoC

o G)oC<

0n 0

o0l

Lu.

UU-I

CU- CU 0

U-U

U- C~) Arn-

E
I-

0 c
NUM

CU
0

C -

0 a)
*las

U N

E
00

E .

0

0 0
01 0L (1)0 CC

U- 0 9 0 0 00

I-

mcm

E
nn

C

Lo.
ma.

~0

:- I0
,0O M CL

OL- EE Mo

--. 0

s_. . Cu

0 c

Lu C>0* " 0"-

0.

LM 0

m c

00

00

Er > 7F

l---

Cl) (1

>u

0
0) C,,

U-

I-cu 0 0

2
Oo 0

Lu.

Em 0
U-

U-

Cl)
0.

* *ew
* m

Co
L.
0
-o
Cu .~ V

LL X 0
00

0o2 G)
0 cU

(000
* *

CM

o) C)Qr

(A)
0)O)

0'- 0
L.ClU

~cm

0 E

w

CCL

ou Cu

LL 0

a)) 0> 2O

o 0 C0

0

00
lam

OL.
*Eo
0o

a La
0 0

0 U 0

U-LccI mu 0~ Ell

.CD

LL 00 0

C1)O•e0

CCc

OCUo 0

00

0 0~

E~ Oct

Co 00

0(

I C'

00

0 E
0C.

0I)

>

0)

'0
Lu

0

Cu CL

>0

0 . 00.OO

CoL

CC - -

0

0 0

0 M-
CL CL=u

0)0

00

a0 0
M6

02

Cui
W

<i0

0a~

C

gco

E
"-- m

oo0
0in 0

C_

-N

0_ _ _ 00_

00

E"
m00

0 0 o c

0

Cu

cm0

00

4))

0)V

0))

imm

co

Cu 0)

0

LO

00
CD 0

E co
0 0) 0-

co

w

w 0

w
w0

Support Materials Software Configuration Management

Sample Examinations

James E. Tomayko
The Wichita State University

The following exams have been developed to test 15. List five considerations specific to evaluat-
achievement of the behavioral objectives in. the ing the repair of discrepancies.
Software Configuration Management curriculum 16. List five considerations specific to evaluat-
module SEI-CM-4-1.0 (Preliminary). ing change requests.

17. List five considerations specific to evaluat-
ing requests for new derivatives of a product.

Exam 1 18. Specify how the implementation of changes
can be tracked.

1. List two ways that software changes 19. Define the simultaneous update problem.
throughout the life cycle: 20. Define the concept of version trees.

2. What is a configuration item? 21. Identify at least three necessary characteris-
3. How does configuration control maintain the tics of good version control tools.

integrity of configuration items? 22. List at least three commercially available
4. Identify the configuration items of a typical version control tools, their similarities and

product differences, and their suppliers.

* 5. Define the term 'baseline.' 23. Identify at least two standards for configura-

6. Give an example of a non-ambiguous tion management plans.

software part numbering/naming scheme. 24. List three items in an effective configuration

7. What is the difference between discrepancies management plan.
and requested changes? 25. List at least three personal characteristics

8. What is the difference between discrepancies needed by effective configuration manage-

caused by requirements errors and those menc personnel.

caused by development error!?
9. List three key items included in a dis-

crepancy reporting form. Exam 2
10. List three key items included in a change re-

quest form, 1. Responding to approved change requests and
11. Show how discrepancy reports and change are two ways that software

requests are tracked within a software changes throughout the life cycle.
development organization. 2. Documents and code placed under con-

12. List and define the fundamental principles of figuration control are referred to as
implementing change control boards.

13. Define the scope of change control boards of 3. List three items under configuration control
at least three levels of a product develop- in the course of a typical software
ment organization. development:_ _

14. A change control board is given respon- 4. When an item is placed under configuration
sibility over the avionics subsystem of a control is often referred to as a .

* digitally-controlled aircraft. Who should be 5. Discrepancies are:
on the board? Who should make the final 6. Requested Changes are:
decisions?

SEI-SM-4-1.0 53

Software Configuration Management Support Mterfals

7. Discrepancy reporting forms should have
line items such as:____

8. Change requests and discrepancy reports are
tracked within an organization by:

9. What should be considered when evaluating
the repair of discrepancies?

10. List three considerations in evaluating
change requests that differ in importance
from the list in #9.

11. Define the simultaneous update problem.
12. Why are different versions of a product often

needed?
13. What characteristics should a good version

control tool have?
14. Where can guides to developing configura-

tion management plans be located?
15. List three items in an effective configuration

management plan.
16. What are System Descripdon Languages?

54 SEI-SM-4-1.0

Support Materials Software Configuration Management

Summary of the SEI Workshop on
* Software Configuration Management

Katherine E. Harvey
Software Engineering Institute

Participants as his capsule description of Configuration Manage-
ment: "the disciplines and techniques of initiating,

Bradley Brown Boeing Military Airplane Co. evaluating, and controlling change of software
James Collofello Arizona State University products during and after the development process."
Robert Glass Seattle University This definition met with general approval, although
Ted Keller IBM Federal Systems Division the discussion as a whole brought out a much more
Richard Parten Lockheed complex and discerning description. The most ap-
Mary Shaw SEI parent concept missing from the original definition
Howard W. Tindall Martin-Marietta was that SCM is a fundamental and essential
James E. Tomayko SEI (host) management tool for software development projects.

It is more a management concept than a concrete
structure and is invaluable to the organized and rapid
output of a software product.

Introduction Although the concept of SCM was felt to be fun-
damental to, the maintenance of software products,

The following is a summary of the discussion during the workshop members felt that associating SCM
the Software Configuration Management meeting with maintenance is misleading. Configuration
held at the Software Engineering Institute in Pitts- management should not start simply when a
burgh on July 16, 1986. In this document I have software product reaches the maintenance phase; the
tried to determine the major concerns brought up and whole development process must be managed in
the conclusions reached during the day long discus- such a way that SCM can work properly. For in-
sion. The discussion ran in many directions, often stance, if the original designer does not document
changing topics quickly and not returning to the his work properly, then the configuration manage-
original subject for quite some time. Therefore, I ment process breaks down; because later changes
did not try to summarize the discussion chronologi- create problems not immediately apparent based on
cally, since I felt that would be more confusing than the existing documentation. SCM therefore is an in-
informative. I have, instead, tried to sort the various tegral part of the entire software design and develop-
concerns and conclusions into specific areas and ment process and a vital part of all software en-
summarized the discussion of each major point gineering.
brought up in those areas. The state of Software Configuration Management

today. One of the major points of discussion was
how Software Configuration Management was being
utilized by the software engineering community

Overview today. No one at the meeting felt that SCM was
being effectively utilized as a management tool; in

Definitions of Software Configuration fact, just the opposite. Although there have been
Management. The basic definitions of Configura- many corporations with solid SCM programs, there
tion Management that the workshop participants are a vast number of companies producing software
more or less agreed upon seems the best place to today with either no program whatsoever or a
start; since the definition is fundamental to the dis- programs that hinder rather than help. What i6
cussion of Software Configuration Management wrong with the SCM programs today?
(SCM). Jim Tomayko, the host of the workshop, put A major problem is the lack of a widespread under-

SEI-SM-4-1.0 55

Software Configuration Management Support Materials

standing of the usefullness of a solid SCM program. fulness of a configuration management system is
Although mar-. large companies do have configura- overlooked and therfore this vital management tool
tion management systems, often when they turn a is not used properly. Many times attempts are made
project over to a smaller contractor, the Software to use other methods, like the CSSR or C Spec. sys-
Configuration Management is left up to that contrac- tem, to maintain control over projects. But these
tor, who often chooses to do nothing. If the con- programs tend to be cursory measurements of
figuration management is bad, one can almost progress and costs without ever getting down to the
guarantee that the documentation will be bad. Then, real work of change management. It is in the con-
when the development process for a software figuration boards that changes are discussed and in-
product is over and it goes into maintenance mode, formation gets moved around; where sleeves are
the contractor turns over a software project with in- rolled up and the nuts and bolts of the software are
complete documentation. So the company left with laid out.
the project is lost, they start playing around with it,
and they are left with "spaghetti" software. Accord- So it is very apparent that there is a great need for
ing to the members of the workshop, this kind of improvement in the area of Software Configurationthig appnsall the time; even though many of Management.. The problems are large and
thing happens awidespread; of course they won't be solved over-
these projects are expected to interact with others. night. However, the workshop participants had a
One key factor in an effective configuration manage- great many ideas about the components of an ideal
ment system is a solid Configuration Control Board configuration management system. These may
structure. However, in most companies today the provide the base for educating future software en-
importance of the boards and their members is over- gineers to better manage their projects through
looked. Often the people put into these boards do Software Configuration Management.
not have the training or experience to make deci-
sions about changes or problems in software
products. One example brought up, was an entire
Software Configuration Management division that The Software Configuration
exists but is virtually a hindrance to the organization. Management System
In this organization when a change request is writ-
ten, often only a paragraph or less of information, Auo
and sent into headquarters, it goes to the Configura- A general picture. The workshop more or less
tion Control Division. However, this division's job agreed that there are too many unpredictable cir-
is simply to put a number on the CR and send it out; cumstances in the corporate world to build a generic
without any kind of board meeting or discussion all purpose configuration management structure.
whatsoever. This CR is then sent out to people who However, it is possible to sketch in certain key ele-
can't possibly tell from a couple of sentences of in- ments without creating a definitive structure. Some
formation whether or not the change is a good idea. of the elements are just fundamental characteristics
Then, after several weeks, the request is sent back of a SCM system, while others are more subtle
with "nonconcur" or "concur" stamped on it, and of- details that will create a more efficient management
tentimes it takes months before any real action is machine.
taken on the document. If the change is approved it All large system projects have systems of
goes to the implementation organization that writes Change/Configuration Control Boards (hereafter
the functional specification and the detail design known as CCB's). The structure of the CCB's may
with no review of either document. This same or- differ widely according to the type of project, the
ganization does all of the coding and testing, without company in charge, and the size or cost of the
ever consulting a review board or the originator of program. However, the CCB's are a necessary ele-
the request; then when i* finally shows up in the ment to almost any SCM structure. These boards
field the originator proba ' won't even recognize it. work in a kind of waterfall structure with a great

Many times the people at higher levels of large number of control boards at the lower levels which
projects don't understand software and think of it as feed up into the higher levels. Change usually
simply "another subsystem". It becomes a difficult bubbles up from the bottom where the programming
task to convince these project managers that on a activity is boiling. At times there is reverse traffic
large complex system, or any project that has as its when change requests come down from either the
root a data system, the software is an integral func- customer or the system manager, but the vast
tion of the project. Often in these projects the use- majority comes from the area of the most program-

ming activity. Therefore the greatest number of

56 SEI-SM-4-1.0

Support Materials Software Configuration Management

boards is at this bottom level of great activity, and all changes taking place at the project level using a
O these boards should be the most active, lot of discussion and review for each change being

I l CCB characteristics. One of the most impor- made. In order for this to happen, documentation
Idea characteristics n ot bost espe- throughout the development phase of a system must
tant characteristics for any control board, but espe- be enforced. So in every SCM structure it would be

cially the lower level boards, is that they should be a god o have a sion t t w l d e
actie. ecase tis s were nfomaton i pased a good idea to have a division that will make sure

active. Because this is where information is passed that the original developers are writing down
around, where you begin to see the project's shape everything. Documentation never gets done by those
and direction, it is vital that the boards be a well- developing the code without outside influence and
used and functioning body in the SCM structure. almost never gets done post-facto (certainly not
The CCB should be a place of discussion, where any accurately). If there is no documentation, there is
problems or requests that come up in a project get nothing to control. So the documentation
hammered out. On large projects these board meet- "enforcers" are a good idea for a strong SCM sys-
ings often last longer than a full day, but the work tem, provided their authority is well documented and
being done in them is vital, strictly monitored.

Because this work is so vital to a project, "casual These various characteristics of a good SCM struc-
involvement" simply cannot exist in the CCB sys- ture may vary a great deal; especially when the ex-
tem. It is important that the management people on isting authority levels are very different. The au-
each board look into every CR/DR. that comes before thority hierarchy in a company or program has a
them. Even if the change or bug is presented in a great deal to do with the configuration management
very casual or non-mission critical way, it is the duty system, and all the elements that have been talked
of the board members t~o look into it as if it were. If about so far rest upon well-organized authority
board members allow the casual nature of a presen- levels.
tation affect their decisi6ns and evaluations,
problems may be overlooked that could escalate
later into emergency situations.

SThere should be a route for emergency changes so Authority in SCM Systems
that the system won't break down during emergency
situations. There should also be a CCB appeal route. Authority hierarchies. Although, as previously
This means that it would be possible to go to a stated, the CCB's are places for discussion it must
higher CCB if the originator of the change request be stressed at this point that the final decision-
deemed it to be absolutely necessary to reverse the making authority should lie with one individual.
original boards decision. This will help to keep the The control boards do not vote on changes; one per-
board meetings from becoming "shouting matches", son makes a decision under advisement. This is ex-
and help people discuss things rationally. However, tremely important when trying to avoid interproject
the appeal route must be carefully controlled, politics and keep a program oriented toward its
(perhaps by upper level boards making decisions as proper goal. The higher level boards have greater
to which appeal request should be accepted) in order authority, of course, than the lower boards and the
to keep the authority of the lower boards intact. system level CCB belongs at the top of the pyramid.

It is important not to limit the number of boards be- It is the head of the system level CCB who has au-
cause of past SCM practices or "efficiency". It is thority to make the final judgements on CR/DR's
actually more efficient to have as many boards as and any last minute emergency "patches", although
possible within cost and common sense parameters. this authority is usually delegated to lower level
Each board should have the minimum number of boards who are more often confronted with the
people possible needed to make decisions. There- problems as they come up. This means that whoever
fore each CCB's jurisdiction should be well docu- is making those final decisions had better be pretty
mented, and only those people directly involved in sharp or the program is headed for trouble.
or affected by changes in their jurisdiction need to It is also healthy to a project to have a slight adver-
be at their CCB meetings. This way only vital sary relationship existing between the software
people are involved in their particular CCB deci- design manager and the head of the program. The
sions, and other important people who not directly design manager will be fighting for what he needs
involved don't waste their time. for his particular area, while the head of the program

Ensuring proper documentation. At a very basic should be seeing a more overall picture, hardware
level Configuration Control should be involved with systems as well as software. If both these people are

SEI-SM-4-1.0 57

Software Configuration Management Support Materials

well trained in project management, then the adver- existing authority hierarchy in the other company or
sary relationship will provide much needed checks organization. When everyone involved in a project *
and balances within the project system. understands the authority structure and the way they W
The various CCB's should have documentation are expected to work within it, a smoother operation

readily available to them detailing what specific and a more productive work atmosphere sill result.

areas over which they have authority. Each board
needs to be sure what decisions they have authority
over and how much authority they have to make a
decision. When CR/DR's come up, there should Tools for Software Configuration
never be confusion as to who is responsible for look- Management
ing into them. So it is very important that CCB
jurisdiction and authority cover every area at some Tools of the trade. Quite a few methods for main-
level, especially those critical to the project, and this tamining control over change were discussed. Many
authority must be documented. For example, if the were technical devices that are well documented and
Testing and Evaluation division discovers a DR, it available, so the group spent very little time on
must be clear whether they have the authority to these. Others were not discussed necessarily as
make changes in the program or they need the au- "tools", but I felt that they could be labeled as a
thority of a higher board to make the change; and specific tool for software configuration management
whether this authority changes in the event of a mis- and that this would be a good place to summarize
sion critical DR. At the workshop two experiences them. First, let's look at the naming and/or number-
were given as examples: in one situation the ing of products.
Test/Evaluation people did have authority to make It was felt that one of the most important aspects of
changes even on non-mission critical DR's, while in at s fo nain oft e ports aspect it
the other situation they simply reported the DR's to any system for naming software products was that it
higher boards for action or the Evaluation people be specific as well as not ambivilent. A specific ex-
simply figured out ways to work around non-mission ample was brought up regarding NASA back when
critical DR's. The responsibility for these decisions the name of a software system matched the missionneed to be well documented to avoid conf'usion, for which they were being built. This, however, W

soon became a problem. In these projects there is
Key authority concepts. It is very important to un- usually a very long time between when one starts
derstand that authority levels cannot be generically building a software system and the time the mission
structured to fit any situation. Usually the structure it is intended for finally flies. Often halfway through
of any given SCM system depends on the authority the maintenance life-cycle of this software, major
levels already in existence in the particular company changes are made in the project; payloads may be
or program involved. Any project manager coming swapped or scrapped, as may the mission vehicles,
into a company or program must have a good ap- and so on. When these changes are made, the name
preciation for the existing authority hierarchy. The of the mission is often changed. Then, one is left
Software Configuration Management system that he with a software system named for a mission that
is going to instigate, reorganize, or make additions may not fly for years if it ever goes up at all. It is
to, must be molded around those authority levels, easy to see how this could become confusing.

Therefore, the software is now named and numbered
Oftentimes the way people perceive problems can in a completely separate way so that there can be no
create difficulties. While one person may see some- relevance to the missiQn for which its being
thingdeveloped. What is important to see in this example
simply a "change". Who has the authority to deal is mprta to se injthisdexample
with these varying perceptions? It may be that it is that the naming system had to be adjusted to' be-

come more specific to the product as well as lesscomes under the authority of each CCB's head, or ambivilent.

that an entirely different division or CCB should be

set up to deal with this question. Once again, this Because various divisions may have different names
will probably depend on the authority hierarchy al- for a single system, and because communication
ready existing. However, it may also depend on the must eventually extend beyond the purely technical
people in the program, the size of the project, and community, it is important to be able to see how the
various other management considerations, nomenclature evolved and how the various

nomenclature relate to one another. IBM uses aW
It is also important for each company that goes un- nomenclagra to owe ath of each a

der contract with another to have appreciation for the sytemfandiariousne g the ay. But
system and its various names along the way. But

58 SEI-SM-4-1.0

Support Materials Software Configuration Management

perhaps more importantly, IBM puts on the same see this project that is now out of control, that the
page a cross reference list. Since each nomenclature importance of enforced documentation standards is
may for a particular software build have three dif- apparent. How do you motivate people to use cum-
ferent names with each of these names understood bersome standards when they haven't been "burned"
by different divisions, the cross reference list is im- by past experience? Obviously, standards for
portant for clear understanding and communication. software configuration management are a useful
Using diagrams is also a useful tool for communicat- tool, but getting people to use them is another mat-
ing with those outside the technical community. ter.

A management tool that might not be distinctly It cannot be said enough that without documentation
thought of as a SCM "tool", is that of using "freeze there is nothing to put under configuration control.
dates" when putting out incremental releases of a There must be a valid functional specification docu-
software system. The example at the meeting went ment in order to get past the Preliminary Design
something like this: Usually, the top management Review or there is nothing to put under the manage-
people on a project are very anxious to see some sort ment system and you're already off schedule. A
of working software even though the software desig- brief list of documentation includes:
ners are still working out the bugs in a code and may * requirement specification documents,
be very reluctant to release it. In a case like this,
having freeze dates for the software to be turned in * functional specification documents,
will force the developers to release what they have * detail design documents,
even if they feel it is incomplete. Usually the first * user manuals,
release will be chaotic but this will give a good idea
about where to go and what needs to be fixed, and o maintenance manuals,

the consumer has a working product. Even if it has a * interface control documents,
lot of DR's, having a completed product is a positive e memory layouts,
incentive and will improve the working atmosphere. * test plans,
The freeze dates must be rigid; if the developers
don't get their projects in on time, they won't be in- * and the code itself, of course.

* cluded in the release. If it isn't enforced the com- All of this, plus more not mentioned here, comes un-
puter people will keep fiddling around and changing der maintenance control, unless it is subject to a
things, and the entire program will fall behind project specific waiver. Because many of these
schedule. Once again it is important to remember documents are scrapped when a product reaches
that implementing a tool like this will depend a great maintenance phase, it would be useful perhaps to
deal on the existing situation. maintain a configuration index for each product so

that enough documentation is maintained for con-
figuration control during the maintenance phase.

Even in the essential area of documentation there
Documentation and Credibility must be consideration for the project involved. If

the project is large the managers are usually more
Documentation. At one point in the day's con- careful about enforcing documentation because the
ference Jim Tomayko asked the group if they knew project as a whole is probably being approached in a
whether anyone paid attention to the standards for very careful and cautious way. However, in a
software configuration management put out by smaller project SCM tends to take a back seat and
IEEE. No one at the meeting had even heard of the documentation, therefore, doesn't seem impor-
them. They were aware of the Department of tant or economical. Sometimes full rigor on the
Defense Standard 2167, but it was generally ack- SCM and documentation can be relaxed slightly on a
nowledged that this was overlooked by most smaller project, but then you need someone in corn-
program managers. The standards get overlooked mand who knows when full rigor can be relaxed and
because the rigorous documentation requirements when it should be enforced. However, good
that they establish are seen as cumbersome and so documentation will always help configuration
documentation does not get enforced. At first, this management people to make sounder judgements
seems easier for both the managers and developers, and more credible evaluations.

* It isn't until they are waste deep in the mire of unmet Credibility.. Good basic documentation is the basis
schedules, undocumented s~oftware with hundreds of for Configuration Control Board evaluations on the
unseen DR's, rising costs, and consumers anxious to issues before them. In order for CCB's to make in-

SEI-SM-4-1.0 59

Ki

Software Configuration Management Support Materials

telligent, rational, and credible decisions on * Maturity of the change. How long has the
CR/DR's there is certain data that is necessary. This change been before the board? If it is still
data should be well documented so that the CCB considered to be worthwhile to change
evaluation of the data will carry weight. This list of something after a long time has passed, then
necessary data was developed at the workshop: the board should consider it more carefully.

" The size of the change. By using this data, you can often minimize the num-
* Are there alternatives? Would it be rela- ber of "side effects" that the changes you are making

tively simple to work around whatever is be- will have. Even if the side effects are unavoidable,
ing changed? the use of this carefully documented evaluation

" The complexity of the change. Does it refer- process may help to identify where those effects are
ence other systems? Does this system sup- going to be. Of course, at this time it is impossible
port other software or rely on other support to be absolutely sure that all the side effects have
software that would need to be changed ac- been discovered. For example, suppose there are
cordingly? two changes that are being made at the last minute in

an emergency situation and they are each tested and
The need date. Basically, the board needs to evaluated. It is possible that although they may have

kw tho ch tet tewou thae o no real side effects on the system separately, when
make the change and test it, before the con- they are "patched" in at the last minute they may
sumerneeds a working project. have serious side effects together. This is the

* Impact. This is related to its complexity. greatest fear when dealing with late patches, but
What kind of effect will this change have on careful documentation and evaluation of the data in-
subsequent work. The board needs to look volved in each change may help to alleviate some of
down the road a bit and see where the project the guesswork.
is going. In the purely commercial arena, credibility is the key

* Cost. How much will the change cost? in dealing with the marketing division or the cus-
Also, will this change save money in the tomer. If they have a change request that is going to
overall project? create more difficulty than it is worth, the configura-

* The criticality of the area. NO CR/DR's can tion management people should be able to show
be overlooked if the problem will prove to documented data that will make the control board's
be mission critical. All other areas of evalua- evaluation credible. When a customer can see the
tion should be rethought if the bug might kind of impact a change is going to have on the time,
possibly create critical problems. size, or cost involved in a project, they will better

" Other CR's under current evaluation. Will understand and more readily accept the
another change solve this problem or do management's decisions regarding the project. The
other more critical changes rely on this key is a thorough and well documented evaluation
software remaining the same, based on the previous listed data. The list can be

" Test requirements. This area takes in how changed or expanded on, according to the needs of
mu testre irng s hi reaed hich wil athe project, but as it stands, it gives a fairly accurate
much testing will be needed which will af- picture of the kind of information that is going to be
fect the costs and time needed for the needed for credible evaluation.
change.

* Resources. Do you have the people avail-
able to work on this program? Do you have
the hardware equipment available to use for SCM and the Real World
this change?

" CPU and memory impact. Going from the classroom to the corporation.
" Benefit. How much of an advantage will it Two points came up early in the meeting that helped

be to change the software? to categorize many of the problems discussed later in
* Politics. In the corporate and commercial the day.

world, it would be good idea to evaluate who 1. We live in an irrational world, but computer
is asking for the change and whether or not science and software engineering is based on
the board's decision might be used as a bar- concrete and rational logic. How does one
gaining point in the future. make this rational knowledge fit into an ir-

60 SEI-SM-4-1.0

Support Materials Software Configuration Management

rational world? Software Engineering and the actual code to the final consumer of the product).
Design is not just like it is in the textbooks. If a few concepts of SCM are known by a majority

2. Very often the existing system dictates what of people dealing with the development of a
kind of changes take place and what kind of software product, then people will be able to func-
configuration management is used, rather tion more smoothly within the system and the whole
than the ideal or proper software design process will be tighter. This is also important when
practices. you remember the large number of companies that

are using contracts and subcontracts with other com-
Both of these concepts are difficult to teach to panies. Unless the concepts of SCM are widespread
young, inexperienced software engineers who are among many companies, Software Configuration
coming directly from the classroom. They are con- Management will be dependent upon whether a sub-
cepts that are usually learned through experience. A contractor chooses to use SCM or not.
software engineering graduate expects to put the
principles of Software Configuration Management Two Perspectives. One last point that seemed to be
directly into effect. Suddenly they are confronted emphasized at the meeting was that of two perspec-
with an irrational world that does not easily follow tives emerging. It has been previously stated that
the logical course of configuration management. It when a company goes under contract with another to
isn't the mainline textbook problems that are going develop a software system, the management people
to throw an educated software engineer; instead, it's should have respect for the existing SCM structure
the small peripheral problems that build up and take in the contracting company. The two perspectives
control of a project. These little things, the result of are (1) that of the originator of the project and (2)
this irrational world, include corporate politics, un- that of the contractor that goes into this program.
foreseeable accidents, human personalities, and day NASA is a good example. They will often put
to day unexpected emergencies. Also, a new several companies under contract for a single mis-
program manager may have to deal with a system sion and these companies often turn around and sub-
that does not follow regulation SCM practices and contract another company to work on various parts
does not want to change. Often corporations have of the system. NASA has a very structured system

* become comfortable with a particular structure that for configuration management, and the companies
does not have room for SCM, and it can be quite under contract often have SCM systems of their
frustrating to a young manager to be asked to com- own. It is very clear to see that being able to see the
ply with "company policy" rather than smart "give and take" needed in a situation like this. Each
software configuration management. company needs to try and comply with the SCM

demands of the contract originator. When a
There are some attributes of the irrational world and software engineer is trying to take the concepts of
some system protocol specifications that will never SCM into the real world, he should be prepared to
be able to be changed, regardless of a software deal with these perspectives.
engineer's chagrin when dealing with them. Learn-
ing to deal with these inexplicable and usually
frustrating areas of SCM requires experience in the
world where they exist. A textbook will never be Conclusions
able to adequately transfer the kind of knowledge
needed to deal with the irrational world, There will
always be people who will be able to manage cor- It is apparent to me that Software Configuration
porate software configuration better than others, Management courses are essential to progress within
regardless of classroom performance---another result Software Engineering today. SCM is tied to every
of that irrational world. stage of software product development. A good

configuration management team could make the dif-
A few well educated configuration management per- ference between products coming in on time, within
sonnel are not going to make much of an impact on cost and coming in late, full of bugs, with greater
Software Configuration Management today. There costs. Education seems to be the place to start, but
must be a way to commuricate the concepts of SCM there seems to be much more involved than class-
to a great number of people involved in the develop- room development alone. It seemed that what the
ment of software products, even the people who are group was trying to do was begin a program that

* not directly responsible for the configuration would teach software engineers that they need to
management of a particular system (this would in- learn the concepts of Software Configuration
clude everyone from the computer scientist writing Management wherever that education amy be avail-

SEI-SM-4-1.0 61

Software Configuration Management Support Materials

able (whether learning in the classroom or gaining
experience in the field). I would conclude that what
seems to be wrong in Software Configuration
Management today is that too many software en-
gineers don't seem to think they are missing much
without a solid knowledge of SCM. If they can be
shown the importance of SCM, then perhaps they
will be more eager to learn its concepts and to use it
more often and more effectively in the software
development field today.

62 SEI-SM-4-1.0

Support Materials Software Configuration Management

Bibliography on
* Version Control and Configuration Management

Daniel Conde

Digital Equipment Corporation

This paper originally appeared in ACM SIGSOFT Software En- sion I once distributed on-line, but I have deleted all
gineering Notes 11 (3), July, 1986, pages 81-84, and is reprinted reverences to various internal memos and added new
here by permission. references.

I hope this reading list will help those planning to
This is a bibliography of documents related to the build systems to solve this problem, or those who
problem of version control and configuration want to apply ideas into their existing environment.
management. Specifically, it concentrates on the It is not required to run a program to help in system
problem of System Modelling, which is loosely modelling, as various methods and conventions are
defined to be the task of: sometimes sufficient. A program does help

Giving programmers help in describing the programmers automate the process.
structure of large systems: getting consistent
versions of files, replacing single modules
within a running system, and recompiling and
rebinding just what has been changed, all in. the right order. (From a Xerox internal
glossary) [ACM84]

Most of the documents do not attack the whole Proc. ACM SIGSOFTSIGPLAN Software Engineer-
problem just defined, but together they represent ing Symposium on Practical Software Development
work done on many aspects of the problem. Some Environments.. Pittsburgh, PA, 1984.
are on various programming languages that help the
construction of large systems. Others refer to [Allman8l]
specific systems designed to help programmers in Allman, Eric. An Introduction to the Source Code
the problem of version control, or configuration Control System, Project Ingres. UC Berkeley, 198 1.
management. Some even try to solve many of these
problems in a coherent way. This problem has [Avaklan82]
gained attention recently as the problems of larger Avakian, Arra. The Design of an Integrated Support
projects written by many programmers are realized. Software System. Proceedings of the SIGPLAN 82
Some of the recent efforts were reported in the Symposium on Compiler Construction. ACM, June,
proceedings of the ACM Software Engineering 1982,308.
Symposium on Practical Software Development En-
vironments and the GTE Workshop on [Belady76]
Programming-in-the-Large that are listed here. Belady, L.A. and M.M. Lehman. A Model for Large
Some, but not all of the papers from those proceed- Program Development. IBM Syst. J. 15, 3 (1976),
ings are referenced here. This year's ACM Software 225.
Engineering Symposium should promise to present
more recent work. The list is by no means complete. [Belady78]
I have mainly included documents that are publically Belady, L.A. Large Software Systems. IBM Thomas
(sic) available. I have also not included internal J. Watson Research Center, Jan., 1978.
memos or any works in progress. Since I expect

* many new works this year, this serves to capture [Belady79]
some of the early work. I will try to augment it as in
the future. This bibliography is derived from a ver- Belady, L.A. The Characteristics of Large Systems.

In Research Directions in Software Engineering,

SEI-SM-4-1.0 63

Software Configuration Management Support Materials

P. Wegner, ed.MIT Press, 1979, 106-142. [Estublier84]
Estdblier, J. Preliminary experience with a Con-

[BeliLabs8l] figuration Control System. Proceedings of V
Source Code Control Systems User's Guide, in SIGSOFT/SIGPLAN Software Engineering Sym-
UNIX System III Programmer's Manual. AT&T Bell posium on Practical Software Development. ACM,
Laboratories, AT&T Information Systems, 1981. May, 1984, 149.

[Bianchi76] [Estublier85]
Bianchi, M.H., and J.L. Wood. A User's Viewpoint Estublier, J. A Configuation Manager The Adele
on the Programmer's Workbench. Proceedings of Data Base of Programs. Proceedings of the
the 2nd Conference on Software Engineering. ACM Workshop on Software Environments for
and IEEE, 1976, 193. Programming-in-the-Large. GTE Laboratories,

June, 1985, 140.

[Cooprlder79]
Cooprider, Lee. The Representation of Families of [Feldman79]
Software Systems. CMU-CS-79-116, Carnegie- Feldman, Stuart I. Make - A Program for Maintain-
Mellon Univ., April, 1979. ing Computer Programs. Software Practice and Ex-

perience 9, 4 (April 1979), 255-265.

[Cristofor80]
Cristofor, E., T. Wendt, and B. Wonsiewicz. Source [Fritzon85]
Control + Tools = Stable Systems. Proceedings of Fritzon, Peter. The Architecture of an Incremental
Compsac 80. IEEE, Oct., 1980. Programming Environment and some Notions of

Consistency. Proc. Workshop on Software En-

[Dah168] gineering Environments for Programming-in-the-

Dahl, Ole-Johan. Simula 67 Common Base Large. GTE Laboratories, June, 1985, 64.

Language. Norwegian Computing Center, Oslo,1968. [Gandalf85]

J. Sys. and Software 5, 2 (May 1985). Issue dedi-

[DEC82] cated to the Gandalf System..

CMSIMMS: CodelModule Management System
Manual. Digital Equipment Corporation, 1982. [Glasser78]

Glasser, Alan L. The Evolution of a Source Code

[DeRemer76] Control System. Software Engineering Notes 3, 5

DeRemer, Frank, and H. Kron. Programming-in- (Nov. 1978), 122.

the-Large versus Programming-in-the-Small. IEEE
Trans. Software Eng. 2, 2 (June 1976), 80-86. [GoldsteingOa]

Goldstein, Ira, and Danny Bobrow. Representing

[Deutsch80] Design Alternatives. Proc. Artificial Intelligence

Deutsch, L. Peter, and Ed Taft. Requirements for an and Simulation of Behaviour Conference. Amster-

Experimental Programming Environment. dam, July, 1980.

CSL-80-10, Xerox PARC, June, 1980. [Goldstein80b]

[DOD80] Proc. First Annual Conference of the National As-

Department of Defense. Stoneman: Requirements for sociation of Artificial Intelligence.. Stanford, Cali-

Ada Programming Support Environments (APSE). fornia, Aug., 1980.

DoD, Feb., 1980. [Godstein8c]

[Erickson83] Goldstein, Ira, and Danny Bobrow. A Layered Ap-

Erickson, V.B. Build A Software Construction proach to Software Design. CSL-80-5, Xerox
Tool. AT&T Bell Laboratories Technical Journal PARC, Dec., 1980.
63, 6 (Aug. 1983).

64 SEI-SM-4-1.0

Support Materials Software Configuration Management

[GTE85] [ince84]. Proc. Workshop on Software Engineering Environ- Ince, D.C. A Source Code Control System Based on
ments for Programming-in-the-Large.. Harwich- Semantic Nets. Software Practice and Experience
port, Massachusetts, June, 1985. 14, 12 (Dec. 1984), 1159-1168.

[Habermann76] [ivie77]
Habermann, Nico A., Lawrence Flon, and Lee Ivie, E. The Programmer's Workbench - a Machine
W. Cooprider. Modularization and Hierarchy in a for Software Development. Comm. ACM 20, 10
Family of Operating Systems. Comm. ACM 19, 5 (Oct. 1977), 746.
(May 1976), 266.

[Kaiser82]
[Habermann79a] Kaiser, G., and Nico Habermann. A Description of
Habermann, Nico. A Software Development Control the Correct Version Control Supported by the Gan-
System. Carnegie-Mellon Univ., 1979. dalfEnvironment. Carnegie-Mellon Univ., 1982.

[Habermann79b] [Katz85]
Habermann, Nico. Tools for Software Construction. Katz, R.H., M. Anwaruddin, and E. Chang. A Ver-
Proc. Software Tools Workshop. Boulder, Colorado, sion Server for Computer-Aided Design Data.
May, 1979. UCB/CSD 86/266, U.C. Berkeley, Nov., 1985.

[Habermann80] [Lampsona3a]
Habermann, Nico. System Decompositions and Ver- Lampson, Butler W., and Eric Schimdt. Practical
sion Control for Ada. Carnegie-Mellon Univ., May, Use of a Polymorphic Applicative Language. Proc.
1980. 10th POPL Conference. ACM, June, 1983.

[Habermann82] [Lampson83b]
Habermann, Niceo. The Second Compendium of Gan- Lampson, Butler W., and Eric Schmidt. Organizing
dalf Documentation. Carnegie-Mellon Univ., May, Software In a Distributed Environment. SIGPLAN
1982. Notices 18, 6 (June 1983).

[Harslem82] [Lauer79]
Marslem, Eric. A Retrospective on the Development Lauer, Hugh, and Ed Satterthwaite. Impact of Mesa
o! Star. Proc. 6th International Conference on on System Design. Proc. 4th International Con-
Software Engineering. Tokyo, Japan, Sept., 1982. ference on Software Engineering. IEEE, Sept.,

1979, 174-182.
[Hecke178]
Heckel, P. A Technique for Isolating Differences [Leblang84]
Between Files. Comm. ACM 21, 6 (April 1978). Leblang, David. Computer Aided Software En-

gineering in a Distributed Environment. Proc. ACM
[Horsley79] SIGSOFT/SIGPLAN Software Engineering Sym-
Horsley, Thomas. Pilot: A Software Engineering posium on Practical Software Development
Case Study. Proc. 4th International Conference on Environments. ACM, May, 1984, 104.
Software Engineering. 1979, 94.

[Leblang85]
[Ichbiah79] Leblang, David. Configuration Management for
Ichbiah, Jean D. Preliminary ADA Reference Large-Scale Software Development Efforts. Proc.
Manual. SIGPLAN Notices 14, 6 Part A (June Workshop on Software Engineering Environments
1979). for Programming-in-the-Large. GTE Laboratories,

June, 1985, 122.
[IEEE]
IEEE. Standard Glossary of Software Engineering [Lewis83]
Terminology. IEEE Standard 729-1983, IEEE. Lewis, Brian. Experience with a System for Con-

trolling Software Versions in a Distributed Environ-

SEI-SM.4-1.0 65

Software Configuration Management Support Materials

ment. Proc. Symposium on Application and Assess- [Powel183]
ment of Automated Tools for Software Development. Powell, Michael, and Mark Linton. A Database
IEEE, Nov., 1983. IEEE Press catalog number Model of Debugging. Proc. ACM SIGSOFT/
83CH1936-4. SIGPLAN Software Engineering Symposium on

High Level Debugging. ACM, March, 1983,
[Lewis84] 365-375.
Lewis, Brian. IncludeChecker, in Xerox Develop-
ment Environment Users' Guide Ed. , Xerox Infor- [Prager83]
madon System Division, 1984. Prager, J.M. The Project Automated Librarian. IBM

Syst. J. 22, 3 (1983), 214.
[Linton84]
Linton, Mark. Implementing Relational Views of [Reiss84]
Programs. Proc. SIGSOFTISIGPLAN Software En- Reiss, Stephen P. Graphical Program Development
gineering Symposium on Practical Software with PECAN Program Development Systems. Proc.
Development Environments. ACM, May, 1984, 132. ACM SIGSOFTISIGPLAN Software Engineering

Symposium on Practical Software Development
[Liskov77] Environments. May, 1984, 30.
Liskov, Barbara H., Alan Snyder, Russell Atkinson,
and Craig Schaffert. Abstraction Mechanisms in [Rochklnd75]
CLU. Comm. ACM 20, 8 (Aug. 1977), 564. Rochkind, Marc, The Source Code Control System.

IEEE Trans. Software Eng. 1, 4 (Dec. 1975),
[Minsky84] 364-370.
Minsky, N. The Darwin Software-Evolution En-
vironment. Proc. SIGSOFTISIGPLAN Software En- [Rowland83]
gineering Symposium on Practical Software Rowland, B.R. Software .evelopment System. Bell
Development Environments. ACM, May, 1984. Systems Tech. J. 62, 1 (Jan. 1983).

[itchel1791 iSchmidt821
Mitchell, James G., William Maybury, and Richard Schmidt, Eric E. Controlling Large Software
Sweet. The Mesc Language Manual. CSL-79-3, Development In a Distributed Environment.
Xerox PARC, April, 1979. CSL-82-7, Xerox PARC, Dec., 1982.

[Nicklin] [Teltelbaum75]
Nicklin, Peter. MKMF - Makefile Editor. In UNIX Teitelbaum, Warren. The hNTERLISP Reference
Programmer's Manual 4.2 BSD.. Manual. Xerox PARC, 1975.

[Niklin83] [Teitelbaum81a]
Ncklin, Peter. The SPMS Software Project Manage- Teitelbaum, Warren. The INTERLISP Program-
ment System. UC Berkeley, Aug., 1983. ming Environment. IEEE Computer 14, 4 (April

1981).
[Parnas72a]
Parnas, David L Use of the Concept of Trans- [Teltelbaum81 b]
parency in the Design of Hierarchically Structured Teitelbaum, Tim. The Cornell Program Synthesizer
Systems. Carnegie-Mellon Univ., 1972. A Syntax Directed Programming Environment.

Comm. ACMt 24 (SepL 1981), 563.[Parnas72b]

Parnas, David L. On the Criteria To Be Used In [Teitelbaum83]
Decomposing Systems into Modules. Comm. ACM Teitelbaum, Warren. Cedar: An Interactive Pro-
15, 12 (Dec. 1972), 1053. gramming Environment for a Compiler Oriented

Language. Proc. LALA'ILLNL Conference on Work
[Powel182] Stations in Support of Large Scale Computing.
Powell, Michael, and Mark Linton. The OMEGA March, 1983.
Programming System., 1982.

66 SEI-SM-4-1.0

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION lbk. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

29. SECURITY CLASSIFICATION AUTHORITY 3. OiSTAI SUTIONIAVAI LABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/0OWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A_____________________
4PERFOAMING ORGANIZATION REPORT NUMIERISI S. MONITORING ORGANIZATION REPORT NUM8EA(S)

SEI-SM-4-1 .0

6a. NAME OF PERFORMING ORGANIZATION hb., OFFICE SYMSOL 7.. NAME OF MONITORING ORGANIZATION
I (II' pplieablej

SOFTWARE ENGINEERING INST.* SE I SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City.. State and ZIP Coda)j 7"~OORESS (City., Siiie Z4-ZZJ&Cod.ir

CARNEGIE- MELLON U&IVERSITY / ESD/AVS
PITTSBURGH, PA 15213 (HANSCOM AIR FORCE BASE

a.NAME OF FUNOING/SPONSORING &b. OFFICE SYMBOL"', it._M.O..CUEMENTI4NSTRUMENkT' DEN TI FI CATION NUMBER

ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003
Be. ADDRESS (City. Slate @Ad ZIP Codel 10 SOURCE OF FUNDING NOS, ______ _____

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITSURHPA1513ELEMENT NO. NO. NO. NO.

652F N/A J N/A N/A
11. TITLE (include Security C~iudiIonJ

Software Configuration Mavagement ______ _____
SRSONAL AUTHOA(S)
James E. Tomayko, The Wichita State University

134. TYPE OF REPORT 13b TIME COVERED19 14. DATIE Of REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINALTI FROM =_____ TO _____ Sept~mber 1986 I 66
16. SUPPLEMENTARY NOTATION

it. COSATI CODES it SUUJCT TERMS lCoadeo4tan rbn i elfscaarpe4Identy by block number)
IILD GROUP 11U11. on. configuration management

I I change control
softwarCe ypliitipon

It. AUTRACT ICo14lnu14 04rie~ itfCUJ VW ceurja1s lnttY by bloCk RUM64Fi

These materials support the curriculum module SEI-CM-4-1.3 "Software Configuration
Management."

O ISTRl BUTION/AVAILABILITY OF AeSTRACT 21. ABSTRACT SCCURITY CLASSIFICATION

ICLASSIIEDIUNLiMITED R3 SAME AS PT. 03 Oic USERS UNCLASSIFIED, UNLIMITED DISTRIBUTION
22.. NAME OF RESPONSIBLE INDIVIDUAL 22b6 TELEPHONE NUMBER 22c. OFFICE SYMBOL

-. .. -uBNS HEMAN Cap, ut~p (include Ata Codeii
JON.S HRM ap, SF -412 268-7630 &&- JP-

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under cuntract with the United States Department of Defense.. The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs,

SEI educational materials are being made available to educators throughout the academic, industrial, and governmert
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19J EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process' EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management' Engineering Education

CM-5 Information Protection EM-3 Reading Computer Programs: Instructors Guide and

O CM-6 Software Safety Exercises

CM-7 Assurance of Software Quality
CM-8 Formal Specification of Software'
CM-9 Unit Testing and Analysis
CM-10 Models of Software Evolution: Ufe Cycle and Process
CM-1 I Software Specifications: A Framework
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 Software Development and Licensing Contracts
CM-16 Software Development Using VDM
CM-17 User Interface Development'
CM-18 (superseded by CM.231
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems'
CM-23 Tocanical Writing for Software Engineers
CM-24 Concepts of Cnncurrent Programming
CM-25 Language and System Support for Concurrent

Programming'
CM-26 Understanding Program Dependencies

0

