A235 511 | @

AD-A
\\II‘I\\\I\I\tllIlﬂl\l\‘l‘|\‘|\“!|‘|\I‘\|I‘

Carnegie-Mellon U y
\ ::—:-_,- Software Engineering Institute

Support Materials for

Software Configuration Management

Support Materials SEI-SM-4-1.0

y B X }; C
¥
Y : )
T o
5 4“5 i
o i
A5 £y

/ 91-00325
’ HH*I'MH'NH’“HIHIH" | N \ ‘
. JHHII N \\‘ Q§%£«' N




The folowng stalement of assurance is more than a statement requited to comply with the federal law Tiis ¢ a s.ncere statement by the unversty to assure that all
peopie are fctuded inthe dversly which makes Carnege Mellon an exating place. Carnege Melion wishes 1o include people wihout regard to race, colot, natonal
ong.n, sex, handcap, relg.on. creed. ancestry. belief, age, veleran status or sexual onentaton

Carneg e Maslon Universty does not discrmanate and Carneg e Meilon Unwarsty s requded rot to diser minate 10 admessons and employment on the bass of race,
colon natonal of 3 0 $ex of handicapin violaton of Td'e Vi of the Civd R.ghls Act of 1964, Title IX ot the Educatonal Amendments of 1972 and Secton 504 of the
Retab "1t on Act of 1973 or other federal, state, or local tlaws o1 executive orders. In addton Carneg e Mellon does not discrm.nate in adm ss:008 and employment on
the bass ©f ret gon Cread antestry. beie!, age. veleran stalus Or sexual onental onin vi:o'al on of any federal, state, or local faws Of executve orders. Inquiries concern-
1ngappCa* 0.0t th 5 POLCy Shou'd be d rected 1o the Provost, Carneg ¢ Melion Un versty, 5000 Fotbes Avenue, Patsburgh, PA 15213, telephone (412) 2656684 of the
v ¢ca Pres gent ‘ot Enrctiment. Carnege Ml onnwersty 5000 Forbes Avenue, Pasbuigh PA 15213 telephone (412) 268-2056




Support Materials
for

Software Configuration Management

SEI Support Materials SEI-SM-4-1.0

September, 1986
'y sao.;: ;1 ox;“"or —Z
| YIS GRARI g/
DYID TaB 0 ‘

Unsnnowvnoed 0

Justilication.
Edited by

By

Distributt
James E. Tomayko _Zistributlon/

The Wichita State University Availability Cedos
Avall and/or
Dist $poalal

A

-

i~ Carnagle-Melion University
% Software Engineering Institute




This technical report was prepared for the

SE| Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731 .

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication. -

FOR THE COMMANDER

/pé&%mw

JOHN S. HERMAN, Capt, USAF
SEl Joirit Program Office

¥
,

This work is sponsored by the U.S. Department of Defense.

Copyright © 1986 by Carnegie Mellon University.

This document is available througt. the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govemment
agency personnel and their contractors. To obtain a copy, please contact DTIC directly. Defense Technical information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are alsc available through the Natioral Technical Infermation Service. For information on ordenng,
please contact NTIS directly. National Technical Information Service, U.S. Department of Commerce, Spnngfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.




Contents

a

A Configuration Management Example
James E. Tomayko

Examples of Software Change Forms
James E. Tomayko

Example of a Software Configuration Management Plan
Walter Smith, Jon Lange

Typical Revision Control System Session
James E. Tomayko

Presentation Support Viewgraphs
James E. Tomayko

Sample Examinations
James E. Tomayko

Summary of the SEI Workshop on Software Configuration Management
Katherine E. Harvey

Ribliography on Version Control and Configuration Management
Daniel Conde

SEI-SM-4-1.0

10

16

30

33

53

55

63




Support Materials Software Configuration Management

A Configuration Management Example

James E.Tomayko
The Wichita State University

This section contains examples of discrepancy reports, change requests, and requests for enhancements to
products to show their-differences and similarities.

Real-Time Hachng, Inc. (RTH), a defense contractor, decided to write the control software for the elevator in its
new engineering building to provide its programmers some experience with Ada before its use was mandated in’
new products. A team leader prepared the following specification and partial design of the program:!

Functional Specification

The program is a procedure RUN_ELEVATOR that controls an elevator serving 8 floors of a building, num-
bered from 1 to 8 (no basement).

At each floor in the building are two elevator call buttons-UP and DOWN (except for the first floor which does
not have a DOWN button and the top floor which does not have an UP button). Inside the elevator there are 8
FLOOR buttons, one for each of the 8 floors and an OPEN button. FLOOR button marked I is depressed by a
passenger to get off at floor I and the OPEN button is depressed to prolong the period the elevator door is open.

Elevator Specification: The elevator car behaves as follows:

1. It services the 8 floors carrying, passengers up and down: Its home floor is the first floor (the building
lobby). Whenever there are no requests for use, it stations itself at the home floor.

2. When going up, the elevator services all requests for stops on floors above its current position; similarly
when it is going down. The elevator tries to minimize the number of changes in direction: (No person
waits forever.)

3. The clevator opens its door for 5 seconds: Every time the OPEN button is pressed, the door is kept open
for one extra second. However, pressing the OPEN button when the door is closed has no effect.

Physical Details of the Eilevator: Depressing an elevator button causes a hardware interrupt (with a possible
parameter) on the computer associated with the elevator: These interrupts are queued automatically: Hardware
addresses corresponding o these interrupts are

Button Address Function

DOWN(1) 8#1000# Request to go down from floor |
UP(1) 8#1010# Request to go up from floor |
FLOOR(!) 8#1020# Stop at floor |

OPEN 8#1030# Delay closing door by one second

A package ELEVATOR with the following specification is available.

IThe specification and partial implementation of this example are adepted by permission from Naruin Gehani, Ada: An Advanced
Introduction (Prentice-Hall, 1983, pp. 181-200). Ada is a trademark of the U.S. Department of Defense.

SEl-SM-4-1.0 1




Softwara Configuration Management Support Materials

package ELEVATOR is
procedure MOVE_UP_ONE_FLOOR;
procedure MOVE_DOWN_ONE_FLOOR;
procedure CLOSE_DOOR;
procedure OPEN_DOOR,;

end ELEVATOR,;

Elevator Movement Timing Characteristics: The elevator movement consists of three phases-the car first
accelerates to steady speed, then travels at steady speed and, finally, decelerates to a stop. The elevator takes
1.80 seconds to go from a stationary position at floor I to a stationary position at floor I+1 (the characteristics are
the same whether the elevator is going up or down)-0.40 seconds to accelerate to steady speed while covering
the distance A;B;, 1.00 seconds traveling at steady speed to cover the distance B,C;, and 0.40 seconds

decelerating to a stop while covering the distance C,D,. A;B, is equal to C;D;, A, coincides with D;-1 and D;
coincides with A;+1. '

If there is no need for the elevator to stop at the next floor then it must be given another move command before
it starts decelerating, i.e., at or before position C;. There are two cases:

1. Suppose the elevator is in a stationary position at the time the first move command is given: Then the
elevator should be given the next move command at most 1.40 seconds after the previous move com-
mand

2. Suppose the elevator starts from floor 1-1 or earlier. It does not stop at floor 1 and is not io stop at floor
I+1 either. It was last instructed to keep moving at position C;-1. It must now be instructed to keep
moving at C,. Traveling at steady speed the elevator covers the distance A B, or C;D, in half the time it
takes when accelerating or decelerating. Consequently, it covers the distance C1-1C, in 1.40 seconds.
The next move command, as in the first case, must be given at most 1.40 seconds after the previous
move command,

Design

Requests for elevator service, to go up or down, or to get off, are accepted by a task REQUEST_DB (requests
data base), which also keeps track of these requests. Task ELEVATOR_CONTROL controls the elevator using
commands provided in the package ELEVATOR: It also accepts requests from passengers, made by depressing
the OPEN button, to keep the elevator door open longer than the normal period.  Task
ELEVATOR_CONTROL. interacts with the task REQUEST_DB to

1. determine the next elevator destination based on pending requests for elevator serv.ce, and
2. supply information specifying the floors that have been serviced.

The interaction between tasks ELEVATOR_CONTROL, REQUEST_DB, package ELEVATOR and the
elevator itself is illustrated in Figure 1.

At any time, the elevator will be in one of three states-UP, DOWN or NEUTRAL: States UP and DOWN
indicate that the elevator is going in the direction implied by its state in response to passenger requests. The
NEUTRAL state indicates that the elevator is not responding to a request but that it might be headed toward its
home floor if it is not already there.

2 SELSM-4-1.0




Support Meterials Software Configuration Management
The Elevator System
REQUEST
DB
E clevator car .
ur, _-”DOWN, LR
e afmEvATOR
29 OPEN CONTROL
"« _ control signals
ELEVATOR
O ak
package
Figure 1
SEI-SM-4-1.0 3




Software Configuration Management Support Materials

Some constant and type declarations used in the implementation are:

HOME: constant:= 1;
N: constant:= 8; --number of floors

subtype STORIES Is INTEGER range 1..N;
type STATE is (UP, DOWN, NEUTRAL);

NORMAL_OPEN_TIME: constant DURATION:= 5.0;

EXTRA_OPEN_TIME: constant DURATION:= 1.0;

NEXT_MOVE_TIME: constant DURATION:= 1.39
--the next move command must be given at most
--1:40 seconds after the previous move command;
~-selection of 1:39 is arbitrary except for the
--above constraint

The specification of task ELEVATOR_CONTROL is

task ELEVATOR_CONTROL is
entry OPEN; --keep the door open one second longer
--associate hardware interrupt location with entry OPEN
for OPEN use at 8#1030#,
end ELEVATOR_CONTROL;

The specification of task REQUEST_UDB is

task REQUEST_DB is
entry DEST(CUR_STATE: In STATE; CUR_FLOOR: in STORIES;
NEW_STATE: out STATE;
NEW_FLOOR: out STORIES);
--computes the new destination and direction
--based on the current location, current
--direction and pending requests
entry REQUESTS (B: out BOOLEAN);,
-TRUE returned in B if there Is any pending request
--for elevator service and FALSE otherwise
entry CLEAR_GO(DIR: in STATE; I: in STORIES);
--picked up passenger(s) going up or down from floor |
entry CLEAR_OFF(l: In STORIES);
--passenger(s) let off at floor |

—the following entries correspond to passenger
-requests for elevator service

entry DOWN (I: in STORIES),

entry UP(l: In STORIES);

entry FLOOR(l: in STORIES):,

--associate hardware interrupt locations with entries
for DOWN use at 3#1000#;
for UP use at 8#1010#;
for FLOOR use at 8#1020#;
end REQUEST_DB;

4 SELSM-4-1.0




Support Materials Software Configuration Management

RTH’s configuration manager placed the Functional Specification and Design documents under configuration
control when the program entered its implementation phase, even though it was an informal development project
and not intended as a product. She also wanted to get some Ada experience. This turned out to be fortunate, as a
flurry of discrepancy reports began to surface during integration testing. A configuration control board consist-
ing of the author of the functional specification, a representative from the test and evaluation team, the division
manager whose engineers were doing the Ada excercise, and the configuration manager hastily convened. The
division chief had the responsibility for the final decision on discrepancy reports and change requests.

A Discrepancy Report

One of the discrepancy reports the board considered was turned ir .y a test engineer (See Figure 2).

The origins of this problem lie in a typographical error that mushroomed across the system. The existing
mechanical elevator control system accelerated and decelerated in 1.4 seconds. The author of the Functional
Requirements mistakenly wrote 0.4 seconds. The engineers designing the changes to the hardware needed to
transition to the digital system, aware of the Functional Specification of the software, interpreted the value 0.4 as
a virtual change request to their equipment. Since the work was being done by RTH's in-house staff and not by
the elevator manufacturer, they did not realize that 0.4 seconds was a little fast, they thought it was a benefit to
be gained by using software control! The engineer writing the discrepancy report, thinking that the software was
the only new element in the system, flagged the software, but put a few question marks next to the hardware
classification because he really did not know.

The configuration control board quickly realized that the software was not controlling acceleration and decelera-
tion rates, but merely had to be aware of them for the NEXT_MOVE_TIME parameter to be correct. Therefore
an easy fix to the documentation and code could be made, but it took nearly a week to run down who hau
changed the hardware. If the system had been organized as a product development effort from the start, a design
review on the hardware side should have detected the error in changing the elevator’s existing acceleration and
deceleration rates.

Note that the discrepancy report form used here has provision for tracking the disposition all the way through to
the verification of the actual changes, including forcing the originator to sign off that the analysis of the problem
is understood by him.,

A Change Request

During the testing period of the new system, a handicapped secretary sitting in a wheelchair found herself in the
back of the elevator with several people standing in front of her. When she reached her floor, the standees filed
out somewhat slowly. She got near the door as it started to close, hit the *Door Open’ button once, and then
pearly got trapped when she could not clear the doors during the one second delay. The result of this incident
was Figure 3, a change request.

The configuration control board evaluation of this change was fairly straightforward, in that it was obviously
needed. However, the change cost considerable money as the implementation group first tried stacking 'Door
Open’ requests so that every time someone pushed the button a one second delay was stored. That way five
pushes equalled five seconds, and the users could actually control the length of the delay. One day the
president’s four-year-old hit the button 36 times while the doors were open, resulting in another change request
by the person who had just boarded the elevator wanting to go down. The original change request form used had
no provision for sign-offs by the verfication or quality assurance teams, so the implementor’s interpretation of
the phrase 'to 3 seconds’ was not challenged. The final fix was to change the value of the constant
EXTRA_OPEN_TIME to 3.0 seconds.

Requests for Enhancements

After the RUN_ELEVATOR program finally was in operational use, the president of Death Rays, Inc. visited
RTH. The president of RTH, made aware of the Ada elevator controller due to his son’s exploit, bragged to

SEl-SM-4-1.0 5




Software Conﬁg_;uration Management Supponrt Materials

Death Rays’ president about the program. It turned out that Death Rays was completing a new corporate head-
quarters, and became interested in purchasing the program to prove that they had some Ada in house. In order to
help keep Death Rays’ business, the president of RTH ordered a new version of the program.

The configuration manager was infuriated. What had started as an ad hoc programming project had evolved into
an ongoing product development effort. The program was informally described, had no user or installation
documentation, and no consistent control had been applied to its evolution. The cost of adding discipline at this
point was expensive, yet no formal control board existed to draw attention to this fact. Production of the new
version of the program began. The implementors thought it would be an easy deal: find out how many floors,
check out the constants (this time they called the elevator manufacturer and subcontracted any hardware changes
to them), and everything would be an easy fix.

The program was changed, delivered, and installed. One hour later the customer version of a discrepancy report
(an Information and Assistance Request) arrived by messenger (see Figure 4). The members of the ad hoc
configuration control board met hastily over lunch. The problem and its resolution can be deduced from the
form.

Several months later, after everyone had nearly forgotten about RUN_ELEVATOR, a friend of the president of
Death Rays called the president of RTH. He was building a huge new corporate headquarters. It had three
elevators. The president of RTH, still wanting to keep Death Rays’ business, picked up the phone to ~all the
software shop.....

6 SEI-SM-4-1.0




Support Materials ___Software Configuration Management

-—me emmb @ubh L d - = -—— emms A GEED CREEEEEeaERE S
‘ | @ ERROR NNOENG SPR NO: -'
SOFTWARE PROBLEM REPORT ..
D EMENT WERPRA.ECP |
' PROSLEM: OMGINATOR'S mame JoNn SDILh !
sveTeM VCASION FILEAOOULE
H Run_Elevator "o 1.1
NELATEO RELATEO
SVETEMS . TASTCASE
’ . The elevator we are testing using the
ICATION: Uers!on !1 og the soitware accelerates and decelerates l
2 !‘ 227 excessively last. People nave trouble staying on their leetv! |
O COMMENTNOL
l © OOCUMENTATION
© WFORMATION ONLY
| COMRECTION ‘
AOOLINED BY: .
ANALYSIS TO 8¢
OONE 8Y ORG —________ GROw mmew oare 8/7/86
ANALYSIS: (PREPARED 8Y REIFONGIOLE SOFTWARE OESIGN ORGANIZATION) RECEIVED DATE g-L3log. I
now: _ Requirements error—-- the values stated in {
CLASBWICATION: gunctional Specification, section 1.3 for acceleratiun/
' deceleration are 0.40 seconds for each. Actual values are
O COOMG
b 1.4 seconds for each.
O COMMENTPOL
6 DOCUMENTATION
O ENVIRONMENT
© NO £ CHANGE REQD
O RRFORTED ON e
MREVIOUSLY |
© OTHER CONFIG
APFECTED |
PR NO, '
monaTunes: Loc ANALYST . oaTE L1772 omaamaron Q;f oare L2
CORRECTION: (BRIEF DESCRIFTION OF WOAK AND LIST OF MODULES CHANGED?
wone _Since acceleration and deceleration are functions of the hardware,
the only change needed is in the declaration of NEXT.MOVE.TIME in the Design
document, as follows: |
NEXT MOVE TIME: constant DURATION:= 2.39 |
associated comment and runctional opec also SGRATURE AL OATE :ﬁi “{
Functional Specification
WA??MK: Msu nﬁuo' NYATION SORK)
ection 1.3 changed, esfg’xil changed.
smono, RE=EL el sace 0. 1L OEW/ADEN MO, comarmmmecmamms  OATE e
swono, LY oL 0. sace n0. ££ OCN/ADCN NO. e OATE commamnme
&% O NO. ' MAGE NO. OCN/ADCN M0 cremmamsacme  OATE  coermamaes |
AW O NO. PAGE NO. OCM/ADCN O OATE e |

“Oa:: w%""‘“ DATE .ﬁé—‘jf ¢

7
CONFIRMATION: ICHANGE VERIIO SY S.C.M.0 VERIICATION: ICORRECTION TESTED)
T X0, i cLomme restwo. RE - FC-27
avaiasLe wveriion ol o |

Figure 2

SEl-SM-4-1.0 7




Software Conﬂguratlon Management

Support Materials

WY Z INC. REQUEST FOR CHANGE s R
) £-1001 12/77 arc RE-86-34
Narre Oste Prepered Page Date
1
Jane Doe 9/5/86 —— o ——| 9/5/86
Ponition Teiasphone No. Recoving DLC
Handjcapped elevator rider x7611 :
Depariment Name and Location DLC Locstion
Software QA, Bldg. 55
Module/Unit/System Affected
RUN_ELEVATOR
B [[Juarowane fxkoesion []oeviation [] emercency
3 oficdsor Twane (] courarimurry [[] cost neouction WogkuRcent
B[] rmvwane [[] wrc.orrion [ orver [] mourine
<
ﬂ
I use a wheelchair, and have trouble pressing the 'Door Open' button on the
computer-controlled elevator and then getting out without being squashed by
the Joors.
w,
N
Make the door stay open longer when the button is pushed.
<
Seanture Tutle Dote )
[ 7| ACCEPTED FOR .
(12 INvESTIGATION q AN N CHmr, ecp 1/6/8(
UMISDM Dete
ﬁnnoveo [ resecreo
Action Teken o Rasion for Aepection
ECMISCM Dete
'Door Open' delay extended from ! second to
3 seconds.
CPPM Dete
W,
Figure 3
SELSM-4-1.0




® x<vzMw

Support Materials

Software mlﬂgumlon Management

FORMATION AND ASSISTANCE REQUEST INCIDENT NUMBER
TOR 1001
One
urNn0.61623
CENTRAL SERVICE NAME AND LOCATION DATE CUSTOMER TEL. NO. & EXT. CUSTOMER NO.
RTH 2/5/87 | 999-555-5555 H-345
CUSTOMER/COMPANY NAME AND ADDRESS omamaron name [] u¥2. [} customen
Death Rays, Inc. Sam Short
ORIGINATOR TEL. NO. & EXT. SALES DISTRICT NO
999-555-5551
EMMWARE RELEASE | DEVICE TYPEMOODEL NO
SE ZONE NO. SYSTEM DIV OPERATING SYSTEM | RELEASE & PATCH LEVEL we proriplrt b
MEMOAY SIZE | TYPE DISC APPLICATION NAME | MELEASE & PATCH LEVEL .ogeme PROGRAM NAME MODIFIED ¥ YES
RUN_ELEVATOR 2.0 BELOW
DOCUMENTATION PROLLEM DESCRIPTION

EXCLOSED

RUN_ELEVATOR Installation Manual

ODATE ANO TWE RECEIVED

When the elevator call button on the l4th floor
is pushed, the elevator tries to continue upward
when it arrives, refusing to open the door and runniwg

the motor.

) ) o DR
THIS SECTION BELOW-SHOULD BE COMPLETED ONt ¥ BYR §74 ':gmmt SERVICES

PRIOAITY CODE

ASSIGNED TO
2/7/87 John Smith Highest
MESPONSE DATE MORE DOCUMENTATION DATE DOCUMENTATION | DATE OF MESPONSE [SPARDATE [SPARNO. | SGU CODE
CODE NECUESTED MECEIVED
2/7/86
PROBLEM MESPONSE

The software was designed and coded to operate in a 14 story building. Death Rays, Inc.
occupies a4 building where the floors are numbered 1,2,...12,14. There is no floor
numbered 13, therefore there are only 13 floors. The hardware interrupt requesting
floor 14 causes the elevator to rise, counting as it goes, so it tries to find a l4th
floor where none renlly exists.

Next time let's send someome over to look at the building before we sign off the
requirements!

SYSTEMS ENGINEER'S SIGNATURE

SEl-SM-4-1.0

Figure 4

g % > s



Software Configuration Management Support Materials

‘. Examples of Software Change Forms

James E. Tomayko
The Wichita State University

The following five pages are examples of forms used in industry for customers and developers to report software
problems and request changes. Included are:

1. Discrepancy Report Form

2. Request for Change Form (1)

3. Request for Change Form (2)

4. Software Problem Report Form (Boeing)

5. Information and Assistance Request Form (used by customers only)

Pages 11 through 15 are unnumbered.

10 SEI-SM-4-1.0




DISCREPANCY REPORT Fiil in bold areas. Please print. Report No.:

Name: Date Prepared: Date Needed:

" Position: Mail Address: Version:

Group: Module/Unit/System Affected:

ORIGINATOR

[0 Emergency
O Urgent
0 Routine

[ Design [ Deviation

PROBLEM
PRIORITY

L
(o]
w
aQ
=

O Compatibility 1 Other

DESCRIPTION

@
w
i
<
<
\ 7/
4 )
2
¢
—
%)
w
o
g
. :
Z | Description of changes: =
g P 9 @ Programmer Hours:
E @ | Computer Expenses:
% % Other:
0 S| TOTALCOST:
2 i
> el /
ACCEPTEDFOR _ Signature Title Date N\
D INVESTIGATION
Date
Z | O APPROVED [J REJECTED QA:
@ | Action Taken or Reason for Rejection - Date
o Monitor:
o) o Dat
2 Vav: pate
g —_
\ & Implementor: oae

g



REQUEST FOR CHANGE Fill in bold areas. Please print. Request No.:

Name: Dte Prepared: Date Needed:
))
<z: Position: Mail Address: Version:
0}
% Group: Module/Unit/System Aftscted:

s 3 Design [ Deviation > [J Emergency
w2 | [J Compatibility [J Cost Reduction 5 O Urgent
=& | [ New Feature [J Other T

O Routine

DESCRIPTION OF
PROBLEM

| PROM®SED SOLUTION §

Signature

D ACCEPTED FOR Title

INVESTIGATION

( [0 APPROVED [] REJECTED W( 5 Description of changes: )
}._
Action Taken or Reason for Rejection E
w
=
:
. . |
o ] rogrammer Hours:
§ - @ Computer Expenses:
Q g | Other
=z o)
- o | ToTALCOST:
L L
G Y
'd QA: Date N\
Monitor: vate
V&V: Date
A Implementor: Sy




DESCRIPTION OF PROBLEM

XYZ INC REQUEST FOR CHANGE ( \
) * F.1001 12/77 .
RFC
N Name Date Prepared Page Date
[ x 1
o [2] S
' 5 Position Telephone No. Receiving DLC
Q
g Department Name and Location DLC Location
Module/Unit/System Affected
5§ D HARDWARE D DESIGN D DEVIATION D EMERGENCY
w R RGENT
£q D SOFTWARE D COMPATIBILITY D COST REDUCTION D URGEN
Sl ] FiRvwane [_] mrc.opTioN D OTHER D ROUTINE
i _J
' )

AROPOSED SQOL

2
5
-
o
[*Y
-2
&
-
- <
g.
E

Z
<
Z
Signature Title Date
ACCEPTED FOR
INVESTIGATION
UM/SDM Date
D APPROVED D REJECTED
Action Taken or Reason for Rejection
ECM/SCM Date
CPPM Date
W,




ERROR

SOEING
SOFTWARE PRCBLEM REPORT

REF NO:

IMPROVEMENT

(UER-PAR.ECP |

SYSTEM
FAILING

VERSION
NO.

ORIGINATOR'S NAME

FILE/MODULE
NAME

RELATED
SYSTEMS

RELATED
TEST CASE

CLASBIFICATION: PROSLEM DESCRIPTION:

O S0FTWARE
O MAROWARE

O COMMENTNOL

O DOCUMENTATION
O HNFORMATION ONLY

CORRECTION

REQUIRED BY:
ANALYSIS TO 8¢ .
DONE BY ORG GACUr

SICNATUAE OATE

EXPLANATION:

ANALYSIS: (PREPARED 8Y AEIFONSISLE SOFTWARE DESIGN ONGANIZATION)

RECEIVED DATE

CLASBIFICATION:

0 COOING
O DESIGN

O COMMENT/POL

O DOTUMENTATION
O ENVIRONMENT

O NO S/AW CHANGE REQD

O REPORTED ON
PREVIOUSLY

O OTHER CONFIG

AFFECTED
(8PR NO. ) -

SIGNATUAELS: AMALYST DATE

OR'/GINATON OATE

SYSTEM WORK

- CORRECTION: (BRIEF DESCRIPTION OF WORK AND LIST OF MOOULES CHANGED)

SIGNATURE DATE e

DOCUMENTATION WORK: (BRIEF OESCRIFTION OF DOCUMENTATION WORK)

AN O NO, PAGE NO. OCN/ADCN NO. cmeesiscniom. DATE i
W O NO. PAGE NO. OCN/ADCON NO  cccomensasncssns OATE  coommrinnssne
$/W O NO. PAGE NO. OCN/ADCN NO. cminemmssomcsnae  OATE  coemmcrems ‘
CLOSURE APPROVAL SIGKATURES:
OATE

CONFIRMATION: (CHANGE VERIKIED BY S.C.M.)
MT™ 80
AVAILASLE IN VERSION

SIGNATURE

DATE

VERIFICATION: (CORRECTION TESTED)
CLOSURE TESY NO.

SIGNATURE DATE

— 1




XY Z,INC,INFORMATION AND ASSISTANCE REQUEST T NCIDENT NUMBER

7002 1083
izano.61623 *
CENTRAL SERVICE NAME AND LOCATION DATE CUSTOMER TEL. NO. & EXT. CUSTOMER NO.
CUSTOMER/COMPANY NAME AND ADDRESS ORIGINATORNAME [ ] XYZ [] customen
ORIGINATOR TEL. NO. & EXT. SALES DISTRICT NO.
SE ZOME NO. SYSTEM DIv. OPERATING SYSTEM | RELEASE & PATCH LEVEL SOFTWARE FIRMWARE RELEASE | DEVICE TYPE/MODEL NO.
CODE AND PATCH LEVEL
MEMORY SIZE | TYPE DISC APPLICATION NAME RELEASE & PATCH LEVEL SOFTWARE | PROGRAM NAME MODIFIED
CODE - EXPLAIN
(] ves [ v GEGW
DOCUMENTATION
ENCLOSED PROBLEM DESCRIPTION

4

THIS SECTION BELOW SHOULD BE COMPLETED ONLY BYUSL4CENTRAL SERVICES™  + =

DATE AND TIME RECEIVED ASSIGNED TO PRIORITY CODE

RESPONSE DATE MORE DOCUMENTATION DATE DOCUMENTATION DATE OF RESPONSE |SPAR DATE SPAR NO. SGU CODE
CODE "REQUESTED RECEIVED
. PROBLEM RESPONSE
SYSTEMS ENGINEER'S SIGNATURE

1. ANALYST COFY




Software Configuration Management Support Materials

Example of a
Software Configuration Management Plan

Walter Smith, Jon Lange
Carnegie-Mellon University

The authors of this example configuration management plan were undergraduate students in the course Software
Engineering, taught by James E. Tomayko at Carnegie-Mellon University, fall semester, 1986. This plan was
submitted as part of a class project to develop an operations simulator for a manned Mars research station. Two
implementations were specified: one written in Ada, the other in Pascal, in widely differing development
environments.

Pages 17 through 29 are unnumbered.

16 SEI-SM-4-1.0




Mars Research Station OpSim
Configuration Management Plan

Walter Smith
Jon Lange

CMP-1 DRAFT of 23 September 1986
$Header: cmp.mss,v 0.6 86/09/15 23:49:46 wrs Draft $




Table of Contents

1.2 Scope
1.3 Definitions and acronyms
2. Management
2.1 Organization
2.2 CM responsibilities
2.3 SCMP implementation
2.3.1 Configuration Control Board
2.3.2 Central repositories
2.3.2.1 Documentation repositories
2.3.2.2 Code repositories
2,3.3 Releases
2.3.4 Change requests and discrepancy reports
2.4 Applicable policies, directives, and procedures
2.4.1 Release policy
2.4.2 RCS usage policy
2.4.3 Pascal coding policy
2.4.4 Standard routine headers
2.4.4.1 Sample Ada file header
2.4.42 Sample Ada routine header
2.4.4.3 Sample Pascal file header
2.4.4.4 Sample Pascal routine header
3. SCM Activities
3.1 Configuration identification
3.1.1 Naming conventions
3.1.1.1 Documentation
‘ 3.1.12 Code
3.1.2 Configuration items
3.1.3 Baselines
3.1.3.1 Requirements baseline
3.1.3.2 Functional baseline
3.1.3.3 Allocated baseline
3.1.3.4 Design baseline
3.1.3.5 Product baseline
3.1.3.6 Operational baseline
3.2 Configuration control
3.2.1 Change classification
3.2.2 Configuration Control Board
3.2.3 Change Control Documentation
3.2.4 Change processing
3.2.5 Discrepancy Report processing
3.3 Configuration status accounting
3.4 Audits and reviews
4. Records collection and retention

Yk ook
S OV OCOROL0XWVWPWPITAITIITTANNRNALULWLWWWWWWERNDRE NN et e -

[y
-y

e A wem e e o e b R e et Sas




1. Introduction

Q This plan is based on ANSVIEEE Standard 828-1983, section 3. Also used were "Outline for a Configuration
Management Plan for Computer Programs” and "Software Requirements, Baselining, and Control", both from Data and
Configuration Management Workshops of the Electronics Industries Association.

-

There are two teams for this project, each with an identical Configuration Management organization, Both teams will
use this plan. In some areas, the teams will differ; for example, they will use different revision control procedures. These
differences will be noted below.

1.1 Purpose '
The purpose of this plan is to describe and define the policies and proceedings to be used in the application of
configuration management to the development of the Mars Research Station Operational Simulator (Mars OpSim).

1.2 Scope

This plan provides for the application of configuration identification, control, and status accounting during the
development of Mars OpSim. Included is the assignment of item numbers tc the Computer Program Configuration Items
(CPCI), revision control during development, procedures to be followed to ensure interface control, and identification of
status accounting techniques and procedures.

1.3 Definitions and acronyms
The terms relating to configuration management used in this document are defined by EIA Configuration Management
' Bulletin No. 4A, Configuration Management for Digital Computer Programs.




2. Management

2.1 Organization

The Configuration Manager will report directly to the contract monitor. Responsibility and authority has been delegated
to the Configuration Manager by the contract monitor to act for him in all matters relating to the implementation of
Configuration Management in acc.rdance with this plan,

The Configuration Control Board (CCB) is appointed by the Configuration Manager for the purpose of evaluating all
proposed changes to released specifications, computer programs, manuals, design documents, listings, and other items
identified for formal change control. .

2.2 CM responsibilities
The Configuration Manager is responsible for
e Writing the Configuration Management Plan,

¢ Appointing the Configuration Control Board and presiding over its meetings.
o Creating the necessary forms for CM procedures.

* Maintaining easily-accessible central repositories for the current versions of the software configuration items in
machine-readable form.

¢ Maintaining records of CM activity.

* Preparing releases of configuration items and providing for their distribution,

* Receiving change requests and discrepancy reports and presenting them to the CCB.
¢ Ensuring that approved changes are made and recorded.

¢ Conducting audits of the CM process.

2.3 SCMP implementation

2.3.1 Configuration Control Board

The Configuration Control Board will consist of five members: the Configuration Manager (chairman), the Quality
Assurance Manager, the Project Administrator, and one member each of the Design and Coding teams, One member will
be selected by the board to be secretary, and will keep minutes of each meeting.

2.3.2 Central repositories
There will be central repositories maintained by the Configuration Managers for the current releases of all software
configuration items.

2.3.2.1 Documentation repositories

Two directories will be maintained on TOPS machines for copies of the current releases of documentation items.
Current releases of all Ada documentation will be kept in the <WSON> directory on TOPS-D (td.cc.cmu.edu). Current
releases of all Pascal documentation will be kept in the <JL13> directory on TOPS-C (tc.cc.cmu.edu). Copies of
general project documentation will be kept in both direvtories. Filenames will use the naming conventions of Scutiun .




2.3.2.2 Code repositories

The Unix RCS system will be used to manage the Ada team’s code. A central RCS directory on the project VAX will be
maintained for source code version control, In addition, a directory containing copies of the current release of source code,
object code, and libraries will be maintained.

The current releases of Pascal source code, object code, and libraries will be kept in the <JL13> directory on TOPS-C.
Backup floppies will be kept by the Configuration Manager.

2.3.3 Releases
A release of a configuration item will result in the updating of that item in the appropriate repository, the notification of
all project members, and possibly the distribution of human-readable copies.

Releases will be made periodically; the period between releases will depend on the frequency and urgency of changes
made. A release will be made immediately prior to each review.

2.3.4 Change requests and discrepancy reports
Change requests and discrepancy reports will be given to the Configuration Manager for introduction at the
Configuration Control Board meetings. A central mailbox will be established for this purpose.

2.4 Applicable policies, directives, and procedures

2.4.1 Release policy

Software will be released and placed under formal change control at the formal request of the group responsible for
developing the software; for example, a Coding team member might send electronic mail to the CM at the completion of a
module’s unit testing. After software has been released, it will not be changed unless as a result of an approved change
request, Periodically, as determined by the CCB, a new release containing the changes will be made, and copies will be
placed in the release directory.

2.4.2 RCS usage policy
RCS will be used to maintain all released Ada source code. Those groups working on Ada software are strongly
encouraged to use RCS internally as well.

The RCS Header string will be used in all Ada source files in a manner that ensures the inclusion of the header string in
the object code. The RCS Log feature will be used in all Ada source files within comments.

2.4.3 Pascal coding policy
It will be the responsibility of those working on Pascal software to use the most recent available versions of released
software, and to keep their working versions up to date.

2.44 Standard routine headers

Standard templates to be provided by the Configuration Managers will be used for the opening comment of all modules
and routines to ensure consistency in the information provided. The actual templates will be designed 1n vouperauun with
the Design and Coding teams and made available in the release directories, they may not necessanly look like the samples




below.
2.44.1 Sample Ada file header ‘
-~ Mars OpSim
-= Module: Queue
-- File: queue-insdel.a
~- Routines:
- Quave.Insert Insert an element into a queue
- Queue.Delete ° Delete an element from a queue

~- $Header: queua-insdel.a,v 1.1 86/10/23 04:23:33 wrs §
-~ $Log: queue-insdel.a,v $

-- Ravision 1.1 86/10/23 04:23:33 wrs

~= SCR 25 ; Fixed MemFull exception bug in Queue.Insert

-- Ravision 1.0 86/10/11 01:29:22 wxs
-~ Initial release




2.4.4.2 Sample Ada routine header

-- Routine: Queue.Insert

-- Author: Joe Programmer

-~ Function: Insert an element into a queue.

-- Inputs: q The queue

- elt The element to be inserted
~-~- OQutputs: q (modified)

-- Exceptions: MemFull
-- Globals used: none

-~ Specification:
-~ This routine inserts elt at the tail of g. 1If there is
-- insufficient memory, the MemFull exception is raised.

-- Implementation:
-- Memory is allocated for elt. If there is insufficient...etc.

-~ Side Effects:
-= none

-- Modification history:
-- 1.1 86/10/23 wrs

-- SCR 25 ; Fixed MemFull exception bug.

- Missed post-allocation memory compaction problems,
. -~ 1.0 86/10/11 wrs

- Initial release

2.4.4.3 Sample Pascal file header
{ Mars OpSim

Module: Quaue
File: queue-insdel.pas

Routines:
Queue_Insert Insert an element into a queue
Queue Delete Delete an element from a queue

Last Edit: 10/23/86 by jll

Revision History:
1.1 10/23/86 3jli
SCR 25 ; Fixed MemFull error bug in Queue Insert
1.0 10/11/86 3jl1
Initial release
}




2.4.4.4 Sample Pascal routize header
{

Routine: Queue Insert
Author: Joe Programmer
Function: Insert an element into a queue.
Inputs: q The queue
elt The element to be inserted
Outputs: q (modified)
Globals used: none
Specification:

This routine inserts elt at the tail of q. If there is
insufficient memory, the MemFull handler is callad.

Implementation:
Memory is allocated for elt. If thera is insufficieut...etc.

Side Effects:
none

Modification history:
1.1 86/10/23 3jl1

SCR 25 ; Fixed MamFull error bug.

Missed post-allocation memory compaction problems.
1.0 86/10/11 411

Initial release

}




3. SCM Activities
3.1 Configuration identification

3.1.1 Naming conventions

3.1.1.1 Documentation

Documentation configuration iteinis will be identified by a two-part code D-R where D is a code for the document and R
is the release number of that document. Releases will be numbered consecutively from one. Unreleased versions of
documents will have an additional number identifying the last change applied. This number will start at one and be
incremented by one at each change. For example, the second release of the Software Requirements Document would be
called SRD-2; after five changes had been applied, it wou!d be called SRD-2-5.

Filenames for the machine-readable versions of documents will follow the same conventions; for example, the Scribe
source for SRD-2-5 would be called SRD~2~5.MSS. On Unix systems, lower-case letters will be used: srd-2-~5.mss.

3.1.1.2 Code

Source code modules will be identificd by a module name not longer than ten characters, Releases of source code
modules will be numbered consecutively from one, and will be called "ModuleName Release n", where n is the release
number. Unreleased versions of source code modules will have an additional number identifying the last change applied.
This number will start at one and be incremented by one at each change. For example, the second release of the Queue
module would be called "Queue Release 2"; after five changes had been applied, it would be called "Queue Release 2.5".
RCS version numbers of source files will be made to correspond to module release numbers.

3.1.2 Configuration items
The configuration items for this project (and their codes, where applicable) will be
» Software Requirements Document (SRD)

o Software Specifications Document (SSD)

o Preliminary Design Document (PDD)

¢ Software Design Document (SDD)

o Software Test Plan (STP)

¢ User Document (UD)

o Individual software modules (as defined by the SSD)

o Individual software source files (as defined by the SDD)
¢ Individual object code files (as defined by the SDD)

3.1.3 Baselines
Six baselines will be defined: Requirements, functional, allocated, design, product, and operational. Releases will update
these baselines.

R O




3.1.3.1 Requirements baseline
The requirements baseline is established at the Requirements Review. It consists of the Software Requirements
Document.

Once the requirements baseline is complete, the general specifications are created, establishing the functional baseline.

3.1.3.2 Functional baseline
The functional baseline is established at the Specifications Review. It consists of the Software Requirements Document
and the Software Specifications Document.

Once the functional baseline is complete, the preliminary design specifications are created, establishing the allocated
baseline.

3.1.3.3 Allocated baseline
The allocated baseline is established at the Preliminary Design Review. It consists of the Preliminary Design Document,
the Software Test Plan, the User Document, and the components of the functional baseline.

This baseline allows the detailed design process to begin. Once all software components have been designed, the design
baseline is established.

3.1.3.4 Design baseline
The design baseline is established at the Critical Design Review. It consists of the Software Design Document and the
components of the allocated baseline,

This baseline starts the actual process of coding and debugging. As each routine completes its unit-level test, it will be
veleased, establishing the product baseline,

3.1.3.5 Product baseline
The product baseline is established by the integration of all software components and the release of the software to the
Test and Evaluation group. It consists of all of the configuration items.

Once all design descriptions have been validated against the requirements and all software components have passed
acceptance tests, the operational baseline is established.

3.1.3.6 Operational baseline
The operational baseline is established when the product has passed acceptance testing and has been released to the
customer. It consists of all of the configuration items.

3.2 Configuration control
Configuration control is the systematic evaluation, coordination, and approval or disapproval of proposed changes to a
baseline. Forn.al control of the configuration of an item begins with the definition and release of a baseline for that item,

3.2.1 Change classification

Class 1 A Class I change is defined as any change which affects a customer approved requirements, functional,
allocated, product, or operational baseline.

Class I A Class II change is de”ined as ary change which is not Class I or any change wiich corrects errors in

-



the documentation of a customer-approved baseline.
All Class I changes must be approved by the contract monitor. Class II changes can be approved by the Configuration .
Control Board. The contract monitor may override the CCB’s classification of any change.

3.2.2 Configuration Control Board

The CCB will review all change requests and discrepancy reports. The total impact of each request will be evaluated by
the board, taking into consideration appropriateness, cost, technical feasability, scheduling constraints, effects on other
items, and effects on testing.

Class II changes will be approved or disapproved by the CCB. Class I changes for which the CCB recommends approval
will be forwarded to the contract monitor for final approval or disapproval. The CCB will designate an implementor for
each fully approved change.

The CCB will be convened on a weekly basis or as deemed necessary by the Configuration Manager. Copies of change
requests and deficiency reports will be made available to CCB members prior to mectings for examination and evaluation,
Minutes of each meeting will be distributed to all project members.

A joint meeting of the Ada and Pascai CCB’s may occasionally be called to discuss matters of mutual concern,

3.2.3 Change Control Documentation

Two documents will be used to process and control changes: the Software Change Request and the Software
Discrepancy Report. The Change Request will be used for requesting a change to a released configuration item that is an
improvement rather than a repair. The Discrepancy Report will be used for requesting a change to a released configuration
item necessary because of a failure of the item to meet requirements.

3.2.4 Change processing .
A change request will be processed ir the following manner:
1. A change request is prepared.

2. It is ransmitted to the Configuration Manager, who numbers the change for tracking purposes and notifies the
Configuration Control Board.

3. The Board classifies the change ard may then
o approve a Class II change, or approve the submission of a Class I change to the contract monitor

o disapprove the change, in which case the change dies
» modify the proposed change, in which case the modifications are made and the change is reevaluated
4, If a change is approved, it is implemented by someone designated by the Board.

3.2.5 Discrepancy Report processing
A discrepancy report will be processed in the following manner:
1. A discrepancy report is prepared.

2.1t is transmitted to the Configuration Manager, who numbers it for tracking purposes and noufies the
Configuration Control Board.

3 The Board may immediately reject the report, in which case it dies, or assign someone to analyze the report
and prepare a correction.

4_If the report is not rejected, the board may approve, disapprove, or modify the proposed correction.




10

5. If the correction is approved, it is implemented by someone designated by the Board.

3.3 Configuration status accounting
The following status accounting logs and reports will be maintained:

Configuration Item Index
The Configuration Item Index will list each configuration item along with its creation date, current
released version, and the versions of its component items.

RCS change logs RCS change logs will be maintained for each Ada source file. They will show the history of the
changes made to the source files, as well as their release histories.

Pascal change logs Each pascal source file will contain a change log showing the history of the changes made to it, as well
as its release history.

Discrepancy reports
All Software Discrepancy Reports will be retained.

Change requests All Software Change Requests will be retained.

3.4 Audits and reviews
The Configuration Manager will periodically audit the system to ensure that policies and procedures are being fullowed.
Audits will be conducted as follows:

Requirements At the Requirements Review, the CM will release the Software Requircments Document and place it

under change control.

Functional At the Specification Review, the CM will release the Software Specifications Document and place it
under change control.

Allocated At the Preliminary Design Review, the CM will review the Preliminary Design Document to assign

configuration items according to the defined software components, and update the Configuration Item
Index. The CM will also release the Preliminary Design Document, the Software Test Plan, and the
User Document, and place them under change control.

Design At the Critical Design Review, the CM will review the Software Design Document to assign
configuration items according to the defined routines, and update the Configuration Item Index. The
CM will also release the Software Design Document and place it under change control.

Product The CM will review the software to ensure that all routines are fully updated and have been tested and
released to the Test and Evaluation group.

Operational The CM will ensure that all software components are fully updated and have passed the appropriate
acceptance tests.




1

4, Records collection and retention

All records as defined in Section 3.3 will be available for inspection on request. Written logs, change requests, and
discrepancy reports will be maintained in a binder by the Configuration Manager. RCS logs and Pascal revision logs will
be available as part of the source code.

All written memoranda to and from the Configuration Manager will be maintained in the same binder. Electronic mail
will be retained in a log file.




Software Conﬁg_;uration Management Support Materials

Typical Revision Control System Session

James E. Tomayko
The Wichita State University

The following annotated typescript is a typical session with the Revision Control System (RCS) too! that runs on
Unix. It demonstrates the tasks needed for checking in and out controlled modules, shows how the simultaneous
update problem may be prevented, and shows how version trees may be created.

Script started on Thu Aug 7 10:20:46 1986
1 /usr0/jet/adaprograms] emacs synch.a

The editor is commanded to open an Ada source file synch.a, which is about to be placed under configura-
tion control. The configuration manager enters the following at the top of the file:

--$Headexr$
--$Log$

This uction marks for RCS the location in the file to place the initial header and later version logs.

. /usx0/jet/adaprograms] ci synch.a

This command tells RCS to check in the module. RCS prompts for a description of the configuration item as
follows:

synch.a,v <-- saynch.a

initial revision: 1.1

enter descriptlon, terminated with “D ox ’.’:
NOTE: This is NOT the log message!

>> This 1s a task which synchronizes two simultaneously executing tasks.
>> Programmer: James E. Tomayko
>> .

sh: /bin/snoop: not found

done

3 /usx0/jet/adaprograms] ls
ada.lid adaone.a.BAK calculator.a synch.a,v synch.lib
adaone.a adaone.a.CKP realtime

Note in this display of the file names that the module synch.a is gone, replaced by synch.a, v, which is
where the original file and the deltas of the revised versions of the file will be kept.

4 /usx0/jet/adaprograms] co -1 synch.a

30 SEl-SM-4-1.0




Support Materials ] Software Configuration Management -

This command checks out synch ., a for revision. The =1 option locks the file and prevents any other program-
mer from checking out the same module. RCS replies as follows: .

synch.a,v --> sgynch.a
revision 1.1 (locked)

sh: /bin/snoop: not found
done

Note in this listing of the files that now there is a synch.a checked out of synch.a,v:

5 /usx0/jet/adaprograms] ls
ada.lib adaone.a.CKP synch.a synch.lib
adaone.a calculator.a synch.a,v typescript
adaone.a.BAK realtime

When the file is opened for editing, the Header and Log comments are found to have been modified:
6 /usxr0/jet/adaprograms] emacs synch.a

--$Header: synch.a,v 1.1 86/08/07 10:21:40 jet Exp §
--$Log: synch.a,v §

Revision 1.1 86/08/07 10:21:40 jet
Initial revision

After the changes have been madz to the file, it is checked in, at which time RCS prompts for a description of .
the changes:

7 /usr0/jet/adaprograms] ci synch.a
synch.a,v <-- synch.a

new revision: 1.2; previous revisioen: 1.1
enter log message:

(terminate with D or single ’.’)

>> Added to comments to incomplete exception handling statements.
> .

sh: /usr/iocal/lib/rdiff: not found
sh: /bin/snoop: not found
done

The next time the module is checked out, the change comments appear in the Log:
8 /usx0/jet/adaprograms] co -1 synch.a

synch.a,v --> synch.a

ravision 1.2 (locked)

sh: /bin/snoop: not found
done

i
Qi
1

9 /usr0/jet/adaprograms] emacs synch.a

SEl-SM-4-1.0 31




Software Configuration Management Support Materials

--$Header: synch.a,v 1.2 86/08/07 10:24:37 jet Exp §

.—~$Log' synch.a,v §
Revision 1.2 86/08/07 10:24:37 Jjet
Added to comments t. incomplete exception handling statements

Revision 1.1 86/08/07 10:21:40 jet
Initial revision

The changes made to the module during this check out actually created a new line of development, so instead of
checking the module in as Version 1.3, RCS is directed to check it in as Version 2.0:

10 /usrx0/jet/adaprograms] ci -r2.0 synch.a

synch.a,v <-- synch.a

new revision: 2.0; previous revision: 1.2
enter log message:

(terminate with 4D or single ’'.’)

>> Created a divergent form of synch.a by adding a third process to be
>> synchronized.
>> .

sh: /usr/local/lib/rdiff: not found
sh: /bin/snoop: not found
one

Future modifications to Version 1.2 can be made, thus keeping alive its branch of the version tree, by specifying
it in the co command using the ~x option. Actually, any version of the module can be recovered.

More information about RCS can be found in [Tichy82].

32 SEI-SM-4-1.0




Support Materials Software Configuration Management

Presentation Support Viewgréphs

James E. Tomayko
The Wichita State University

The following viewgraphs have been used by the author to support teaching software configuration management
in an industrial short course setting, They appear in the order of use.

1. The Role of Configuration Management
2. Functions of Configuration Management
3. Commitment to Configuration Management
4, Typical Configuration Items
5. Configuration Management Library Functions
6. Types of Change |
7. Types of Change 11
8. Fundamental Principles to Guide Configuration Control Boards
9. Factors Determining Configuration Control Board Characteristics
10. Hierarchies of Configuration Control Boards
11. Key Factors in Evaluating Change ,
12, Key Factors in Evaluating Change ,
13. Key Factors in Evaluating Change 5
14. Discrepancy Report Evaluation Process Flowchart
15. Change Request Evaluation Process Flowchart
16. Simultaneous Update Problem
17. Version Tree
18. Trend Analysis
19, Standards For Configuration Management Plans

Pages 34 through 52 are unnumbered.

SEI-SM-4-1.0 33




“JTUOWIODBUER
JIemjJosS ‘|ebaig pue uosiopusH ‘jjosiag wou) pajydepy

uonepljep pue
uonedljIaA juapuadopuj -

juswabeuepw

1S9] - Knib6ajug uoneinfluoy aiemipjog -
°poy - onpou |
ubiseq - onpold aouURINSSY

Ajenp aisemyposg -

uoijedijioads

sauljdiosig juswdojanaqg sauldiosiqg buinjjo.uon

sauljdiosig juswabeuepy

juswabeueyy uoneinbijuoy Jo 9|0y ay |
,. @ | &




9|qISIA 10NPO.Id 9y} oNely e
sabueyn [0.1]U0N puUe dlenjen] e

swia}] uoneinhbiiyuon jo Alaboluj :_.E:_ms_ )

Juswabeuewy
uoillelnbijuon Jo suoljounyg




|
|
g
il
|
Z
|
%,
{
"§SS920Ng S]] 0] A9) a9yl s] uoneziuebio ainug |
9yl Ag juswebeuepy uoneinbiyyuos o] JUSWHWWOD




sdepy Atowspy

sjuawnooQ
]0J]U0D) 99eLIs)U]

s|jenuepy
aoueuauIepy

sjenuep 19s
sa)INg 1s91

sue|d 1S9

9po) 109lqo

9po0o 921n0S
mEmE:omo ubisoq
suonelIoadg

sjuawalinbay

swia}| uoieanbiyuon jesidA L




9sesjay 10} 1onpo.d jo uonetedald
JOIJUOD) UOISID
BuiAlyoay/eoueuaiulely way| uoneinbijuon

BuiwenN jed alemijos

suoloun4
Areiqi yuswabeuepy uoneinbiyuon




Z Wuewebeuepy uolieinbyuo) Jo 8|0y 8yl ‘St SSB[D - ININIDVNVIN LOIrodd IHYMLIOS

spJepuels Jo Suolje|oiA -
sl1o0.4i3 Juswdojanaqg -
sJ10.113 sjuswailinbay -

| salouedalosiq -

Tobuey) Jo SodAL




sjuswaliinbay 1s9] e
popoaN aleq e

}JSOD o
Aixojdwion o
1oeduwy
Aowsp pue NdD o 9ZIS o

labuey) Bunenjeaz uil siojoe Aoy
@ ® ®




ssaiboig ul Apealjy
sabueyn panouddy e

MIOM - (salisoQ
juanbesqng pue bBuneytepy/sowoisnd)
Juaiiny uo eduwyj e . SOI|Od °

(wolsAg ‘atempieH POA|OAU]

‘SIINS) S99IN0S9Y e Baly 9U] JO AUJROINID e

Nmmcmcu Bunenjeas ui siojoe A9




uonisodwon e
2doog e |
SOIYDJBIOIH o

sdlisLisloeiey) pieog |011UO0)
uoneinbyuo) Bululwislag s.iojoe




uoneinibiijuon Jo saiyaieldlH

g00 g00
1 alem}pjos 91eM}jos
jeuiblio pajiayuj
800 g00
?lemyjos dJempieH
SOIUOIAY SOIUOIAY
a400
400 O
walsAsqng
SOIUOIAY walsAsqnsg

a00 §
walsAsqng

g00 v
wolsAsqng

g99 1seloid

auejd yodsues] 2727-9

spJeog [04}U0)

:19Nnpoid




SONIJBUIB) Y Uy 949Y] S| e

€abuey) Bunenjenz ui si10)oe4 Aoy
@

NI D S N T S

“,
H




sajew dnoipn[—®

pajepdn
Swa}y
uoljeanbyuo)

abueyn
juawdojanaqg
juawIno0( [ uoljenjeAny
PaAIE\ 84090

SEYYLT

uoljenjens poday Asuedalasiq

pabbo] HQ

'

pabbon

pue paupny
2iNnS0}|D

Hda

papiwgng

<

MeYOMO|- SS820.1d

4a




pajepdn

v

pebboT
B paupny
91nso|)

HO |

ON

swol¢—
juoljeinbijuon

abueyn
sajey dnoux
juswdojanag

pazuoyiny
uoljenjeay pabho] < pajyiuqnsg
400 HO 40

HEeYIMO|{ SS820.1d
uoljenjeAns jsanbay abueyn




98/91/L

0001
92i1n0Sg

g—

260

g 1opos 0260

SE60

G160

98/9L/L

0060
921n0g

wejqo.d 9repdn snoauejinwis

Vv i9p0o)




$ 0°¢ |
H A <« oseojpy MoN

|

. . |
0°¢ el <4+—— abueyn

9Sea|oy MoN—> 3 'y H

] {

¢t <4—— abueyn

!

L1 Mf

<4+—— abueysn |

i

3

0L

<4—— 9seajay [eulbuip |

99.1] UOISIOA




sisAjeuy puail

001

00¢

060¢

00Y




/912-dls-goq -
(80104 11y) VESY-ALS-TIN -
aoq -
| [€861-828 FTII/ISNVI T3] »
sue|d 1Juswabeuepy
uoneinblyuo) 104 spiepuels




Support Materiais Software Configuration Management

Sample Examinations

James E. Tomayko
The Wichita State University

The following exams have been developed to test
achievement of the behavioral objectives in the
Software Configuration Management curriculum
module SEI-CM-4-1.0 (Preliminary).

15. List five considerations specific to evaluat-
ing the repair of discrepancies.

16. List five considerations specific to evaluat-

Exam 1

1.List two ways that software changes
throughout the life cycle:

2. What is a configuration item?

3. How does configuration control maintain the
integrity of configuration items?

4, 1dentify the configuration items of a typical
product.

5. Define the term 'baseline.’

6. Give an example of a non-ambiguous
software part numbering/naming scheme,

7. What is the difference between discrepancies
and requested changes?

8. What is the difference between discrepancies
caused by requirements errors and those
caused by development errors?

9.List three key items included in a dis-
crepancy reporting form.
10, List three key items included in a change re-
quest form,

11, Show how discrepancy reports and change
requests are tracked within a software
development organization.

12, List and define the fundamental principles of
implementing change control boards.

13. Define the scope of change control boards of
at least three levels of a product develop-
ment organization.

14, A change control board is given respon-
sibility over the avionics subsystem of a
digitally-controlled aircraft. Who should be
on the board? Who should make the final
decisions?

SEI-SM-4-1.0

ing change requests.
17. List five considerations specific to evaluat-
ing requests for new derivatives of a product.

18. Specify how the implementation of changes
can be tracked.

19. Define the simultaneous update problem.
20, Define the concept of version trees.

21, Identify at least three necessary characteris-
tics of good version control tools.

22.List at least three commercially available
version control tools, their similarities and
differences, and their suppliers.

23, Identify at least two standards for configura-
tion management plans.

24, List three items in an effective configuration
management plan,

25.List at least three bersonal characteristics
needed by effective configuration manage-
ment personnel,

Exam 2

1. Responding to approved change requests and
are two ways that software
changes throughout the life cycle.

2, Documents and code placed under con-
figuration control are referred to as

3. List three items under configuration control
in the course of a typical software
development:

4. When an item is placed under configuration
control is often referred to as a

5. Discrepancies are:
6. Requested Changes are:

53




Software Configuration Management

Support Materials

7. Discrepancy reporting forms should have
line items such as:

8. Change requests and discrepancy reports are
tracked within an organization by:

9. What should be considered when evaluating
the repair of discrepancies?

10. List three considerations in evaluating
change requests that differ in importance
from the list in #9.

11, Define the simultaneous update problem.

12, Why are different versions of a product often
needed?

13, What characteristics should a good version
control tool have?

14, Where can guides to developing configura-
tion management plans be located?

15. List three items in an effective configuration
management plan,

16. What are System Description Languages?

54

SEI-SM-4-1.0




Support Materials

Software Configuration Management

Summary of the SEI Workshop on
Software Configuration Management

Katherine E. Harvey
Software Engineering Institute

Participants

Bradley Brown Boeing Military Airplane Co.
James Collofello  Arizona State University
Robert Glass Seattle University

Ted Keller IBM Federal Systems Division
Richard Parten Lockheed

Mary Shaw SEI

Howard W. Tindall Martin-Marietta
James E. Tomayko SEI (host)

Introduction

The following is a summary of the discussion during
the Software Configuration Management meeting
held at the Software Engineering Institute in Pitts-
burgh on July 16, 1986. In this document I have
tried to determine the major concerns brought up and
the conclusions reached during the day long discus-
sion. The discussion ran in many directions, often
changing topics quickly and not returning to the
original subject for quite some time. Therefore, I
did not try to summarize the discussion chronologi-
cally, since I felt that would be more confusing than
informative. I have, instead, tried to sort the various
concerns and conclusions into specific areas and
summarized the discussion of each major point
brought up in those areas.

Overview

Definitions of Software Configuration
Management. The basic definitions of Configura-
tion Management that the workshop participants
more or less agreed upon seems the best place to
start; since the definition is fundamental to the dis-
cussion of Software Configuration Management
(SCM). Jim Tomayko, the host of the workshop, put

SEI-5M-4-1.0

as his capsule description of Configuration Manage-
ment: "the disciplines and techniques of initiating,
evaluating, and controlling change of software
products during and after the development process."
This definition met with general approval, although
the discussion as a whole brought out a much more
complex and disceming description. The most ap-
parent concept missing from the original definition
was that SCM is a fundamental and essential
management tool for software development projects.
It is more a management concept than a concrete
structure and is invaluable to the organized and rapid
output of a software product.

Although the concept of SCM was felt to be fun-
damental to- the maintenance of software products,
the workshop members felt that associating SCM
with maintenance is misleading, Configuration
management should not start simply when a
software product reaches the maintenance phase; the
whole development process must be managed in
such a way that SCM can work properly. For in-
stance, if the original designer does not document
his work properly, then the configuration manage-
ment process breaks down; because later changes
create problems not immediately apparent based on
the existing documentation. SCM therefore is an in-
tegral part of the entire software design and develop-
ment process and a vital part of all software en-
gineering,

The state of Software Configuration Management
today. One of the major points of discussion was
how Software Configuration Management was being
utilized by the software engineering community
today. No one at the meeting felt that SCM was
being effectively utilized as a management tool; in
fact, just the opposite. Although there have been
many corporations with solid SCM programs, there
are a vast number of companies producing software
today with either no program whatsoever or a
programs that hinder rather than help. What is
wrong with the SCM programs today?

A major problem is the lack of a widespread under-

55




Software Configuration Management

Support Materials

standing of the usefullness of a solid SCM program.
Although mar;, large companies do have configura-
tion management systems, often when they turn a
project over to a smaller contractor, the Software
Configuration Management is left up to that contrac-
tor, who often chooses to do nothing. If the con-
figuration management is bad, one can almost
guarantee that the documentation will be bad. Then,
when the development process for a software
product is over and it goes into maintenance mode,
the contractor turns over a software project with in-
complete documentation. So the company left with
the project is lost, they start playing around with it,
and they are left with "spaghetti" software. Accord-
ing to the members of the workshop, this kind of
thing happens all the time; even though many of
these projects are expected to interact with others.

One key factor in an effective configuration manage-
ment system is a solid Configuration Control Board
structure. However, in most companies today the
importance of the boards and their members is over-
looked. Often the people put into these boards do
not have the training or experience to make deci-
sions about changes or problems in software
products. One example brought up, was an entire
Software Configuration Management division that
exists but is virtually a hindrance to the organization.
In this organization when a change request is writ-
ten, often only a paragraph or less of information,
and sent into headquarters, it goes to the Configura-
tion Control Division. However, this division’s job
is simply to put a number on the CR and send it out;
without any kind of board meeting or discussion
whatsoever. This CR is then sent out to people who
can’t possibly tell from a couple of sentences of in-
formation whether or not the change is a good idea.
Then, after several weeks, the request is sent back
with "nonconcur" or "concur” stamped on it, and of-
tentimes it takes months before any real action is
taken on the document. If the change is approved it
goes to the implementation organization that writes
the functional specification and the detail design
with no review of either document. This same or-
ganization does all of the coding and testing, without
ever consulting a review board or the originator of
the request; then when i* finally shows up in the
field the originator proba ', won't even recognize it.

Many times the people at higher levels of large
projects don’t understand software and think of it as
simply "another subsystem". It becomes a difficult
task to convince these project managers that on a
large complex system, or any project that has as its
root a data system, the software is an integral func-
tion of the project. Often in these projects the use-

56

fulness of a configuration management system is
overlooked and therfore this vital management tool
is not used properly. Many times attempts are made
to use other methods, like the CSSR or C Spec. sys-
tem, to maintain control over projects. But these
programs tend to be cursory measurements of
progress and costs without ever getting down to the
real work of change management. It is in the con-
figuration boards that changes are discussed and in-
formation gets moved around; where sleeves are
rolled up and the nuts and bolts of the software are
laid out.

So it is very apparent that there is a great need for
improvement in the area of Software Configuration
Management., The problems are large and
widespread; of course they won’t be solved over-
night. However, the workshop participants had a
great many ideas about the components of an ideal
configuration management system. These may
provide the base for educating future software en-
gineers to better manage their projects through
Software Configuration Management.

The Software Configuration
Management System

A general picture. The workshop more or less
agreed that there are too many unpredictable cir-
cumstances in the corporate world to build a generic
all purpose configuration management structure.
However, it is possible to sketch in certain key ele-
ments without creating a definitive structure. Some
of the elements are just fundamental characteristics
of a SCM system, while others are more subtle
details that will create a more efficient management
machine,

All large system projects have systems of
Change/Configuration Control Boards (hereafter
known as CCB’s). The structure of the CCB’s may
differ widely according to the type of project, the
company in charge, and the size or cost of the
program, However, the CCB’s are a necessary ele-
ment to almost any SCM structure. These boards
work in a kind of waterfall structure with a great
number of control boards at the lower levels which
feed up into the higher levels. Change usually
bubbles up from the bottom where the programming
activity is boiling. At times there is reverse traffic
when change requests come down from either the
customer or the system manager, but the vast
majority comes from the area of the most program-
ming activity. Therefore the greatest number of

SEl-SM-4-1.0




Support Materials

Software Configuration Management

boards is at this bottom level of great activity, and
these boards should be the most active.

Ideal CCB characteristics. One of the most impor-
tant characteristics for any control board, but espe-
cially the lower level boards, is that they should be
active. Because this is where information is passed
around, where you begin to see the project’s shape
and direction, it is vital that the boards be a well-
used and functioning body in the SCM structure.
The CCB should be a place of discussion, where any
problems or requests that come up in a project get
hammered out. On large projects these board meet-
ings often last longer than a full day, but the work
being done in them is vital,

Because this work is so vital to a project, "casual
involvement" simply cannot exist in the CCB sys-
tem. It is important that the management people on
each board look into every CR/DR that comes before
them. Even if the change or bug is presented in a
very casual or non-mission critical way, it is the duty
of the board members to look into it as if it were. If
board members allow the casual nature of a presen-
tation affect their decisions and evaluations,
problems may be overlooked that could escalate
later into emergency situations.

There should be a route for emergency changes so
that the system won’t break down during emergency
situations. There should also be a CCB appeal route.
This means that it would be possible to go to a
higher CCB if the originator of the change request
deemed it to be absolutely necessary to reverse the
original boards decision. This will help to keep the
board meetings from becoming "shouting matches",
and help people discuss things rationally. However,
the appeal route must be carefully controlled,
(perhaps by upper level boards making decisions as
to which appeal request should be accepted) in order
to keep the authority of the lower boards intact.

It is important not to limit the number of boards be-
cause of past SCM practices or "efficiency". It is
actually more efficient to have as many boards as
possible within cost and common sense parameters.
Each board should have the minimum number of
people possible needed to make decisions. There-
fore each CCB’s jurisdiction should be well docu-
mented, and only those people directly involved in
or affected by changes in their jurisdiction need to
be at their CCB meetings. This way only vital
people are involved in their particular CCB deci-
sions, and other important people who not directly
involved don’t waste their time.

Ensuring proper documentation. At a very basic
level Configuration Control should be involved with

SEI-SM-4-1.0

all changes taking place at the project level using a
lot of discussion and review for each change being
made. In order for this to happen, documentation
throughout the development phase of a system must
be enforced. So in every SCM structure it would be
a good idea to have a division that will make sure
that the original developers are writing down
everything. Documentation never gets done by those
developing the code without outside influence and
almost never gets done post-facto (certainly not

_accurately). If there is no documentation, there is

nothing to control. So the documentation
"enforcers" are a good idea for a strong SCM sys-
tem, provided their authority is well documented and
strictly monitored.

These various characteristics of a good SCM struc-
ture may vary a great deal; especially when the ex-
isting authority levels are very different. The au-
thority hierarchy in a company or program has a
great deal to do with the configuration management
system, and all the elements that have been talked
about so far rest upon well-organized authority
levels.

Authority in SCM Systems

Authority hierarchies. Although, as previously
stated, the CCB’s are places for discussion it must
be stressed at this point that the final decision-
making authority should lie with one individual.
The control boards do not vote on changes; one per-
son makes a decision under advisement. This is ex-
remely important when trying to avoid interproject
politics and keep a program oriented toward its
proper goal. The higher level boards have greater
authority, of course, than the lower boards and the
system level CCB belongs at the top of the pyramid.
It is the head of the system level CCB who has au-
thority to make the final judgements on CR/DR’s
and any last minute emergency "patches”, although
this authority is usually delegated to lower level
boards who are more often confronted with the
problems as they come up. This means that whoever
is making those final decisions had better be pretty
sharp or the program is headed for trouble.

It is also healthy to a project to have a slight adver-
sary relationship existing between the software
design manager and the head of the program. The
design manager will be fighting for what he needs
for his particular area, while the head of the program
should be seeing a more overall picture, hardware
systems as well as software. If both these people are

57




Software Configuration Management

Support Materials

well trained in project management, then the adver-

sary relationship will provide much needed checks -

and balances within the project system.

The various CCB’s should have documentation
readily available to them detailing what specific
areas over which they have authority. Each board
needs to be sure what decisions they have authority
over and how much authority they have to make a
decision. When CR/DR’s come up, there should
never be confusion as to who is responsible for look-
ing into them. So it is very important that CCB
jurisdiction and authority cover every area at some
level, especially those critical to the project, and this
authority must be documented. For example, if the
Testing and Evaluation division discovers a DR, it
must be clear whether they have the authority to
make changes in the program or they need the au-
thority of a higher board to make the change; and
whether this authority changes in the event of a mis-
sion critical DR. At the workshop two experiences
were given as examples: in one situation the
Test/Evaluation people did have authority to make
changes even on non-mission critical DR’s, while in
the other situation they simply reported the DR’s to
higher boards for action or the Evaluation people
simply figured out ways to work around non-mission
critical DR’s. The responsibility for these decisions
need to be well documented to avoid confusion.

Key authority concepts. It is very important to un-
derstand that authority levels cannot be generically
structured to fit any situation. Usually the structure
of any given SCM system depends on the authority
levels already in existence in the particular company
or program involved. Any project manager coming
into a company or program must have a good ap-
preciation for the existing authority hierarchy. The
Software Configuration Management system that he
is going to instigate, reorganize, or make additions
to, must be molkled around those authority levels.

Oftentimes the way people perceive problems can
create difficulties. While one person may see some-
thing as a “"problem", someone else may see it as
simply a "change". Who has the authority to deal
with these varying perceptions? It may be that it
comes under the authority of each CCB’s head, or
that an entirely different division or CCB should be
set up to deal with this question. Once again, this
will probably depend on the authority hierarchy al-
ready existing. However, it may also depend on the
people in the program, the size of the project, and
various other management considerations.

It is also important for each company that goes un-
der contract with another to have appreciation for the

58

existing authority hierarchy in the other company or
organization. When everyone involved in a project
understands the authority structure and the way they
are expected to work within it, a smoother operation
and a more productive work atmosphere sill result.

Tools for Software Configuration
Management

Tools of the trade. Quite a few methods for main-
taining control over change were discussed. Many
were technical devices that are well documented and
available, so the group spent very little time on
these. Others were not discussed necessarily as
"tools", but I felt that they could be labeled as a
specific tool for software configuration management
and that this would be a good place to summarize
them. First, let’s look at the naming and/or number-
ing of products.

It was felt that one of the most important aspects of
any system for naming software products was that it
be specific as well as not ambivilent. A specific ex-
ample was brought up regarding NASA back when
the name of a software system matched the mission
for which they were being built. This, however,
soon became a problem. In these projects there is
usually a very long time between when one starts
building a software system and the time the mission
it is intended for finaily flies. Often halfway through
the maintenance life-cycle of this software, major
changes are made in the project; payloads may be
swapped or scrapped, as may the mission vehicles,
and so on. When these changes are made, the name
of the mission is often changed. Then, one is left
with a software system named for a mission that
may not fly for years if it ever goes up at all, It is
easy to see how this could become confusing.
Therefore, the software is now named and numbered
in a completely separate way so that there can be no
relevance to the mission for which its being
developed. What is important to see in this example
is that the naming system had to be adjusted to, be-
come more specific to the product as well as less
ambivilent,

Because various divisions may have different names
for a single system, and because communication
must eventually extend beyond the purely technical
community, it is important to be able to see how the
nomenclature evolved and how the various
nomenclature relate to one another. IBM uses a
waterfall diagram to show the path of each particular
system and iis various names along the way. But

SEl-SM-4-1.0




Support Materiais

Sottware Configuration Management

perhaps more importantly, IBM puts on the same
page a cross reference list. Since each nomenclature
may for a particular software build have three dif-
ferent names with each of these names understood
by different divisions, the cross reference list is im-
portant for clear understanding and communication.
Using diagrams is also a useful tool for communicat-
ing with those. outside the technical community.

A management tool that might not be distinctly
thought of as a SCM "tool", is that of using "freeze
dates" when putting out incremental releases of a
software system. The example at the meeting went
something like this: Usually, the top management
people on a project are very anxious to see some sort
of working software even though the software desig-
ners are still working out the bugs in a code and may
be very reluctant to release it. In a case like this,
having freeze dates for the software to be turned in
will force the developers to release what they have
even if they feel it is incomplete. Usually the first
release will be chaotic but this will give a good idea
about where to go and what needs to be fixed, and
the consumer has a working product. Even ifithas a
lot of DR’s, having a completed product is a positive
incentive and will improve the working atmosphere.
The freeze dates must be rigid; if the developers
don’t get their projects in on time, they won’t be in-
cluded in the release. If it isn’t enforced the com-
puter people will keep fiddling around and changing
things, and the entire program will fall behind
schedule. Once again it is important to remember
that implementing a tool like this will depend a great
deal on the existing situation.

Documentation and Credibility

Documentation. At one point in the day’s con-
ference Jim Tomayko asked the group if they knew
whether anyone paid attention to the standards for
software configuration management put out by
IEEE. No one at the meeting had even heard of
them. They were aware of the Department of
Defense Standard 2167, but it was generally ack-
nowledged that this was overlooked by most
program managers. The standards get overlooked
because the rigorous documentation requirements
that they establish are seen as cumbersome and so
documentation does not get enforced. At first, this
seems easier for both the managers and developers.
Itisn’t until they are waste deep in the mire of unmet
schedules, undocumented software with hundreds of
unseen DR’s, rising costs, and consumers anxious to

SEI-SM-4-1.0

see this project that is now out of control, that the
importance of enforced documentation standards is
apparent. How do you motivate people to use cum-
bersome standards when they haven’t been "burned"
by past experience? Obviously, standards for
software configuration management are a useful
tool, but getting people to use them is another mat-
ter.

It cannot be said enough that without documentation
there is nothing to put under configuration control.
There must be a valid functional specification docu-
ment in order to get past the Preliminary Design
Review or there is nothing to put under the manage-
ment system and you’re already off schedule. A
brief list of documentation includes:

e requirement specification documents,
o functional specification documents,

o detail design documents,

e user manuals,

e maintenance manuals,

 interface control documents,

e memory layouts,

e test plans,

e and the code itself, of course.

All of this, plus more not mentioned here, comes un-
der maintenance control, unless it is subject to a
project specific waiver. Because many of these
documents are scrapped when a product reaches
maintenance phase, it would be useful perhaps to
maintain a configuration index for each product so
that enough documentation is maintained for con-
figuration control during the maintenance phase.

Even in the essential area of documentation there
must be consideration for the project involved. If
the project is large the managers are usually more
careful about enforcing documentation because the
project as a whole is probably being approached in a
very careful and cautious way. However, in a
smaller project SCM tends to take a back seat and
the documentation, therefore , doesn’t seem impor-
tant or economical. Sometimes full rigor on the
SCM and documentation can be relaxed slightly on a
smaller project, but then you need someone in com-
mand who knows when full rigor can be relaxed and
when it should be enforced. However, good
documentation will always help configuration
management people to make sounder judgements
and more credible evaluations.

Credibility.. Good basic documentation is the basis
for Configuration Control Board evaluations on the
issues before them. In order for CCB’s to make in-

59

i




Software Configuration Management

Support Materials

telligent, rational, and credible decisions on
CR/DR’s there is certain data that is necessary. This
data should be well documented so that the CCB
evaluation of the data will carry weight. This list of
necessary data was developed at the workshop:

e The size of the change.

¢ Are there alternatives? Would it be rela-
tively simple to work around whatever is be-
ing changed?

¢ The complexity of the change. Does it refer-
ence other systems? Does this system sup-
port other software or rely on other support
software that would need to be changed ac-
cordingly?

e The need date. Basically, the board needs to
know how much time they would have to
make the change and test it, before the con-
sumer needs a working project.

e Impact. This is related to its complexity.
What kind of effect will this change have on
subsequent work, The board needs to look
down the road a bit and see where the project
is going.

e Cost. How much will the change cost?
Also, will this change save money in the
overall project?

e The criticality of the area. NO CR/DR’s can
be overlooked if the problem will prove to
be mission critical. All other areas of evalua-
tion should be rethought if the bug might
possibly create critical problems.

e Other CR’s under current evaluation. Will
another change solve this problem or do
other more critical changes rely on this
software remaining the same.

o Test requirements. This area takes in how
much testing will be needed which will af-
fect the costs and time needed for the
change.

¢ Resources. Do you have the people avail-
able to work on this program? Do you have
the hardware equipment available to use for
this change?

* CPU and memory impact.

¢ Benefit. How much of an advantage will it
be to change the software?

¢ Politics. In the corporate and commercial
world, it would be good idea to evaluate who
is asking for the change and whether or not
the board’s decision might be used as a bar-
gaining point in the future.

60

e Maturity of the change. How long has the
change been before the board? If it is still
considered to be worthwhile to change
something after a long time has passed, then
the board should consider it more carefully.

By using this data, you can often minimize the num-
ber of "side effects” that the changes you are making
will have. Even if the side effects are unavoidable,
the use of this carefully documented evaluation
process may help to identify where those effects are
going to be. Of course, at this time it is impossible
to be absolutely sure that all the side effects have
been discovered. For example, suppose there are
two changes that are being made at the last minute in
an emergency situation and they are each tested and
evaluated. It is possible that although they may have
no real side effects on the system separately, when
they are "patched" in at the last minute they may
have serious side effects together. This is the
greatest fear when dealing with late patches, but
careful documentation and evaluation of the data in-
volved in each change may help to alleviate some of
the guesswork,

In the purely commercial arena, credibility is the key
in dealing with the marketing division or the cus-
tomer. If they have a change request that is going to
create more difficulty than it is worth, the configura-
tion management people should be able to show
documented data that will make the control board’s
evaluation credible. When a customer can see the
kind of impact a change is going to have on the time,
size, or cost involved in a project, they will better
understand and more readily accept the
management’s decisions regarding the project. The
key is a thorough and well documented evaluation
based on the previous listed data. The list can be
changed or expanded on, according to the needs of
the project, but as it stands, it gives a fairly accurate
picture of the kind of information that is going to be
needed for credible evaluation.

SCM and the Real World

Going from the classroom to the corporation,
Two points came up eariy in the meeting that helped
to categorize many of the problems discussed later in
the day.

1. We live in an irrational world, but computer
science and software engineering is based on
concrete and rational logic. How does one
make this rational knowledge fit into an ir-

SEl-SM-4-1.0




Support Materials

Software Configuration Management

rational world? Software Engineering and
Design is not just like it is in the textbooks.

2. Very often the existing system dictates what
kind of changes take place and what kind of
configuration management is used, rather
than the ideal or proper software design
practices.

Both of these concepts are difficult 1o teach to
young, inexperienced software engineers who are
coming directly from the classroom. They are con-
cepts that are usually learned through experience. A
software engineering graduate expects to put the
principles of Software Configuration Management
directly into effect. Suddenly they are confronted
with an irrational world that does not easily follow
the logical course of configuration management, It
isn't the mainline textbook problems that are going
to throw an educated software engineer; instead, it’s
the small peripheral problems that build up and take
control of a project. These little things, the result of
this irrational world, include corporate politics, un-
foreseeable accidents, human personalities, and day
to day unexpected emergencies. Also, a new
program manager may have to deal with a system
that does not follow regulation SCM practices and
does not want to change. Often corporations have
become comfortable with a particular structure that
does not have room for SCM, and it can be quite
frustrating to a young manager to be asked to com-
ply with "company policy" rather than smart
software configuration management.

There are some attributes of the irrational world and
some system protocol specifications that will never
be able to be changed, regardless of a software
engineer’s chagrin when dealing with them. Learn-
ing to deal with these inexplicable and usually
frustrating areas of SCM requires experience in the
world where they exist. A textbook will never be
able to adequately transfer the kind of knowledge
needed to deal with the irrational world, There will
always be people who will be able to manage cor-
porate software configuration better than others,
regardless of classroom performance---another result
of that irrational world.

A few well educated configuration management per-
sonnel are not going to make much of an impact on
Software Configuration Management today. There
must be a way to commuricate the concepts of SCM
to a great number of people involved in the develop-
ment of software products, even the people who are
not directly responsible for the configuration
management of a particular system (this would in-
clude everyone from the computer scientist writing

SEI-SM-4-1.0

the actual code to the final consumer of the product).
If a few concepts of SCM are known by a majority
of people dealing with the development of a
software product, then people will be able to func-
tion more smoothly within the system and the whole
process will be tighter. This is also important when
you remember the large number of companies that
are using contracts and subcontracts with other com-
panies. Unless the concepts of SCM are widespread
among many companies, Software Configuration
Management will be dependent upon whether a sub-
contractor chooses to use SCM or not.

Two Perspectives. One last point that seemed to be
emphasized at the meeting was that of two perspec-
tives emerging. It has been previously stated that
when a company goes under contract with another to
develop a software system, the management people
should have respect for the existing SCM structure
in the contracting company. The two perspectives
are (1) that of the originator of the project and (2)
that of the contractor that goes into this program.
NASA is a good example. They will often put
several companies under contract for a single mis-
sion and these companies often turn around and sub-
contract another company to work on various parts
of the system., NASA has a very structured system
for configuration managemert, and the companies
under contract often have SCM systems of their
own. Itis very clear to see that being able to see the
"give and take" needed in a situation like this. Each
company needs to try and comply with the SCM
demands of the contract originator. When a
software engineer is trying to take the concepts of
SCM into the real world, he should be prepared to
deal with these perspectives.

Conciusions

It is apparent to me that Software Configuration
Management courses are essential to progress within
Software Engineering today. SCM is tied to every
stage of software product develobpment. A good
configuration management team could make the dif-
ference between products coming in on time, within
cost and coming in late, full of bugs, with greater
costs. Education seems to be the place to start, but
there seems to be much more involved than class-
room development alone. It seemed that what the
group was trying to do was begin a program that
would teach software engineers that they need to
learn the concepts of Software Configuration
Management wherever that education amy be avail-

61




Software Configuration Management Support Materials

able (whether learning in the classroom or gaining
experience in the field), I would conclude that what
seems to be wrong in Software Configuration
Management today is that too many software en- .
gineers don’t seem to think they are missing much

without a solid knowledge of SCM. If they can be
shown the importance of SCM, then perhaps they
will be more eager to learn its concepts and to use it
more often and more effectively in the software
development field today.

62 SEI-SM-4-1.0

o r e,
e AL - -
e, RO




Support Materials

Software Configuration Management

Bibliography on
Version Control and Configuration Management

Daniel Conde
Digital Equipment Corporation

This paper originally appeared in ACM SIGSOFT Software En-
gineering Notes 11 (3), July, 1986, pages 81-84, and is reprinted
here by permission.

This is a bibliography of documents related to the
problem of version control and configuration
management. Specifically, it concentrates on the
problem of System Modelling, which is loosely
defined to be the task of?

Giving programmers help in describing the
structure of large systems: getting consistent
versions of files, replacing single modules
within a ruaning system, and recompiling and
rebinding just what has been changed, all in
the right order. (From a Xerox internal
glossary)
Most of the documents do not attack the whole
problem just defined, but together they represent
work done on many aspects of the problem. Some
are on various programming languages that help the
construction of large systems. Others refer to
specific systems designed to help programmers in
the problem of version control, or configuration
management. Some even try to solve many of these
problems in a coherent way. This problem has
gained attention recently as the problems of larger
projects written by many programmers are realized.
Some of the recent efforts were reported in the
proceedings of the ACM Software Engineering
Symposium on Practical Software Development En-
vironments and the GTE Workshop on
Programming-in-the-Large that are listed here.
Some, but not all of the papers from those proceed-
ings are referenced here. This year’s ACM Software
Engineering Symposium shouid promise to present
more recent work. The list is by no means complete.
I have mainly included documents that are publically
(sic) available, I have also not included internal
memos or any works in progress. Since I expect
many new works this year, this serves to capture
some of the early work. I will try to augment it as in
the future. This bibliography is derived from a ver-

SEl-SM-4-1.0

sion I once distributed on-line, but I have deleted all
reverences to various internal memos and added new
references,

I hope this reading list will help those planning to
build systems to solve this problem, or those who
want to apply ideas into their existing environment.
It is not required to run a program to help in system
modelling, as various methods and conventions are
sometimes sufficient. A program does help
programmers automate the process.

[ACM84]

Proc. ACM SIGSOFTISIGPLAN Software Engineer-
ing Symposium on Practical Software Development
Environments.. Pittsburgh, PA, 1984,

[Allman81]

Allman, Eric. An Introduction to the Source Code
Control System, Project Ingres. UC Berkeley, 1981.

[Avakian82]
Avakian, Arra. The Design of an Integrated Support
Software System. Proceedings of the SIGPLAN 82

Symposium on Compiler Construction. ACM, June,
1982, 308.

[Belady76]

Belady, L.A. and M.M. Lehman, A Model for Large
Program Development. IBM Syst. J. 15, 3 (1976),
225.

[Belady78]
Belady, L.A. Large Software Systems. IBM Thomas
J. Watson Research Center, Jan., 1978.

[Belady79]
Belady, L.A. The Characteristics of Large Systems.
In Research Directions in Software Engineering,

63




Software Configuration Management

Support Materials

P. Wegner, ed. MIT Press, 1979, 106-142.

[BellLabs81]

Source Code Control Systems User's Guide, in
UNIX System IIl Programmer’s Manual. AT&T Bell
Laboratories, AT&T Information Systems, 1981.

[Bianchi76]

Bianchi, M.H., and J.L. Wood. A User’s Viewpoint
on the Programmer’s Workbench. Proceedings of
the 2nd Conference on Software Engineering. ACM
and IEEE, 1976, 193.

[Cooprider79]

Cooprider, Lee. The Representation of Families of
Software Systems. CMU-CS-79-116, Carnegie-
Mellon Univ., April, 1979.

[Cristofor80]

Cristofor, E., T. Wendt, and B. Wonsiewicz. Source
Control + Tools = Stable Systems. Proceedings of
Compsac 80. IEEE, Oct., 1980.

[Dahl68]

Dahl, Ole-Johan. Simula 67 Common Base
Language. Norwegian Computing Center, Oslo,
1968.

[DEC82]
CMSIMMS: Code/Module Management System
Manual, Digital Equipment Corporation, 1982,

[DeRemer76]

DeRemer, Frank, and H. Kron. Programming-in-
the-Large versus Programming-in-the-Small. /EEE
Trans. Software Eng. 2, 2 (June 1976), 80-86.

[Deutsch80]
Deutsch, L. Peter, and Ed Taft. Requirements for an
Experimental Programming Environment.

CSL-80-10, Xerox PARC, June, 1980,

[DOD80]

Department of Defense. Stoneman: Requirements for
Ada Programming Support Environments (APSE).
DoD, Feb., 1980.

[Erickson83]

Erickson, V.B. Build A Software Construction
Tool. AT&T Bell Laboratories Technical Journal
63, 6 (Aug. 1983).

64

[Estublier84]
Estublier, J. Preliminary experience with a Con-
figuration Control System. Proceedings of
SIGSOFTISIGPLAN Software Engineering Sym-
posium on Practical Software Development. ACM,
May, 1984, 149,

[Estublier85]
Estublier, J. A Configuation Manager: The Adele
Data Base of Programs. Proceedings of the
Workshop on  Software  Environments  for
Programming-in-the-Large. =~ GTE Laboratories,
June, 1985, 140.

[Feldman79]

Feldman, Stuart I. Make - A Program for Maintain-
ing Computer Programs. Software Practice and Ex-
perience 9, 4 (April 1979), 255-265.

[Fritzon85]

Fritzon, Peter. The Architecture of an Incremental
Programming Environment and some Notions of
Consistency. Proc. Workshop on Software En-
gineering Environments for Programming-in-the-
Large. GTE Laboratories, June, 1985, 64.

[Gandalf85]
J. Sys. and Software 5, 2 (May 1985). Issue dedi-
cated to the Gandalf System..

[Glasser78]
Glasser, Alan L. The Evolution of a Source Code

Control System. Software Engineering Notes 3, 5
(Nov. 1978), 122,

[Goldstein80a]
Goldstein, Ira, and Danny Bobrow. Representing
Design Alternatives. Proc. Artificial Intelligence

and Simulation of Behaviour Conference. Amster-
dam, July, 1980.

[Goldstein80b]

Proc. First Annual Conference of the National As-
sociation of Artificial Intelligence.. Stanford, Cali-
fornia, Aug., 1980.

[Goldstein80c]

Goldstein, Ira, and Danny Bobrow. A Layered Ap-
proach to Software Design. CSL-80-5, Xerox
PARC, Dec., 1980.

SEl-SM-4-1.0



B JESY I SN S SN SN S

Support Materials

[GTES5] .

Proc. Workshop on Software Engineering Environ-
ments for Programming-in-the-Large.. Harwich-
port, Massachusetts, June, 1985.

[Habermann76]
Habermann, Nico A., Lawrence Flon, and Lee
W. Cooprider. Modularization and Hierarchy in a
Family of Operating Systems. Comm. ACM 19, 5
(May 1976), 266.

[Habermann79a]

. Habermann, Nico. A Software Development Control

System. Carnegie-Mellon Univ., 1979.

[Habermann79b]

Habermann, Nico. Tools for Software Construction.
Proc. Software Tools Workshop. Boulder, Colorado,
May, 1979.

[Habermann80]

Habermann, Nico. System Decompositions and Ver-
sion Control for Ada. Carnegie-Mellon Univ., May,
1980.

[Habermann82]

Habermann, Nico. The Second Compendium of Gan-
dalf Documentation. Carnegie-Mellon Univ., May,
1982,

[Harslem82]

Harslem, Eric. A Retrospective on the Development
of Star. Proc. 6th International Conference on
Software Engineering. Tokyo, Japan, Sept., 1982.

[Heckel78]
Heckel, P. A Technique for Isolating Differences
Between Files. Comm. ACM 21, 6 (April 1978).

[Horsley79]

Horsley, Thomas. Pilot: A Software Engineering
Case Study. Proc. 4th International Conference on
Software Engineering. 1979, 94,

[lchbiah79]

Ichbiah, Jean D. Preliminary ADA Reference
Manual. SIGPLAN Notices 14, 6 Part A (June
1979).

[IEEE]
IEEE. Standard Glossary of Software Engineering
Terminology. 1EEE Standard 729-1983, IEEE.

SEI-SM-4-1.0

Software Conﬁg_uratlon Management

[Ince84] .
Ince, D.C. A Source Code Control System Based on
Semantic Nets. Software Practice and Experience
14, 12 (Dec. 1984), 1159-1168.

[lvie77]

Ivie, E. The Programmer’s Workbench - a Machine
for Software Development. Comm. ACM 20, 10
(Oct. 1977), 746.

[Kaiser82]

Kaiser, G., and Nico Habermann. A Description of
the Correct Version Control Supported by the Gan-
dalf Environment. Carnegie-Mellon Univ., 1982.

[Katz85]
Katz, R.H., M. Anwaruddin, and E. Chang. A Ver-

sion Server for Computer-Aided Design Data.
UCB/CSD 86/266, U.C. Berkeley, Nov., 1985.

[Lampson83a]

Lampson, Butler W., and Eric Schimdt. Practical
Use of a Polymorphic Applicative Language. Proc.
10th POPL Conference. ACM, June, 1983,

[Lampson83b]

Lampson, Butler W, and Eric Schmidt. Organizing
Software In a Distributed Environment. SIGPLAN
Notices 18, 6 (June 1983).

[Lauer79]
Lauer, Hugh, and Ed Satterthwaite. Impact of Mesa
on System Design. Proc. 4th International Con-

ference on Software Engineering. 1EEE, Sept.,
1979, 174-182,

[Leblang84]

Leblang, David. Computer Aided Software En-
gineering in a Distributed Environment. Proc. ACM
SIGSOFTISIGPLAN Software Engineering Sym-
posium on Practical Software Development
Environments. ACM, May, 1984, 104.

[Leblang85]

Leblang, David. Configuration Management for
Large-Scale Software Development Efforts. Proc.
Workshop on Software Engineering Environments
for Programming-in-the-Large. GTE Laboratories,
June, 1985, 122,

[Lewis83]

Lewis, Brian. Experience with a System for Con-
trolling Software Versions in a Distributed Environ-

65




Software Configuration Management

Support Materials

ment. Proc. Symposium on Application and Assess-
ment of Automated Tools for Software Development.
IEEE, Nov., 1983. IEEE Press catalog number
83CH1936-4.

[Lewis84]

Lewis, Brian. IncludeChecker, in Xerox Develop-
ment Environment Users’ Guide Ed. , Xerox Infor-
mation System Division, 1984,

[Linton84]

Linton, Mark. Implementing Relational Views of
Programs. Proc. SIGSOFTISIGPLAN Software En-
gineering Symposium on Practical Software
Development Environments. ACM, May, 1984, 132,

[Liskov77]

Liskov, Barbara H., Alan Snyder, Russell Atkinson,
and Craig Schaffert. Abstraction Mechanisms in
CLU. Comm. ACM 20, 8 (Aug. 1977), 564.

[Minsky84]

Minskv, N. The Darwin Software-Evolution En-
vironment. Proc. SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software
Development Environments. ACM, May, 1984,

[iitchell79]

Mitchell, James G., William Maybury, and Richard
Sweet, The Mes. Language Manual. CSL-79-3,
Xerox PARC, April, 1979,

[Nicklin]
Nicklin, Peter. MKMF - Makefile Editor. In UNIX
Programmer's Manual 4.2 BSD.,

[Nickling3]
Nicklin, Peter. The SPMS Software Project Manage-
ment System. UC Berkeley, Aug,., 1983,

[Parnas72a]

Pamas, David L. Use of the Concept of Trans-
parency in the Design of Hierarchically Structured
Systems. Camegie-Meilon Univ., 1972,

[Parnas72b]
Parnas, David L. On the Criteria To Be Used In

Decomposing Systems into Modules. Comm. ACM
15, 12 (Dec. 1972), 1053.

[Powell82]

Powell, Michael, and Mark Linton. The OMEGA
Programming System. , 1982,

66

[Powell83]

Powell, Michael, and Mark Linton. A Database
Model of Debugging. Proc. ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on
High Level Debugging. — ACM, March, 1983,
365-375.

[Prager83]
Prager, J.M. The Project Automated Librarian. /BM
Syst. J. 22,3 (1983), 214, '

[Reiss84]

Reiss, Stephen P. Graphical Program Development
with PECAN Program Development Systems, Proc.
ACM SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development
Environments. May, 1984, 30.

[Rochkind75]

Rochkind, Marc, The Source Code Control System,
IEEE Trans. Software Eng. 1, 4 (Dec. 1975),
364-370.

[Rowland83]
Rowland, B.R. Software I evelopment System. Bell
Systems Tech. J. 62, 1 (Jan. 1983).

. [Schmidt82]

Schmidt, Eric E. Controlling Large Software
Development In a Distributed Environment.
CSL-82-7, Xerox PARC, Dec., 1982.

[Teitelbaum75]
Teitelbaum, Warren. The INTERLISP Reference
Manual,. Xerox PARC, 1975.

Teitelbaum8ia]

Teitelbaum, Warren. The INTERLISP Program-
ming Environment, IEEE Computer 14, 4 (April
1981).

[Teitelbaum81b]

Teitelbaum, Tim. The Cornell Program Synthesizer:
A Syntax Directed Programming Environment,
Comm. ACM 24 (Sept. 1981), 563.

[Teitelbaum83]

Teitelbaum, Warren. Cedar: An Interactive Pro-
gramming Environment for a Compiler Oriented
Language. Proc. LALN/LLNL Conference on Work
Stations in Support of Large Scale Computing.
March, 1983,

SEI-SM-4-1.0




UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

— ]
REPORT DOCUMENTATION PAGE
REPOAT SECURITY CLASSIFICATION 16. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE
2s. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

PERFORMING ORGANIZATION REPORT NUMBER(S)

4,
[ SEI-SM-4-1.0

5. MONITOAING ORGANIZATION REPORT NUMBER(S)

Bb. OFFICE SYMSOL
(1! spplicable)
SEIL

6. NAME OF PERFORMING ORGANIZATION
SOFTWARE ENGINEERING INST.

Ta. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADORESS (Cily, Stete and ZIP Code)

CARNEGIE MELLON UwIVERSITY

/
PITTSBURGH, PA 15213

{

73.}05!!:53 (Clty, Siats GRd-ZIP.Code)
4
ESD/AVS

HANSCOM AIR FORCE BASE I
HANSCOM, MA_01731

8b, OFFICE SYMEBOL >~
(1f applicabla)

ESD/ AVS

8s. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

2 PROCUREMENT.INSTRUMENT IOENTIFICATION NUMBER

F1962890C0003

Bc. ADDRESS (City, State end Z2IP Code)

10 SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

11, TITLE (Include Secunty Clasificetion)
Software Configuration Management

PROGAAM PROJECT TASK WORK UNIT
ELEMENT NO, NO. NO. NO.
63752F N/A N/A N/A

ERSONAL AUTHOA(S)
James E. Tomayko, The Wichita State Universi

ty

134 TYPE OF REPORT 13b. TIME COVERERD

14. DATE OF AEPORAT (Yr., Mo., Dey) 18, PAGE COUNY

FINAL FroM o September 1986 66
Iu. SUPPLEMENTARY NOTATION
1. COSAT!I CODES 18 SUBJECT TERMS (Continug on reverse if necessery end identify by Mock number)
#IELO GROUP SUS. GA. configuration management
change control

software evolution g

19, ABSTRACT (Continug on rwerse il nacessary end ldentify by ¥Hock number)

These materials support the curriculum module
Management."

SEI-CM-4~1,3 "Software Configuration

. OISTRIBUTION/AVAILABILITY OF ABSTRACY

UNCLASSIFIED/UNLIMTED §] same as ApT. O oric users (B

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

222, NAME OF RESPQNSIBLE INDIVIDUAL
JOBN S, HERMAN, Capt, USAF

22b. TELEPHONE NUMBER

22¢c. OFFICE SYMBOL
{Include Area Code)

412 268-7630 -~ SBY. JRQ-




.

The Software Enginesring Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mallon University under cuntract with the United States Department of Defense.

The SEI Software Enginesring Curriculum Project is developing a wide range of materials to support software enginesring
education. A curriculum module {CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SE| educational materials are being made available to educators throughout the academic, industrial, and governmert
communities. The use of thase materials in a course does not in any way constitute an endorsement of the course by the
SEl, by Carnegie Mellon Univarsity, or by the United States government.

Permission to make copies or darivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivalive works cite the original document by name, author’s name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SE| educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Enginsering Institute, Carnegie Msllon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internst.

Curriculum Modules (* Support Materials avaitable) Educational Materials

CM-1  [superseded by CM-19} EM-1  Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Enginaering Project Coursa

CM-3  The Software Technical Review Process® EM-2  APSE Interactive Monitor: An Artifact lor Software

Engineering Education

EM-3 Reading Computer Programs: Instructor's Guide and
Exercises

CM-4  Software Configuration Management*

CM-5 Information Protection

CM-6 Software Safety

CM-7  Assurance of Software Quality

CM-8 Formal Specification of Software*

CM-9  Unit Testing and Analysis

CM-10 Models of Software Evolution: Life Cycle and Process

CM-11 Software Specifications: A Framework

CM-12 Software Matrics

CM-13 Introduction to Software Verification and Validation

CM-14 Intellectual Property Protection for Software

CM-15 Software Development and Licensing Contracts

CM-16 Software Development Using VDM

CM-17 User Interface Development®

CM-18 [superseded by CM-23)

CM-19 Software Requirements

CM-20 Formal Verification of Programs

CM-21 Software Project Management

CM-22 Software Design Methods for Real-Time Systems*

CM-23 Tecnnical Writing for Software Engineers

CM-24 Concepts of Concument Programming

CM-25 Language and System Support for Concurrent
Programming*

CM-26 Understanding Program Dependencies




