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An Efficiently Computable Metric
for Comparing Polygonal Shapes D TI C
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Abstract- Model-based recognition is concerned with comparing a should have (for related arguments see [7]). 4 c -
shape A, which is stored as a model for some particular obje, with • It should be a metric. Ca shape B, which is found to exist in an image. If A and B are close to
being the same shape, then a vision system should report a match and d(A. B) _ 0 for all A and B.
return a measure of how good that match is. To be useful this measure d(A. B) = 0 if and only if A = B. We expect a shape to
should satisfy a number of properties, including: 1) it should be a metric, resemble itself.
2) it should be invariant under translation, rotation, and change-of-scale, d(A. B) = d(B. A) for all A and B (Symmetry). The order
3) it should be reasonably easy to compute, and 4) it should match our of comparison should not matter.
intuition (i.e., answers should be similar to those that a person might give).
We develop a method for comparing polygons that has these properties. d(A. B) + d(B. C) >_ d(A. C) for all A, B, and C (Triangle
The method is based on the LZ distance between the turning functions Inequality).
of the two polygons. It works for both convex and nonconvex polygons The triangle inequality is necessary since without it we can
and runs in time O(mn log inn) where m is the number of vertices in one have a case in which d(A. B) and d(B. C) are both very
polygon and n is the number of vertices in the other. We also present some
examples to show that the method produces answers that are intuitively small, but d(A. C) is very large. This is undesirable for
reasonable. pattern matching and visual recognition applications. If A is

Index Terms-Computational geometry, distance metric, model-based very similar to B and B is very similar to C, then A and C
matching, shape comparison, similarity transformation, turning angle should not be too dissimilar.
(theta.s) representation. - It should be invariant under translation, rotation, and change-

of-scale. In other words, we want to measure shape alone.
- It should bc reasonably easy to compute. This must hold for

I. INTRODUCTION the measure to be of practical use.

A PROBLEM of both theoretical and practical importance in • Most important of all, it should match our intuitive notions
computer vision is that of comparing two shapes. To what of shape resemblance. In other words, answers should be

extent is shape A similar to shape B? Model-based recognition similar to those that a human might give. In particular.
is concerned with comparing a shape A, which is stored as a the measure should be insensitive to small perturbations (or
model for some particular object, with a shape B, which is found small errors) in the data. For example, moving a vertex by
to exist in an image. If A and B are close to being of the same a small amount or breaking a single edge into two edges
shape, then a vision system should report a match and return a should not have a large effect.
measure of how good that match is. Hence, we are interested in
defining and computing a cost function d(A, B) associated with A. Representation of Polygons
two shapes A and B that measures their dissimilarity.

The long-term goal of this research is to develop methods of A standard method of representing a simple polygon A is
comparing arbitrary shapes in two or three dimensions. Here, to describe its boundary by giving a (circular) list of vertices,
we restrict our attention to polygonal shapes in the plane, with expressing each vertex as a coordinate pair. An alternative
an extension to the case in which a boundary may contain representation of the boundary of a simple polygon A is to give
circular arcs in addition to straight line segments. Our technique the turning function 8.4(s). The function 8. (s) measures the
is designed to work with objects for which the entire boundaries angle of the counterclockwise tangent as a function of the arc-
are known. length s, measured from some reference point 0 on A's boundary.

Before suggesting a measure to be used for comparing poly- Thus @A(0) is the angle v that the tangent at the reference
gons, we examine several properties that such a measure d(., .) point 0 makes with some reference orientation associated with

the polygon (such as the x-axis). 8 4 (s) keeps track of the
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Fig. 2. Nonuniform noise is problematic for the proposed distance function. P

P

We formally define the distance function between two poly- t(

gons A and B as the LP distance between their two turning P
functions O.(s) and 81(s), minimized with respect to vertical fi

and horizontal shifts of the turning functions (in other words, we t

minimize with respect to rotation and choice of reference points). h

For p = 2 we show that this distance function can be computed h

efficiently in O(n 2 log n) time for polygons with n vertices. ti

One possible drawback of our distance function is that it may
be unstable under certain kinds of noise, in particular, nonuniform
noise. For example suppose we have a triangle with one very
wiggly side, such as the one shown in Fig. 2. Comparing it

to a triangle we will get a very bad (in fact arbitrarily bad)
Fig. 1. Defining the turn function @(a). match, because the proportion of the perimeter corresponding

to the sides labeled A and B can approach zero. Fortunately, in
many computer vision applications it is reasonable to assume that

function from [0, 1) to R. For a convex polygon A, 0A () is the noise is roughly uniformly distributed over the sides of the

a monotone function, starting at some value v and increasing polygon, in which case the similarity measure we define performs

to v + 27r. For a nonconvex polygon, OA(s) may become nicely. See Section IV for examples.

arbitrarily large, since it accumulates the total amount of turn, Schwartz and Sharir [11 have defined a notion of distance
which can grow as a polygon "spirals" inward. Although eA s)similar to ours. However, they compute an approximation based a

may become very large over the interval s E [0, 1], in order for on discretizing the turning functions of the two shapes into many t.
the function to represent a simple closed curve, we must have equally spaced points; thus, the quality of the approximation t
e 4 (1) = 0 4 (0) + 21r (assuming that the origin 0 is placed at depends on the number of points chosen. Our approach, on s!
a differentiable point along the curve). the other hand, is to examine the combinatorial complexity

The domain of OeA(s) can be extended to the entire real line of computing the exact metric function between two polygon

in a natural way by allowing angles to continue to accumulate boundaries, using only the original vertices. Thus, our method

as we continue around the perimeter of the polygon A. Thus, for runs in time O(n 2 log n) where n is the total number of polygon ot

a simple closed polygon, the value of 0.4 (9 + 1) is OA (a) + 21r vertices, while their method computes an approximate distance

for all s. Note that the function 9 4 (s) is well-defined even for in time 0(k log k), where k >> n is the total number of inter-

arbitrary (not necessarily simple or closed or polygonal) paths A polation points used. Furthermore, fill suggest "convexifying"

in the plane. When the path is polygonal, the turning function nonconvex polygons in order to compare them, as their method

is piecewise-constant, with jump points corresponding to the does not apply to nonconvex polygons. Our algorithm applies to

vertices of A. both convex and nonconvex polygons (and even to nonsimple

Representation of planar curves (and, in particular, polygons) polygons).
in terms of some function of arc length has been used by a The remainder of this paper is organized as follows. In

number of other researchers in computational geometry (e.g., (8], Section 1I we give a formal definition of the distance between

(11) and computer vision (cf. (21) We use this representation to two polygons based on their turning functions. We prove that

compute a distance function for comparing two simple polygons this function is a metric and show some of its properties. These

(A and B) by looking at natural notions of distances between the results are used in Section [Ii to develop an 0(n 3 ) algorithm for

turning functions OA(S) and 8,(a). computing the distance between two polygons, where n is the wl
The function OA(8) has several properties which make it total number of vertices; we then refine this algorithm to obtain

especially suitable for our purposes. It is piecewise-constant for an 0(n 2 log n) running time. Section IV contains examples of
polygons (and polygonal paths), making computations particu- the distance function computed for several polygons using an

larly easy and fast. By definition, the function eA(S) is invariant implementation of our method. Section V is a summary and

under translation and scaling of the polygon A. Rotation of A discussion of extensions and further research.

corresponds to a simple shift of OA(S) in the 0 direction. Note
also that changing the location of the origin 0 by an amount
t E [0,1] along the perimeter of polygon A corresponds to a U. A POLYGON DtsTANCE FuNCTON
horizontal shift of the function OA(s) and is simple to compute Consider two polygons A and B and their associated turning
[the new turning function is given by OA( + t). functions e 4 (s) and OR(s). The degree to which A and B are
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similar can be measured by taking the distance between the

functions e..t(s) and eB(s) according to our favorite metric on

function spaces (e.g., L, metrics). Define the Lp distance between
A and B as

(A. B)= 1 -. qII, = (ft e(s) - 9R(s)IPds

where 11 I, denotes the LP norm [9].

P has some undesirable properties: it is sensitive to both
rotation of polygon A (or B) and choice of reference point on
the boundary of A (or B). Since rotation and choice of reference Fig. 3. The rectangular strips formed by the functions O.4 (s) and e8 I.2).

point are arbitrary, it makes more sense to consider the distance
to be the minimum over all such choices. If we shift the reference Clearly D,-c(t1. 0') 2 d,(A. C) because the latter is minimized
point 0 along A's boundary by an amount t, then the new turning o

function is given by 0 4 (s + t). If we rotate A by angle 9 then Lemma 2: For any fixed value of . and for any p .1,

the new function is given by 84(s) + 0. Thus, we want to find Lemma 2s any finction of .

the minimum over all such shifts t and rotations 9 (i.e., over all Prof. is a c nvex function of89Proof. For fixed s and fixed t, the function F(9)=
horizontal and vertical shifts of e(s)). In other words, we wan 18 4(s + t) - 8B(S) + 01P is clearly a convex function by the

to solve for convexity of G(y) = lylI (for p a 1), and integrating a convex

( m ft ) function maintains convexity (i.e., if a positive valued function

d,(A. B) n 18, , + t) - 0B(s) + 1lds) -Y(x.y) is convex in y for fixed x, then f'(x. y)dx is also aconvex function of y). 13

min D 4B(t.O) \ P  In particular, using the L2 metric, D2 (t.9)is a quadratic
E t o p " function of 0 for any fixed value of t. This holds for any closed

shapes, but it is especially easy to see for polygons.
where, We assume from now on that A and B are polygons. Then.

D '3(t.0) = 8 4(s+t)_-OB(s)+OPds" for a fixed t, the integral f) 18 4 (s + t) - )B(s) + 01'ds can
S+ (be computed by adding up the value of the integral within each

strip defined by a consecutive pair of discontinuities in 0 .1(s)
Lemma 1: dp(A. B) is a metric for all p > 0. and 8 (s) (see Fig. 3). The integral within a strip is trivially

Proof- Clearly ap (...) is everywhere positive, is symmetric, computed as the width of the strip times the square of the

and has the identity property, because 1] i, is a metric and difference 1E)4 (s + t) - E)(s)I (which is constant within each

has these properties. We now show that d,(..-) also obeys the strip). Note that if m and n are the numbers of the vertices in

triangle inequality, dp(A.B) + dp(B.C) ? d,(A,C), by a A and B, respectively, then there are m + n strips and that as 0
straightforward application of the Minkowski inequality for L. changes, the value of the integral for each strip is a quadratic

metrics. function of 0.
Let trb and 9,b be the minimizers of dp(A. B) (i.e., dp(A, B) = In order to compute d2(A, B), we must minimize D2B(t. 9)

[D - 0 (t .0,,)] 1/P). Similarly let tb, and 8&, be the minimizers over allt and 9. We begin by finding the optimal 0 for any fixed

of d,(B. C). We define t' = tab + tb, and 0' = 8.b + Ob,. Now, value of t. To simplify notation in the following discussion, we

dp(A. B) + dp(B.C) - use f(s) = E4 (a), g(s) - )E(s), and h(t.9) = D2 B(t 9)
i Lemma 3: Let h(t.9) = f1 (f(s + t) - g(s) + O)2ds. Then, in

=[J j84(8 + tab) - 8,9(s) + Oa6 Pds] order to minimize h(t, 9), the best value of 9 is given by

+ ft i B(S + t6 ) - Oc(s) + O6cIPds O 9(t) = (g(s) - f (s + t))ds " X4,

= 8 (8 +tb +t) -O8(8+ t) + O dso

I 1 where a = fo, g(s) da - fo' f(s) do.

+ [10B(s + tb6 ) - (c(S) + GbeIPds Proof.. By.
Oh(t, O) Di Dst rI bu tlj o

which by the Minkowski inequality (cf. (91) is &h ) (20 + 2f(s + t) - 29(s))d A rVS it t Cod

10 (s + tob + tb,) - 89(s + t6 ) + 0. 20 + 2I D
(fa 0t 1 g1s)d ru Speolal[1 AA JO I

+ 8 B(s + tbo) - 8C(s) + 8b, Pdal Lemma 2 assures us that the minimum occurs when we set this

ji +t)+ ~quantity equal to zero and solve for 9. Thus,

= [ 8O(so) - fcos) + t)ds)ds.
D A.C (t1'(1). =* I (g(s) - f(s + t)) ds.

DPCt'O)
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Now, fo f(s + t)d. Proof. We give a geometric proof. First recall that for a sid
given value of t the discontinuities in f and g define a set of R#

.t, m = n rectangular strips (see Fig. 3). The value of h(t.9) is ant
t f(s) ds simply the sum over all these strips of the width of a strip times wit

the square of its height. Except at critical events, as f is shifted afftf f(s)ds + [f (s- 1) + 27r]ds Ihe width of each strip changes, but the height remains constant. I
Each changing rectangle contributes to changes in h(t. 0). If t is of

f+ f ( the amount of shift, then for a shrinking rectangle, the change is is I
=] f(s) ds f/(s) ds + 2wt (- t) times the square of the height; for a growing rectangle the

change is (+ t) times the square of the height. Since the heights bet
27rt + f f(s) ds. are constant, the change in h(t. 0) is a sum of linear terms and foil

J0 is therefore linear. Breakpoints in h(t. 9) clearly occur at each of the
the mn critical events where a discontinuity of f is aligned with of

Thus, a discontinuity of g. 0 anc

This result leads to a straightforward algorithm for computing (

01(t) = g(s) ds - 27rt - f(s) ds d2(A. B). Let (V. 0-) be the location of the minimum value of the
h(t, 0). By the preceding lemma, h(t. 0") is piecewise-linear as H9

= C - 21rt. a function of t with breakpoints among a fixed set of critical not
values; thus, t* must be at one of the critical values. Now, goe

tlh(t,0'(t)) = h(t.O) - [0'(t)]2 = h(t.O) - [a - 21rt' [from san

Substituting the expression for 0'(t) in d2(A, B) we are left (1)], so it suffices to evaluate h(t. 0) f (f(s + t) - g(s)ijds con
with a one-variable minimization problem, at critical values of t. to t

Corollary 5: The distance d2 (A. B) between two polygons A nee
and B (with m and n vertices) can be computed exactly in time 1

d2(A. B) = rin h(t, 9 (t)) O(mn(m + n)).
t, (o.1 J Proof: For given values of t and 0, h(t. 9) can be computed

r tf21  in O(m + n) time by adding the contributions of the m + n
= n (f(s + t)- g(s)(2 -[9(t)] 2 +20°(t) rectangular strips between f and g. Let cc,.... . c-, be the

I(0.1l 0critical events that occur as f is shifted by t. By the preceding

[f(. + t) - W])ds'i observations, the minimum of h(t, 9) occurs when t equals
one of C0,C, -,,,,. Since the best 0 value for a given r
[namely, 0"(t)] can be found in constant time (Lemma 3), we

= min g(9 simply compute h(t,O(t)) in O(m + n) time for each of these
=tEb0.tlh [f(s + t) )]ds - critical events, find the minimum, and take its square root to get

0d 2(A, B).

111. Awoa~mwc DErALS A. Refinement of the Algorithm

In this section we show that the distance function achieves its
minimum at one of nn discrete points on [0,11, which we call The above time bound can be improved by using a somewhat
critical events. Recall that in the process of finding d2(A, B) we more complex algorithm.
have to shift the functionf(s) tof(s + t) for t E [0,11. During this Theorem 6: The distance d2(A. B) between two polygons A
shifting operation the breakpoints of f collide with the breakpoints and B (with n and n vertices) can be computed exactly in time
of g. We define a critical event as a value of t where a breakpoint O P(mn log m ). T
of f collides with a breakpoint of g. Clearly there are mi such Proo." We prove the theorem by describing the algorithm. piec
critical events for m breakpoints in f and n breakpoints in g. The basic idea is the same as the previous algorithm: we can

Using the fact that the minimum is obtained at a critical event, compute h(t, (t)) for each of the critical values of t. By the slop
we present a basic algorithm for computing d2(A, B) that comments before Corollary 5, it suffices to evaluate h(t. 0) = iii
0(n 3) time for two n-vertex polygons (and time O(mn(m + n)) f (f(s + t) - 9(s)]2ds at critical values of I. Now we observe criti.

for an m vertex polygon and an n vertex polygon). We then de- that h(t, 0) varies with t in a very constrained fashion. As a ever

scribe how to modify the basic method to improve the runtime to matter of fact, by keeping track of a small set of values we the

O(n 2 log n) (or O(mn log mn) for unequal numbers of vertices). can easily determine how the function h(t, 0) changes at each of I
Recall that d2(AB) = min,.,,(h(t,0))1, where h(t,) = critical event.
Rall that. dW ( prove t ) mit,( h( pop , here ht, ld to Thevalueswekeeptrackofarebasedonthe rectangularstrips In

DB(t,O9). We prove that h(t,O9) has properties that lead to that appear between the two functions f(s) and g(s). Recall that from
efficient algorithms for computing our polygon metric. g(s) is fixed in place and that f(s) is shifted backwards by I. ever

Lemma 4: If f(.) and g(.) are two piecewise-constant functions For a given value of I, the discontinuities in f(s + t) and g(s) rema
with m and n. breakpoints, respectively, then for constant 9, define a set of rectangular strips, as was illustrated in Fig. 3.

Each rectangular strip has f at the top and g at the bottom or

h(t, 9) = (f(8 + t) - g(s) + 0)
2do vice versa. The side of a strip are determined by discontinuities

in f and g. In
For the purposes of the algorithm, we separate the strips into of th

is piecewise-linear as a function of I, with mis breakpoints which four groups based on the discontinuities at the sides of the strips: polyl
are independent of the value 0. Rr for those with f on both sides; R., for those with g on both addit
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sides; Rfg for those with f on the left and g on the right; and
Rd for those with g on the left and f on the right. The sets Rf
and Re are particularly important, as these are the strips whose

widths change as t changes (as f is shifted). Thus, these strips

affect the slope of h(t, 0).
We keep track of two quantities: Hf, and He. Hfs is the sum

of the squares of all the heights of all the strips in RN, and He

is the sum of the squares of the heights of all the strips in Re.
The algorithm is based on the observation that for values of t

between two critical events the slope of h(t, 0) is H/ - He. This Fig. 4. Comparing two simple polygons.
follows from the fact that, as f is shifted backwards by t, RN is

the set of all strips that increase in width by t, and Re is the set
of all strips that decrease in width by t. The widths of the R1  shapes, the method gives the relative orientation 0* and the

and R,, strips remain unchanged. corresponding reference points of the two polygons for which

Consider what happens at one 'of the critical events, where this distance is attained.

the change is no longer simply linear. We claim that quantities The first example compares two simple polygons that are

Hfg and HOF can be easily updated at these points. To see this very similar in shape, but which are at different orientations

note that, at a critical event, a gf-type strip disappears (its width (see Fig. 4). The value of d2 (A, B) is 0.144 which is attained

goes to zero) and a new fg-type strip appears (see Fig. 3). At the at a rotation of 180 degrees and with the upper left vertex of

same time, the right boundary of the adjacent strip to the left is the first polygon matched with the lower right vertex of the

converted from g to f, and the left boundary of the adjacent strip second one. (Distances less than about 0.5 seem to correspond

to the right is converted from f to g. To update HN and He we to polygons that a person would rate as resembling each other;

need to know just the values of f and g around the critical event, pairs of polygons that are very different can have arbitrarily high

This gives us the following algorithm. distances.)

1) Initialize: To illustrate how the distance function can be used to compare
a model with several different instances, we consider the eight

" Given the piecewise-constant functions f and g, deter- shapes illustrated in Fig. 5(a) and 5(b). In Fig. 5(a) the shapes
mine the critical events: the shifts of f by t such that are ordered by their distance from the square; in 5(b) the same

a discontinuity in f coincides with a discontinuity in g. shapes are ordered by their distance from the triangle. The order

Sort these critical events by how far f must be shifted of the shapes corresponds remarkably well to our intuitive idea
for each event to occur. Let co, c. - . ce be the ordered of shape-resemblance. The match to the cutoff triangles suggests

list of shifts for the critical events co = 0. that the metric is useful for matching partially occluded objects,

" Calculate h(0, 0). This involves summing the contribu- as long as the overall shape of the object does not change too

tions of each of m + n strips and takes linear time. radically.

" Determine initial values for Hfg and He. Our metric also provides a qualitatively good estimate of a
match when one polygon is an instance of another, but with

2) For i = 1 to e some perturbation of its boundary. A simple example is given

" Determine the value of by the cutoff triangle in Fig. 5. Another example is given in
Fig. 6, where we compare a model rectangle against another

h(c,.0) = (Hfg - Hgf)(c, - c,-) + h(c,_.,0). rectangle with a notch removed. The distance is 0.327 with a
relative orientation of 179 degrees.

" Update HN and He. An extreme case of matching distorted polygons is shown in
t ) is Fig. 7, where a triangle is compared with a somewhat triangular

The algorithm takes advantage of the fact that h(t,O) shape. In this case the distance is 0.834, and the orientation
piecewise-linear as a function of t, thus, the entire function difference is 16 degrees. Note however, that, as mentioned in the

can be determined once we know an initial value and the introduction (see Fig. 2), such perturbations must occur relatively

slope for each piece. It is easy to see that the time for uniformly along the perimeter of the polygon for the match to
initialization is dominated by the time it takes to sort the be reasonable. (A smoothing technique is likely to alleviate the

critical events: O(e log e), where e is the number of critical problem of nonuniform perturbations.)
events, or O(mn log mn) where m and n are the sizes of
the two polygons. The updates required for the remainder
of the algorithm take a total of O(e), or O(mn) time. V. SumIARY AND Discussi

0
In practice, it might be useful to recalculate h(t, 0) periodically We have suggested using the L 2 metric on the turning functions

from scratch to avoid errors that could accumulate. If this is done of polygons as a way to implement the intuitive notion of

every 0( It,) steps then the time bound for the entire algorithm sape-reembla. This method for omparing shapes has the

remains Oe loge). following acvantges:
It is a metric on polygonal shapes.
it compares shape alone; it is invariant under translation,

IV. EXAMPLES rotation, and change-of-scale.

In this section we illustrate some of the qualitative aspects • It is reasonably easy to compute, taking time 0(mn log mn)

of the distance function d2(A, B) by comparing some simple to compare an m vertex polygon against an n vertex polygon.

polygons using the algorithm described in the previous section. In * Finally, it corresponds well to intuitive notions of shape

addition to providing a distance d2(A, B), between two polygonal resemblance.
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function, these methods either are not metrics, do not compare
shapes independent of position. orientation and scale, or are not
efficient to compute. The most similar method to ours is that
of Schwartz and Sharir [11), [121. Huttenlocher and Kedem 14]

' - /- have recently developed a metric for comparing polygonal shapes
independently of an affine transformation, thus extending our
results to a more general class of shape transformations. Their
method computes a distance based on the Hausdorff metric, and
also runs in time O(mn log mn).

Like the method of [1ll, 1121, our method is actually based on Fi

a convolution. Recall that the major portion of our algorithm is
devoted to minimizing h(t.') = fJ' (f(s + t) -9(s) + O)"ds.
When this formula is multiplied out. all the terms depend o
on f alone or g alone, except for the convolution term

f 1 (s + t)g(s)ds, If and g are piecewise-constant with m and
n discontinuities, respectively, then each term can be calculated CO

in either 0(m) or 0(n) time except for the convolution term. to
which seems to require O(mn log ino) time. Of course, the fast ar
Fourier transform (F1T) can be used to compute a convolution in dc

O(k log k) time, but this requires k evenly spaced sample points
for each of f and g. For our problem. the discontinuities are not
necessarily evenly spaced, so the FF1 cannot be used unless
we are willing to approximate our functions f and g. A good as
approximation may require more than mn points. (Schwartz and t
Sharir [111 avoid these discontinuities by rotating the turning
functions. This makes it possible to use the FF1, although it
restricts their method to convex polygons.) In any case, the
development of a fast method for convolutions using unevenly
spaced sample points would lead to improvements in the time

b, bound for our technique.
Fig. 5. Comparing several polygons. We used the L 2 metric, but similar techniques can be used to sti

develop polygon-resemblance metrics that are based on different ar,
function-space metrics. Unfortunately, not all such metrics have e
L 2's advantages of being reasonably easy to compute and match- of
ing our intuitive idea of shape resemblance. For instance, it is in
also possible to compute the L, metric on two 6(s) functions be
using an algorithm similar to that in Section Ill. In the case of
the L, metric, however, the value of 0' is not given directly of
for each value of t as it is for the L2 metric. Thus for each of
the mn critical events, the optimal value of 0 must be computed
explicitly. Using a data structure similar to that in Section Ill, the ot

Fig. 6. A rectangle with a notch removed, overall computation can be done in time O(nJ log n), as opposed hi
to 0(n 2 logn) for the L 2 metric. an

The L, metric has an additional drawback: the optimal match of
will occur when one side of polygon A is at the same orientation va

as some side of polygon B. This is because DA.8 (t.9) is a 0

piecewise linear in both t and 0, so the minimum occurs at a g
critical event in 0 as well as at a critical event in t. In contrast, ha

the L2 metric finds the optimal orientation (in a least squares ne

sense) without requiring any two edges to be identically oriented.
Examine Fig. 8 to see why requiring identical orientations can
be undesirable; for the L, metric the best match occurs at
an orientation difference of 76 degrees, bringing two edges
into alignment. This would route the two figure so that they

Fig. 7. Matching a triangle to a higldy noisy shape. approximately form a star, a bad match. In contras, for the L,
metric the best match is at an orientation diffeence of 7 degrees,
which agrees quite well with our intuitive sense of the best match.

In addition, this metric works for nonconvex as well as convex It may be possible to apply our methods to problems involving [
polygons, and even works for polygonal shapes that are not partially occluded objects, that is objects for which the entire
simple. model is known, but for which only a portion of the boundary

A number of other authors have considered the problem of appears in the image. Our technique as presented here has not (I
determining the extent to which one shape resembles another been designed to work with such objects, although, as shown by
(e.g., [11, (31, [51, 181, [101, [111). In contrast to our distance some of our examples, it eems to give intuitively correct answers
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[41 D. P. Huttenlocher and K. Kedem, "Computing the minimum
Hausdorff distance for point sets under translation," in Proc. ACM
Symp. Computatonal Geometry, 1990, pp. 340-349.

[51 J. Hong and X. Tan, 'The similarity between shapes under
affine transformation," in Proc. Second Int. Conf Computer Vision.
Washington, DC: IEEE Comput. Soc. Press, 1988, pp. 489-493.

[6] J. Hong and H. J. Wolfson, "An improved model-based match-
ing method using footprints," in Proc. Ninth Int. Conf Pattern
Recognition, Rome, Italy, Nov. 14-18, 1988.

[7] D. Mumford, "The problem of robust shape descriptors," in Proc.
First int. Conf Computer Vision. Washington, DC: IEEE Comput.

Fig. 8. A match for which the LI metric does poorly but the Lz does well. Soc. Press, 1987, pp. 602-606.
[81 J. O'Rourke and R. Washington, -Curve similarity via signatures."

in Computational Geometry, G. Toussaint. Ed. Amsterdam. The
Netherlands: North-Holland, 1985, pp. 295-318.

when objects are not severely occluded. The combination of [9] H. L. Royden, Real Analysis. New York: Macmillan. 1968.
occluded objects and our desire to make our metric independent 101 L. G. Shapiro and R. M. Haralick, "Organization of relational
of change-of-scale causes some difficulty. We were able to models for scene analysis," IEEE Trans. Pattern Anal. Machine
control change-of-scale problems by normalizing our polygons IntelL, vol. PAMI-4. no. 6, pp. 595-602, 1982.

[ll J. T. Schwartz and M. Sharir, "Some remarks on robot vision." New
to make all perimeters have lt 5gth one. If portions of a boundary York Univ., Courant Inst. Math. Sci., Tech. Rep. 119. Robotics
are unknown then it is unclear how this normalization should be Rep. 25, Apr. 1984.
done. If the scale of the image is known, then partially occluded [12] - , "Identification of objects in two and three dimensions by

objects should not present any severe difficulties. matching noisy characteristic curves," Int. J. Robotics Res.. vol. 6.no. 2. pp. 29-44, 1987.
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then the turning function 8.4 (3) is piecewise-linear instead of
piecewise-constant. As before, to compare shapes A and B we
need to minimize

h(t. ) = 1 8.4s + t) - Oe(S) + 012ds.
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