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NOMENCLATURE

b mechanical blockage factor, boundary layer velocity defect parameter
c chord
f wake profile model function (Pohlhausen polynomial)
F defect force
g wake profile model function (bridging function)
h static enthalpy
H total enthalpy
Hr relative total enthalpy
I rothalpy
L axial stage length
n boundary layer power law exponent
N number of blades
N vector normal to material wall
r radius
s pitch
T static temperature
Tt total temperature
It relative total temperature

Tt rotary total temperature

61t correction on Quasi-3D rotary total temperature distribution from radial mixing
U wheel speed
W 3D velocity vector in the blade row reference system
y normal or tangential distance from the wall (in velocity profile models)

a absolute flow angle between streamline direction and meridional direction
ctr radial flow angle (induced by inviscid and end-wall boundary layer secondary flows)
[3 relative flow angle between streamline direction and meridional direction
13' blade angle
8 physical boundary layer thickness
8* boundary layer displacement thickness

A parameter indicating relative motion between blades and end-wall
E boundary layer skewing angle
et turbulent diffusion mixing coefficient
ew wall skewing angle

S3D vorticity vector in the blade row reference system

!as 3D vorticity vector in the absolute frame of reference
0 boundary layer momentum thickness
11 blade lean angle, non-dimensional distance from the wall
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nlo wake asymmetry parameter
gi dynamic viscosity
v kinematic viscosity
p density
a angle between meridional and normal directions
aw end-wall inclination angle
T shear stress
i streamfunction for the secondary flows

11 angular velocity of steadily rotating blade row

abs absolute
p pressure side
s suction side
Q3D component from Quasi-3D computation
S3 component from S3 computation
z,r,O cylindrical coordinates (axial, radial, tangential)
m,n,u meridional coordinates (meridional, normal, tangential)
s,n,t streamline coordinates (streamwise, normal, transversal)

inv inviscid contribution
visc viscous contribution
ewbl end-wall boundary layer region
pbl profile boundary layer region
wake wake region

Superscript

geometrical pitch-average,
arithmetical average between pressure and suction side (wake model)

- density weighted pitch-average
deviation from geometrical pitch-average
deviation from density-weighted pitch-average

A inviscid or 'free-stream' reference value

Notations

V 3D Nabla operator

@ tensorial product (dyad)

[ ]p difference between suction and pressure side
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INTRODUCTION

The present report describes the approach followed by the program RADMIX in
computing the radial redistribution of flow quantities between the axisymmetric blade-to-
blade streamsurfaces of a finite element Quasi-3D computation code for turbomachinery
flows. For the moment, the program is confined to simulations of the radial mixing process
in single axial blade rows, but extension to multi-stage axial-flow turbomachines is
envisaged.

The basic approach of the method is to take into account the effects of radial mixing by
introducing corrections due to the radial transfer of momentum, energy and losses to a
previously obtained through-flow computation or full Quasi-3D computation.
This radial transfer is attributed to two different physical mechanisms : convective transport
due to secondary flows and diffusive transport due to turbulence. The program RADMIX
provides options, which allow to select numerical simulation of the mixing process by
either of these mechanisms or by the combination of both.

The first part of this report describes the general approach to the radial mixing problem.
The term 'radial mixing' is defined and the two mixing mechanisms are considered from the
physical point of view. Next, the general Quasi-3D framework in which the present theory
is formulated is briefly described. Finally, a review of previous work on radial mixing is
presented.

The second part of this report details the theoretical foundations of the computation of
secondary flows, turbulent diffusion and radial mixing effects.
For the secondary flow computation, a rigorous decomposition of the real flow into a
Quasi-3D flow component and a secondary flow component is introduced. For
computational purposes, the turbomachinery flow region is divided into four different
subregions : the inviscid mainflow region, the end-wall boundary layers region, the profile
boundary layers region and the region of the wakes. The specific theoretical principles and
numerical techniques used are detailed in separate chapters for each individual type of flow
region.
The numerical computation of the turbulent diffusion mechanism, based on a semi-
empirical turbulent mixing coefficient , is described in a separate chapter.
Finally, the overall mixing process and its implementation with respect to the mainflow
computation is discussed, including a derivation of the mixing equation from the energy
conservation law.

The third part of the report contains a brief description of the numerical aspects of the
radial mixing simulation : mesh generation and numerical solving techniques.

The fourth part of the report is mainly devoted to the validation of the proposed
secondary flow model for the convective mixing : results of secondary flow computations
for a linear compressor cascade are presented and compared with the extensive experi-
mental data available for thi, testcase.

Finally, the major points of this report are summarized in the conclusions section and
recommendations for future work are made.
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CHAPTER 1

RADIAL MIXING

1.1 DEFINITION AND IMPORTANCE OF RADIAL MIXING

1.1.1 CLASSICAL QUASI.3D COMPUTATIONS

Today, nearly all the computational codes for turbomachinery flow analysis used by
industry are of the quasi-three-dimensional type (Quasi-3D). All these computation
methods are basically variations of the streamsurface theory of Wu (1952), in which a
steady three-dimensional turbomachinery flow is rigorously decomposed into two families
of interacting two-dimensional flows on intersecting streamsurfaces.

These two families of 2D-flows are (Figure 1.1) :

1) The thogh-flow on hub-to-shroud surfaces or S2-streamsurfaces, obtained by expres-
sin, radial equilibrium.

2) The blade-to-blade flow on blade-to-blade surfaces or SI-streamsurfaces, obtained by a
cascade potential flow analysis.
For reasons of simplicity, the SI-streamsurfaces are almost always assumed to be
surfaces of revolution (with the machine shaft as rotation axis), intersecting the blading
of the machine.

Figure 1.1: Streamsurfaces for a turbomachinery flow (left ,,S2 , right , SI)

Although it is theoretically possible to represent a steady three-dimensional flow
completely through two families of two-dimensional flows, Yih (1979), all computational
methods solve the flow in an approximative way by reducing the number of streamnsurfaces.
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Generally, only one S2-surface is defined, which is assumed to be representative for all S2-
streamsurfaces, i.e. a kind of 'mean through-flow' S2-szrface.
Similarly, only a small number of blade-to-blade SI-surfaces is defined, in most cases
evenly distributed between hub and shroud.

The through-flow computation on the S2-surface yields radial distributions of important
design parameters at inlet and exit of each blade row, e.g. axial velocity, swirl angle, mass
flow, total pressure and temperature, etc..., while the blade-to-blade computations on the
SI-surfaces provide a detailed picture of the flow between two adjacent blades, e.g.
deviations and empirical estimations of profile losses through the use of correlations.

The flows on the two types of surfaces are interdependent, i.e. the solution of the flow
on the through-flow surface provides the boundary conditions necessary to solve the flow
on the blade-to-blade surfaces and vice versa. This clearly leads to an iterative solution
procedure. All methods start with a through-flow computation on the S2-surface, using
default boundary conditions. This is followed by a set of blade-to-blade computations on
the different S1-surfaces, using the results of the previous through-flow solution as
boundary conditions. Subsequently, a second through-flow computation is performed,
while the previously obtained blade-to-blade solutions provide the necessary boundary
conditions. In turn, this computation is again followed by a new set of blade-to-blade
computations, etc... Generally, convergence is obtained after a few iterations.

In this way, the computation of a three-dimensional turbomachinery flow is reduced to
an assembly of successive solutions of two-dimensional flows, which represents a large
simplification with respect to computational procedures. The three-dimensional character
of the flow is conserved through the interdependence on the boundary conditions for both
flow families, hence the name 'quasi-three-dimensional computation.

1.1.2 LIMITATIONS OF CLASSICAL QUASI-3D COMPUTATIONS

The Quasi-3D computation of a turbomachinery flow contains two approximations with
respect to a real turbomachinery flow :
1) The reduction of the number of streamsurfaces to one S2-surface and a finite number of

S I-surfaces means that the three-dimensional flowfield cannot anymore be reconstructed
rigorously from the two two-dimensional flow families.
In fact, in order to obtain a complete description of the flow, a third kind of stream-
surface, intersecting the two previous kinds of streamsurfaces, must be introduced (cf. §
1.3.3).

2) The assumption that SI -streamsurfaces are surfaces of revolution represents a severe
limitation with respect to physical reality, since it can be shown that S1-surfaces can
only have an axisymmetric geometry under very special circumstances, Vavra (1960).
In a real turbomachinery flow, several physical effects generate so-called secondary
flows, which distort the geometry of the Sl-streamsurfaces with respect to the
axisymmetic geometry of a surface of revolution.

In conclusion, the classical quasi-three-dimensional flow description can be regarded as
an intermediate level of description between the two-dimensional and fully three-
dimensional flow descriptions, suited to configurations that are not "strongly" three-
dimensional, in the sense that variations of one velocity component are less important than
the other two. For example, in some cases secondary flow effects are small and the limited
twisting of blade-to-blade surfaces may be neglected.
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1.13 RADIAL MIXING

In the previous section, it was shown that the classical Quasi-3D concept, which
considers a turbornachinery flow as a series of concentric streamsurfaces of revolution, is
nonistnt with physical reality. Indeed, the classical concept implies that different SI -
strearmsurfaces do not interact : each fluid particle is considered to remain on the same
axisymmetric surface of revolution during its passage through the machine. However, in a
real turbomachinery flow the twisting of S 1-streamsurfaces through secondary flows leads
to a transfer of fluid particles and their associated mass, momentum and energy with
respect to the hypothetical surfaces of revolution, which is not taken into account by the
classical Quasi-3D formulation.

Furthermore, like most real-life flows, turbomachinery flows are highly turbulent. The
stochastic, chaotic motion associated to turbulence leads to random collisions between the
fluid particles of different streamsurfaces, again resulting in a transfer of momentum and
energy between different S 1-streamsurfaces.

This leads to the conclusion that classical Quasi-3D computations neglect an essential
feature of real turbomachinery flows : the radial transfer of mass. energy and momentum
between the hypothetically axisvmmetric S l-streamsurfaces. leading to a radial
redistribution of flow p.,pe-ries. This radial transfer process is called IiaLdImixing.

In the present report, a theoretical method to introduce the effects of radial mixing into
classical Quasi-3D computation methods is developed, because radial redistribution of flow
properties has become increasingly important in modern axial turbomachinery designs.
This is due to the fact that modern design trends towards higher aerodynamic loading and
lower aspect-ratio blading increase the three-dimensional character of the flow field,
especially in the case of axial compressors.

1.2 MECHANISMS OF RADIAL MIXING

As was already indicated in the previous section, two different physical mechanisms can
be distinguished as possible causes for the radial mixing process:

1) Convective transport through secondary flows

2) Diffusive transport through turbulence

1.2.1 SECONDARY FLOWS

a) Types and physical origin of secondary flows

Secondary flows are a well-known physical phenomenon in turbomachines. However,
although the importance of secondary flows is widely recognized, witnessed by the
extensive literature on this subject, the computation of secondary flows is a very difficult
task and even the definition of secondary flows is the object of considerable debate. Since
there is no general rigorous definition fcor the concept of secondary flows, the different
types of secondary flow within turbomachines, their region of occurrence and their physical
origin are listed below (Table 1.1).
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Type of secondary flow Occurrence region Physical origin

1) Passage vortex: a) inviscid Coe region Deflection of an inlet flow with trarsversal
b) viscous Hub region and vosticity (inviscid : due to non free-vortex

tip region behaviour; viscous : due to end-wall boun-
dary laym)

2) Trailing filament vortex Blade wake Stretching of inlet flow trnsversal vortex
filaments (inviscid mechanism)

3) a) Trailing shed vortex Blade wake Radial pressre gradients, due to spanwise
(inviscid flow) changes of blade circulation

b) Spanwise fluid migration in the Blade wake Imbalance between unposed radial pressure
blade wake (viscous flow) gradients and centrifugal forces due to

streamline curvature

4) Spanwise fluid migration in Blade boundary layer Imbalance between imposed radial pressure
the blade boundary layer gradients and centrifugal forces due to

streamline curvature

5) Tip leakage vortex Tip clearance Pressure
difference over tip clearance

(for unshrouded blades)

6) Horseshoe vortex Hub region and Roll-up and spliting of end-wall boundary
tip region layer before a thick leading edge

7) Scraping vortex Blade ends Scraping of part of the end-wall boundary
layer by unshrouded blades (relative motion
between blade and end-wall)

8) Corner vortex Endwall / Suction-side Roll-up of end-wall boundary layer fluid
corner that impinges normal to the blade surface

Table 1.1 : Secondary flows in a turbomachine

As this table shows, all of the secondary flow effects are vortical fluid motions, except
for the fluid migrations in the blade boundary layer and the blade wake, which are spanwise
motions. In general, these secondary flows take place in a surface normal to the main flow
direction. All of these motions have radial velocity components associated with them, and
these will twist the S I-surfaces with respect to their hypothetical axisymmetric geometry,
resulting in radial transfer of flow properties. Figure 1.2 gives a general picture of the
different secondary flow effects in a turbomachinery blade row.

For more information on secondary flows in turbomachines, see for instance Horlock &
Lakshminarayana (1973), Salvage (1974) and Sieverding (1985).
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b) Nature of the mixing process

The secondary flows convect fluid particles with their associated mass, momentum and
energy from one streamnsurface to another, in a well-defined direction. Therefore, radial
mixing by secondary flows is of a deterministic nature, i.e. the radial redistribution of flow
pro.perties between two streamsurfaces is completely determined by the magnitude of the
radial component of the secondary flow velocity.

0t

Figure 1.2: Secondary flows in a turbornachinery blade row

1.2.2 TURBULENCE

a) Nature of the mixing process

In the case of radial mixing by turbulence, the mixing is caused by an exchange of
momentum and energy between fluid particles, colliding due to the chaotic motion
associated to turbulence, leading to a more uniform distribution of flow properties.
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Therefore, radial mixing by turbulence is of a random nature, i.e.the radial redistribution of
flow properties is essentially determined by the turbulence intensity, which is irrespective
of direction.
This is analogous to the classical molecular diffusion through interacting molecules, but the
transport caused by the large-scale chaotic motion of turbulence is some orders of
magnitude greater than the transport caused by the small-scale chaotic molecular motion.
In conclusion, radial mixing by turbulence has the features of a diffusion process.

b) Non-soroc turbulence

It is important to note that a turbomachinery flow can exhibit non-isotropic turbulence,
i.e. the turbulence intensity can be dependent upon direction. In this case, radial mixing
due to turbulence possesses a less random nature, since the radial redistribution between
two strearmsurfaces will be determined by the specific turbulence intensity in the radial
direction and not by the general level of turbulence only. Therefore, radial mixing due to
non-isotropic turbulence possesses some characteristics of a convection process, i.e. the
existence of local preferential directions (cf. discussion by Gallimore & Cumpsty of the
paper of Wisler, Bauer and Okiishi (1987)).

1.3 RADIAL MIXING IN THE FRAMEWORK OF A QUASI-3D
METHOD BASED ON AN AVERAGING PROCEDURE

1.3.1 INTRODUCTION

The theoretical radial mixing model described in this report has been developed to fit in
the framework of a Quasi-3D method for turbomachinery flow computations, based on a
density-weighted pitch-averaging procedure, Hirsch & War'Ae, (1976, 1979). The main
purpose of the mixing method is therefore to compute the radial redistributions of flow
properties for the averaged flow on the meridional S2-surface.
One of the basic features of the present theoretical model of radial mixing is its aftcrard
application to the classical Quasi-3D turbomachinery flow computation. In other words,
the radial redistributions are considered as corrections to the flow property distributions
obtained by a classical Quasi-3D computation. This allows the procedure to be adapted
more easily to existing Quasi-3D turbomachinery flow computation codes.

1.3.2 QUASI.3D TURBOMACHINERY FLOW COMPUTATION

The current approach is a variant of the original Wu method : it consists in splitting the
turbomachinery flow into two families of interacting two-dimensional flows, using a
density-weighted pitch-averaging procedure, Hirsch & Warz6e (1976, 1979). The through-
flow is the circumferentially averaged flow on a meridional plane (S2-plane), i.e. the
axisymmetric component of the flow field. The blade-to-blade flows are considered on
s"eamsurfaces of revolution (S 1-surfaces), obtained by rotating streamlines in the meridio-
nal plane around the machine axis, and contain the circumferential distribution of the non-
axisymmetric components of the flow field. Of course, both types of flow influence each
other in an iterative way through the boundary conditions.

The method uses only one through-flow plane (since the through-flow is defined as
being axisymmetric) and a small number of blade-to-blade surfaces of revolution. Hence,
only non-axisymetries due to flow effects on the non-interacting blade-to-blade surfaces
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are taken into account, while non-axisymmetries arising from radial flow interactions
between blade-to-blade surfaces are neglected. In other words, radial mixing effects are not
considered.

1.3.3 TURBOMACHINERY STREAMSURFACES

a) Meridional coordinates

As axisymmetric geometry is a general feature of turbomachines, an orthogonalmeridional coordinate system (m,n,u) is especially suited to represent turbomachinery
geometry (Figure 1.3).

~tip wall

Figure 1.3: Meridional coordinate system

In the context of a Quasi-3D method based on a pitch-averaging procedure, it is logical
to define the streamlines of the averaged axisymmetric flow on the S2-plane as meridional
coordinate lines. Consequently, using the curvilinear (m,n,u)-coordinates as intrinsic
coordinates, the following three families of orthogonal surfaces can be distinguished:

(i) Meridional through-flow planes (S2-surfaces) : (m,n) - hub-to-shroud surfaces

(ii) Blade-to-blade streamsurfaces (S -surfaces) : (m,u)-surfaces of revolution

(iii) Transverse surfaces (53-surfaces) : (n,u)-surfaces of revolution

This clearly shows that transverse S3-surfaces, orthogonal to the meridional direction,
appear naturally as a third kind of computational surface for the present Quasi-3D
computation method. Flow effects occurring on this surfaces will result in radial
interactions between the concentric S -surfaces, leading to non-axisymmetries. Hence, the
radial mixing M= -rmy be assumed to originate on these S3-surfaces.
Therefore, the S3-surfaces are delignated as surfaces of secondary flow, rather than the
classical surfaces normal to the streamwise direction. This is perfecdy possible, since the
decomposition of a flow into primary and secondary flow components is a purely
mathematical operation and no genenl definition of secondary flows exists.
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b) Cylindrical coordinates

The pr=n Quasi-3D computation code has been developed in a jnrclordat
pxum I. with the z-axis directed along the machine axis. Hence, for ease of
integration, the radial mixing theouy is also formulated in cylindrical coordinates.

In cylindrical coordinates, the meridional S2-plane becomes an (rz)-plane, but the
cylindrical coordinates form no intrinsic coordinate system for the S1- and S3-surfaces.
However, although the S3-surface appears naturally in a mathematical way, this surface is
not suitable from the physical and computational point of view. Indeed, most of the
experimental data on secondary flows is obtained in measurement planes perpendicular to
the machine axis, while the computation stations for through-flow computations are very
often defined as stations with constant axial coordinate. Therefore, in the present radialmixing theory the seond=ry flow field it defined on an (rel-plane perpendicular to the
machine axis, whose intersection with the through-flow plane forms a through-flow
computation station. The secondary flow field on this simplified S3-surface can be
considered as the projection of the secondary flow field on the original curved S3-surface
onto this plane.

1.3.4 DEFINITION OF SECONDARY FLOWS

As the previous sections have already indicated, the term 'secondary flow' in the present
theory does not correspond to the classical secondary flow, associated to the development
of strearnwise vorticity. Rather, in the context of radial mixing, the secondary flow field is
defined as a correction with respect to the Quasi-3D flow field and is assumed to be tw-
dimeniona, i.e. confined to a radial-tangential S3-plane.

Thus, the total velocity W can be decomposed as follows:

W = WQ3D + WS3 (1.1)

where the Quasi-3D component WQ3D represents the velocity component from the through
flow and blade-to-blade computations, while WS3 represents by definition the two-dimen-
sional deviation between the velocity of real flow field and the velocity of the computed
Quasi-3D flow field.

The definition of the (r,O)-plane as S3-streamsurface for the secondary flows implicitly
contains the important L that the different secondary flow effects, listed in Table
1.1, do not to give rise to axial flow components.
Thus, the proposed mixing method is inherently based on an anrximative description of
the complex turbomachinery flow pattern. Hence, the theoretical mixing model cannot be
applied in full lenerality to an arbitrary turbomachinery flow, but is limited to
turbomachinery flows that do not exhibit a strongly three-dimensional secondary flow
behaviour. This is the case for axial-flow compressors and axial-flow turbines with
moderate deflections. However, axial-flow turbines possessing large deflections show
strongly three-dimensional secondary flow patterns and will in general have to be dealt
with by fully three-dimensional methods.
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1.4 REVIEW OF PREVIOUS WORK

In this paraaph, previous work relating to radial mixing phenomena in axial compres-
sors is briefly reviewed. Different efforts to compute the effects of radial mixing on the
distribution of flow quantities as well as attempts to determine the physical nature of the
mixing process ae covered.

1.4.1 THE CONVECTIVE MIXING MODEL OF ADKINS & SMITH

A convective mixing computation method was proposed by Adkins & Smith (1982),
who were the first to recognize the importance of incMporating the effects of radial mixing
into computational methods for multi-stage axial compressors. They put forward the
concept that radial mixing is caused exclusively by secondary flows and model the mixing
of any physical quantity P through the following diffusion equation:

= E -  (1.2)

where P is a cross-passage averaged value, z is the streamwise direction, y is the spanwise
direction and e is the mixing coefficient.

The mixing coefficient is a function of strearmwise and spanwise location and is at any
streawise location taken to be the sum of the contributions of all upstream blade rows.
The local value of the mixing coefficient is essentially determined from the computed
radial secondary velocities, but is empirically adjusted to take into account viscous
dissipation and interaction with end-walls and successive blade rows.
The secondary flows are computed from Smith's inviscid secondary flow theory and
include the effects of mainstream non-free vortex flow, end-wall boundary layers, tip
clearances, blade end shrouding, and profile boundary layer and wake centrifugation.

The results from the mixing computation are impressive : stagnation temperature
profiles obtained from a flow computation including mixing agree much better with
experimental data than results from previous computations which neglected mixing.

1.4.2 THE DIFFUSIVE MIXING MODEL OF GALLIMORE & CUMPSTY

A diffusive mixing model was introduced by Gallimore & Cumpsty (1986a, 1986b),
who concluded from ethylene tracer experiments that radial mixing is completely due to
turbulence, while the influence of convective secondary flows on the mixing is negligible.

They compute the radial mixing effects by introducing transport terms of diffusive
nature into an axisymmetric through-flow computation based on the streamline curvature
method, the intensity of these terms being determined through semi-empirical turbulence-
dependent coefficients. Since in a flow with radial mixing, the traditional assumptions of
adiabatic and inviscid flow are no longer valid, the flow equations are modified by addingaxial and tangential shear stress terms, due to radial transport of momentum, and radial heat
transfer terms, due to radial transport of energy.
Gallimore and Cumpsty also present a simple formula to estimate the turbulent mixing
coefficient on the basis of stage geometry, flow coefficient and loss coefficient.

The results from their mixing computations are as impressive as those from Adkins &
Smith : stagnation tempera profiles obtained from flow computations including mixing
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are in much better agreement with experimental profiles than profiles from computations
neglecting mixing.

1.4.3 CONVECTIVE MIXING VERSUS DIFFUSIVE MIXING

The fact that the two discussed radial mixing models, based on totally different physical
mechanisms, yielded very similar results aroused much interest and controversy. An
attempt to obtain a better understanding of the radial mixing process in axial turbomachines
was undertaken by Wisler et al.(1987) : the relative importance of secondary flows and
turbulence as sources of mixing was investigated by conducting experiments using hot-wire
anemometry and ehtylene tracer gas techniques in a large low-speed compressor. The
results indicated that both mechanisms of radial mixing are important : diffusive mixing
due to turbulence is important everywhere, while the contribution of convective mixing due
to secondary flows is mainly of importance in regions of low-momentum flow like
boundary layers and wakes. Wisler et al. therefore propose the following physical picture
of the mixing process : "In addition to being mixed by turbulent diffusion, the low-
momentum fluid in the end-walls is convected radially by secondary flow. The passing
rotor then chops, turns and transports this convected fluid and the wake fluid, spreading
them circumferentially. The mixing process is then completed by turbulent diffusion.
Similarly, low-momentum fluid is convected radially outward in the rotor suction-side
wake and is chopped by the next stator."

This physical picture of the mixing process was challenged by Gallimore and Cumpsty,
who argued that the experimental results, reported by Wisler et al. to indicate substantial
convective mixing due to secondary flows, could also be interpreted as being due to the
effects of non-isotropic turbulence (cf. § 1.2.2).
Recently, however, further evidence supporting the physical picture put forward by Wisler
et al. has been provided by Leylek and Wisler (1990), who performed fully three-
dimensional turbulent Navier-Stokes flow computations on the compressor configuration
used in the experiments of Wisler, Bauer and Okiishi (1987). The numerical solutions
agreed very well with experimental data and hence support the previous interpretations of
experimental data by Wisler et al., because the simulations revealed that local regions with
strong secondary flows do exist, even at design point conditions. At off-design conditions,
secondary flows with radial velocity components up to 20% of the rotor pitch velocity were
predicted, which indicates that at off-design conditions, convective mixing may become as
important as the mixing due to turbulence.

It should be stressed that most of the computations and experiments to date have been
performed on relatively low-speed multi-stage compressors, where diffusive mixing due to
turbulence seems to be dominant. However, for transonic and supersonic compressors, the
picture may be very different : while in subsonic compressors operating near peak efficien-
cy, the boundary layers are relatively unseparated, suction surface boundary layers on iran-
sonic or supersonic compressor rotor blades frequently separate due to shock impingement,
leading to large regions of separated flow and associated large secondary flow velocities,
Wennerstrom (1990).
Recently, Kotidis (1989,1990) presented some interesting concepts related to radial fluid
transport in transonic compressors. To explain the mass transport to the hub, he introduces
the concept of radial transport due to radial variations in the strength of the von KIrmdn
vortices shed from the blades. On the other hand, according to Kotidis, mass transport
towards the tip can be attributed to radial secondary flows in regions of separation.

In conclusion, it seems that turbulent diffusion always is an important contributor to the
mixing process, whereas convective mixing by secondary flows becomes of equal or
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greater imporae when the turbomachine operates at off-design conditions or at high
Mach numbers.

1.4.4 THE CONVECTIVE-DIFFUSIVE MIXING MODEL DEVELOPED AT
THE VUB DEPT OF FLUID MECHANICS

At the Department of Fluid Mechanics of the Vrije Universiteit Brussel, a radial mixing
method was developed which can be considered as an amalgamation of the Adkins-Smith
and Gallimore-Cumpsty approaches, De Ruyck & Hirsch (1987, 1988a, 1988b) and De
Ruyck, Hirsch & Segaert (1989). Rather than attributing radial mixing to one specific
mechanism, the method takes into account both secondary flows and turbulence as possible
sources of radial mixing. In hindsight to the conclusions of the preceding paragraph, this
seems to have been the right decision.
This report actually describes the present state of development of this radial mixing
method.

The general principles of this method are as follows. The energy redistribution is
computed from a convection-diffusion type transport equation, where the convective terms
are related to secondary flows and the diffusive terms are linked to turbulence. The
secondary flows are computed using a streamfunction approach coupled to integral
methods for boundary layers and wakes, while the effects of turbulence are governed by a
semi-empirical turbulence coefficient.

Qualitative computations on a plane compressor cascade and two single-stage axial
compressors showed that radial mixing effects result in more uniform radial temperature
distributions, De Ruyck, Hirsch & Segaert (1989). The qualitative picture of the
computations agreed fairly well with that of computations with the other mixing methods.
Turbulent diffusion was identified as the dominant mixing mechanism, but it should be
noted that the three test cases operated in the low subsonic flow regime.
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PART 2

COMPUTATION OF SECONDARY FLOW,

TURBULENT DIFFUSION AND MIXING
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CHAPTER 2

GENERAL PRINCIPLES

2.1 DECOMPOSITION OF THE FLOW FIELD

The total velocity W is decomposed into two components : a Quasi-3D component

WQ3D and a secondary flow component on the transverse S3-plane WS3:

W = WQ3D + WS3  (2.1)

It is important to observe that the Quasi-3D component does not only contain the traditional
contributions from the through-flow computation and the blade-to-blade computation, but
also includes the 2D-effects of viscous layers (end-wall boundary layers, profile boundary
layers and wakes) in these surfaces. In other words, the blockage effect of the viscous
layers on the axial velocity profiles and the subsequent influence on the continuity equation
is taken into account in the Quasi-3D approximation (cf. Figure 2.1).

By definition, the transverse secondary flow component WS3 represents any deviation
between the real flow and the Quasi-3D flow. Following the discussion above, this means
that the secondary flow field essentially consists of the crossflow components of the
viscous layers (circumferential velocity profile for the end-wall boundary layers, radial
velocity profile for the profile boundary layers and wakes), i.e. the three-dimensional
effects of the viscous layers, occurring in a direction normal to the computation surface
considered.

Through the use of a density-weighted, geometrical pitch-average, each of these
components can be further subdivided into an averaged, axisymmetric component and a
'fluctuation' component, representing the deviations from axisymmetry, Hirsch & Warzie
(1979):

WQ3D = WQ3D + WQ3D WS3 = WS3 + WS3 (2.2)

with the geometrical pitch-average or 'passage average' defined by

(5
I AdO A =0 (2.3)0 -0p fp

(where the subscripts s and p refer to suction side and pressure side respectively, and the
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superscript 'denotes the fluctuations with respect to the geometrical pitch-average), while

the density-weighted pitch-avenge is defined by

S-PA/p 0 (2.4)

(where the superscript "denotes the fluctuations with respect to the density-weighted pitch-
average).

tip boundary layer

axial

rotor stator velocity

hub boundary layer

rotor axis

rAmol

Figre2.1Bocae ofailvlcc rfl yvsoslyr

Suction- c uvelocity

boundar y

sufce I
boundary 2
foyer -....

Figure 2.1 :Blockage of axial velocity profile by viscous layers

Through this approch, two types of non-axisymmetric contributions to the velocity field
can be distinguished:
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a) Non-axisymmetries due to the flow deflection induced by the blades : WQ3D
The deflection of a flow by a blade row immediately implies the existence of a circum-
ferential pressure gradient, i.e. a turbomachinery flow is intrinsically non-axisymmetric.
These non-axisymmetric components are determined by the blade-to-blade computations
on the Si -streamsurfaces and influence the through-flow computation of the
axisymmetric flow components through interaction terms.

b) Non-axisymmetries due to the secondary flows on the transverse S3-plane : WS3
These non-axisymmetries are hitherto not taken into account in the Quasi-3D
computation. In this report, a method to compute explicitly those non-axisymmetric
components and their influence on the axisymmetric through-flow computation is
developed.

These results are coherent with previous remarks made from a physical point of view (cf §
1.3.2).

2.2 TURBOMACHINERY FLOW REGIONS

A turbomachinery flow is always highly turbulent and viscous, but for fluids with very
small viscosity, Prandtl's boundary layer theory shows that viscous effects are only
important in the vicinity of material walls. On this basis, the turbomachinery flow can be
considered to be composed of four different flow regions :
(i) Inviscid flow region ('core' region between viscous layers)
(ii) End-wall boundary layers region (viscous region near hub/shroud wall '

(iii) Profile boundary layers region (viscous region near blade-'
(iv) Wake region (viscous region, continuation of profile boundary layers)
Each of these regions is a potential source of flow components on the S3-surface, but the
underlying physical mechanisms are different in each case (cf. Table 1.1, listing the various
secondary flow effects in a turbomachir.). In the subsequent chapters, the computation of
the separate contributions for each region will be described.

2.3 FUNDAMENTAL EQUATIONS

2.3.1 STREAMFUNCTION TP

Assuming the turbomachinery flow comressible and steady relative to the blade row
frame of reference, the continuity equation for this flow is

V.(pW) = 0 (2.5)

Substitution of the decomposition (2.1), taking into account that continuity is already
satisfied by the Quasi-3D flow field (including boundary layer axial blockage effects) leads
to:
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VX pWs3) - 0 (2.6)

Since the flow on the S3-plane is by definition two-dimensional, a streamfunction i(rO)
can be introduced to satisfy the continuity equation (2.6). In cylindrical coordinates, V is
thus defined by:

WrS3 = - l __(2.7a)
pr

Wo 3 = -I - -  (2.7b)

This reduces the problem of determining a two-dimensional flow field to the determination
of the distribution of a scalar function.

2.3.2 POISSON EQUATION

Taking into account that the streamnfunction V is independent of z and substituting the
definitions of equation (2.7), one can write in cylindrical coordinates:

V= -(rW- ,S3) - (WrS3) (2.8)-(Pr V = r rW,3 r a(,

The axial component of the relative vorticity due to the Quasi-3D flow field is given by
rJ- --  1 -'- W rQ3D)(29

z,Q3D = IVxWQ3D]z = r W(rWQ3D) - rae (2.9)

and is a priori known from the Quasi-3D computations. Substituting equation (2.9) into
equation (2.8), taking into account decomposition (2.1), yields the following final equation

V (IVN' = - z.Q3D 2= zS3 (2.10)

where z represents the axial component of the relative vorticity of the tota, flow field:

r.= [-W (2.11)

The quasi-harmonic Poisson-type equation (2.10) determines the distribution of the
secondary streamfunction in the S3-plane from the knowledge of the axial vorticity
components and is the ba ation to be solved.
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2.4 GENERAL COMPUTATION STRATEGY

2.4.1 AXIAL VORTICITY CONTRIBUTIONS
For the computation of the secondary flow field, the following superposition principle

is introduced :

The axial vorticity component (aS3 can be decomposed as follows:

tz.S3 = z,S3.inv + CzSvisc (2.12)

.S3,inv is the axial vorticity component associated to the secondary flows induced by the
inviscid 'core' flow region and is defined over the entire computational domain except the
end-wall boundary layer regions, because the secondary-flow-inducing mechanism in these
regions is identical to that in the inviscid central flow region : generation of transverse flow
components due to radial gradients of streamwise velocity in the inlet velocity profile.

W,,S3,vi& is the axial vorticity component associated to the secondary flows induced by the
viscous regions, and consists of separate contributions for each type of viscous region.
Each contribution is defined in its corresponding region only, but the induced secondary
flows are defined over the entire computational domain as a result of continuity.

All the axial vorticity components relevant to the secondary flow on a given S3-plane are

superposed and this yields the axial vorticity tz,S3 , the unknown right-hand side of the ba-
sic Poisson-equation, from which the secondary flow field can be reconstructed.

This leads to the following seauence of computations :

(i) Through-flow computation or full Quasi-3D computation

(ii) Computation of end-wall boundary layers and the corresponding pitch-averaged

axial vorticity contribution zewbl

(iii) Computation of the pitch-averaged vorticity contribution zinv of the inviscid flow
region

(iv) Computation of the secondary flow field induced by the superposition of vorticity
contributions (ii) and (iii), through the solution of the basic equation (2.10)

(v) Superposition of the secondary flow field on the Quasi-3D flow field

(vi) Computation of the profile boundary layers or the wake and the associated axial

vorticity contribution IApbl or z,wke, depending on whether the S3-plane is
located inside a blade row or between two successive blade rows

(vii) Computation of the secondary flow field induced by the vorticity contribution (vi)
through the solution of the basic equation (2.10)
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(viii) Superposition of the secondary flow field on the flow field obtained in (v)

(ix) Computation of the radial mixing effects, including the effects of turbulent diffusion,
through a stationary trnsport equation

2.4.2 COMPUTATIONAL DOMAIN

The comnutational domain on which the basic equation (2.10) has to be solved is
delimited by the intersection of the given S3-plane with the hub and shroud end-walls and
the surfaces of two adjacent blades or their imaginary extensions into the wake region
(periodicity of turbomachinery flow), see Figure 2.2. For numerical computations, a
structured radial-tangential mesh allowing non-uniform spacings (i.e. clustering) is
generated (cf. Chapter 9).

mom=* direction of rotation

casing boundary

blade pressure blade suction
surface boundary surface boundary

rD

0 hub boundary

Figure 2.2: Computational domain on the transversal S3-plane

The boundary conditions for the Poisson equation (2.10) express that the boundaries of
the domain are streamlines for the secondary flow :

= 0 on the boundaries of the computational domain (2.13)
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CHAPTER 3

INVISCID FLOW REGION

3.1 INTRODUCTION

The inviscid flow region contributes to the secondary flow field through the well-known
classical secondary flow mechanism: deflection (through the presence of material walls) of
a sheared flow generates flows in a surface perpendicular to the main flow direction, the
inviscid passage vortex (contribution I a of Table 1.1).
The trailing filament vortices in the blade wakes, due to vortex stretching (contribution 2 of
Table 1.1), are also included in this region because they result from an inviscid mechanism.

3.2 GOVERNING EQUATION

The governing equation of motion for the inviscid flow region is the Helmholtz vorticity
equation, written relative to the blade row frame of reference (absolute frame of reference
for a stator, steadily rotating frame of reference for a rotor):

- W -- X..W + + VXfe

+ 2[(_)w - ljIVW)] (3.1)

with

= V x W relative vorticity (3.2a)

= a. lz rotation vector (3.2b)

If the following simplifing assumptions are made:

- volume forces are conservative or may be neglected

- the fluid is a perfect gas with polytropic behaviour

and the tensorial product ® is introduced through the relation

V.(i@®) b + (V.a) (3.3)

then the Helmholtz equation can be transformed, using the continuity equation, to the
following condensed conservative form:
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rrS] + Viw0 abe-abg v] 0 (3.4)

Not t the vorticity 1a -s + 20 appearinginthe quation is the aoute voricity of
the ad flow (Quasi-3D + S3). Furthermore, although the equation takes compressibility
effects into account, the density does not appear in the equation !

Since the method is developed in the framework of a Quasi-3D method based on a pitch-

averaging procedure, it is assumed that the inviscid axial vorticity contribution 1 Zs3.nv

can be adequately approximated by its passage-averaged value ,jnv •
Indeed, in general only spanwise profiles of the passage-averaged Quasi-3D properties are
available, and in fact, the passage-averaged axial vorticity represents the 'trace' of the
unknown circumferential non-axisymmetric velocity distribution. It is precisely from this
trace that the velocity field on the S3-plane will be reconstructed.

Therefore, the axial projection of equation (3.4) is passage-averaged, which yields:

W -" b & .- ,,,., (W)+--- [(cz.) )wd;,
'm jabsz - C ab - r2 N[(as;W~

+ brb -,,,.,-w + 2 ('b/.i)wp (3.5)

where as,z is the passage-averaged axial component of the absolute vorticity of the Qal
flow (Quasi-3D + S3) and the velocities are the total velocities.

The index m refers to the meridional direction in the (r,z)-plane, where the m coordinate
lines are defined by the streamlines of the axisymmetric through-flow on the (r,z)-plane,
and the following formula is used (cf. Appendix A):

W. -L-- W2--+ W, - (3.6)

Finally, b denotes the tangential blockage factor defined by Os - Op = 2xbWN , where the
left-hand side represents the angular distance between pressure and suction side of the
passage and N denotes the number of blades.

The vector normal to the blade surface S, i , is given by

n tVS (-anqI). I + (1). T + (4tano3) T  (3.7)

with the blade surface angles defined through
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tan i1 = r lean angle tan [' - r - blade angle (3.8)

where ) represents the angular coordinate of the blade surface.

Simplifying equation (3.5) by negecting the fluctation terms and ausumin2 constant
bIokagc which is equivalent to assuming identical blade angles at pressure and suction
side (this amounts to an error of second order, cf. Appendix B), and substituting relation
(3.6) yields :

Ez W W= -b- z - rE. &(rWr) - Wrkabsz+z ar (bsz ri ar a(3.9)

This is the basic equation to be solved, since it describes the evolution in the axial direc-

tion of the passage-averaged axial vorticity bsz , associated to the inviscid flow region on
the S3-plane.

3.3 SUPPLEMENTARY EQUATIONS

3.3.1 INTRODUCTION

The right-hand side of the basic equation (3.9) still contains unknowns, i.e. the passage-
averaged radial and tangential projections of the absolute vorticity of the total flow,

Cbsx and Cabc O , and the velocity jump [Wz. Therefore, supplementary equations are
necessary, relating these unknown quantities to quantities of the Quasi-3D flow field which
may be directly computed.

3.3.2 TANGENTIAL VORTICITY

The tangential vorticity component 4,tse is computed directly from the Quasi-3D velo-
city components and the blade geometry as follows.

Starting from the definition:

_=V[wi = - W. (3.10)

and 1funuist blocige (to be consistent with the basic equation), yields the follo-
wing equation (see Appendix C for a detailed derivation):

-30-



(3.11)

- (tan ' WrS3]1 + (tan3' tan y - tanI)l WzQ3DJi)
l's

where s denotes the pitch, P' is the blade flow angle, 1 is the blade lean angle and a is the
radial flow angle of the axisymmetric Quasi-3D streaxnsurface, defined through:

tan o CY '3 (3.12)
WzQ3D

The two 'velocity jumps' [Wr.s3]; and [Wz,Q3D] will be discussed in subsequent para-
graphs.

3.3.3 RADIAL VORTICITY

The radial vorticity component itabs; is also computed directly from the Quasi-3D
velocity components and the blade geometry.

Starting from the definition:

absJ vx = Wr z - (3.13)CAN to ae a
again assuming constant blockage to be consistent with the basic equation, and using thecondition that the velocity vector is tangent to the blade surface (cf. Appendix C), yields thefollowing equation (see Appendix C for a detailed derivation):

= -t =-awe + + tan 2P'+ tanO'tarm tano) [IWz.Q3D]s)

(3.14)

+ _((tan 0tan1) [Wr.sp)

The two 'velocity jumps' [WrS3 1 and [Wz,Q3D also appear in this equation, but will be
discussed in subsequent paragraphs.

3.3.4 AXIAL VELOCITY JUMP

The basic equation as well as the two supplementary equations for the radial and
tangential vorticity components contain the unknown tangential jump in axial velocity

[WzJ;. Since it is assumed that the secondary flow effects do not give rise to axial velocity
components, this jump is equal to the tangential jump in axial velocity for the Quasi-3D
flow field [WzQ3D$.
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If a full Quasi-3D computation is performed, [WzQ3D] can be obtained directly from
the blade-to-blade computations.

If only a through-flow computation is performed, [WzQ3DJ has to be expressed in
function of passage-averaged quantities. This is obtained by expressing that the passage-
averaged vorcity normal to the blade-to-blade surfaces is zero, i.e. the blade-to-blade
flows are assumed to be RnW flows, which is consistent with the present Quasi-3D
framework. This condition yields the following equation:

[w7lJ - si (rWe,3D + cosaG aW.Q3D

I{cos(l+mn20) + sina((l+tan7 ) tana+2 tanotan3)) (3.15)

3.3.5 RADIAL VELOCITY JUMP

The only remaining unknown parameter is the tangential jump in radial velocity for the

S3 flow component, [Wr.S3]. In order to compute this unknown, a supplementary equa-
tion is introduced : the continuity equation for the secondary flow conponents, averaged
over a half pitch.

In addition, the following secondary flow velocity nrofiles are prescribed : a linear
velocity profile for the radial secondary flows and a parabolic velocity profile for the
tangential secondary flows:

WrS3 = 2/[WrS3]psx (3.16a)

W6OS3 = 3-Wos 3 (l-x 2) (3.16b)
2'

where x is a dimensionless tangential distance (x=- at pressure side, x=0 at mid-pitch, x= I
at suction side).

The definition of a linearly varying radial secondary flow profile has the advantage that the

passage-averaged radial secondary flow component Wr.S3 is zero (cf. Appendix C, § C.2).

Combining the averaged secondary flow continuity equation with the prescribed velocity
profiles, neglecting density variations in the S3-plane, yields the following ordinary second
order differential equation:

I Of.t~(Wa3J$) I (tiany 1 I%,Sfl )) - 1-(rfW,,3 ) = az

2n - r (rW.Q3D) + k {(l2+tan)tano + tanCtan3') [ WzQ3D] (3.17)
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At the end-wall boundaries, the axisymmetric geometry of the hub and casing end-walls
is imposed upon the streamsurfaces. Hence, the end-wall streamsurfaces will not be
distorted with respect to the axisymmetric geometry of a surface of revolution. In other
words, at the end-walls the non-axisymmetric 53-component of the radial velocity is zero !
This yields the following end-wall boundary conditions for the unknown radial velocity
jump:

[WrS3]; = 0 at hub and casing end-walls (3.18)

The solution of equation (3.17), taking into account the boundary conditions (3.18),

yields the jump in radial secondary flow velocity across the blade passage [Wr,S3].

Thus, the jump of the total radial flow component across the blade passage [W]P =

[Wr,Q3D]; + [Wr.S3]; may be computed, since (WrQ3D]p is known from the Quasi-3D
computation.

3.4 NUMERICAL SOLUTION

The basic equation to be solved is the passage-averaged axial component of the
Helmholtz vorticity equation, equation (3.9), whereby the following parameters are
considered to be known :

1) Blade and blade row geometrical data

2) Passage-averaged velocities : WrQ3D , Wz,Q3D

3) Passage-averaged vorticity components abs r and Cabse, from equations (3.11) and
(3.14)

4) Velocity jump [Wz], : either directly known from blade-to-blade computations or
from equation (3.15).

5) The unknown velocity jump [Wr]* is computed from the supplementary equation (3.17)

The basic equation can now be written in the general form:

Wz absz 0 (3.19)

and will be solved numerically using a fifth-order Runge-Kutta method.

The equation is thereby integrated in the axial direction from the blade row inlet to the
blade row outlet in several intermediate steps, and at each step the right-hand side of
equation (3.9) is recomputed. Each time, this recomputation involves solving the supple-
mentary equations (3.11), (3.14), (3.15), (3.17). The values of the Quasi-3D quantities
between through-flow computation stations are thereby estimated using linear interlation.

This finally yields Idm , the passage-averaged axial component of the absolute vorti-
city of the Motal flow in the inviscid region on the S3-plane. The passage-averaged axial
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vorticity component z3,uiv, associated to the scnd= flows induced by the inviscid
flow region, can be directly obtained from the total axial vorticity through:

= Cabs= ,z - "abxzQ3D j(3.20)
where Cjs.",Q3D represents the passage-averaged axial component of the absolute vorticity,
associated to the Quasi-3D flow field (cf. equations (2.10) and (2.12)).

It is very important to note that the inviscid vorticity contribution z,S3,inv is defined
over the entire computational domain including the viscous regions except the end-wall
boundary layer regions. This is necessary because the vorticity contributions of the blade
boundary layers and the blade wakes are caused by physical effects which are not
accounted for in the inviscid secondary flow computation. In contrast, the secondary flow
in the end-wall boundary layer regions arises from the same physical effect as the inviscid
secondary flow : the deflection of a velocity profile possessing radial gradients in
streamwise velocity. These gradients may be imposed on the inviscid flow profile through
different inviscid mechanisms, wheras in the end-wall boundary layers they are caused by
the frictional effects between the flow and the end-walls, due to viscosity. However, the
resulting secondary flow mechanism is the same. Therefore, the vorticity contributions of
these regions may not ov :,.
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CHAPTER 4

END-WALL BOUNDARY LAYERS REGION

4.1 INTRODUCTION

In the end-wall boundary layers at the hub and the casing, crossflows are generated as a
consequence of the higher curvature of streamlines inside the EWBL, necessary to maintain
equilibrium with the pressure gradient between pressure and suction side of the blade
passage as the mainflow velocity decreases from its freestream value at the boundary layer
edge to zero at the wall. These crossflows then generate radial flows through the presence
of the blade walls (contribution I b of Table 1.1).
Also included in this region is the influence from the tip clearances, causing leakage flows
from the pressure side to the suction side of the blade (contribution 5 of Table 1.1).
However, secondary flow phenomena like the horseshoe vortex, the scraping vortex and the
corner vortex (contributions 6, 7 and 8 of Table 1.1) are not considered : the horseshoe
vortex is only important in the case of turbines (thick leading edges), for which the present
theory has limited applications, while the corner vortex is a very local phenomenon that is
difficult to discern.

The overall result is thus a two-dimensional flow pattern on the S3-plane, which has not
been taken into account in the Quasi-3D computation, although the blockage effect of the
EWBLs on the axial velocity profile has been introduced in the Quasi-3D computation.

4.2 THEORETICAL EQUATIONS

The end-wall boundary layers (EWBL) are predicted by a procedure, developed to
include the effects of the presence of EWBLs on axial turbomachinery performance into a
Quasi-3D computation code for turbomachinery flows, De Ruyck (1982) and De Ruyck &
Hirsch (1981,1983). The procedure is based on an axisymmetric three-dimensional integral
method - with the axisymmetry obtained through pitch-averaging - coupled to prescribed
velocity profiles adapted to turbomachinery flows.

Although the Quasi-3D method and the radial mixing theory are developed in cylindrical
coordinates, the end-wall boundary layer theory has been developed in meridional coor-
dinates to ottain an easier treatment of the curved geometry of the end-walls at hub and
casing. However, since both coordinate systems have the circumferential direction as a
common coordinate, the only difference between them lies in the coordinate system on the
S2 through-flow plane : in cylindrical coordinates this is a cartesian system (rz), while in
meridional coordinates this system is a curvilinear system (m,n). For further details on the
relation between the cylindrical and meridional coordinate systems, see Appendix A.
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4.2.1 FUNDAMENTAL EQUATIONS

The fundamental equations that are solved are the meridional and tangential projections
of the integral form of the passage-averaged momentum equation and the integral form of
the passage-averaged continuity equation or entrainment equation. The term 'integral'
refers. to an integration in the normal direction over the physical boundary layer thickness,
removing all local details about the boundary layer flow.

If r, the machine radius, is large with respect to 8, the physical boundary layer thickness,
the integral momentum equations can be written in the aibsolute meridional coordinate
system as follows.

The meridional integral momentum equation is of the form

.- p1CiOnmm + prCm - LCO- pC sina( tana + e,) = rT' + rFm (4.1)dm 8' drn8

while the tangential integral momentum equation is of the form

d prj0um + prCm8m dCu + pa sina(s tana + gum) = r'ru + rFu (4.2)dm dm

Both equations have been simplified by dropping terms that are negligible with respect to
the remaining terms. ikemark the use of the absolute velocity C , instead of the relative
velocity W. In addition, all variables in these equations are expressed at the end-wall.

8 is the physical boundary layer thickness, 8, the displacement thickness in the i-direction
and oij the momentum thickness in the i-direction weighted by the j-direction.
Tn and Zj are the meridional and tangential components of the wall shear stress, while Fm
and Fu are the meridional and tangential defect force components.

For a detailed derivation of these equations, the reader is referred to previous reports by De
Ruyck & Hirsch (1987, 1988a).

The integral continuity equation or entrainment equation, written in absolute meridional
coordinates, reads :

__L_ AL f rpCm (888.) = E (4.3)rpCmn dm Cos C

E is the so-called 'entrainment rate', while a is the absolute flow angle (between the
direction of the streamline s on a streansurface of revolution and the meridional direction
m).
For a detailed derivation of the equation above, the reader is again referred to De Ruyck &
Hirsch (1987,1988a).
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In the three equations above, the velocity components are obtained from the Quasi-3D
computation, but the index Q3D has been omitted for ease of notation. The indexes m and
u refer to the local meridional and tangential directions respectively.

4.2.2 SUPPLEMENTARY EQUATIONS

a) Entrainment rate

The entrainment rate E is given as an empirical function of Head's shape factor Hk
through :

E = 0.0306/ (H - 3.)0.653 (4.4)

Hk is defined as:

H - i (4.5)
enik

where the index k refers to a 'dnematic' definition, i.e. density variations are not taken into
account.

b) Skin friction components

The mainstream skin friction is estimated by means of a non-dimensional skin friction
coefficient, generally denoted as Cf and defined through

Cf p s (4.6)
2

where s indicates the streamline direction (projection of Quasi-3D streamline on an S 1
surface of revolution) and the overhead carat (A) e4enotes the inviscid 'free-stream' velocity
at the boundary layer edge.

The skin friction coefficient Cf is computed from the empirical Ludwieg-Tillmann relation
for turbulent boundary layers, which expresses Cf as a function of Reynolds number and
shape factor:

Cf = 0.246 Re 0.268 exp(- 1.56 H) (4.7)

with the Reynolds number defined as

Ree. = WS e (4.8)
v

The streamwise momentum thickness 0s can be computed from the momentum thick-
nesses associated to the meridional coordinate system, through the following relation:

- 37 -



es= {9,M + (eum + mu)tana + euutan2a) cos 4a (4.9)

The skin friction in the transversal direction (the direction orthogonal to the streamline
direction on an S1 streamsurface of revolution). t, can be directly obtained from the
knowledge of the mainstream skin friction Ts and the wall skewing angle Lw:

= ts tanw (4.10)

The wall skewing angle Lw itself is defined as the limiting value at the wall of the angle
between the streamwise and transversal velocity components :

tan ew = litanyo tanf = lim oY . (4.11)

where n denotes the normal direction to the end-wall.

The skin friction components in the meridional coordinate system, t.a and ru, can easily
be obtained from the skin friction components in the streamline coordinate system through
the following equations :

Tin= Ts coscw - t sinlw (4.12a)

u= Ts sinaw + T coscaw (4.12b)

c) Defect forces

The defect forces, which represent the changes of blade loading inside the end-wall
boundary layer, are estimated through empirical correlations, i.e. a transversal blade lift
defect force correlation, including the effects of tip clearance on the blade lift, and a
streamwise blade drag defect force correlation.
For a detailed account of these defect force correlations, the reader is referred to De Ruyck
(1982).

4.2.3 VELOCITY PROFILE MODELS

Closure of the system of equations for the end-wall boundary layers is obtained by the
introduction of passage-averaged velocity profile models, adapted to turbomachinery flows.

For the Quasi-3D computation, the meridional velocity distribution inside the EWBL
and the corresponding circumferential velocity distribution are given by:

Wm,Q3D~ewbl= I - b{ l-X n  (4.13a)

Wm,Q3D

W0,Q3Dxewbl - WmQ3Dewbl tanP3 (4.13b)
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where y/8 is the non-dimensional normal distance from the wall and 0 is the relative flow
angle of the Quasi-3D flow. The velocity with an overhead carat (A) denotes the 'reference'
freestream velocity at the boundary layer edge.
Both velocity profiles are clearly determined by two model parameters : the velocity defect
parameter b and the power law exponent n.

The circumferential or tangential crossflow velocity profile, associated with the 3D-
effects of the EWBL and inducing flows on the S3-surface, is defined as the non-collateral
Um of the boundary layer flow in the blade frame of reference (cf. Figure 4.1):

W0,s3,ewbl = WOewbl blade - WmQ3Dewbl tan3l blade (4.14)

where the subscript 'blade' denotes that the corresponding quantities are defined in the blade
frame of reference.

0

W

W 0,S3,ewbl

................... S
We ,Q3D,ewb] E

Wm,Q3D,ewbm

Figure 4.1 : Velocity components in the end-wall boundary layer

The non-rollateral part of the boundary layer flow in the wall frame of reference i" defined
as follows:

WO,S3.ewbl Iwall WOewbilwall - Wm.Q3D.ewbl tar13(.wall

Wm,Q3D Wm.Q3D

and is described by the following velocity profile model:
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-3In (1 -b) tan, (1 _ ) (4.16)

Wm.Q3D

where the parameters b and n are identical with those of the meridional velocity profile

model (4.13a) and the additional parameter e4 is defined through the relation :

tan ew = tan (ew+ 0) - tan 3 (4.17)

where 1 denotes the flow angle of the Quasi-3D flow in the wall frame of reference.

The velocity profile model of equation (4.16) can be introduced in the definition of the S3

crossflow velocity, by rewriting equation (4.14) as follows :

WO,S3,ewbi [WO~wbli wal - WmQ3Dewbi tanP lwaU] - A U

+ Wm.Q3DewbI (tanilwa - tanlb1d ) (4.18)

where U denotes the wheel speed and A is a parameter which describes the relation between
the blade frame of reference and the end-wall frame of reference:
A = 0 : No relative motion between blades and end-wall

A = 1 : Relative motion : rotating blades and stationary end-wall
A =-I : Relative motion : stationary blades and rotating end-wall

The first term of equation (4.18) can be directly substituted by the velocity profile model of
equation (4.16), while the last term can also be expressed in function of the velocity profile
model parameters by rewriting the angles in function of the velocity components and
substitution of equation (4.13a).
Finally, the following expression for the tangential velocity profile associated with the 3D-
effects of the EWBL is obtained:

W0,s3ewbl - (WmQ3D(l-b)tanEw - AbU](I- )n (4.19)
8

From equation (4.19), it then follows that the passage-averaged EWBL-crossflow

WO,S3,ewbl will be determined by three model parameters : b, n and tanw.
The parameters b and n are interconnected through the skin friction coefficient C because
of the following empirical relation :

b - exp [-i0 n C° ' os ) (4.20)

For more information about the end-wall boundary layer computation procedure, the
reader is again referred to De Ruyck (1982).
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4.3 AXIAL VORTICITY CONTRIBUTION

The passage-averaged axial vorticity 1,zS3ewbi , associated to the contribution of the
end-wall boundary layers to the secondary flow on the S3-plane, is given by the following
equation, obtained by passage-averaging the definition equation of the axial component of
vorticity and assuming constant blockage :

-zS3,ewb, = 1-(rWe,S3,ewbl)- - tan l IWeOS3ewbi] -[WrS3,ewbI]s (4.21)

The second term can be neglected in most cases, due to the small value of the lean angle T1.
This will not always be the case for the last term, expressing the difference in induced
radial flows between pressure and suction side of the passage. However, for the moment,
this term is also neglected.

Substituting the model equation (4.19) for We,s3.ewbl yields the following expression:

WzS3.ewbl = WmQ3D (1-b) (talEw) (I -)n _ -cosan (I y)n-I

(4.22)

+ Ab COSaLfl-(ly)n' 2(l- )n'

where 11 is the angular velocity of the rotor and 0 denotes the angle between the meridional
and axial directions in the meridional S2-plane (cf. equation (3.12)).

Remark that the second term of the right-hand side contains the end-wall boundary layer
axial vorticity contribution due to the relative motion between the blades and the end-wall.
This contribution is due to the fact that the S3 crossflow velocity is defined as the non-
collateral part of the boundary layer flow in the blade reference frame, while the velocity
profile models are defined in the end-wall reference frame.

Observe that the end-wall boundary layer vorticity contribution is completely
determined by the following parameters : velocity defect b and power law exponent n
(which are connected through equation (4.20)), physical boundary layer thickness 8 and

skewing angle iw.

4.4 NUMERICAL SOLUTION

The three fundamental equations (4.1) to (4.3), supplemented with equations (4.4) to
(4.20), can be written in the following general form:
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AL(b,n, tanwl = f(m,b,n, tan w) (4.23)
dmn

The system of the three equations can thus be simultaneously integrated in the m-direction.

In the present method a fifth-order Runge-Kutta integration is used.

However, because of considerations of numerical stability, the following unknowns are

used in practice : log (-log b), log n, and taniw.

Once the parameters b, n, tan are obtained, the axial vorticity contribution inside the
end-wall boundary layer can be directly determined from equation (4.22).
Remark that the axial vorticity contribution is z= outside the EWBL, although the
associated secondary flows are defined throughout the computational domain as a result of
continuity (recirculation of the flow).
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CHAPTER 5

PROFILE BOUNDARY LAYERS REGION

5.1 INTRODUCTION

Boundary layers along turbomachine blades are of a three-dimensional nature and
contribute to the convective mixing through radial transport of fluid, caused by an
imbalance between radial pressure gradients and centrifugal forces (contribution 4 of Table
1.1).
In a rotor blade boundary layer, the fluid has lower streamwise velocity relative to the
blades than the inviscid free-stream fluid. Therefore, a velocity triangle argument easily
shows that the boundary layer fluid has a larger swirl velocity in the absolute frame of
reference than does the free-stream fluid. If it is assumed that radial pressure gradients and
centrifugal forces balance each other in the free-stream region, the boundary layer fluid,
which is subject to the same radial pressure gradients as the free-stream fluid, thus
experiences an excess centrifugal force because of the larger swirl velocity. Therefore,
blade boundary layer fluid is centrifugated outward in a rotor.
Conversely, stator blade boundary layer fluid possesses a smaller swirl velocity in the
absolute frame of reference than does the free-stream fluid, leading to a centrifugal force
defect with respect to the equilibrium free-stream. Therefore, the blade boundary layer
fluid in a stator is said to move inward through radial ressure gradients.

5.2 THEORETICAL EQUATIONS

Although it is usual to express profile boundary layer equations in a coordinate system
associated to the profile walls, in the present theory they are developed in a meridional
coordinate system (cf. Appendix A). Furthermore, although the radial mixing theory is
developed in cylindrical coordinates, the meridional coordinate system is used because it
will yield a system of equations very similar to that of the end-wall boundary layer theory.

5.2.1 FUNDAMENTAL EQUATIONS

The fundamental equations that are solved are the meridional and normal projections of
the integral form of the momentum equation and the integral form of the continuity
equation or entrainment equation. The term 'integral' refers to an integration in the
tangential direction over the physical boundary layer thickness 8, removing all local details
about the boundary layer flow.

The meridional integral momentum equation is of the form
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W m+ I-pWOme + PWm~a n + pWm-n

+ 1-pW 2 (Wm +n - 0WmOnn + Wn8n) 2pW (20nm + 8)

+ I pwu f Wu(oni + Q) +2 } M T (5.1)

Run

while the normal integral momentum equation is of the form

S+ pWm8-S) + --PWm8  n + PW m8-Smn

+ I-pW -(n~m(+8 -On) + pWm (2WmOmn Wn8 )

Rmn RumR un on o[

Run

In both equations, terms which are of small magnitude compared to the other terms have
been neglected.

The integral continuity equation or entrainment equation reads:

5;pWmn(8-8m) + - PWmn(S8n) - PWm(B-Sm)

-Lp m(.8)+ P8 (-W +i~- -& = W (5.3)
Rm ~( nRum Run cos (TCos 0

The three equations above are expressed in the blade reference syslem (absolute frame of
reference for stator bhades, steadily rotating relative frame of reference for rotor blades).

The velocity components in the three equations above are the hindued of the Quasi-
3D velocity components and the S3 secondary flow components induced by the inviscid
mainflow and the end-wall boundary layers.(cf. § 2.4). The indexes m,n,u refer to the local
meridional, normal and tangential directions respectively.
The quantities Rij are radii of curvature, associated to the meridional coordinate system,

8 is the physical boundary layer thickness, 8 the displacement thickness in the i-direction
and eij the momentum thickness in the i-direction weighted by the j-direction.
Ws is the Quasi-3D component of the velocity along a streamline, P is the relative flow
angle, and E is the so-called 'entrainment rate'.

For farthr details, see Appendix C of the previous progress report of De Ruyck and Hirsch
(1987), which contains a complete derivation of the equations above.

-44-



5.2.2 SUPPLEMENTARY EQUATIONS

a) Entralnment equation

The entrainment rate E is given as an empirical function of Head's shape factor H*
through :

E - 0.0306 / (H 3.)0.653 (5.4)

Head's shape factor H* is defined as :

H = -s (5.5)

where the index s refers to the local streamwise direction.

b) Mainstream skin friction

The mainstream skin friction is estimated by means of a non-dimensional skin friction
coefficient generally denoted as Cf and defined through

TS = Cfp k (5.6)2

The skin friction coefficient Cf is computed from the empirical Ludwieg-Tillmann relation
for turbulent boundary layers, which expresses Cf as a function of Reynolds number and
shape factor:

Cf = 0.246 Re0 26' exp(- 1.56 H) (5.7)

with the Reynolds number defined as

Ree. = e (5.8)

5.2.3 VELOCITY PROFILE MODELS

Closure of the system of equations for the profile boundary layers is obtained by the
introduction of velocity profile models, adapted to turbomac.inery flows. Although the
equations are expressed in meridional coordinates (m,n,u), the profile models will be
defined in streamline coordinates (s,n,t), which are associated to the profile walls.
Transformation from one coordinate system to another is straightforward, since m and u
coordinate lines and s and t coordinate lines are all defined on an S I streamsurface of
revolution and their relation is completely determined by the relative flow angle ft between
the streamline s and the meridional coordinate line m (Figure 5.1).
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Figure 5.1 Blade boundary layer velocity Profile in Feridional and streamline coordinates
(both intrinsic coordinates for a streamsurface of revolution)

In analogy with the EWBL profile models, the following model equation for the
strearnwise velocity profile inside the profile boundary layer is introduced:

Ws.Q3Dpbl - - b{1 (

Ws.Q3D -

where y/S represents the non-dimensional tangential distance from the blade wall, while the
velocity defect b and the power law exponent n are model parameters.
The overhead carat (A) denotes a 'reference' freestream velocity at the boundary layer edge,
e.g. the velocity at the wall obtained from the previous inviscid Quasi-3D computation.

The passage-averaged streamwise velocity component WsQ3D can be computed from the

passage-averaged axial velocity component Wz,Q3D through the following relation:

= Wrm.Q3D = WzQ3D (5.10)
WsQ3D s Co Co Y(.0

where O denotes the relative flow angle between the meridional direction m and the
streamline direction s on the SI streamsurface of revolution, while o is the flow angle
between the axial direction and the meridional direction m (cf. Figure 5. 1).

In further analogy to the end-wall boundary layers , the radial velocity induced by the
profile boundary layers on the S3-plane is defined as (cf. Figure 5.2):

Wr,s3* . wrV - WzQ3DON tan(o+xr)

Wz.Q3D WzQ3D
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rb- WSQ3DOS cosI cos tan(o+r) (5.11)
WsQ3D

otr is the radial flow angle, i.e. the angle between the axial direction and the meridional
direction m', induced by the combination of the Quasi-3D velocity components and the
velocity components due to the secondary flow effects in the inviscid and end-wall
boundary layers region, while a is the flow angle between the axial direction and the
meridional direction m of the Quasi-3D flow and A is the angle between the streamline
direction s and the meridional direction m for the Quasi-3D flow (cf. Figure 5.2).

r

Wm,pbl

Wr,s3,pbl

.. ............ ... .. .. W M ,,Q 3 D ,p b l

Wrpbl WmQ3D ,pbl

z

Wz,Q3D,pbl

Figure 5.2: Velocity components in the profile boundary layer

The radial secondary flows induced by the profile boundary layers are described by tht
following velocity profile model:

Wr0S3pb' = (I-b) cos 3co-r-atanew (l I-) (5.12)

WsQ3D 6

where the parameters b and n are identical with those of the streamwise velocity profile

model (5.9) and the additional parameter ew is defined through:

tan ew - tan (ew+ar+a) - tan (ar+a) (5.13)

The velocity profile model (5.12) is selected because it yields a value of WrS3,pbi at the
wall, which is identical to the value of Wrs3,pbl at the wall obtained by substituting the
velocity profile model (5.9) in the definition (5.11) and setting y to zero.

-47-



Observe that the profile boundary layer contribution to the S3 flow field is modeled in
such a way, that the radial velocities induced by the inviscid and EWBL flow regions are
already taken into account for the PBL computation (through the radial flow angle ar),
i.e.the contribution of the profile boundary layers is an extra radial velocity component, to
be superposed on the previous components (cf. § 2.4).

5.3 AXIAL VORTICITY CONTRIBUTION

The contribution of the profile boundary layers to the secondary flow on the S3 plane is

represented by an axial vorticity contribution WzS3,bI computed by the following formula,
obtained through substitution of velocity profile model (5.12) into the axial vorticity
definition equation, taking into account relation (5.10):

z,S3,pbl = WzQ3D(l -b) (tan w) ((l -_ ' (5.14)

whereby radial variations were neglected, based on the reasonable assumption that they are
an order of magnitude smaller than tangential variations in the case of profile boundary
layers.

Observe that this vorticity contribution is local, not passage-averaged, and that it is
determined by the following boundary layer parameters : velocity defect b, power law

exponent n, skewing angle ew and physical boundary layer thickness 8.

5.4 NUMERICAL SOLUTION

5.4.1 INITIALISATION AND REQUIRED INPUT

The profile boundary layer computation is intaie by assuming the following default
values for the momentum thickness and shape factor : 0M0.001, H=1.3, which are typical
values for a 'well-behaving' thin boundary layer.

In addi:ion, the following parameters are considered as being known beforehand and are

thus required as input :

1) Blade row and blade geometrical data

2) Pitch-averaged Quasi-3D velocity components

3) Secondary flow field induced by the inviscid flow region and the end-wall boundary
layers

-48 -



4

5.4.2 VORTICITY COMPUTATION

The three fundamental equations (5.1) to (5.3), supplemented with equations (5.4) to
(5.13), can be written in the following general form:

-- f b, n, tan 4) = f(m,b,n, tan4) (5.15)

This system of three equations can thus be simultaneously integrated in the m-direction. In
the present method a fifth-order Runge-Kutta integ-ation is used.
Remark that a set of unknowns (b, n, tan 4) exists at each spanwise position for either
blade side, and hence the system of equations (5.15) is simultaneously integrated in the m-
direction for every spanwise position at both the pressure and suction side of the blade.
Because of numerical stability considerations, the following unknowns are used in practice:
log (-1ogb), log n, and tan iw.

Once the parameters b, n and tanew are obtained, the axial vorticity contribution of the
profile boundary layers is directly determined from equation (5.14).
Remark that this contribution is z= outside the profile boundary layers. However, the
associated secondary flow field induced by the profile boundary layers is not zero outside
these layers because of continuity (recirculation of radially convected fluid in the
circumferential direction).

Also, notice that the axial vorticity contribution of the profile boundary layers is
superposed on the axial vonicity contribution of the inviscid flow region, because the
secondary flow generation mechanism of the profile boundary layers (centrifugation) is not
accounted for in the inviscid secondary flow computation.
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CHAPTER 6

WAKE REGION

6.1 INTRODUCTION

Since the blade wakes form the continuation of the profile boundary layers, the
convective mixing in the wake region is also due to radial fluid migration, caused by an
imbalance between centrifugal forces and radial pressure gradients.
However, two different types of wake fluid migration can be distinguished. In the case of
an inviscid flow, the wake does not exist, but a vortex sheet is shed from the trailing edges
of the blades: the sheet of trailing shed vortices (contribution 3a of Table 1.1), due to radial
pressure gradients resulting from spanwise changes of blade circulation. In the case of a
viscous flow, wakes are formed behind the trailing edges of the blades and radial fluidmigration occurs in these wakes due to the same mechanism that causes radial flows in the
blade boundary layers (cf. § 5.1) : imbalance between imposed radial pressure gradients
and centrifugal forces related to swirl velocity (contribution 3b of Table 1.1).
It is important to note that the wake fluid migration in the inviscid case can be considered
as a limiting case for zero viscosity of the wake fluid migration in the viscous case. Indeed,
the blade wake can be interpreted as a finite vortex layer where vorticity diffuses under
influence of the effects of viscosity. For the limiting case of zero viscosity, an infinitely
thin vortex sheet at the blade trailing edges is obtained, because the absence of viscous
diffusion keeps the vorticity confined to the sheet where it originates.

Finally, the wake can be considered to have an important influence on the overall
mixing. In subsonic compressors, peak radial velocities of the order of 20%-25% of the
mainflow velocities may be reached in the near wake, due to the very low axial momentum
of the fluid. In transonic compressors, radial velocities of the same order of magnitude as
the axial or tangential velocities have been observed in the blade wakes just downstream of
the blade trailing edges, Kerrebrock (1981).

6.2 THEORETICAL EQUATIONS

In reality, wake velocity profiles can be highly asymmetric ; pressure and suction side
radial flows can even have opposite signs. Therefore, pressure and suction side of the wake
are treated separately in the present wake approach and the concept of 'peak' radial
velocities at the wake center, often employed in wake models, is not used.

Although the radial mixing theory is developed in cylindrical coordinates, curvilinear
streamline coordinates Pre used in the S2 through-flow plane. For the relation between the
curvilinear streamline c rdinate system, the curvilinear meridional coordinate system and
the cylindrical coordinate system, the reader is referred to Chapter 5 and Appendix A.
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6.2.1 VELOCITY PROFILE MODELS

The asymmetric wake velocity profile models are determined as follows : the velocity
profiles at pressure and suction side of the wake have an identical form, but the model
parameters are independent for each wake side ; the velocity profiles of both wake sides are
merged smoothly at the wake center by means of a 'bridging function' incorporated in the
model profiles.

The strearnwise velocity profile inside the wake layer (pressure side or suction side) is
thus modeled as :

~3Dwake = I - bWs f(TI) - (E-bPS)g(TI) (6.1)

WsQ3D

where the superscripts p/s refer to pressure or suction side respectively, b denotes the
velocity defect parameter, b denotes the arithmetic average of the velocity defects at
pressure and suction side, il is the non-dimensional tangential distance from the wake
centerline and the functions f and g are defined by

f(T) = I - 6112 + 8113 - 3114 Pohlhausen polynomial (6.2a)

g(rl) = exp I-11/ T10) bridging function (6.2b)

The function g corrects the velocity profile in the neighbourhood of the wake center to fit
the profile on one side with the profile on the opposite side : it is easily verified that the
velocity profile model (6.1) yields an identical value for the streamwise velocity at the
wake center for both wake sides:

Ws,Q3Dwake = (1 - b) Ws,Q3D at the wake center (6.3)

where the overhead carat (A) denotes a 'reference' streamwise velocity.

The 'bridging function' g affects the profile over a distance determined by io. For small
values of 110, the influence of the bridging function is small, and pressure and suction side
of the wake conserve their identity. At higher values of 110, the influence of the bridging
function increases, leading to an increased mixing of both wake sides and the wake velocity
profile shape becomes more symmetric.
Large second derivatives are present around the wake centerline and thus the asymmetry
gives rise to a diffusive mixing between pressure and suction side of the wake. Hence, the
non-dimensional mixing length 110 can be approached by the following formula, based on
diffusion theory:

110 = L,,r,4t = 1[Az/Wz  (6.4)
8 8

where At is the time it takes a fluid element to travel from the trailing edge of the blade to
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the point in the wake were the mixing length rio is being evaluated and is approximated as
the ratio of the axial distance from trailing edge and the local axial velocity at the wake
center. 8 denotes the half wake width, while Et is the turbulent mixing coefficient which
will be discussed in Chapter 7.

The radial velocity profile associated to the 3D effects of the wake, inducing flows on
the S3-plane, is described by the following velocity profile model for either wake side:

Wr,S3,wake Wr.wake - WsQ3D,wake tana

WsQ3D WsQ3D

= tan (1-b) f(Tr) + { (1-b) (tancx- tanax) + (1-5) tane - (1-b) tane) g(T1) (6.5)

whereby T1 denotes the non-dimensional tangential distance from the wake center and the
velocity defect parameter b is identical with that of the streamwise velocity profile model

(6.1) for the corresponding wake side. E is the skewing angle model parameter and f and g
are the model functions as defined in (6.2a) and (6.2b).
a is the radial flow angle between the axial direction and the streamline direction.
The overbars denote arithmetic mean values of pressure and suction side values.

This velocity profile model ensures that both sides of the wake yield the same value for the
total radial velocity Wr at the wake centerline. This can be easily verified by substituting
the streamwise velocity profile model (6.1) in equation (6.5) and setting T1 to zero, which
yields :

Wr,wake
= ( - b) (tan x + tane) at the wake center (6.6)

Ws,Q3D

The asymmetric streamwise and radial wake velocity profiles are illustrated on Figure

6.1 for different values of the asymmetry parameter o10.

6.2.2 BASIC EQUATIONS

a) Integral momentum equations

Since pressure and suction side of the wake are considered separately, two sets of
integral momentum equations are used.
As the wake is the continuation of the profile boundary layers, the meridional and normal
projections of the integral momentum equation for the wake are identical to equations (5. 1)
and (5.2). After introduction of the velocity profile models (cf. § 6.2.1), it can be shown
that the pressure and suction side friction force components have identical magnitude but
opposite signs, and the friction at the wake centerline becomes zero in the case of a
symmetric wake profile only (De Ruyck & Hirsch, 1987).
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Figure 6.1: Asymmetric wake velocity profiles

The following three integral momentum equations are used in practice, where the term
'integral' refers to an integration in the tangential direction from the wake centerline to the
wake edge, removing all local details from the wake flow:

1) Meridional integral momentum equation, respectively at pressure side and at suction
side.

2) The sum of the normal integral momentum equations at pressure and suction side

The two normal integral momentum equations could be considered at the pressure and
suction side separately, but this led to numerical instabilities (De Ruyck & Hirsch, 1987).
Therefore, the normal integral momentum equation has been expressed over the full wake
width only and an extra relation will be added to account for this.

b) Local wake decay equations

In addition to the integral equations, three local equations are used:

1) Meridional momentum equation, expressed locally at the wake center
2) Difference between local meridional momentum equations at pressure and suction sides

3) Difference between local normal momentum equations at pressure and suction sides

The last of these local equations is the extra relation, needed to close the system of wake
equations because only the sum of the normal integral momentum equations is used. instead
of the individual equations.

c) Summary

For the wake, a system of six partial differential equations in six independent variables:
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8p , : pressure and suction side wake thickness
aP , bs :pressure and suction side wake velocity defect
-P, es :pressure and suction side skewing angle

has been obtained.

For an explicit form of the equations, the reader is referred to a previous report by De
Ruyck & Hirsch (1987), where a detailed analysis of the wake model including the
derivation of the equations is presented.

6.3 AXIAL VORTICITY CONTRIBUTION

The contribution of the wakes to the secondary flow on the S3 plane is represented by an

axial vorticity contribution WS3,wake.

Substituting velocity profile model (6.5) into the axial vorticity definition equation

z.S3,wake 1 U,wake = WrS3,wake (6.7)r a0 CAu

whereby radial variations have been neglected, based on the assumption that they are an
order of magnitude smaller than tangential variations in the case of a wake, yields the
following expression for the axial vorticity contribution of the wake secondary flow:

zS3,wake = - (W - p/s) (tanWP/s) (-12T1 + 24T12 - 12,13) WsQ3D

+ WsQ3D exp(-TVno) [(1-S)tan _- (l-bP/s)tanEP/s (6.8)
es 110

+ (a-) (a - tano#)]

The superscripts p/s indicate wake pressure side and wake suction side respectively, while
the overbars indicate the arithmetic mean of pressure and suction side values.

Observe that the wake vorticity contribution is kwal, not passage-averaged.

Remark also that the vorticity contribution CS3,wake is confined to the wake region and
vanishes outside the wake layer, while the associated secondary flows are defined on the
entire S3-plane due to continuity.
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6.4 NUMERICAL SOLUTION

6.4.1 INITIALISATION AND REQUIRED INPUT

The wake computation is aidAfin by carrying over three parameters from the profile
boundary layer computation, which are assumed to be conserved during the transition from
the profile boundary layers to the near wake : the physical boundary layer thickness 8, the
displacement thickness S8 and the streamwise momentum thickness G.. Using the velocity
profile models, all other variables needed to start the wake computation can be calculated
from these variables.

The following parameters are again assumed to be known and hence required as input:

1) Geometrical parameters: blade and blade row geometry

2) Pitch-averaged Quasi-3D velocity components

3) Secondary flow field induced in the preceding blade row by the inviscid flow region,
the end-wall boundary layers and the profile boundary layers.

6.4.2 VORTICITY COMPUTATION

The system of wake equations assumes a form similar to that of equation (5.15):

{P , 8s, bP, bs, EP, s) = f{SP 8s, bP, s, eP, s) (6.8)

and is also integrated in the m-direction by a fifth order Runge-Kutta method, starting at
the trailing edge and proceeding to a specified axial distance downstream of the blade row.

Once the wake parameters b, e, 8 have been obtained for both sides of the asymmetric
wake, the axial vorticity contribution associated to the wakes can be immediately
determined from equation (6.8).

- 55 -



CHAPTER 7

TURBULENT DIFFUSION

7.1 INTRODUCTION

Due to the high turbulence levels in turbomachinery flows, the random, stochastic fluid
motions associated to turbulence represent a substantial contribution to the radial mixing
process.
No attempt is made here to make an explicit computation of the turbulence field, since the
numerical simulation of the turbulence mechanism is still largely an unresolved problem.
Rather, the effects of turbulence on the radial mixing process are introduced in an empirical
way by means of a turbulent diffusion coefficient et that controls the amount of diffusive
mixing.

7.2 TURBULENT DIFFUSION COEFFICIENT

Since it has been mentioned in the introduction to the previous chapter that the wake can
have a large impact on the radial mixing process, it seems logical to correlate the overall
turbulent mixing coefficient to a parameter describing the magnitude of turbulent diffusion
in the wake.

Schlichting (1979) gives the following semi-empirical expression for the eddy viscosity in
a two-dimensional turbulent wake behind a circular cylinder:

vt = 0.047.2bj2 (U.-Uc) (7.1)
where U.. is the freestreaxn velocity, Uc is the velocity at the wake center and bit2 denotes
the distance from the wake center to the wake edge at 'half depth' (i.e. the location in the
wake velocity profile where U. - U = 0.5 (U.. - Uc ) ).
Experimental measurements in the wake of circular cylinders have shown that the 'half
wake width at half depth' bj,2 may be w en as (Schlichting, 1979):

b1/2 = 0.441 b (7.2)

where 2b denotes the full width of the wake.

Equation (7.1) can thus be rewritten as:

vt - 0.042b(U.-Uc) (7.3)

The semi-empirical formula (7.3) will now be generalized to give an estimation of the
turbulent diffusion coefficient as follows.
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Based on experimetal evidence, the turbulent Schmidt number Sct can be reasonably

approximated as unity (see, for example, Gallimore & Cumpsty (1986)) :

Sct = vt/ A - 1 (7.4)

where at denotes the turbulent diffusion coefficient.

Combining equations (7.3) and (7.4), and taking into account the wake velocity profile
models from Chapter 6, the following semi-empirical relation for the turbulent diffusion
coefficient is obtained :

at = K 8 6 %Q3D (7.5)

where 8 is the physical wake thickness measured from the wake center to the wake edge,

is the mean velocity defect and hence b WsQ3D is the difference between the freestream
streamwise velocity and the streamwise velocity at the wake center (cf. equation (6.3)),
while the empirical parameter K depends on turbulence intensity.

The order of magnitude of the empirical parameter K can be determined as follows.

In Schlichting's analysis of the two-dimensional wake of a circular cylinder, the following
empirical relation for the wake turbulent diffusion coefficient is established :

= 0.0222 CD U.. d (7.6)

where CD denotes the drag coefficient of the cylinder, U.. is the free-stream velocity and d
is the cylinder diameter.
The value for CD is typically 1.0. For the other parameters, values are chosen which are
typical for the linear compressor cascade testcase which will be used to compare theoretical
computations with experimental data (see Chapter 11). The free-stream velocity for the
cascade is of the order of 23.7 mIs, while the cylinder diameter d may be taken equal to the
blade thickness, which is 0.02 m (NACA 65-1810 blading with 0.2 m chord).
This yields a value of 0.01052 m2/s for the turbulent diffusion coefficient.
If this value is non-dimensionalized through division by the free-stream velocity and the
axial stage length L (equal to the axial chord for the linear cascade : 0.196 in), the
following value is obtained:

. Q - 0.0022 (7.7)
WsQ3D L

This value compares very well with the corresponding non-dimensional values of the
turbulent mixing coefficient for other compressor testcases, obtained from ethylene tracer
experiments by Gallimore & Cumpsty (1986a).

Writing equation (7.5) in non-dimensionalized form and solving for K yields the following
relation for this empirical parameter:
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K - (7.8)

Replacing the non-dimensional turbulent mixing coefficient between brackets by the typical
value of 0.002 found above, L by the axial chord length of 0. 196m, and taking the physical
wake thickness 8 from wake center to wake edge equal to half of the blade thickness, i.e.
0.01 m, while the mean velocity defect parameter b is set to 0.5 (mean of the value b= 1
near the trailing edge (maximum velocity defect) and b =0 in the far wake (zero velocity
defect)), yields the following value for K :

K = 0.08 order of magnitude analysis (7.9)

Remark that this value, although it was found from an order of magnitude analysis for a
single test case, may be taken as representative, since the ratio 1.4 may be assumed to have
a limited variation since L and 8 both vary with about the same geometric scaling factor.

In practice however, the value of the empirical parameter K will be calibrated in a dnaa-
match fIahion. Indeed, since K determines the value of the turbulent diffusion coefficient
through equation (7.5), K also determines the value of the parameter 110 (cf. equation (6.4)),
which in turn controls the dispersion of the wake downstream from the trailing edge (see
Chapter 6). The empirical parameter K can thus be tuned in such a way that the computed
dispersion of the wake exactly matches the experimentally observed wake dispersion. For
the linear compressor cascade testcase this yields the following result:

K = 0.10 data-match calibration (7.10)

7.3 TURBULENT MIXING MODEL

The influence of turbulence on the radial mixing process is introduced through the
energy transport equation : the magnitude of the terms describing energy diffusion is
controlled by the turbulent mixing coefficient et. Hereby, it is assumed that the effects of
molecular diffusion are negligible with respect to the effects due to turbulence.

For a description of the modeling of the influence of turbulence on the energy redistri-
bution, the reader is referred to Chapter 8 of this report.
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CHAPTER 8

ENERGY REDISTRIBUTION

8.1 GENERAL ENERGY TRANSPORT EQUATION

The governing equation for the radial mixing process is derived from a basic law, i.e. the
first law of thermodynamics formulated for a compressible flow. It may be shown that,
neglecting volume forces (e.g. gravity) and external heat sources (e.g. chemical reactions),
assuming steady flow relative to the blade row reference system, taking into account only
the contribution of the work of the shear stresses related to the diffusion of kinetic energy
and assuming a unity Prandtl number Pr = tCDk - 1 , the general energy equation in a
steadily rotating frame of reference reduces to, cT. Hirsch (1988), p.23:

V.(Pw'1) = .(ptvHr)(81

with the rothalpy I defined as

I= + W 2 -+2 H- UVe (8.2)2 2

and

H = h + V 2  total enthalpy (8.3a)
2

Hr = h + w 2  relative total enthalpy (8.3b)
2

The classical energy equation for the Quasi-3D formulation incorporating the distributed
loss model reads:

V.=(WI) W. VI - 0 (8.4)

Physically, it means that the rothalpy I is constant along a streamline in the relative frame
of reference (blade frame of reference).

From this, it follows that the non-zero right-hand side of equation (8.1) describes a
diffusion of energy between the streamlines, thereby destroying the constancy of the
rothalpy.
This is in accordance with theoretical results obtained by Hirsch and Dring (1987) in the

context of through-flow computations. These authors showed that the mass-averaged
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rothalpy remains constant along a streamline defined by the density-weighted pitch-
averaged flow in the case of axisymmetric streamurfaces, whereas in the case of non-
axisymmetc streamaufacs this constancy of mass-averaged rothalpy is destroyed due to
a source erm which describes a radial interaction between the streaniz ices.

In a urbomachine, the energy is most often described in terms of the total temperature,
so the mixing should be performed on this flow p .
Defining the .ollowing total temperatures (assuming constant specific heat Cp)):

Tt - Hr / C, relative total temperature (8.5a)

T - I / Cp rotary total temperature (8.5b)

and taking into account the continuity equation for steady relative flow, equation (8.1) is
further reduced to :

( &I = v AT (8.6)

with the kinematic viscosity v appearing as a diffusion coefficient. Since a turbomachinery
flow is highly turbulent, this coefficient will of course be the eddy viscosity and not the
much smaller molecular viscosity. Consequently, this coefficient is identical to the turbu-
lent diffusion mixing coefficient eg, given by equation (7.5) (cf. Chapter 7).

This yields the following energy equation :

= V)T t . AIr (8.7)

For a stator blade row, Tt = It= H/Cp = , and a convection-diffusion equation for
the total temperature "t is obtained.

8.2 GENERAL MIXING EQUATION

Inserting the decomposition of the flow into Quasi-3D and S3 components [equation
(2.1) in equation (8.7) yields the following transport equation :

(WQ3D.V)Tt = -(Ws3.V)Tt + et A'1"t (8.8)

This equation shows very clearly that two sources of energy redistribution with respect to
the original Quasi-3D energy distribution can be distinguished (rhs of the equation):

1) Energy redistribution of a convective nature, due to the secondary flow field on the S3-
plane (gradient term).

2) Energy redistribution of a diffusive nature, due to the effects of turbulence, controlled
by the turbulent mixing coefficient el (Laplacian term).
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If both of the afrmmentioned redistribution effects are zero, the transport equation reduces
to its familiar form for a Quasi-3D flow without mixing:

(WQD-V)+tQ3D1 - 0 (8.9)

where rtQ3D represeuts the rotary total temperature distribution obtained from a Quasi-3D
computation without mixing.

Subtracting equation (8.9) firm equation (8.8) yields the following equation for the correc-
tion on the the Quasi-3D total temperature distribution:

(WQ3D ) [ Tt- TtQ3D]I = ( Q3D.) 8T = -(WS 3 I ) Tt + Q A1 (8.10)

This is the fundamental mixing equation to be solved : it determines the afterward total

temperature correction 8Tt , due to the mixing effects caused by secondary flows and tur-
bulence, which has to be superposed on the original Quasi-3D total temperature distribu-
tion in order to obtain a more realistic prediction of the total temperature distribution inside
an axial turbonachine.

8.3 EXPLICIT MIXING EQUATION AND NUMERICAL SOLUTION

Expressing equation (8.10) in cylindrical coordinates finally yields the following explicit
equation:

z,3D --T f - WrQ3D -T - WB,Q3D r

WrS3 & - W013 r

Remark that axial diffusion effects have been neglected.

The nle al alution of this equation is obtained by integrtion in the axial direction,
going from one transversal S3-plane to another : in order to obtain the corrected total
temperature on one $3-plane, the right-hand side of equation (8.11) is evaluated on the
previous $3-plane and in this way the solution proceeds from inlet to outlet of the blade

6row.
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The computation is started from the specified temperature distributions at inlet, whereby
t is set to zero.

8.4 BOUNDARY CONDITIONS

The boundary conditions, necessary to obtain a unique solution to equation (8.11)
simply express that the turbomachinery flow is adiabaic i.e. that there is no heat flux
through any material wall. These boundary conditions are imposed by stating that the
temperature gradient normal to any material wall is zero:

VT. N = 0 (8.12)

where T is the static temperature and N is the vector normal to the material wall considered
(either an end-wall or a blade surface).
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PART 3

NUMERICAL TECHNIQUES
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CHAPTER 9

MESH GENERATION

9.1 INTRODUCTION

As explained in Chapter 1 (§ 1.3.3 - 1.3.4), the secondary flows causing convective
mixing are assumed to be confined to a two-dimensional (r,e)-plane, the transversal S3-
plane. Furthermore, the domain to which the secondary flows are confined is delimited by
the intersection of the S3-plane with the hub and casing end-walls and the surfaces of two
adjacent blades or their imaginary extensions into the wake region (periodicity of
turbomachinery flow), cf. Figure 9.1.

udirection of rotation

casing boundary

blade pressure blade suction
surface boundary surface boundary

r

10 0 hub boundary

Figure 9.1 : Secondary flow domain on the transversal S3-plane

In principle, the secondary flow computation consists in determining the axial vorticity
contributions of the different turbomachinery flow regions on this domain and computing
the associated secondary flows in this domain by solving the quasi-harmonic Poisson
equation for the secondary streamfunction (cf. Chapter 2, equation (2.10)), taking into
account the boundary conditions (equation (2.13)).

In order to execute this computation numerically, a comnutational mesh must be
generated on the secondary flow domain, i.e. the continuum of the surface has to be
replaced by a finite number of individual points, distributed on the surface. Afterwards, the
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equations can be discretized on this mesh, i.e. the partial differential equations on
continuous field functions are approximated by algebraic relations between the values of
the functions in the finite set of discrete mesh points. These algebraic relations are
ultimately solved by the computer.

9.2 FINITE ELEMENT DISCRETIZATION

9.2.1 MOTIVATION

Three general methods for the discretization of space may be discerned, Hirsch (1988):
Finite Differences, Finite Elements and Finite Volumes. For the secondary flow
computation, the Finite Element Method is selected to discretize the computational surface.

This choice is based on the following arguments :

1) The radial mixing computation procedure is developed with the purpose of integration
into a Quasi-3D turbomachinery flow computation code based on Finite Elements,
Hirsch & Warz& (1976, 1979). Thus, selecting Finite Elements for the secondary flow
computation means that the implementation of the radial mixing procedure can draw on
a number of already existing procedures of the main computation code.

2) A routine for solving Poisson equations is already available in the code, which yields the
following advantages for the implementation of the numerical solution of the equation
for the secondary streamnfunction:
- ease of integration
- the existing Poisson-solver has been tested and used extensively and may be assumed

to be error-free
- little extra programmation effort is required to adapt the existing Poisson solver to the

radial mixing computation, thus reducing the likelihood of programmation errors
Furthermore, the Poisson equation is an elliptic field problem, i.e. a perturbation in a
particular point of a domain will eventually reach all points of the domain. Because of
its fundamental principles, the Finite Element Method also has an "elliptical character" :
the value of an arbitrary function inside an element is determined by the values of this
function in all the nodal points of the element. In conclusion, there exists an
equivalence between the physical behaviour of the equation and the numerical behaviour
of the solution method, which is mostly an essential condition for a physically correct
numerical simulation.

3) Finally, the Poisson equation (2.10) is solved on a curvilinear quadrilateral compu-
tational domain, taking into account the Dirichlet boundary condition (2.13). One of the
specific advantages of the Finite Element Method is the very straightforward, sometimes
even trivial, treatment of complicated, curved geometries and the associated boundary
conditions.

9.2.2 BASIC PRINCIPLES

In the Finite Element Method, space is discretized by subdivison of the continuum into a
number of contiguous elements of arbitrary size and shape, called 'inite Elements'. In
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eneral, any surface can be regarded as an assembly of triangular or quadrilateral elements
with rectilinear or curvilinear sides), the only restriction being that the elements do not

overlap and cover the complete computational domain.
Next, within each element a certain number of points is chosen, which can be positioned
along the element sides or inside the elements. These so-called 'nodal points' are the points
where the numerical values of the unknown functions are to be determined.
The great advantage of this discretization method is the arbitrary size and shape of the
elements, which allows to define unstructured meshes, i.e. the nodal points do not have to
be distributed in a regular fashion.

9.2.3 SERENDIPITY ELEMENTS

For the secondary flow computation, the same elements as for the Quasi-3D
computation are used, i.e. quadrilateral elements with eight nodes distributed on the
elent sides - four corner nodes and four mid-side nodes. Such elements, where the

nodes are only defined on the element sides, are also called 'serendipity' elements
(Zienkiewicz, 1977, Chapter 7), cf. Figure 9.2.

r 3

5

7

Figure 9.2: Eight-node quadrilateral 'serendipity' element

9.2.4 FINITE ELEMENT SUBDIVISION OF COMPUTATIONAL SURFACE

Although the Finite Element approach allows the generation of wholly unstructured
computational meshes, the computational surface on the S3-plane is subdivided into
elements in a regular, structured way as follows.

A number of coordinate lines r = cst is defined from hub to tip of the compressor
annulus and a number of coordinate lines 0 = cst is defined from pressure side to suction
side of the passage between two adjacent blades. This grid of intersecting orthogonal
coordinate lines creates an assembly of curvilinear quadrilaterals on the computational
surface. Nodal points are chosen on the corners and the mid-sides of these quadrilaterals,
hence forming a subdivision of the computational surface into eight-node 'serendipity'
elements.

The mesh generation procedure outlined above produces a very structured mesh.
However, the mesh is not necessarily uniform, since one can control the size of the
elements. In practice, element size will be small in areas where large gradients of flow
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properties occur, e.g. boundary layers and wakes, in order to obtain sufficient numerical
accuracy. In other words, the mesh can be 'clustered' towards the material walls. The
generation of a non-uniform but highly structured mesh presents the advantage that the
formulas of the classical Finite Difference technique may also be applied to this mesh, see
Chapter 10.

9.3 FINITE ELEMENT SHAPE FUNCTIONS

The subdivision of the computational domain into elements of arbitrary size and shape is
one aspect of the Finite Element Method. The second aspect is the representation of the
unknown functions: they are approximated by a linear combination of prescribed functions
(called shape, interpolation or trial functions), where the coefficients are the values of the
unknown functions in the nodal points to which the shape functions are associated. In
classical finite element methods, these shape functions are locally defined polynomials.

So, if ii is an approximate solution of the function u(Z), this can be written as :

i(x) - ui Ni(-) (9.1)

where the summation extends over all nodes i associated to the element. The Ni are the
local element shape functions, x is the position vector and ui is the value of the function
u('x) at node i.

In the case of the secondary flow computation, bipuadratic shae functions are used.
This choice is linked to the discretization of the computational surface into eight-node
elements, cf. Zienkiewicz (1977), Chapter 7. For the secondary streamfunction, this results
in the following formula:

8

(r,0) = Y iNi(r,O) (9.2)
1

Where: = value of the secondary streamfunction W in nodal point i

Ni(r,O) = biquadratic shape function associated to nodal point i

9.4 ISOPARAMETRIC MAPPING

One of the basic aspects connected to the finite element formulation is the mapping
between the physical space, where the element is defined in global coordinates, and the
computational space, where the element is defined in local coordinates. Indeed, all the
individual serendipity elements on the secondary flow domain are considered to be
mappings on the physical (r,O)-space of a single 'parent element' defined in the
computational (4, )-space. The mapping thus performs a transformation from local to
global coordinates for every element individually and the whole domain is mapped on an
element-by-element basis.
This parent element is defined as follows, Figure 9.3:

-66-



I Iin

1 2 3

X3 j I

iK4 X2

6T 5

Figure 9.3: Parent element in the computational space

The isoparametric mapping concept (Zienkiewicz, 1977, Chapter 8) consists in the
geometrical mapping of the parent element onto an element in physical space through the
following transformation formula, completely identical to the finite element representation
of an unknown function:

= XZNi) (9.3)

where -i is the position vector of a nodal point and i is the position vector of a point in-

side the element, while the Ni(t,r) are the parent element shape functions.
In other words, the nodal points of the parent element in the computational space are
mapped onto the nodal points of the element in the physical space (r,O), while any other

point (4,il) inside the parent element is mapped onto a corresponding point in the physical
element using a linear combination of the element shape functions.

Thus, isoparametric mapping consists in a complete analogy between the geometrical
mapping and the representation of unknown functions : the same shape functions and nodal
points are used. The mapping is conceptually sketched in Figure 9.4.

The geometrical mapping of the parent element onto the physical surface is subject to
certain requirements.

The first requirement is the condition for a one-to-one mapping : the determinant of the
Jacobian matrix of the transformation must have the same sign at all points of the domain
mapped. Otherwise, the parent element may have a violently distorted shape on the physi-
cal surface, leading to a non-uniqueness in the mapping (Zienkiewicz, 1977, Chapter 8).
For 'serendipity' elements with biquadratic shape functions, the necessary conditions for
this are that no internal angle within the physical element be greater than 180 and that the
mid-side nodes are in the 'middle third' of the distance between adjacent corners.
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The second requirement is that of 'geometrical conformability': the subdivision of a surface
into curvilinear elements using the parent element should leave no gaps, i.e. the surface
should be completely covered by the elements. This condition is satisfied if two adjacent
elements are generated from 'parents' in which the shape functions satisfy continuity
requirements (Zienkiewicz, 1977, Chapter 8).

Figure 9.:so\rmei mppn
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Figure 9.4 : Isoparametric mapping
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CHAPTER 10

NUMERICAL SOLVING TECHNIQUES

10.1 INTRODUCTION

This chapter describes the most important techniques applied in the program to solve the
equations derived in the previous chapters :

1) The Finite Element solution of the Poisson equation for the secondary flows, based on

the Galerkin weighted residuals technique.

2) The numerical solution of the radial mixing equation, using a first-order integration.

3) The numerical computation of partial derivatives on a non-uniform structured mesh,
using Finite Differences.

10.2 FINITE ELEMENT SOLUTION OF THE SECONDARY FLOW
EQUATION

10.2.1 GALERKIN WEIGHTED RESIDUAL FORMULATION

The principal equation of the secondary flow computation is a quasi-harmonic Poisson
equation (equation (2.10)):

. =J ,QD = zW3 (10.1)

which determines the secondary flow field associated to the axial vorticity z,S3 on a trans-
versal S3-plane.

In the blade-to-blade part of the Quasi-3D turbomachinery flow computation program
Q3DFLO, the blade-to-blade potential flow is computed from the following principal
equation :

. ( [i! ]+ 1[k2- + f(m,*) = 0 (10.2)

where # denotes the potential function, kl - pBr and k2 - pB/r (where B denotes the
blade-to-blade sreamtube thickness).

-69-



The quasi-harmonic Poisson equation for the secondary sreamfunction, cast in the same
form as equation (10.2), reads explicitly (in cylindrical coordinates) :

.L (2-[,.L ] + 1 i[J4. - r W3} 0 (10.3)

It is very clear that equations (10.2) and (10.3) possess an identical structure, and hence the
quasi-harmonic Poisson equation can be solved by an adapted version of the numerical
solution procedure for equation (10.2), obtained by putting kj = r/p , k2 = 1/pr and

f(mO,) = -r W.3 (r, 0) , while (mO)-coordinates have been substituted by (r,e)-coordinates
as follows:

I - and (10.4)

The Dirichlet type boundary conditions for equation (10.3) (cf. § 2.4.2) can be
considered as a special case of a generalized formulation for mixed boundary conditions :

k - + cz(V -Vo) = 0 (10.5)

where cxi =0 on the part of the boundary where Neumann boundary conditions are imposed

while ct = o on the remaining part of the boundary where Dirichlet boundary conditions
ae imposed (Vo being the prescribed boundary value).

An approximative solution to equation (10.3) can be found, by postulating that the
associated "weighted residual" of this solution is zero. In other words, the solution does
not have to satisfy the equation locally, it should satisfy the equation only in a global way :
the residual of the equation (the non-zero value of the left-hand side of the equation,
obtained by substituting the approximate solution in the equation), multiplied by a
weighting function and integrated over the entire solution domain must be zero:

fS W(r,0) Rs(r,0) dS + fc W(r,0)RC(r,0)dC = 0 (10.6)

With: W(rO) = weighting function

Rs(rO) - surface residual (in internal points of the computational domain)

Rc(r,O) - boundary residual (in boundary points of the computational domain)

S - surface of computational domain
C = closed boundary of computational domain (material walls)

If the oppoite of the left-hand side of equation (10.3) is selected as surface residual and the
left-hanrd side of equation (10.5) multiplied by l/r is selected as boundary residual,

-70 -



integrating the first tem of equation (10.6) by parts and applying vector analysis relations
(formula of Gauss and Green), substituting the unknown function V by its finite element
approximation (9.2) and intrducing the Galeridn procedure, which consists in taking as
weighting funcds Wj the shape functions N :

Wj (r,0) = Nj (re) (10.7)

the following equation is obtained foreahJ (j runs from 1 to n, the total number of nodal
points):

_L L + p r drdO [Nir W31 drdO (10.8)

where it was implicitly assumed that the choice of shape functions is such that the Dirichlet
boundary conditions are automatically satisfied and the weighting functions are zero on the
boundary. It may be easily shown that these requirements are fulfilled by the biquadratic
shape functions.
For a detailed explanation of the Finite Element formulation of a 2D Poisson-problem,
consult Zienkiewicz (1977), Chapter 3.

Remark that the summation is extended to n, the total number of nodal points: although the
streamfunction is interpolated locally within an element from its value in the eight nodal
points of the element, the integral is expressed over the entire computational domain, i.e.
over all elements.

Furthermore, for the nodal points on the boundary of the transversal S3-plane, equation
(10.8) may be directly replaced by the Dirichlet boundary condition :

Vj = 0 if nodal point j is located on the boundary C (10.9)

Finally, the following linear system of n algebraic eouations in n unknowns ' is
obtained:

[K] {o} = (} or = (10.10)

where () is, the vector which contains the values of the unknown streamfunction in the n
nodal points:

while

- j [Njr W3 ] drde source vector (10.12)

and
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1 LP + pr ] drdp stiffness matrix (10.13)

Remark that the system of equations is AK because the source vector is assumed to be
independent of the solution (V. Indeed, the secondary flows are reconstructed from the

axial vorticity contribution zs3 to compute the radial redistribution of flow quantities,
but this is applied in a co ve fashion, i.e. a second through-flow or Quasi-3D compu-
tation, taking into account the secondary flows, resulting in altered velocities and
thermodynamic parameters and hence also influencing the axial vorticity distribution, is not
executed.

In practice, the linear system is resolved by the ft £aLW. , a variant of the classical
Gauss elimination procedure for linear systems, which is especially adapted to the finite
elemer, method, Zienkiewicz (1977), Chapter 24. The frontal scheme works element by
element, forming only that part of the stiffness matrix belonging to the 'front' (consisting of
the nodes of the elements currently being assembled). After an element is introduced, an
equation of the system which is completed, is eliminated by Gauss elimination and the
associated node is removed from the front. In this way, the solution front proceeds through
the computational domain, continuously eliminating equations from the assembled
elements until the whole domain has been covered and finally, the solution to the system of
equations is obtained.

10.2.2 SOME REMARKS ON NUMERICAL TECHNIQUES

It is important to note that an element [K]j of the stiffness matrix will be zero when the
nodes i and j do not belong to the same element, because the associated shape functions are
only defined in the element to which the node belongs and are zero everywhere else :

[K]j = 0 if node i and node j belong to different elements (10.14)

This means that the coefficient matrix of the linear system will have a sparse structure,
which is advantageous for its numerical solution.

In practice, the coefficients of the stiffness matrix K will be evaluated in the coordinates
( ,rl) of the computational space of the parent element through the isoparametric mapping
from the computational space to the physical space (equation (9.3)).
It may be shown, see for instance Hirsch (1988), that these elements assume the following
form in computational space:

[K]j - f k[VxNj. VXNi] drdO - k[ViNj(jJr )" itNi] d~dr (10.15)
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The first integral is the vec formulation of equation (10.13) (with k - r/p), the subscript x
referring to the physical (rO)-coorinates, while the second integral is taken over the par nt
element, the subscript 4 referring to the computatonal (,q)-oordinates. J is the determi-
nant of the Jacobian matrix Y of the isoparametic mapping (derivatives of (4.q)-coordinates
with respect to and F is the transposed Jacobian matrix.

Expression (10.15) for the stiffness matrix coefficients in the computational space is
evaluated numerically by an approximative integration technique, two-dimensignal Gauss-
a ,mtm, which reads in general form

rr.i +1

4(4 ,i) d dr i Hi Hj 0,aj) (10.16)
II1 1

f J{,il -1

for the integration of an arbitrary function 0(4,q) over the parent element.
Thus, the integral is evaluated as a sum of the weighted values of the integrand in a finite
number of so-called Gauss points, distributed within the parent element (usually 2x2 or
3x3). The ai are the local coordinates of the Gauss points and the Hi are the corresponding
weighting values.

10.3 NUMERICAL SOLUTION OF RADIAL MIXING EQUATION

10.3.1 NUMERICAL INTEGRATION TECHNIQUE

The basic radial mixing equation (8.11) can be expressed in the following general form:

5 8T, - f (r, 0, z, WQ3D, WS3, Q, 8Tt, T', IT) (10.17)

From this, a first-order intefrtion fomula can be derived as follows :

8Tt (z+Az) - 8T' (z) + Azf(r, 0, z, WQ3D, WS3. P,, 8T*, Ti,, 7f) (10.18)

where Az represents the axial distance between two consecutive transversal S3-planes,
while all the quantities on the right-hand side are expressed on the first S3-plane (the
'upstream' S3-plane) at axial location z.
Hence, if all the quantities on the 'upstream' S3-plane are known, this formula allows to
calculate the correction to be applied to the Quasi-3D total temperature distribution on a
'downstream' S3-plane at axial location z+Az.

The partial derivatives occurring in the right-hand side of equation (10.18) (cf. equation
(8.11)) we nmerically compaed from the second-order accurate finite difference formulas
for pa derivatives on a non-uniform structured mesh, which ae derived in§ 10.4.
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10.3.2 NUMERICAL TREATMENT OF BOUNDARY CONDITIONS

Equation (S.11) is expressed on the internal points of the computational domain (cf.
Chapter 2, Figure 2.2). As the adiabatic boundary condition is imposed, i.e. zero heat flux
across any domain boundary (material wall), the temperature gradient normal to any
material wall is zero (cf. equation (8.12)). This can be expressed as:

an= 0 (10.19)

where n refers to the direction normal to the boundary.

This boundary condition is discretized as follows.

Figure 10.1 represents three points of the non-uniform structured mesh, in a direction
normal to the domain boundary :

ni+-

An,+

+ n.+

Figure 10.1 : Three mesh points of a non-uniform mesh, normal to a domain boundary

The distribution of the static temperature T in the vicinity of a boundary may be written as
a function of the static temperature at the boundary and the derivatives of the static
temperature in the direction normal to the boundary through the use of Taylor expansions:

T(ni, 1 ) - T(N,) + ~iT) &ni + 2 (Ani+l) 2 + (10.20a)
I Ii ~ 2  ;

T(ni+2 ) - T(nj) + n- Ani+2 + 2 (A-- ni 2)2 + " (10.20b)

The second-order terms are eliminated between these equations by multiplying the first

equation by (An 1.2 )2 , multplying the second equation by (Ani.1 )2 . and subtracting the
second equation from the rst equation. Next, the equation obtained is divided by
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Ani+j Ani+2 , and the first derivative (anisn)n% is isolated in the left-hand side and is put
equal to zero, which finally yields the following numerical expression for the adiabatic
boundary condition :

TXi) = (Ani+2 )2 T(ni+l) - (Ani+l)2T'n) (10.21)

(ni2)
2 - (Ani+1 )2

From this equation, it follows that the static temperature at the domain boundaries is
completely determined by the values of the static temperature in the internal points of thedomain.

10.4 NUMERICAL COMPUTATION OF PARTIAL DERIVATIVES

10.4.1 INTRODUCTION

The theoretical formulation of all computational modules is based on partial differential
equations. Therefore, it is necessary to develop numerical formulas for partial derivatives
in order to be able to compute the different terms of the equations.
Although the radial mixing method is developed as an extension to a turbomachinery flow
computation code based on the Finite Element Method, the numerical computation of
partial derivatives will be based on finite difference formulas for a non-uniform two-
dimensional structured mesh, because the mesh on the computational domain is highly
structured. Although the Finite Element Method puts no restrictions on the irregularity of
the mesh, this approach is chosen because the finite difference formulas can be directly
computed, whereas estimating the partial derivatives using finite element shape functions
involves extra computations because the derivatives of the shape functions have to be
recomputed for every element.

In this section, the general second-order accurate finite difference formulas for any first-
order and second-order partial derivative on a non-uniform, structured, two-dimensional
mesh will be derived.

10.4.2 SECOND-ORDER FINITE DIFFERENCE FORMULA FOR A
FIRST DERIVATIVE

Consider Figure 10.2, which represents three points of a non-uniform mesh in any
coordinate direction.

Axi. Ax.

x-I x. i+1

Figure 10.2: Three mesh points of a non-unifom mesh
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The value of an arbitrary function f in the points xi+l and xiI can be expressed as a
function of the values of f and the derivatives of f with respect to x in the point xi by the use
of Taylor expansions :

f(xi+1) = f(;) + 18f IAxi + IJ )(Axi) 2 + .. (10.22a)

f(xi..I ) = f0xj) -) +-(af) (Axi 1 )2  (10.22b)

Subsequently, the second order terms are eliminated between these two equations by

multiplying the first equation by (Axi1)2 , multiplying the second equation by (Axi)2 and

subtracting the second from the first. Next, the equation obtained is divided by Axi.Axi t

and the partial derivative is isolated in the left-hand side, yielding :

af Axi-_i I f(xs+,) - Axi 1 f(xj.,)
A Yi [Axi-I + Axi] Axi-I [Axi-I + Axi]'(0.3

(10.23)

+ A-Ax ..xi- I f(xi)

This is the general centered finite difference formula for the partial derivative of the first
order on a non-uniform structured mesh. For a uniform mesh this formula reduces to the
classical centered formula.

The formula is second-order accurate since the largest term of the truncation error is given
by:

Error= -Axi 1 Ax 3i (10.24)
6 (ax3)j

10.4-3 SECOND-ORDER FINITE DIFFERENCE FORMULA FOR A
SECOND DERIVATIVE

The value of an arbitrary function f in the points xi+l and xi-1 can be expressed as a
function of the values of f and the derivatives of f with respect to x in the point xi by the
use of Taylor expansions :

f -i, f(xi) + (a-lAx + .1. l (A;i)2 + .1.~ (Ax;) 3 + . (10.25a)
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(A,_ 2 _'3 I Af~x..) fx 1  -i- Ax1.. _ 1 Ax .1 0 _1) + . .. (10.25b)

Subsequently, the third order terms are eliminated between these two equations by

multiplying the first equation by (Axi. 1)3 , multiplying the second equation by (Axi) 3 and

adding both equations. Next, the equation obtained is divided by (Axi. 1)2 (Axi) 2 and the
second derivative is isolated in the left-hand side, yielding:

\tx2)i = Ax,.. 1  A; (A; " [xi -f(xj)-5ij_1 + Ax] Ax)

+ AN f(x...1 -fxi) + a ~AxiI (10.26)
(Axj_1)2  (xi

Substitution of the first-order partial derivatives by the centered finite difference formula
(10.23) finally results in the following equation:

~2. [Axj..1 + Ax1 i xJ [ 1 tj
(10.27)

A; Axi_ I

This is the general centered finite difference formula for the partial derivative of the second
order on a non-uniform structured mesh. For a uniform mesh this formula reduces to the
classical centered formula.

If only the first two terms of the truncation error associated to formula (10.27) are retained,
this error may be approximated as :

Error = '-(A; -Ax...) A (10.28)
3 ax3/ 12(Ax;+Ax.. 1 ) \ax4Ji

It is important to observe the presence of a truncation error term proportional to the diffe-

rence of two consecutive mesh spacings Ax i and Axi.. 1 . If the mesh size varies abruptly,
this wil lead to first-order accuracy only. However, if the mesh size varies smoothly, then
the first term of equation (10.28) will be near to zero, and the truncation error will be
dominated by the second term, which is second-order accurate.
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PART 4

RESULTS AND CONCLUSIONS
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CHAPTER 11

RESULTS

11.1 INTRODUCTION

In this chapter, the results of secondary flow computations based on the method
developed in the previous chapters are compared with experimental flow data. From these
comparisons, conclusions with respect to the validity of the present secondary flow compu-
tation method will be drawn.

11.2 EXPERIMENTAL SET-UP

11.2.1 GENERAL FEATURES OF TESTCASE

The testcase selected for comparisons between theory and experiment is the VUB
cascade, a linear compressor cascade designed and built at the Department of Fluid
Mechanics of the VUB and used for the experimental investigation of the three-dimensional
structure of the flow field in compressor blade rows.
The cascade is positioned between two horizontal flat plates in the test section at the end of
a small low-speed windtunnel (Mach number = 0.1), designed and built at the Department.

The most important geometrical parameters of the cascade are listed below:

Number of blades 7
Aspect ratio 1.0
Solidity 1.111
Span 0.2 m
Stagger 100
Chord 0.2 m
Metal inlet angle 32.5o (absolute)
Metal outlet angle -12.5' (absolute)
Turning angle 45*
Blading NACA 65-18(AO)10
Design inlet flow angle 30"
Design outlet flow angle -4"
Design flow turning angle 34"
Design incidence -2.5"
Design deviation 8.5"

The use of low aspect ratio NACA 65-series blading with a 45" blade turning angle is
typical for current compressor designs.

-79-



For a more detailed description of the experimental set-up, the reader is referred to the
paper by Kang and Hirsch (1991) which describes the experimental research performed on
the cascade.

11.2.2 AVAILABLE EXPERIMENTAL DATA

The three-dimensional flow pattern in the VUB cascade has been thoroughly investi-
gated by means of hot-wire anemometry, Kang and Hirsch (1991) : at different transverssai
planes upstream of the cascade, inside the cascade and downstream of the cascade,
spanwise traverses were made at a number of pitchwise locations, yielding local spanwise
profiles of axial, radial and tangential velocities and of outlet flow angles. Hence,
extensive experimental data is available for comparison with numerical computations.

All measurements were made for an identical inlet velocity profile with the following
general characteristics :

Mean axial inlet velocity (mainstream) 23.7 in/s
Reynolds number 316000 (based on span)
Hub/ip inlet boundary layer thickness approx. 10% of span

The mass-averaged experimental inlet and outlet flow angles differ slightly from the design

values mentioned above:

Experimental inlet flow angle 29.3"
Experimental outlet flow angle -2.5"
Experimental flow turning angle 31.8'

Velocities were measured with an accuracy of 1% of the inlet flow velocity at midspan, i.e.
with an accuracy of about 0.25 m/s, while the uncertainty of the measured flow angles is
better than 1. Thus, taking into account the measurement uncertainty, the experimental
flow angles correspond to the design values.

For detailed information about the experimental research program on the VUB cascade,
consult Kang and Hirsch (1991).

11.3 OVERVIEW OF COMPUTATIONAL PROGRAM

In order to assess the validity of the proposed secondary flow computation method, the
following computations were performed and compared with the corresponding experimen-
tal data (cf. § 11.4):

1) Computations inside the blade row, including viscous profile boundary layer computa-
tions

a) kuily inviscid computation across the entire span (classical secondary flow theory:
no end-wall boundary layers)

b) Inviscid computation in the core flow region coupled to a viscous integral end-wall
boundary layer computation

Results am presented for transversal S3-planes located at 44% chord, 66% chord and 99%
chord axial distance downstream of the blade row leading edge.
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2) computations in the wake region downstream of the blade row trailing edge, including
viscous wake layer computations

a) Fully inviscid computation across the entire span (classical secondary flow theory:
no end-wall boundary layers)

b) Inviscid computation in the core flow region coupled to a viscous integral end-wall
boundary layer computation

Results are presented for two transversal S3-planes in the 'near' wake (104% chord and
112% chord axial distance downstream of the blade row leading edge or 4% chord and 12%
chord downstream of the blade row trailing edge) and one transversal S3-plane in the 'far'
wake which coincides with the last experimental traversing plane (125% chord axial
distance downstream of the leading edge or 25% downstream of the tailing edge).

All computational testcases were run with an inlet velocity profile identical to the
experimental situation : identical flow velocities, identical inlet flow angles and identical
inlet boundary layer thicknesses (cf. Figure 11.1).

The computational mesh on the transversal S3-plane contained 29x31 gridpoints, with
radial clustering towards the end-walls to obtain accurate EWBL computations (at least five
radial points in each EWBL) and tangential clustering towards the blades or the wake
center to obtain accurate profile boundary layer or wake computations (at least five
tangential points in the viscous layers at either side of the blade or the wake center).

11.4 DISCUSSION OF RESULTS

All of the computational results are presented in the same format:
The axial location of the transversal S3-plane is expressed in % chord, measured in the
downstream direction from the blade row leading edge, while the pitchwise location in the
S3-plane is expressed in % pitch, measured from the pressure side of the passage (0%
pitch) towards the suction side of the passage (100% pitch).
At each pitchwise location, the spanwise distributions of three physical quantities -
tangential velocity component, radial velocity component and tangential outlet flow angle -
are compared for three different cases : a 'fully inviscid' computation (represented by square
symbols), an inviscid computation coupled to a viscous integral EWBL computation
(represented by circular symbols), and experiment (represented by triangular symbols).

In addition, at each transversal S3-plane the pitch-averaged spanwise profiles of the tangen-
tial velocity component, the radial velocity component and the tangential outlet flow angle
are compared for the three different cases.
Please note that the experimental results were obtained from a spanwise traverse from one
of the end-walls to midspan, because due to the symmetrical geometry and the symmetrical
inlet velocity profile (with respect to the midspan position), it was assumed that the flow
field is also symmetrical with respect to the midspan position.
The computational results are presented for the entire span however, and therefore the ex-
perimental results have also been presented in this format by extending the results from the
experimental half-span traverse to the other half of the span through mirror symmetry (with
respect to the midspan position).

-81-



11.4.1 RESULTS AT 4% CHORD

The results for the ransversal S3-plane at 44% chord are presented on Figure 11.3a to
Figure 11.31 (pages 93-104).

11.4.1.1 Spanwise profiles of tangential velocity at different pitchwise locations

The profiles of total tangential velocity for the fully inviscid computation and the inviscid +
EWBL computation agree very well with the experimental profiles, except for a slight
overestimation in the midspan region towards the pressure side. There is excellent agree-
ment between theory and experiment in the end-wall boundary layers across the entire
pitch, except near the suction side (from about 82% pitch onwards), where the experimental
profile is steeper than the theoretically predicted profile.

Remark that the fully inviscid and the inviscid + EWBL approach yield identical results,
because the boundary layer growth is yet to small to give rise to differences between the
inviscid approach, which cannot simulate boundary layer growth, and the end-wall
boundary layer computation which does incorporate this effecL

11.4.1.2 Spanwise profiles of radial velocity at different pitchwise locations

The radial velocity profiles of the inviscid + EWBL approach agree well with the experi-
mental profiles near the pressure side (except very close to the profile wall, at 1% pitch),
but they underestimate the magnitude of the radial flow at mid-pitch and near the suction
side substantially, although qualitative agreement is good.
Identical conclusions hold for the results of the fully inviscid approach, although the results
from the inviscid + EWBL approach are slightly better.

The discrepancy in the mid-pitch region can be attributed to a high relative measurement
error : radial velocities are of the order of 0.50 m/s in this region, while the measurement
accuracy is about 0.25 m/s, which amounts to a possible measurement error of 50%.
The lesser agreement near the suction side is probably due to the inability of the method to
simulate separated flows : the recent experimental investigations of the flow in the cascade
(Kang and Hirsch, 1990) have revealed the presence of a large separation bubble on the
suction surface of the blade, which may induce strong radial flows (cf. Figure 11.2). This
region of separated flow originates at approximately 50% chord from the leading edge.
Hence, the accuracy of the computational results close to the suction side must be treated
with some reservation.
In all the experimental local profiles, large 'peaks' of radial velocity are observed very close
to the end-walls. These results are suspected to be erroneous as a result of large measure-
ment errors induced by the proximity of tle end-walls.

11.4.13 Spanwise profiles of outlet flow angle at different pitchwise locations

The spanwise variation of the outlet flow angle is predicted remarkably well for both
computational approaches (fully inviscid and inviscid + EWBL), including the end-wall
boundary layer regions, except near the suction side (from about 82% pitch onwards),
where the experimental profile is steeper than the theoretically predicted profile.

11.4.1.4 Pitch-averaged spanwise profiles

The theoretical and experimental pitch-averaged spanwise profiles of tangential velocity
and of tangential outlet flow angle agree extremely well : they are identical over almost the
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entire pitch, except near the suction side end-walls (from 82% pitch onwards), where the
experim profile is steper than the theoretically predicted pie.
Agreement between the theoretical and experimental pitch-averaged radial velocity profiles
is also very satishctoy, except near the end-walls, where the experimental profile exhibits
the large 'peaks' which were also observed in the local profiles and which are suspected to
be the result of wall proximity effects on the measurement probe.

Remark that there is no difference between the results from the inviscid + EWBL approach
and the fully inviscid approach, because the end-wall boundary layer growth is yet too
limited to have noticeable effects.

11.4.2 RESULTS AT "6% CHORD

The results for the transversal S3-plane at 66% chord are presented on Figure 11.4a to
Figure 11.41 (pages 105-116). The conclusions are essentially identical with those for the
results at 44% chord.

However, there is one exception : near the suction side, there is a discrepancy between the
computed and the experimental tangential velocities and outlet flow angles which extends
over the full span of the passage and which increases from about 1.5 m/s, respectively 50 at
75% pitch to about 2.5 m/., respectively about 10" at 91% pitch. This discrepancy is also
found in the pitch-averaged tangetial velocity profile, but not in the pitch-averaged outlet
flow angle profile where the alternating signs of the discrepancies at pressure and suction
side have compensated each other.

It is believed that this discrepancy is due to the existeAc,- of the large separation bubble on
the suction side of the blade, mentioned in the precedinj paragraph. This is a region of
strongly three-dimensional flow effects which may give rise to flow deflections that deviate
considerably from the mainstream flow deflection. Hence, the prediction of these flow
deflections is not accurate, even with the inclusion of profile boundary layer effects in the
computations.

The observed difference between the theoretical and experimental pitch-averaged radial
velocity profiles can be adequately explained by the relative measurement error of 50% to
100%.

Finally, remark that the difference between the fully inviscid and the inviscid + EWBL
approach is becoming more apparent due to the increased boundary layer growth. In
general, the approach which includes end-wall boundary layer computations is superior
because of the accurate simulation of boundary layer growth and the associated accurate
prediction of boundary layer thickness.

11.4.3 RESULTS AT 99% CHORD (TRAILING EDGE)

The results for the transversal S3-plane at 99% chord are presented on Figure 11 .Sa to

Figure ll.5n (pages 117-130).

114.3.1 Spanwise profiles of tangential velocity at different pitchwise locations

The profies of total tangential velocity for the inviscid + EWBL computation agree well
with the experimental profiles, except for the midspan regions near pressure side (up to 7%
pitch) and near suction side (from 85% pitch onwards), where the computation over-
emaes the tangential velocity with respect to the expermental values.
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Ie peaks' which appear at 15% span and 85% spn in the experimental spanwise profile
very close to the suction side (from 95% pitch onwards) pioint to the existence of horseshoe
vortices near e hub and the tip of the cascade. Indeed at can be inferred from the experi-
mentally determined structure of the cascade flow field (Figure. 11.2), that the flow near the
suction side of the trailing edge way be heavildisturbed by one of the legs of the horse-
shoe vortices of the adjacent blade. Since the ee of horseshoe vortices is not included in
the proposed theoretical secondary flow model (cf. Chapter 2). this explains the
discrepancy between the computational results and the experimental results observed near
the suction side of the passage.
The results of the fully inviscid computation are obviously identical to those of the inviscid
+ EWBL computation in the midspan region, but in the end-wall region the agreement
between the profile of the fully inviscid computation and the experimental profile is less
satisfactory : the velocity at the wall is severely overestimated by the inviscid computation,
due to the absence of the velocity-decreasing wall friction in the model.

1143.2 Spanwise profiles of radial velocity at different pitcbwise locations

The radial velocity profiles of the inviscid + EWBL approach agree well with the experi-
mental profiles near the pressure side, while they underestmate the magnitude of the radial
flow near the suction side substantially, although qualitative agreement is good.
Identical conclusions hold for the results of the fully inviscid approach, although the results
from the inviscid + EWBL approach are slightly better.
The lesser agreement near the suction side is probably again due to the presence of the large
separation bubble on the suction surface of the blade, which may induce strong radial flows
which are not accounted for in the theoretical model. Also, the presence of horseshoe
vortices may induce extra radial flows which are not accounted for in the proposed
theoretical secondary flow model.
Hence, the accuracy of the computational results close to the suction side must be treated
with some reservation.
The 'peaks' near the hub (at about 8% span) and the tip (at about 88% span) in the
experimental spanwise profiles near the suction side clearly point to the existence of horse-
shoe vortices at hub and tip.

11.4.33 Spanwise profiles of outlet flow angle at different pitchwise locations

The spanwise variation of the outlet flow angle is remarkably well predicted in the midpitch
region for both computational approaches (fully inviscid and inviscid + EWBL), including
the end-wall boundary layer regions. Although it was found that the fully inviscid
computation overestimated the tangential velocity component near the end-walls, this effect
is compensated by an identical result for the axial velocity component, thus yielding a
correct outlet flow angle over the entire span.
However, very close to the pressure side (5% pitch or less) the agreement is less satis-
factory, while close to the suction side (from 90% pitch onwards) the 'peaks' in the experi-
mental profile (aound 15% span and 85% span) a1 point to the existence of horseshoe
vortices near hub and tip, which are not accounted for in the theoretical flow model.

114.3.4 Ptch-averaged spanwise priles

The theoretical and experimental pitch-averaged spanwise profiles of tangential velocity
agree very well in the cae of the inviscid + EWBL computation. The pitch-averaged
profile of the fully inviscid computation deviates considerably from the experimental pitch-

Sprofile in the vicinity of the end-walls, due to the reuon cited in 11.4.3.1.
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The theoetical and experimental pitch-averaged spanwie profiles of radial velocity do not
seem to agne very well, but it must be stressed that the averaged values have an order of
magnitude of 0.23 m/s, equal to the measurement er, amounting to a possible relative
meament eror of 100% 11

The thereical and experimtal pitch-averaged spanwise profiles of tangential outlet flow
angle agree very well for both cputaion approaches.

Remark that for each of the three physical quantities, the 'peaks' in the local spanwise
profiles near the suction side (due to the presence of horseshoe vortices) have been
smoothed out in the averaging process because they are a very local phenomenon.

11.4.4 RESULTS AT 104% CHORD (NEAR WAKE)

The results for the transversal S3-plane at 104% chord are presented on Figure 11.6a to

Figure 11.61 (pages 131-142).

11.4.4.1 Spanwise profiles of tangential velocity at different pltchwise locations

The profile of total tangential velocity for the inviscid + EWBL approach agrees very well
with the experimental profile, except near the pressure side of the wake (up to about 15%
pitch), where the tangential velocity is overestimated near the end-walls and slightly
underestimated in the midspan region.
Close to the suction side (from about 90% pitch onwards), the horseshoe vortices again
create 'eaks' in the experimental profile at 15% span and 85% span and also affect the
velocity profile in the midspan region, leading to unsatisfactory agreement between theory
and experiment.
The profile of the fully inviscid approach differs considerably from the experimental
profile in the vicinity of the end-walls, again due to the absence of wall friction effects in
the inviscid model. Remark also that the fully inviscid computation underestimates the
thickness of the end-wall boundary layers with respect to the inviscid + EWBL compu-
tation, since the inviscid model does not include the effect of boundary layer growth.

11A.4.2 Spanwise profiles of radial velocity at different pitchwise locations

The radial velocity profiles of the inviscid + EWBL approach agree reasonably well with
the experimental profiles over the entire pitch. The results of the fully inviscid approach
are less satisfactory, although qualitative agreement is good.

The difference between the theoretical and the experimental profiles in the mid-pitch
region (20% pitch - 60% pitch) may again be attributed to measurement inaccuracies, since
the observed velocities and the measurement accuracy are of the same order of magnitude.

The better agreement near the suction side in the wake than near the suction side inside the
blade row (from about 75% pitch onwards) is probably due to the fact that the mixing of
C __ssure and suction sides of the wake significantly reduces the suction side separation

na fashion comparable to reattachment. Hence, the accuracy of the computational
results close to the suction side is better in the wake region.

11AA.3 Spmnwise profiles of outlet flow angle at different pitchwin locations

The nwise variation of the outlet flow angle is remarkably well predicted for the inviscid
+ copBL Atiou except near the pressure side (up to 20% pitch). Near the hub and
the the flow agle ise which my be explained by the fact that in the real
caWade flow an exa deflection the pressure side of the wake towards the suction side
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of the wake is induced, since Pressure and suction side ae no longer div#d by a material
wall, thus leading to a 'less negative experimental flow angle. In the midspan region, the

ow angle s ma ly d timaMd by the computaton.
Also, clos to the uction side (from 90% pitch onwards) the agreement is less satisfactory
in the mipan region, die comptaonsoeres ze the outlet flow angle, whilethe 'peaks'
in the ee d profile again indicate the continuation of the horseshoe vortices near
hub and tip into the wake region, although the intensity of the peaks has reduced.
Near the end-walls, the fully inviscid computation overestimates the flow angle consi-
derably with respect to both the experimental data (up to 20") and the compltational data
from the inviscid + EWBL computation (typically 10"). This discrepancy may be attributed
to the absence of the velocity-ecreasing wall friction effect in the fully inviscid model.

11A.4.4 Pitch-averaged spMnwlSe profiles

The theoretical and experimental pitch-averaged spanwise profiles of tangential velocity
agree very well in the case of the inviscid + EWBL computation. The pitch-averaged
profile of the fully inviscid computation deviates considerably from the experimental pitch-
averaged profile in the vicinity of the end-walls, for reasons explained in §11.4.4.1.
The theoretical and experimental pitch-averaged spanwise profiles of radial velocity do not
seem to agree very well, but agam it must be stressed that the averaged values have an
order of magnitude equal to the measurement error, amounting to a possible relative
meassuent error of 100% !!

The theoretical and experimental pitch-averaged spanwise profiles of the tangential outlet
flow angle agree very well for both computational approaches. Again, the very localized
peaks' in the local profiles near the suction side, due to the presence of horseshoe vortices,
have been smoothed out in the averaging process.

11.4.5 RESULTS AT 112% CHORD (NEAR WAKE)

The results for the transversal S3-plane at 112% chord are presented on Figure 11.7a to
Figure 11.71 (pages 143-154). The conclusions are essentially identical with those for the
results at 104% chord.
However, notice that the pAks' in the experimental local tangential velocity and local
outlet flow angle profiles near the suction side of the wake have diminished with respect to
the 104% chord experimental results, due to the gradual dissipation of the horseshoe
vortices through mixing with the main flow. This results in a better agreement between
theoretical and experimental results for the 112% chord transversal S3-plane than for the
104% chord trsversal S3-plane.

11.4.6 RESULTS AT 125% CHORD (FAR WAKE)
The results for the transversal S3-plane at 125% chord are presented on Figure I 1.8a to
Figure 11.81 (pages 155-166).

11A...1 Spanwia profiles of tangentlal velocity at different pitcbwise locations

The profile of tot tangential velocity for the inviscid + EWBL computation agrees very
well with d e profile, except near the pressure side of the wake (up to about
15% pitch), whre the t a tial velocit is somewhat overestimated near the end-walls
and ray slihtly unr simaed in the .mnspan region.

-86-



Close to the suction side (from about 85% pitch onwards) the effects of the horseshoe
vrces can again be noticed in the experimental profiles : tangential velocity 'pea at
15% span mi 85 span d an altered profile in the midspan repon, loading to
nnsishcoy aeement between theory a experiment. However, with respect to theuptemtases plaes (at 104%t and 112%t choid), the differec between an
eperimnt has beean nduced, due to the gradual dispation of the horseshoe vortices in the

Once again, the profile of the fully inviscid computation differs considerably from the
t profile in the vicinity of the end-walls, due to the absence of wall friction
in heinisidmodel.

ILA.I2 Spanwis profies of radial velocity at different pitelse locations

The radial velocity profiles of the inviscid + EWBL approach agree reasonably well with
the experimental profiles over the entire pitch. The results of the fully inviscid approach
ae les satisfactory, although qualitative agreement is good.

The difference between the theoretical and the experimental profiles in the mid-pitch
region (25% pitch - 50% pitch) may again be attributed to measurement inaccuracies, since
the observed velocities and the measurement accuracy are of the same order of magnitude.

11A.63 Spmnwise profile of outlet flow angle at different pitch wise locations
The spanwise variation of the outlet flow angle is remarkably well predicted for the inviscid

+ EWBL computation, except very near the pressure side (up to 10% pitch). Near the hub
and the tip, the flow angle is overestimated, which may again be explained by the induction
of an extra deflection from the pressure side of the wake towards the suction side of the
wake in the real cascade flow. In the midspan region, the flow angle is marginally under-
estimated by the computation.
Also, close to the suction side (from 90% pitch onwards) the agreement is less satisfactory:
in the midspan region, the computations overestimate the outlet flow angle, whilethe 'peaks'
in the experimental profile again indicate the continuation of the horseshoe vortices near
hub and tip into the wake region. However, the intensity of the peaks has been reduced
with respect to the intensity at the upsueam transverse planes, leading to a better agreement
between theory and experiment for the 125% chord transverse plane.

Near the end-walls, the fully inviscid computation overestimates the flow angle consi-
derably with respect to both the experimental data (up to 20) and the computational data
from the invicid+EWBL computation (typically 10").

II.4A Pftch-avemged spanwise profiles

The theoretical and experimental pitch-averaged spanwise profiles of tangential velocity
agree quite well in the case of the inviscid + EWBL computation, although the computation
ortestimas the velocities very close to the end-walls. As expected, the pitch-averaged
profile of the fully invicid computation deviates conerably from the experimental pitch-
averaged profile n the vicinity of the end-walls.
The theoretical and exermetal pitch-averaged spanwise profiles of radial velocity do not
seem to agree vry well, but this observation may be explained by the small magnitude of
the- averaged radial velocities, amounting to a possible relative measurement errao of

The horec and e rpimntal piteh-aveaged spawise profiles of the tangential outlet
flow aigle agee very well for both cmputaioma appfoaches, although the result from the
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inviscid + EWBL approach is superior to the result from the fully inviscid approach near
the end-walls. Again, the very localized 'peaks' in the local spanwise profiles near the
suction side (due to the presence of horseshoe vortices) have been smoothed out in the
averaging process.

11.5 VELOCITY VECTOR PLOTS

In order to have a global picture of the flow in a transversal S3-plane, two velocity
vector plots are presented.

In Figure 11.9a, a qualitative plot of the computed velocity vectors of the toa flow field
on the transversal S3-plane at the cascade outlet is presented, i.e. the superposition of the
Quasi-3D velocities and the secondary velocities computed with the present secondary flow
model. This velocity vector plot is in fact the global representation in a single picture of the
information contained in the many local spanwise profiles for a particular $3-plane,
discussed in § 11.4.
The tangential flow from right to left corresponds to the direction of the main flow at the
outlet of the cascade.
The radial flows, associated to secondary flow effects, are easily distinguished near the the
trailing edges of the blades.

In Figure 11.9b, a qualitative plot of the velocity vectors of the computed secondary
flow field on the transversal S3-plane at the cascade outlet is presented.
The classical double vortex structure is easily distinguished : along both end-walls, the
pressure gradient generates tangential secondary flows from the pressure side towards the
suction side of the flow passage, which deflect into radial secondary flows due to the
presence of the blade surfaces and then recirculate in the opposite tangential direction in the
midspan region.
Also, the global picture of the secondary flow shows that the largest radial velocities occur
near the blade surfaces, due to a combination of the radial recirculation effects mentioned
above and the radial flow effects in the profile boundary layers and the wakes.

11.6 WAKE RADIAL VELOCITY PROFILES

In order to make a further assessment of the present secondary flow computation
method, the downstream evolutions of the computed and the measured radial velocity
distributions in the wake are compared with eachother.
Results are presented for five different spanwise positions (5%, 10%, 15%, 25% and 35%
span, taking into account the symmetry with respect to the midspan position) and the wake
evolution is tracked at three consecutive locations downstream of the cascade trailing edge
(104%, 112% and 125% chord transversal S3-plane)
All results are presented in the same format of a pitchwise radial velocity profile at a certain
spanwise position and axial location (Figures 1 1.10a to l.10c, pages 168-170). The zero
position of the pitchwise distance coincides with the trailing edge position, while the
positive direction of the pitch is from the pressure side of the passage towards the suction
side of the passage. Hence, the mucAn side of the wake is located left of the trailing edge
zer position while the 9mu[ side of the wake is located zjghz of the trailing edge zero
positon.

The value of the semi-empirical turbulence parameter K, which influences the value of the
wake mixing coefficient io, was set to 0.10 (cf. Chapter 7 and § 11.7.1).
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11.6.1 RADIAL VELOCITY PROFILES NEAR THE END-WALLS

Near the end-wall (results at 5%, 10% and 15% span), the experimental profile is
characterized by a large radial velocity peak in the suction side of the wake and a constant
radial velocity profile in the pressure side of the wake. The computation predicts the
suction side wake velocity profile quite well and the pressure side wake velocity profile is
also predicted quite accurately from 20% pitch onwards, taking into account that the error
on the experimental velocities is of the order of 0.25 m/s.
However, the computation predicts a large radial velocity peak near the pressure side,
which does not correspond to the observed constant velocity profile.
Also, in proceeding downstream from the trailing edge, the suction side peak velocity in the
experimental profile is damped faster than the corresponding peak velocity in the computed
profile. The dispersion of the wake downstream of the trailing edge is also underestimated
by the computation : the experimental wake profile evolves from a sharp-crested velocity
distribution at trailing edge to a more flattened velocity distribution at 125% chord, which
is not the case for the computed wake velocity distribution.
These observations point to the fact that the value of the wake diffusion coefficient rO used
in the theoretical wake model to control the wake dissipation may be too low near the end-
walls (cf. § 11.8).

11.6.2 RADIAL VELOCITY PROFILES NEAR MIDSPAN

Near midspan (results at 25% and 35% span), the experimental profile is characterized
by a large radial velocity peak in both the suction side and the pressure side of the wake and
the constant radial velocity profile in the pressure side of the wake has disappeared. The
computed velocity profiles are in satisfactory agreement with the experimental velocity
profiles, taking into account that the error on the experimental velocities is of the order of
0.25 ni/s. Agreement is better at the suction side than at the pressure side, where the
computation tends to underestimate the magnitude of the radial velocities.
The damping of the experimental velocity peaks when proceeding downstream from the
trailing edge is smaller than near the the end-walls, possibly due to a smaller turbulence
intensity in the freestream than near the end-walls. Consequently, the computational
damping corresponds better with the experimental damping than was the case near the end-
walls. Also, there is good agreement between the broadening of the experimental wake
velocity profiles and the computed wake velocity profiles as the wake proceeds
downstream from the trailing edge : they both evolve from a sharp-crested distribution into
a more flattened distribution.

11.7 WAKE AXIAL VELOCITY PROFILES

In addition to the wake radial velocity profiles, the wake axial velocity profiles are
presented for five different spanwise positons (5%, 10%, 15%, 25% and 35% span, taking
into account the symmetry with respect too t the midspan position) and the wake evolutionis again tracked at three different consecutive locations downstream of the cascade tailing
edge (104%, 112% and 125% chord transversal S3-plane).
Again, all results are presented in the form of pitchwise axial velocity profiles at a certain
spanwise position and axial location. The zero position of the pitchwise distance coincides
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with the trailing edge position, while the suction side is located to the left of the trailing
edge and the pressure side is located to the right of the trailing edge.

11.7.1 AXIAL VELOCITY PROFILES WITH STANDARD WAKE MIXING

This set of computations was performed with the value of the semi-empirical turbulence
parameter K set to a value of 0.10. This value was selected on the basis of a combination
of an order of magnitude analysis (cf. Chapter 7) with data-match computations: the value
of K was chosen in such a way that a satisfactory agreement between the computed and
measured dispersion of the wake axial velocity distributions was obtained, while the value
should be of the same order of magnitude as the value K = 0.08, derived in Chapter 7.
The results are presented on Figures 11.1 la to 11.1 Ic (pages 171-173).
The theoretical results agree reasonably well with the experimental data near midspan (25%
and 35% span), although the broadening of the wake is slightly underestimated by the
computation and the computed minimum velocities at the wake center are higher than in
reality.

Near the end-walls (5%, 10% and 15% span) the agreement between theory and experiment
is less satisfactory : although the general shape of the wake velocity profiles is predicted,
quite well, the downstream dispersion of the wake is underestimated by the computations,
while the minimum velocities at the wake center are overestimated. This is probably due to
an increased turbulent diffusion intensity in the end-wall boundary layers, while the
computations assumed a uniform level of turbulent diffusion.

11.7.2 AXIAL VELOCITY PROFILES WITH INCREASED WAKE MIXING

As mentioned in the previous paragraphs, the computation near the end-walls under-
estimates the damping of the wake velocity peaks and yields an unsufficient dispersion of
the wake, when a uniform value for the semi-empirical turbulence coefficient K is assumed
throughout the machine. Therefore, the computations of § 11.7.1 are repeated with a non-
uniform level of wake mixing : the value of the wake mixing coefficient T0 is artificially
increased by a factor 3.33 in the end-wall boundary layers, which is equivalent to
increasing the turbulent mixing coefficient E, by a factor 10 (cf. equation (6.4)).
The results are presented on Figures 11.12a to 11.12c (pages 174-176).
The results near midspan (25% and 35% span) are identical with those of the previous
computation, since the wake mixing coefficient has remained the same outside the end-wall
boundary layers.
Near the end-walls (5%, 10% and 15% span) the increase by a factor of 3.33 of the wake
mixing coefficient has a marked effect on the computed axial velocity profiles. The
minimum wake velocities at the wake center remain about the same, but the wake
dispersion is dramatically increased : the computed wake thicknesses agree quite well with
the measured wake thicknesses, which is only logical since the increase of the wake mixing
coefficient was determined in a data-match mode for the axial velocity profiles.

11.8 WAKE RADIAL VELOCITY PROFILES WITH

INCREASED WAKE MIXING

Since artifically increasing the value of the wake mixing coefficient 1o in the end-wall
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boundary layers by a factor of 3.33 resulted in improved agreement between theory andexperment for the axial velocity profiles, the computations for the radial velocity profiles
were also repeated with an increased wake mixing coefficient near the end-walls.

The results are presented on Figures 11 .13a to 11.13c (pages 177-179).
The velocity profiles near midspan (25% and 35% span) are almost unaffected, since they
have the same wake mixing coefficient as before. The small variations with respect to the
previous computations are due to the influence of the end-wall region, where the wake
mixing was increased.
By contrast, the velocity profiles near the end-walls (5% and 10% span) are clearly affected
by the increased wake mixing. Indeed, the sharp velocity peaks at the pressure side are
reduced to a more flattened velocity distribution. This much improved correspondence
between computation and experiment is most significant near the trailing edge (104%
chord).
Finally, increasing the wake mixing coefficient does not affect the dispersion of the wake in
a significant way, as can be seen from a comparison between the corresponding wake
thicknesses of Figures 11.1 Oa-c and 11.1 3a-c.

11.9 CONCLUSIONS

For the linear compressor cascade testcase, the results of the secondary flow compu-
tations are generally in good agreement with the experimental data, both locally and on an
averaged basis.

However, the occurrence of certain secondary flow phenomena which are not incor-
porated in the theoretical secondary flow model can lead to discrepancies between the
computed and the experimental secondary flow field. This refers to the phenomena of
horseshoe vortices and the presence of large regions of separated flow (predominantly at
the suction side of the blades).

The evolution of the wake profiles indicate that employing a uniform turbulent mixing
coefficient e: may not be appropriate, but that this coefficient should be increased by an
order of magnitude in end-wall boundary layer regions, thus giving rise to enhanced wake
dispersion and wake mixing. The need for an increased mixing coefficient in the end-wall
boundary layers may stem from the fact that in reality, the end-wall boundary layer
vorticity is dissipated by viscosity, whereas the theoretical model only describes a
convection of the end-wall boundary layer vorticity.

It should be stressed however, that the present secondary flow computation method was
developed with the objective to compute the convective mixing of physical flow properties
(e.g. total temperature) in axial-flow compressors, in order to account in a simple and
efficient way for the effects of Si -streamsurfaces with non-axisymmetric geometry in
classical Quasi-3D computation methods. In this respect, the present secondary flow
computation method is adequate provided the influence of horseshoe vortices or separated
flow regions is confined to small areas. Indeed, as was briefly mentioned in Chapter 1, it is
not the objective to develop a detailed 3D turbomachinery flow computation method which
catches all the details of the flow physics, but to improve the existing Quasi-3D compu-
tational models for certain three-dimensional effects, without having to take recourse to
detailed, fully three-dimensional Navier-Stokes computations which are very expensive,
both in computation time and computation cost.

Finally, it should be mentioned that the 'inviscid+EWBL' approach is superior to the
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'fully inviscid' approach, mostly because the former is able to predict the effects of
boundary layer growth, whereas the latter is not. In conclusion, the computational
approach of an inviscid computation of the core flow region, coupled to an explicit integral
end-wall boundary layer computation and including profile boundary layer or wake effects
yields the best results.
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CONCLUSIONS

RECOMMENDATIONS FOR FUTURE WORK

A method for the computation of the effects of radial mixing on the distribution of total
temperature in a turbomachinery blade row has been developed. The method is developed
in the framework of a through-flow c Quasi-3D turbomachinery flow computation and
hence is applied in a corrective fashion to previously obtained total temperature
distributions.

The method takes into account both secondary flows and turbulent diffusion as possible
sources of mixing : the secondary flow velocities determine the magnitude of the convec-
tion terms in the energy equation, whereas a turbulent diffusion coefficient determines the
strength of the diffusion terms in the energy equation.
The secondary flows are assumed to be confined to a transversal S3-plane and are
computed by solving a Poisson equation for the secondary streamfunction, where the right-
hand side of the equation is the axial vorticity associated to the secondary flows. The axial
vorticity is composed of different contributions, each associated to a particular flow region :
inviscid core flow region, end-wall boundary layers region, profile boundary layers region
and wake region. The axial vorticity of each region is determined by solving the
corresponding flow equations, coupled to velocity profile models. The streamfunction-
vorticity approach guarantees that the secondary flows do not violate the continuity law.
The turbulent mixing coefficient is estimated by means of a semi-empirical correlation
based on turbulent wake theory.

Comparison of computational results with experimental results for the VUB cascade
show that the secondary flow computation yields reliable predictions of the secondary flow
pattern, both qualitatively and quantitatively, with the exception of regions of separated
flow. Also, the wake computations indicate that the turbulent mixing coefficient needs to
be (artificially) increased by an order of magnitude in the end-wall boundary layers in order
to obtain correct results. In other words, the mixing level is not to be taken uniform
throughout the machine. In order to obtain further validation of the secondary flow
computation and the proposed radial mixing simulation method, computations for other
single-stage turbomachines are in progress.

Qualitative computations with the present convective-diffusive mixing model have
already been presented for earlier versions of the secondary flow computation method (De
Ruyck and Hirsch, 1987, 1988a, 1988b; De Ruyck, Hirsch and Segaert, 1989) and showed
that mixing was dominated by turbulent diffusion in the core flow region while convective
mixing by secondary flows becomes of equal importance in the low momentum flow
regions (e.g. end-wall boundary layers, wakes), at least for low-speed machines. The
present improved secondary flow computation does not result in significant differences
with the earlier mixing computations, so these are not repeated here.

In the future, the mixing simulation with the improved secondary flow computation
method shall be applied to high-speed single-stage machines since recent discussions have
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shown that for these cases the picture may be different, i.e. convection-dominated mixing
instead of turbulence-dominated mixing.

The main task for the future then lies in extending the present method to multi-stage
turbomachinery applications by introducing and developing correct concepts for the
transfer of information from the mixing computation in one blade row to the mixing
computation in the next blade row.
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Figure 11.2: Experimentafly determined three-dimensional flow structure inside
the VUB cascade (from Kang and Hirsch, 1991)
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APPENDIX A

MERIDIONAL COORDINATE SYSTEM

The meridional coordinate system (mnu), illustrtated in Figure A.l, is an orthogonal
curvilinear coordinate system. The tangential direction u is identical with the
circumferential direction 0 of the cylindrical coordinate system, while the m and n
coordinates form a two-dimensional curvilinear coordinate system on the S2 through-flow

plnwhich is the (rz)-plane in cylindrical coordinates.
n present theory, dhe rn coordinate lines are defined by the streamlines of the axi-

symmetric Quasi-3D flow on the through-flow plane, while the n coordinate lines are
orthogonal to these lines in every point

ttip wall

Fig=e A.1: WlMrW coordinate system

The relation between both coordinate systems is very straightforward, since it is completely
defined by the angle a between the axial direction and the local meridional direction (cf.
Fi;ure A.2). Since the meridional direction has been defined as the direction of the
axisymmeric streamline in the through-flow plane, this angle is given by:

W arctanWrQ3D (A.I)

Therefore, the local meridional and normal unit vectors can be expressed as follows:

1, - sinflyIr + cos ci12 (A.2a)

In- cosa r - sinaTz (A.2b)
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a 'a
1z

Fj=ui A-2: Rebaton between but vectou of cylindncal and mendxona coordinat system

The following relations can also be introduced:

sina =r - - (A.3a)am an

COSa C= = (A.3b)

The convective variation of any quantity along a nmidional streamline is expressed by:

a ~ ~ ~ T a W WW~ll m.Vm (A.4)

where the meidional velocity and meridional gradient are defined as, taking into account

that the meridional coordinate lines are streamlines and using equations (A.3a) and (A. 3b):

WM= Wr ir + Wzi =z WM TM meridiona] velocity (A.5a)

a a-, a aT + -
'im 5i r + Fz z m n I nmidional gradient (A.5b)

Combining equations (A.5a) and (A.5b) finally yields

aM M=W (A.6)
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APPENDIX B

CONSTANT BLOCKAGE ASSUMPTION

The purpose of this appendix is to demonstrate that the Uasnm n Of =ntmt blkW"
amonts t an ere of second .

The s= formula for the geometrical pitch-average of the partial derivative of an
arbitrary function g with respect to - arbirary argument z reads (Leibnitz' rule):

We1s- e - - e- 1- gp-  ] (B.1)

ra M es -Op 0 s-OPI z &

where the geometrical pitch avemgr' is defined as:

A - --- i- AdO (B.2)es - ep fop

The angular distance Os - Op betv. cen suction and pressure side is proportional to the

tangential blockage factor b :

- Op = 2xb/N (B.3)

Substitution of this identity into equation (B. 1) yields the following relation:

=e N (B8 0.4)

Assuming constat blgckae implies that b is a constant, which in turn implies that (cf.
equation (1.3)):

0*1 (13.5)
8 = az =az

Hence, the corresponding &a im= formula for the geometrical pitch-average of a
partial derivative reads :
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The eror on t11s approximation can be computed by subawting equation (B.6) from

equation (B.4):

Error M (B7)jLb _.S~ -et ._N 1 -95BI
9 -gPl

b az 2xb/N I 1-W jo 2xzW [

Introducing the following relations into equation (B.7):

NS + BU M8a)

On +(B.8b)

yields:

Error = ~ 96{ 9-P j
b2, c[ s - g

2xWN a[e. O-] - I[9 - P

which can further be transformed, using equations (B.8a) and (B.8b) and introducing the
notation [ ]J for the difference between suction and pressure side of an arbitrary quantity :

Error = __g_ [[N ='- 1 9 B9

2xWN [ s L (a) (1.9)

and finally becomes:

Error 9 x/N[' towf (B.I10)

This equation shows that the error between the exact and the approximate formula amounts
to a product of fluctuation quantities and thus can be assumed to be at least one order of
magnitude smaller than the averaged quantities.
Hence, the assumption of constant blockage amounts to an error of second order.
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APPENDIX C

INVISCID FLOW RELATIONS

CA VELOCITY JUMP RELATIONS

C.L1 TANGENTIAL VELOCITY JUMP

In the inviscid approximation, the velocity vector at the blade surface is tangent to this
surface:

W.n = 0 (Cl)

where in denotes the vector normal to the blade surface.

Substituting the explicit form of the normal vector, equation (3.7), yields the following
relation between the geometry of the blade and the velocity vector:

W9 = tanTl Wr + tan3' Wz (C.2)

From this, the following formula for the jump in tangential velocity between the pressure
and suction side of the blade passage can immediately be derived, assuming constant
blockage :

[Wo]sp = tani [Writ, + tanl' [Wz]s (C3)

C.1.2 RADIAL VELOCITY JUMP

The jump in radial velocity between the pressure and suction side of the blade passage
can be decomposed into its Quasi-3D and S3 contributions :

[Wr=r = [Wr.Q3D], + [Wrs3] (C.4)

The contribution [WrS3]1 is computed through a supplementary continuity equation for the

S3 flow components, but the Quasi-3D contribution [Wr.Q3D] can be computed directly.

The radial flow angle a of a Quasi-3D axisymmetric stremsurface is defined through:

tna- Wr.Q3D . WrQ3D (C5)
WzQ3D Wz

From this, the following relation for the radial velocity jump [WrQ3D]J is immediately
derived:
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WD1, - tanu [w, - tanO [Wz,D (C.6)

C.2 TANGENTIAL VORTICITY

The pitch-averaged tangential vorticity component is defined as:

-_ - _F

The geometrical pitch-average of an arbitrary quantity A is defined as:

A . 1-_ AdO = AdO (C8)es - Opf 2 Nfp

The pitch-average of a partial derivative (with respect to an arbitrary variable z, indepen-
dent of the integration variable 9) can be written as , using Leibniz' rule:

=ji 2xbON o- bazNI -

1 - (1;k) L^ I-[A(C.9)

Applying equation (C.9) to equation (C.7) yields the following relation:

O I (bW,) - -(bWz)

2x --Wr-p + 1 ff-WzJp (C.10)

Taking into account that a linear variation is assumed for the radial component of the S3
flow component, and hence WrS3 is equal to zero, taking into account that there is no
S3 flow component in the z direction, and introducing the defining relations for the blade
angles (equation (3.7)) yields:

Cfte 1 ---- (bWr4P3D) - 1-"('Wz. Q3D)

- WrJ + I Itam (21llS
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Finally, aumnng constant bloksgre and introducing the velocity jump relations, the
following formula is obtained:

- =P*i [WrM] + (tafp' -tal-)[W , DJ) (C.12)

C.3 RADIAL VORTICITY

The pitch-averaged radial vorticity component is defined as:

( abv. = [r (C.13)

Applying equation (C.9) to equation (C. 13) yields the following relation:

2= -N(bW 0 ) + xftN W+0 (C.14)

Introducing the defining relations for the blade angles (equation (3.7)) and the velocity
jump relations, and iumint blocka s finally yields:

C" = _-O- + 0+I(I +, ' +,-,P'anTano) [WzQ3D]',)
~absO = -

+ J-((tanP'an1) [WrS 3 fp) (C.15)

I
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