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Abstract

ln this thesis a new approach to the detection and classification of tactical targets

using @ multifunction laser radar sensor is developed. Targets of interest were tanks,
jeeps, trucks, and other vehicles, Doppler images were segmented by developiig a ﬁew
technique which compensates for spurious doppler returns. Relative range images were
segmented using an approach based on range gradients. The resultant shapes in the seg-
mented image§ were then classified usiné Zemike moment invariants as shape descrip-
tors. Two clil?;ﬁcalion decision rules were implemented: a classical statistical ncarest-
neighbor approach and a new biologically-based neural network multilayer perceptron

architecture.

The doppler segmentation algorithm was applied to a set of 180 real world sensor
jmages. An accurate segmentation was obtained for 89 percent of the images. The new

doppler segmentation proved to be a robust method, and the moment invariants were
effective in discriminating the tactical targets. Tanks were classified correctly 86 percent
of the time. The most important result of this research is the demonstration of the use of
a new information processing architecture for military applications. The multilayer per-

ceptron outperformed the nearest-neighbor classifier in every test. ,.J T

A whole new generation of intelligent computers based on synthetic neural net-
works are now being investigated. This thesis establishes synthetic neural networks as a
viable alternative to production rule-based expert systems for military computers.

.
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MULTISENSOR

TARGET DETECTION AND CLASSIFICATION

AY

1. Introduction

1.1. Historical Background .

The prob!cm of machine interpretat;& of visual images remains an unsolved prob-
lem. Since th'é:‘;dvent of the digital computer, research in the area has produced many
useful results although the general problem remains unsolved. Previous attempts at
machine vision have utilized only a single sensor. The problem with using only a single
sensor is that any sensor has certain weaknesses. These weaknesses reduce the robust-
ness of the machine’s vision. Currently, there is a great deal of interest in combining the
information from several sensors to improve the robustness of machine vision. The goal
is for the strengths of one sensor to offset the weaknesses of the other sensors, hence.
improving the overall recognition capability of the machine. The Air Force is currently
developing a multisensor device which combines passive visible, passive infrared,

doppler laser radar, and relative range laser radar. The device is intended for use in

detecting and identifying tactical targets of opportunity.

A former Air Force Institute of Technology (AFIT) student, C. Tong, worked on a
technique for detecting man-made in the relative range imagery [Tong86). This thesis
will extend that work by 1) detecting targets in the doppler imagery and 2) classifying
detections in the relative range and doppler images. The goal is to be able to detect and

identify tactical targets in the relative range and doppler imagery.

1.y




1.2, Problem Statement and Scope

The general problem of interest is: Can a machine autonomously detect and classify
man-made objects in an image? For this research project, the image was of a. tactical
scenario where the objects of interest were vehicles and all other objects such as build-
ings and trees were considered clutter. The problem consisted of two parts. The first part
was (o find the tactical targets in the image, a process known as segmmentation; and the
second part was to idcnﬁfy the targets as to the type of vehicle, a process known as clas-
sification. In this thesis, tactical targets w.il} be detected and identified in the doppler and
relative range impagery. The targets to be identified will consist of M60 tanks, Petroleum,

Oil and Lubricant tankers (POLs), jeeps, 1.25 ton trucks, and 2.5 ton trucks.

1.3. General Approach

The detection and identification of targets will be performed in three steps. The first
step Is segmentation of the source images. The doppler images will be segmented using
three new histogram-based techniques. The relative range images will be scgn.uemcd
using the technique developed in [Tong86). The second step is the extraction of shape
features from the segmented images. Zemike moment invariants will be used as rough
shape descriptors. Finally, the extracted features will be classified using two different
methods. Both a traditional statistical approach using a nearest-neighbor decision rule
and a biologically-based neural network implemented as a multilayer perceptron will be
used to perform classification. The multilayer perceptron is a network which can learn
from past experience to improve its classification performance. The demonstration of the
applicability of this new architecture for intelligent computers for Air qu;ce relevant
tasks is a major thrust of this thesis. The algorithms developed will be tested using actual

sensor data which was collected in the field.




1.4, Thesis Organization o

‘This chapter has provided a brief historical perspective on the problems of machine
vision, a statement of the goal of this research effort, and an outline of the approach used
to perform target detection and classification. The next chapter will review background

material essential to understanding the algorithins which will be developed in chapicr
three. In chapter four, the results of applying the algorithms to actual sensor data will be

discussed. Finally, conclusions and recommendations will be presented in chapter five.

13
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2. Background Material

2.1, Introduction

In the last chapter, a brief historical background of the problems of machine vision
was presented, and the exact problem to be solved was stated. This chapter will present
background material essential to understanding the algorithins which will be developed
in chapter three and tested in chapter four. The following topics will be covered in this
chapter: 1) sensor and image database description, 2) segmentation techniques for
doppler and relative range images, 3) ;Hspe description using moment invariants, 4)
feature space';;ducﬁon by Fisher linear discriminants, 5) classical decision rule tech-

niques, and 6) neural netwotk classification using multilayer perceptrons.

2.2. Sensor and Image Database Description

In this section, the source data used for design and test of the algorithms will be
described. The source data was supplied byv the Air Force Wright Aeronautical Labora-
tories Avionics Laboratory (AFWALJAARI) and will be collectively referred to as the
AFWAL database. Three main points will be covered: 1) general information about the

image source data, 2) the variety of targets available in the source data, and 3) the subsets

of the data used for classification tests.

2.2.1, General Information

The image source data was collected under contract by LTV Aemsbace and
Defense Company using their multifunctional laser radar (MFLR). For a given scene, the
MFLR provides six images: doppler, passive infrared, passive visible, relative range, car-
rier intensity, and sideband intensity. The pixels are registered across all the images for a

given scene. All images are 256 x 256 pixel images with eight bits per pixel.

2.1




The doppler image is encoded so that non-moving portions of the image are grey,
objects moving towards the detector are lighter intensities (higher pixel valucs), 'and
objects moving away from the detector are darker intensities (lower pixel values).

The relative range image is encoded so that objects farther from the detector have
higher pixel values. The relative range images have a maximum unambiguous range of
15 meters [Target and Clutter Signatures from Multifunctional CO, Laser Radar,
undated:7} so that objects more than 15 meters away have an apparent range equal to the
actual distance modulo 15. For example, an object 16 meters away appears to be onc

»

meter away, hence, the term relative rangeé image.

The carrier intensity image gives the strength of the received laser beam for each
pixel in the image. Higher received carrier strengths result in higher pixel values. This
image is significant when the laser beam is specularly reflected from the incident surface
so that most of the beam is reflected away from the detector. In this case, the doppler
images will contain spurious values where the carrier drops out. The other images were

not used for this research, and therefore, will not be discussed.

2.2.2, Targets Available

The targets for which there were images in the source data are MGO tanks, jeeps,
petroleutn tankers (POLs), 1.25 ton trucks, 2.5 ton trucks, and radar shacks. However,
the distribution of targets was heavily skewed towards tanks as shown in Table 2.1. This
preponderance of tanks makes the task of testing classification algorithms very difficult.
Ideally, one should have aveilable an equal number of sample targets for each class with
a uniform distribution of aspect angles within each class. Although such data was not
available, it was possible to select a subset of the data for the purposes of classification.

Two subsets of data were used for classification and will be described next.




Table 2.1 AFWAL Database Target Distribution

Class #Samples

e
| Tank _274
| POL 99
Radar Shack 27

| Jeep 10 |
Truck, 2.5 ton _8
| Truck, 1.25 16n 8

2.2.3. Classification Subsets

Two subsets of the AFWAL database were formed for use in testing the classifica-
tion algorithms. The first subset contained only three basic classes: 1) tank, front view,
2) tank, side view, and 3) POL, side view. Additional information regarding the small
database is given in Tables C.1 and C.2 in Appendix C. The source images were selected
on the basis that the objects of interest had sufficient shape definition to allow classifica-
tion. Many of the images in the AFWAL database had very little shape definition due to
the high detector to target range. In these images, even human observers could not reli-
ably identify the classifications of the targets of interest; hence, the images were deemed

unsuitable for attempting classification through shape analysis.

The second subset contained eleven classes. The eleven classes were derived from
five vehicle classes by dividing each vehicle class into one or more sub—class.es based on
aspect angle. Specific information regarding this database is shown in Tables C.3 and C.4
in Appendix C. This database was deemed much more difficult for classification because
many of the targets included showed significantly less shape definition than those in the

small database. These less detailed images had to be included in order to obtain more




classes for testing the classification algorithms due to the small number of targets avail-

able other than tanks.

The different views of a given vehicle type were considered different classes
because the shape descriptors employed were not aspect invariant; hence, aspects that
differed significantly had to be considered different classes. For example, the side view
of a POL differs significantly from the front view of a POL; hence, these two views con-
stitute two different classes. In this research, the aspect angle was measurcd as the
amount of counter clockwise rotation from the front view of an object about the vertical
axis through the“ object. Hence, an aspect. ;ngle of zero degrees is the front view of an
object, and anaspect angle of 90 degrees is the side view of an object with the Iromal

portion of the object on the viewer’s right.

2,3. Segmentation Techniques

In this section, background to understand the segmentation techniques implemented
in this thesis will be reviewed. The goal of segmenting an image is to identify all pixels
within the image which represent the target. The output of a segmentation thgn is a
binary mask where the target pixels are one and the background pixels are zero. Two
segmentation techniques will be discussed. The first segmentation technique, optimum
thresholding, is applicable to doppler images while the second method is applicable to

relative range images.

2.3.1. Optimum Thresholding for Doppler Images

One method of segmenting an image is called optimum thresholding which is
described by Gonzalez and Wintz in {Gonzalez77:325-331]. This method begins by
assuming that there are two principal brightness regions in an image. If this is true, then
a histogram of the brightness values in the image will be the sum of the histograms for

the two regions in the image. For doppler images, one region is the background and the

other Is from the tatgeta, lence, the overall brightnass histogram will have two nmwodes,

24
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c;ne due to the background and the other due to the targets. Gonzalez and Wintz show
that if the brightness distribution is known for each region, for example if the distribu:
tions are Gaussian, then it is possible to choose a threshold which minimizes the proba-
bility of incorrectly classifying a pixel. For the Gaussian case with the two distributions
having equal variances, i.c., the noise is independent of which class is present; the
og!imum threshold is (Gonzalez77:327) )

T

St g> in Pz] @
Py

2 Iy
where |1y and y1; are the means of the two distributions, o2 is the variance of both distri-

butions, and P, and P, are the a priori probabilities of the two distributions. This

method will be applied in the doppler image segmentation algorithm.

2.3.2. Relative Range Segmentation

A method for segmenting relative range images was developed by a former AFIT
student, C. Tong [Tong86). This algorithm assumes that the range gradients across tar-
gets will be relatively low while the range gradients for the background will be much
higher. It also assumes that the target occupies a small portion of the overall image.
With these assumptions, a histogram of the range gradients in the image will be a mixture
of two distributions. The target distribution will be located at the lower range gradients
and will have a small peak due to the small number of pixels on target compared to the
number of background pixelsl The background distribution wili be located at the higher

range gradie'nts and have a large peak.

The segmentation algorithm is composed of five basic steps: 1) range gradient his-
togram enhancement, 2) thresholding based on the enhanced histogram, 3). conditional
neighbothood filtering, 4) median filtering, and §) density grow enhancement. Each step
will be briefly discussed in order.

2§




The range giadient histogram is first computed. Then the histogram is passed
through a natural log transformation mapping function which emphasizes the lower range
gradients. '

Next a threshold is estimated from the enhanced range gradient histogram. The
threshold is chosen so that it ﬁes between the means of the target and background distri-
butions. Once the threshold is set, the image is thresholded so that all pixels with range
gradients less than the threshold value are labeled target pixels and all others are labeled
background pixels. v

The thresholded image is next conditionally filtered. The neighborhood around
each pixel i;c.hecked. If the neighborhood'does not support the current label for the
pixel, then the label is changed. Thus, backéround pixels initially labeled target pixels
will be converted to background pixels if neighboring pixels are labeled background. A
relaxation tmethod is used so that the neighborhood condition is dependent on the valuc

of the range gradient for the current pixel.

After conditional filtering, a conventional median filter is used. The median filter
eliminates speckle noise from the background and helps to fill in target pixels where the
carrier signal dropped out.

Finally, a density grow algorithm is applied to the image. This algoritﬁm helps to
restore the edges of the object which are usually lost in prior processing stages .without
increasing the background noise. Tong showed this method to be effective in finding
man-made objects in a relative range image. This technique will be applied in the seg-
mentation of the relative range images. The next section discusses a set 9[ features

which can be used to provide shape discrimination of the segmented targets. |




2.4. Shape Description Using Moment Invariants

2.4.1. Introduction

A variety of methods are available for shape description. The method used in this
research effort was that of moment invariants, Moment invariants were chosen for two
reasons. First, moments invariants are easily extended to provide greater shape discrimi-
nation as required. Second, moments can be computed optically. Optical computation is
desirable in order to reduce the time required for the algorithm to detect and identify tar-
gets. The use of moments for shape description will be presented as follows: 1) defini-
tion of basic moments and invariants and 2) strengths and weaknesses of moment invari-

e 4

ants.

2.4.2. Definition of Moments and Invariants

There are several types of moments that can be computed. The most basic moment

'is Mn where

Mpo= [ [xPy°f (y) dudy (22)

If the function f (x,y) is binary, then Mpq provides some information about the shape of

the object, f(x,y) [Pavlidis77:219]). However, these moments are not invariant under

translation. In order to provide translation-invariance, central moments are used.

The central moments, |1, are defined as follows

Moo = | [O-ZP -5V (x.y) dxdy 2.3)

- =0

where (,y) is the centroid of the image. These moments take on the same value regard-
less of where the object is located in the x—y plane [Pavlidis77:219). However, these
moments are not scale-invariant. In order to provide scale-invariance, nommalized

motnents are defined.
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The normalized moments, p,'”. can be defined in two diffcnc‘ht ways
{Teague80:925)

. Vo

Kot = G0 &
or

A u‘l"l (2_5)

where |1, is the centralized moment preyiously defined. The first method of normaliza-
tion is equivalent to setting the total imag; area to unity; whereas, the second method is
setting the raa;us of gyration to unity [Teague80:925). Now the moments are translation
and scale invariant. It is also desirable to have shape features which are rotationally

invariant.

Rotationally invariant moments are more difficult to define due to the complex
affect rotation has on the moments as traditionally defined. The effect on the moments

of an object due to rotation through an angle of ¢ is [Teague80:925)

ik c
W= 5 T (I (2 ot x ot Sy spermired) @26

r=0 5=0

where 1", is the moment of an object rotated through an angle ¢ and ji,¢ is the central-
ized moment of the unrotated object. The scale normalized moment, p'pq, could also be
used in equation (2.6) td determine the effect of rotation on these moments. Dudani used
a set of rotationally invariant moments which were derived by Hu using this relation for
the purpose of aircraft identification [Dudani77:41}, The moment invariants were
derived using a combination of the central moments. Another et of rotatior;ally invari-
ant moments has been derived by Teague which are easier to generate for arbitrary order
moments [Teague80). These moments are based on the Zernike polynomials. Teague

shows that the effect of rotation on the complex Zernike moments is multiplication of the

1




e

moment by a phase factor related to the amount of rotation and the degree of the moment
[Teague77:926). With this simple relation for rotation effects, Teague develops rotation-
ally invariant combinations of moments up to the fifth order [Teague77:927-928). The
Zernike moment invariants can also be made invariant to changes in position and scale.
It will be seen in the next section that the Zernike moment based invariants developed by

Teague provide certain benefits over the moment invariants developed by Hu.

2.4.3. Strengths and Weaknesses of Moment Invariants

The use of moments for shape analysis suffers from several drawbacks; however, it
will be seen that Zernike moments do not suffer from as many problems as the ordinary

moments.

Yaser S. Abu-Mostafa and Demetri Psaltis developed a method for analyzing the -
capability of moments to perform shape analysis [Abu-Mostafa84). They showed that
moments generally suffer from three problems: 1) information loss, 2) information

suppression, and 3) redundancy.

Information loss occurs when using moments because a finite number of moments
can contain information regarding image variations up to a fixed spatial frequency which
depends on the highest order moment used [Abu-Mostafa84:702). Hence, infqrma_tion
contained in the higher spatial frequencies is lost. .

Information suppression occurs with moments because contribution to the moments

is greatest near the edge of the unit circle when the image is nonnalized to be contained

within the unit circle [Abu-Mostafa84:703}. Abu-Mostafa and Psaltis show that the

weighting function for the moment calculation is as follows lAbu-Mostafa84§.703]:

1
Cinstpt = 21t£ iU (r) dr 2.7

where C,, is the complex moment and c_,(r) is the nth order circular hannonic expan-

sion coefficient. From this relation, it is apparent that the portions of the image lying near
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the edge of the unit circle will receive greater emphasis at the expense of the portions of
the image lying near the origin. Hence, the information in the object near the origin is
suppressed. The authors state that the complex moments, Cj,, are linear combinations of

the ordinary moments, M,,, satisfying [ Abu-Mostafa84:698)

r+s=p+gq (2.8)
Thus, the ordinary moments suffer from information suppression. However, the authors
state that the Zemike moments do not suffer from information suppression [Abu- -

Mostafa84:704}. v

L3

Finall)f, Abu-Mostafa and Psaltis show ;hat the ordinary moments suffer fromn infor-
mation redur?éancy. They show that the ratio of new information to redundant informa-
tion in the (n+2)th complex moment, p(), is.[Abu-Mostafa84:704]

) 1/2
p(n) = [m] (2.9)
where n =p + q is the order of the complex moment C,,. Hence, as the order, n, of the
moment increases the amount of new information provided approaches zero. However,
the authors state that the Zemike momems.do not suffer from information redundancy
[Abu-Mostafa84:704]; hence, fewer Zemike moments than ordinary moments will be

required to yield the same amount of information regarding the shape of an object.

After a set of features is calculated for an object, it is desirable to reduce the dimen-
sionality of the feature space as much as possible while retaining the discrimination capa-
bility of the feature vectors. The next section will discuss one method for achieving this

goal.

2.8, Fisher Linear Discriminants

The method of Fisher linear discriminants provides an effective tool for reducing

the dimensionality of the decision space while maintaining the classification capability of
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the featute vectors. This reduction in dimcnsjbnality is essential to make many classifica-
tion algorithms pmétical. Typically, the dimension of the original feature space is much
higher than the number of classes to be discriminated. The high dimensionality means
that classification algorithms must perform a large number of calculations. If the number
of calculations is very l_\\igh. the method may be impractical for a given application such
as guiding a bomb to its target where weight and space requirements limit the computa-
tional power available.

The method of Fisher linear discrir\ninams is fully described in Duda and lart’s
book Pattern Classification and Scene Analysis [Duda73:114-121]. The method- will be
briefly summﬁx‘i;cd here. For the complete mathematical description see [Duda73]. The
method will first be described for the two class problem and then extended to the multi-
ple class problem.

For the two class problem Fisher’s method takes a feature vector and projects it onto
a line in the feature space. The point on the line then determines to which class the vector
belongs. If the original feature space is multidimensional, the classification problem will
be much easier in the one dimensional space to which the feature vector maps. It will cer-
tainly involve fewer calculations. The difficulty lies in finding the correct line onto

which to project the feature vectors while maintaining the separation of the classes.

Fisher’s method finds the line which maximizes the ratio of the difference between
the means of the two classes when mapped onto the line to the total scatter of the pro-

jected classes. The scatter for class i in the projected space is defined to be [Duda73:116)
-2 - 2
Si =X Oy-m) @10
J .

where y;; is the jth sample from class i and n;; is the mean of class i in the projected
space. Note that the class scatter is the variance of the data for that class within a con-
stant of proportionality in the projected space. The total scatter is defined to be the sumn

of the individual class scatters. Hence, the total scatter is proportional to the suin of the
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variances of the projected classes. The goal is to minimize this sum while maximizing
the distance between the means of the two classes when projected onto the line. Duda
and Hart then proceed to show how to maximize the ratio of class separation to the total

within-class scatter.

The extension to multiple classes is also treated by Duda and Hart in [Duda73:118-
121]. In this case the mapping is from the original feature space to at most a c~1 dimen-
sion space where ¢ is the number of classes. To see why at most c—1 dimensions are
required consider the following. First, {;uppose that each transformed dimension gives
information about whether the feature vector is in a class or not. Then c-1 discriminants
are required BEcause membership in the cth class is implied by nonmembership in the
other c~1 classes; hence, only c—-1 classes are required. However, less than c~1 dimen-
sions may be used if a given discriminant gives information about more than one class.
On the other hand, if two or more discriminants were required to give infarmation about
a single class, there would exist a combination of the dimensions which would ;'ield
information about the single class as in the two class problem already described; hence,

at most c—1 dimensions are required.

Duda and Hart show how to generalize the two class problem to multiple classes.
Again the process maximizes the separation of the means of the classes while minitnizing
the total within-class scatter [Duda73:120). They show mathematically that the number
of required discriminant functions is, indeed, at most ¢~1. Also, the transformation from
the feature space to the reduced dimensionality decision space is not unique because the

transfonnation could include rotations and scaling which would not affect the ratio that

was maximized. .

Once a feature vector has been derived for an object, it is necessary to compare that
feature vector with a set of reference vectors of known objects. The next section will dis-

cuss the classical technique employed to perform the comparison.

2"2 /'
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2.6. Classical Decision Rule Techniques

There are several possible classical decision rules that can be implemented once the

feature vector has been computed. Classical decision theory can be applied if sufficient
information is known about the probability distributions that underlie the feature vectors.

Decision theory can create decision rules which minimize the probability of error,

minimize a risk function when emrors are not all of equal imnportance (Bayes Risk), or

assure a preset maximum false-positive (Neyman-Pearson).

For the problem at hand, however, tl_:e underlying distributions are not known, nor is
it likely that they could be known. There are several reasons for the feature vector to
fluctuate for a‘l.'éiven object. Four reasons will be discussed below: aspect angle changes,
target obscuration, range effects, and loss of received signal.

First, changes in the aspect angle to the object can cause severe chahgcs in the
feature vector. For example, the side view of a tanker truck will differ quite significantly
from the front view resulting in a large changz .. the feature vector. Even when several
views of an object are included in the set of reference vectors, the aspect angle changes,
though not as dramatic, will still cause changes in the feature vector in an unknown
manner. For example, if ten views of an object are included in the reference set, then
aspect angle changes of 18 degrees about each view will cause an unknown variation in
the feature vector for that view which must be taken into account.

Another source of fluctuations in the feature vector for a given object results when
parts of the object are obscured or lost. Trees, buildings, hills, other vehicles erc. can all
cause parts of the object to be hidden from view. Also, imperfections in tine segmenta-
tion algorithms used to detect the object may miss parts of the object. All these effects
cause the feature vector to be changed in an unknowable way because the type of obscu-

ration cannot be known in advance.
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Changes in range can also cause changes in the feature vector. As the object moves
away, less detail is available. The loss of detail will cause changes in the feature vector.

However, careful selection of features should minimize this problem.

Low received signal at the detector can also cause portions of the object to be lost.
Aunospheric conditions can result in sufficient attenuation so that the received signal is
not detectable, or the surface conditions of the object may cause the laser beam to specu-
larly reflect from the object away from the detector also resulting in loss of signal. The
loss of signal will not be constant acrosa,t{\e object, nor can the loss pattern be predicted;

hence, the distortions caused cannot be predicted.

o
 _d

Since the probability distributions for the feature vector cannot be known, some
approximations are required in order to api:ly classical decision theory for this case.
Although the feature vector’s probability distribution is not known, the distribution of the
Fisher linear discriminants can be approximated by a Gaussian. Each component of the
transformed feature vector is a sum of random variables; hence, the central limit theorem
can be applied. The central limit theorem states that the normalized sum of independent

random variables approaches a Gaussian distribution as the number of random variables

approaches infinity (Ross76:257). The normalized sum, Y, is given by [Ross76:257)

: f’,(xc-ﬂt)

_ =l

Y= .11
n 2 -
{ ZW[
i=1

where X; is a random variable and y; and 0,2 are its mean and variance, respectively.
Therefore, the Fisher linear discriminants will approach Gaussian random -variables as
the number of features increases.

For the case where the feature vectors have Gaussian distributions, classical deci-
sion theory yields the following results. First, it is assumed that the noise is independent

of class; hence, the distribution for each class is the ssime encept fur the nean. A feature
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vector then is given by

Pmn+R L (2.12)
where ;: is the mean for class k and 7 is the noise vector. For this case, the decision rule

which minimizes the probability of error [Melsa78:111] is decide ? is in class j if

||?-s,n’-ngnn7-s.n’ 2.13)

In other words, decide? is in class j if it is closer to the mean for class j. This decision
rule is called the nearest-neighbor decision rule. It is the simplest of decision rules.

The are many other classical and non-classical decision rules for classifying feature

vectors. A non-classical decision rule employed in this research will now be discussed.

2.7. Neural Network Classification - Multilayer Perceptrons

‘The neural network approach attempts to mimic the behavior of the brain in order to
perform classification. A neural network is a collection of simple computing elements
(nodes) which are interconnected to form a network. The computing elements are similar
to neurons in the brain in behavior (actually, the nodes are very simple abstractions of
biological neurons). Figure 2. node gives the schematic for a node. The inputs to the
node are either outputs from other nodes or the neural network inputs. The output of the

node is given by [Lippmann87:13]

N-t
y=fl Lwx-0 (2.14)
1=0

where 0 is the threshold for the node, N is the number of inputs to the node, x; is the ith
input to the node, w; is the weight for the ith input, and f () is the output function which
may be a hard limiting nonlinearity or a sigmoidal function. The type of output function
used depends on the neural network being implemented. The way in which these nodes

are interconnected and the interconnection weights determine the type of the neural net-
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work. In this research, a multilayer perceptron was implemented [Lippmann87).

Figure 2.1 Schematic of a Single Node

Lot
b4

The multilayer perceptron network is organized into three layers of nodes (sce Fig-
ure 2.2). Each node in the first layer receives a weighted input from each of the com-
ponents of the feature vector. The output of each node in the first layer is sent through a
weighted connection to every node in the second layer. The interconnection between the
second and third layer is the same as that between the first and second layer. Finally, the
outputs of the third layer indicate the class of the input vector. The network is trained so
that, for a feature vector from a given class, only one of the nodes in the third (output)
layer is active and all other nodes are inactive. Thus, there is one node in the output
layer for each class being detected. An existence proof by Kolmogorov states that a
three-layer perceptron with N (2N+1) nodes can compute any continuous function of N
variables [Lippmann87:18]. Thus, the three-layer perceptron satisfying this condition
can implement any required classification function. However, the proof gives no indica-
tion of how the weights should be set to achieve a given classification function

(Lippmann87:18]. -

Rumelhart ¢t al. recently popularized a method for training a multilayer perceptron
(Rumelhart86]. The method is known as both the Generalized Delta Rule
{Rumelhart86:322-328) and Back-Propagation [Lippmann87:17-18). Back-Propagation
was originally developed in 1974 by s Harvard PhD student, Paul J. Wotboo'.‘ for hie
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Figure 2.2 Multilayer Perceptron

thesis Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sci-
ences and was later rederived by David B. Parker in 1982 [Parker87]. The algorithm pro-
vides a way to set the weights in the multilayer perceptron network through a training
process. First, a feature vector and the desired output for that input is presented to the

network. The output function for a node is sigmoidal and is given by [Lippmann87:17]

1
14e°

The difference between the actual output of the network and the desired output is used as

f(o)= 2.15)

an error signal in adjusting the weights according to the equation [Lippmann87:17]

W,'j(l +1)= W,'j(l) + nS,-x’, + Q(W,'j(l) - W.'j(l -1)) ’ (2.16)
where w;(1) is the connection weight from node i in the previous layer or the ith input to
node j in the current layer at time ¢, 1| is the training rate which is between zero and one,

a is the momentum which is also between zero and one, x’; is either the output of node i
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in the previous layer or the ith input, and §; is the error term for node j. The error term

for the jth output node is given by | Lippmann87:17)

;= y;(1 = y)d; - y)) C o 217)
where y; is the output of node j and dj is the desired output for node J. For all internal

nodes, the error term is given by [Lippmann87:17]
8,' =X'j(l fX’j)?S*ng (2.18)

where x’; is the output of node j and the summation is over all nodes in the next higher
layer. Typically, the desired output has one node high and all other nodes low. The con-
nection weigh:s are updated in a recursive fashion starting at the output layer and work-
ing backwards toward the input layer as desct:ibed above. The threshold for each node is
similarly adjusted except that the threshold is assumed to be a weéight on a connection to
the node which has a constant input. Feature vectors from different classes are repeti-
tively presented to the network until the weights and thresholds stabilize. After the net-
work has been trained, the weights are fixed. To use the network for classification, a
feature vector from an unknown class is input to the network. The output node that is

highest indicates the class of the input feature vector.

This chapter has reviewed segmentation techniques for both the doppler and relative
range imagery, a feature space dimensionality reduction technique, classical decision rule
techniques, and multilayer perceptrons for classification. Each of these methods will be
applied in the next chapter during the development of the segmentation and classification

algorithms.

2-|8
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3. Segmentation and Classification Algorithm Development

3.1. Introduction

In the previous chapter, the background material essential to understanding the
algorithms developed in this chapter was reviewed. The techniques examined will be
applied in this chapter for the purpose of detecting and identifying targets in a tactical
scenario. The overall algorithm consists of three maip steps: 1) segmentation of the
source image, 2) feature extraction from the segmented image using Zemike moment
invariants as fcawms. and 3) classnﬁcatwn of the extracted features. The segmentation
step, ideally, produces an image where all the target pixels have value one and the back-
ground pixels have value zero. The individual regions in the segmented region arc
located and the moment invariants are computed for each region. Finally, the set of
moment invariants for a region is compared with the moment invariants of refcrence
regions to determine the classification. The software hsed to implement the algorithms is
described and listed in Appendix D. Each of the three major steps will now be discussed

in greater detail.

3.2. Image Segmentation

The doppler and relative range images must be segmented to provide the shape of
the targets in the scene for feature extraction. Three doppler image segmentation algo-
rithms were empioyed. and a single method was used for performing relative range seg-

mentation. The doppler image segmentation techniques will now be discussed.
3.2.1. Doppler Image Segmentation

3.2.1.1. Introduction

The first step in recognizing patterns in the imagery is to segment the areas of

interest from the background and clutter. Segmentation of the doppler images was
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achieved using three different techniques. Each technique will be described along with

the impetus for using it.

3.2.1.2; Optimal Thresholding

The optimal thresholding technique depends on the probability distribution of an
image being composed of two separate distributions, one for the target and one for the
background. For the doppler images, this assumption should be true because the back-
ground will generally have a doppler value indicating no relative radial velocity while a
radially moving target will have some nor.l'nhlal doppler value. Hence, the histogram for a
doppler image.Should have two distinct humps. The optimal thresholding technique__was
applied to the doppler images using the assumption that the a priori probabilities of the
target and background are equal. Although this is obviously not true, the wide variation
possible for the probabilities makes it impossible to favor any pair of a priori probabili-
ties. However, in special cases when these probabilities can be predicted, they should be
used in the thresholding. With the above assumptions, the optimal threshold equation

(2.1) which is based on Gaussian distributions becomes

' Tm Lhd. ] a.1))
where y, and p1, are the means of the target and background distributions, respectively.
The means were estimated using the following procedure, First, the average of the histo-
gram was computed. Since the histogram has two peaks in it, the average value should
lie somewhere between the two peaks. Next the histogram was broken into two parts at
the average value. The modes in each of the two paﬁs were taken to be the means used

in (3.1).

Once the threshold has been estimated, the image can be segmented. That is, each

pixel with a value greater than the threshold takes one value while pixels less than the

threshold take another value. After thresholding, the images are binary and can be -
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displayed in black and white. The polarity of the image will depend on whether the
doppler value of the target was greater or less than the background value. Since it is
desirable to have the resultant segmentation always have the same pblarity. for example
target pixels one and background pixels zero, the segmentation was further processed. It
should be noted, however, that this simple technique will find only one group of targets

when the source image contains targets moving both towards and away from the detector.

The final processing step guaranteed that the target pixels had the same value,
namely one, independent of the relative velocity of the tasget in the doppler image. The
polarity of lh_c_:‘_.s_egmentcd image was reversed if the number of pixels having the value
one was greater than half the number of pixels in the image. If the number of target pix-
els is always less than the number of backgrou}\d pixels, this process will result in the tar-
get pixels always having value one in the segmented image. For the data processed in
this research, that assumption was always valid, A shorthand notation for this method to

be used in figures and tables will be OT.

3.2.1.3. Optimal Thresholding Using Carrier Intensity

The above segmentation technique depends on the histogram of the doppler image
being relatively free from noise. Unfortunately, this assumption is often not true. When
the laser beam specularly reflects from the background away from the detector, there is a
resultant loss of signal. In the doppler circuits, the loss of signal results in a spurious
value being generated for that pixel. When the signal is lost for a large number of pixels,
for example when specularly reflecting from a wet runway, the spurious doppler returns
can invalidate the assumption of a bimodal distribution for the histogram. '.llcncé. it is

desirable to compensate for the loss of signal.

In order to compensate for the spurious retums generated by the loss of signal, the

doppler image histogram was generated using the received carrier intensity image to

determine whether or not 8 pixel should be included in the histogram. For each pixel in
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the doppler image, the carrier intensity was checked. If the carrier intensity was below a
threshold, the pixel was discarded. The value to use for carrier threshold was determined
through examination of joint histograms of the doppler return value versus the carricr

intensity for several images‘exhibiting spurious doppler returns.

For example, Figure 3.1 is a raw doppler image with significant spurious doppler
returns which has been displayed using a greyscale encoding scheme. In the image, dark
pixels represent low doppler retumn values, and lighter pixels represent higher higher
doppler setum values. Note the dark bands in the upper half of the image. These bands
represent spuriq:xs doppler returns due to lc;w received carrier intensity. Figure 3.2 is the
Joint histogréiﬁ for that image. The horizontal axis of the joint histogram is received car-
rier intensity increasing to the right, and the vertical axis is the doppler value increasing
towards the bottom of the image. The range of values for both axes is from zero to 255.
The vertical line in the image represents a carrier intensity of 130. The histogram values
are color coded as shown in the color bar at the bottom of the figure. Black is used only
for a histogram value of zero. The other histogram values are mapped from blue through
green to red. The histogram was normalized for display purposes so that the full color
range would be utilized. Hence, the histogram values displayed are relative values.
Except for the color black for a histogram value of zero, all other changes in color

represcnt uniform steps in histogram values.

From the joint histogram, it is evident that spurious doppler retum values can be
eliminated with a carrier threshold of 130. Upon examination of several such histograms,
it was determined that a carrier threshold of 130 would be sufficient in most cases. Once
the doppler image histogram has been formed using the carrier intensity to discard spuri-
ous returns, the above segmentation technique can be applied. It was found, however,
that this segmentation technique failed in many cases; hence, a better segmentation tech-
nique was sought. The Optimal Thresholding Using Carrier Intensity technique will be

represented using a shorthand notation of OTUCI in subsequent figures and tables,
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Figure 3.1 Raw Doppler Image Exhibiting Carrier Dropout. Note the dark
bands in the upper half of the image which are due to carrier dropout.
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Figure 3.2 Joint Histogram between Doppler Return and Carrier Intensity.
Note the clump of spurious doppler returns at low carrier intensities. The verti-
cal line represents a carrier intensity of 130,




3.2.1.4. Background Lobe Elimination with Carrier Thresholding

The previous segmentation technique failed because for most images the back-

ground distribution dominated the histogram. Since the background dominated the histo-
gram, the image average usually fell somewhere within the range of values rcpresenthg
the background. When the histogram was split at this point, the modes in each part of the
histogram were due to the background. Hence, the target distribution had no effect on
the threshold selected, and the target was many times not detected. Only when there was
a sufficient number of pixels on target to weight the image average outside the main lobe
due to the background was the target relfaiwiy found. Therefore, a method was developed

»

which would eliminate this problem.

Since the main lobe in the histogram due to the background was causing the trouble,
it was decided to eliminate the background from the histogram. The histogram was first
constructed using the carrier thresholding d;scﬂbed above to eliminate spurious doppler
returns. Then the mode of the histogram was found. This mode represents the center of
the main lobe of the background distribution. The histogram was then modified to elim-
inate all pixels due to the background. Starting with the mode of the histogram and
‘working outward, the histogram bins were set to zero until the end of the main lobe of the
background distribution was reached. The background lobe width was specified as a
fractional ;'nlue of the mode. Suppose the width was specified using 0.1 percent. Then
all histogram bins starting at the mode working outward would be set to zero until the
value of the histogram was 0.1 percent of the mode. Thus, the main lobe due to the back-
ground was eliminated. All segmentations performed with this method used a back-
ground lobe width specification of 0.1 percent. 3

Once the peak in the histogram due to the background was eliminated, the only peak

left in the histogram was due to the target. Hence, the mode in the modified histogram

was used as the mean of the tasget distribution, and the threshold was set to the average

of the mode In the modified histogram, the target mean, and the mode in the original
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histogram, the background mean. The image was then thresholded as described above.
After thresholding, the segmented image was processed as described earlier to insure that
the tasget pixels had value one and background pixels zero. The term BLE will be used
as a shorthand notation in figures and tables for this method.

A limitation inherent in all three doppler segmentation techniques is that an image
with multiple targets moving both towards and away from the detector will not be suc-
cessfully segmented. The reason for this is that all three methods employ at some point a
binary thresholding technique. An image with targets moving both towards and away
from the detu_:!gr should be segmented usil;g at Jeast three labels: moving away from the
detector, baciié'round. and moving towards the detector. Since a binary thresholding tech-
nique uses only two labels, the pixels on the targets moving in the opposite direction of
those targets successfully segmented will be incorrectly labeled background pixels
because only two labels are available. A recommendation for future research is xiyodiﬁ_ca-
tion of the doppler segmentation methods to allow for images with targets mbvihg in

both directions.

These three techniques were employed in the segmentation of the doppler images.
The relative range images were also segmented using an algorithin developed by a

former AFIT student.

3.2.2. Relative Range Image Segmentation

All relative range images were segmented using the algorithm developed by C.
Tong (GE-86D) in his thesis Target Segmentation and Image Enhancement through
Multisensor Data Fusion [Tong86). The computer program developed by Tong was
used to perform the segmentations. A few changes were made to the software to reduce

execution time; however, the algorithm was used essentially unchanged.




After the relative range and doppler images have been segmented, the next step is to
compute the feature vector for each region in the seginented iinages. The next section

will discuss this process.

3.3. Feature Extraction

‘The next step after segmenting the targets from the background in an image is to
compute a sct of features for the distinct regions within each image. This process con-
sists of two parts. The first part creates a _.list of the distinct regions within the image, and
the second part computes the feature vec-tc;r for each region in the list. Each part will

now be describéd.

3.3.1. Region Detection and Filtering

The purpose of this step is to create a list of all the distinct regions in an image.
Each region will have attached to it sufficient information to allow the computation of
the feature vector by the next process. This operation involves stepping up a level in the
processing hierarchy. At the lowest level of image processing, only complete images are
manipulated. Therefore, all operations must be applied to the image as a whole. At the
next higher level of image processing, the image is partitioned into a set of separate enti-
ties. The image is the sum of the separate entities derived from the image; however,
operations can now be defined which operate only on a single entity. This distinction is
important because it has implications about the extent of operations which can ‘be per-
formed. For example, when operating at the image level, it is not possible to filter the
image such that only objects above a certain size are passed. In order to perfqnn such an
operation, regions must be identified and processed separately. A similar operation in
the image domain would be low-pass filtering of the image. That operation would elim-
inate small objects but would also distort the larger objects. On the other hand, process-

ing each region in the image separately allows elimination of small regions while main-
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taining, undistorted, the larger regions. Also, extracting regions from the image allows
‘easier processing of the regions for purposes such as classification where the primary
“interest is in the specific region and not the entire image. By focusing attention on just
the region of interest, considerable computations can be saved over processing of the

entire image.
The algorithm developed extracted regions from the segmented image and filtered

the regions to eliminate regions too small for classification purposes. The region extrac-

tion method will be described first followed by the region filtering method.

The goal of the region extraction algorithm was to produce a list identifying the dis-
tinct regions 1;an image. The region cxtracﬁon consisted of two steps: 1) detection of a
starting pixel for the next region and 2) creation of a list defining the boundary of the
region. The starting pixel for the next region is found by scanning the image in a raster
fashion until a pixel with value one is found that is not already included in the border of
another region. Once the starting pixel is found, a list of the border pixels is created.
The algorithin for creating the list of border pixels is as follows: starting from the initial
border pixel follow the edge of the region counterclockwise by always trying to go to the
right of the current pixel. As each border pixel is traversed, it is added to the list and is
marked within the image as already belonging to a border. Marking the pixel within the
image guarantees that the algorithm to find the start of the next region will not mistak-
enly flag a pixel that has already been traversed. After the list of border pixels for a
region has been created, the region is added to the list of regions for the image. Once this
list is created, it is filtered to eliminate regions which are too small for shape classifica-
tion. ' :

The region list for an image is next filtered to eliminate small regions. The algo-
rithin counts the number of pixels on the border of each region and eliminates the region

if the number of border pixels is below a preset threshold. The threshold was set to fifty

pixels. This threshold value eliminates regions with approximately 200 pixels or less. A
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square region of this size would have sides which are less than six percent of the image
width; thus, the regions would be very small relative to the size of the entire image. It
was deemed not necessary 10 perform shape classification on regions of this size.

The list of regions for an image is then passed to the next stage which computes the

feature vector for each region in the list. The features computed will now be described.

3.3.2. Moment Invariants Computation

After a region has been detected in an image, the next step is to attempt to classify
the region, fgr_ example as a tank, jeep, truck, or clutter. In order to classify the region, a
set of featurcs-for the region must be calculated. The features are then compared with the
features for known objects. The closest m;itch between the unknown object and the
known objects determines the classification of the region. The determination of which
features allow the best discrimination is still an unsolved problem. For this research
effort, it was determined to use the moments of the shape resulting from the segmenta-
tions. Since the goal is to discriminate tanks from jeeps and trucks which differ signifi-
cantly in shape, it was determined to use rough shape descriptors. When only a few of
the lower order moments are used, moments provide rough shape description. For exam-

ple, the zero order moment

Moo= | [f@y)didy 32)
where f (x,y) is a binary function with value zero for the background and one for the tar-
get area represents the area of the target. The first order moments locate lhe.ccntroid of
the target, and the second order moments characterize the size and orientation of the tar-
get [Teague80:921). The moments up to second order define an ellipse of a given size,
eccentricity, and orientation [Teague80:921). Hence, the moments are rough shape

descriptotrs. Moments have been used before with success for shape discrimination

{Dudani?7]. Dudant used mownents for identification of aircraft.
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Zemike moment invariants were used for the calculation of shape descriptors for the
detected regions. Zemike moment invariants provide a set of features which are position,
scale, and rotation invariant (PSRI) [Teague80:927-928]). The moment invariants for
each detected region were calculated twice. The first set of moments was calculated for
the silhouette of the region, and the second set was calculated for the borde; of the
region. When calculating the moments for the border, the function f (x,y) took value one
only for pixels on the border of the region and at all other points the function took value
zero. This feature of calculating moments for both the border and silhouette was used by
Dudani [Dudani77:42). ‘

N

The Zernike moment invariants were detérmined for a region by first computing the
centralized moments for the region according to equation (2.3) and normalizing for scale
using equation (2.4). The resulting normalized central moments were used to compute
the Zernike moment invariants using the formulas given by Teague [Teague80:929] (see
Appendix E for the moment invariants computed). Normalized central moments up to

the fourth order were used in computing the Zernike moment invariants.

A set of features have now been computed for the region which describe the shape
of the region and are position, scale, and rotation (not aspect) invariant. These features
form a feature vector which must be compared with the feature vectors for known objects '
in order to determine the classification of the unknown object. In the next section, two
methods for performing this comparison will be discussed. Both methods were used in

classifying the feature vectors.

3.4. Classification of Featlure Vectors .

Two approaches to classification of feature vectors were imnplemented. The first
method utilized a classical approach applying a nearest-neighbor decision rule. The

second method used a multilayer perceptron to perform classification of the feature vec-

tors. ‘The multilayer perceptron approach was implemented in order to demonstrate the
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feasibility of using neural networks for classification. For each method, two sets of data
were available. The first set consisted of feature vectors computed from a collection of
training images. The purpose of having a set of training images is to characterize the
expected variation of the feature vectors for each class of object to be recognized. The
second data set consisted of features vectors derived from a collection of testing images.
These vectors were used to test the classification accuracy of the decision rule derived
from the training set. The classical approach will be outlined first followed by a discus-

sion of the multilayer perceptron approach.

a

3.4.1. Statistical Classification

The statistical approach to classification of the feature vectors consisted of four
steps: 1) normalization of feature vectors, 2) dimensionality reduction using Fisher

Linear Discriminants, 3) calculation of class mean vectors, and 4) classification using a

. nearest-neighbor decision rule. Each step will now be discussed.

The feature vectors were first normalized in order to prevent differences in the scal-
ing of the features to unduly influence the classification. For example, if one feature had
most of its values a thousand times larger than any other features, then the ;iistanccs
between vectors would be dominated by that feature. The other features with smaller
values would have little effect on the classification. To prevent this situation, the feature
vectors were normalized as follows: first, the mean and standard deviation was computed
for each feature across the entire training set. The ith component of each vector in the

training set, x;, was then transformed according to the equation below:

X;— Wy J
C;

n= 3.3)

where y; and o; are the mean and standard deviation, respectively, for feature i. The new

training vectors ¥ now have a mean vector of zero and standard deviation vector of

unity; hence, the scaling for each feature is now identical. These computations were per-
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formed using the Interactive Laboratory System (ILS) software package for signal pro-
cessing. Appendix A discusses the mechanics of using ILS for this purpose. After nor-
malizing the training vectors, the dimensionality was reduced using the Fisher Linear
Discriminants.

The Fisher linear discrininants were computed for the training set in order i;) reduce
the dimensionality of the feature vectors. The benefit of dimensionality reduction is that
it lightens the computational load with minimal loss of discrimination capability
[Duda73:117-118,121}. The Fisher linear discriminants were computed using ILS.
Appendix A (!iscusses how ILS was used to perform these computations. With the

dimensionality of the feature vectors reduced, the class means were calculated.

The calculation of the class means is the third step in the classical approach to clas-
sification. The class means are used by the nearest-neighbor decision rule. The ILS
software package was used to perform the computation of the class means as discussed in
Appendix B. Once the means have been calculated, it is possible to perform classifica-

tion testing using the test data set.

The final step in the classical approach is classification of test vectors using a
nearest-neighbor decision rule. Each test vector was initially transformed according to
equation (3.3). These transformed test vectors were then reduced in dimensionality using
the previously calculated Fisher linear discriminants. Finally, the distance between a
transformed test vector and each class mean was computed. The class mean with the

smallest distance to the test vector determined the class of the test vector. Appendix B
discusses the mechanics of these computations using ILS.
The above steps were used to classify feature vectors in the classical approach.

Another method for classification using ncural networks was applied to the feature vec-

tors. The neural network approach will now be discussed.
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3.4.2. Neural Network Approach - Multilayer Perceplrons

The second method used for classifying the features vectors was implemented using
a multilayer perceptron. The multilayer perceptron was chosen for lts ability to group
‘into a single class distinct distributions in the feature space. For example, 8 POL will
have distinctly different feature vectors for the front view and side view. For each view,
the feature vectors will have some distribution about the mean for that class. The mul-
tilayer perceptron can implement a decision space where the separate distributions for the

front and side view of a POL will result in the same classification [Lippmann87:14].

There aresthree main steps to using a multilayer perceptron for classification: 1) nor-

malization of feature vectors, 2) training of the network, and 3) classification of test vec-

tors. Each step will be discussed below.

The first step in implementing a multilayer perceptron for classification is normali-
zation of the training vectors. The training set is normalized so that the training vectors
span the unit hypercube with one comner at the origin. For each feature, the minimum
and maximum value over the entire training set is computed. Next, the ith component of

each training vector, x;, is transformed according to the following equation:

“\

X - mim 4
B 4
i pprey (G4

where min; and max; are the minimum and maximum, respectively, for feature i in the
training set. This transformation guarantees that 1) for each feature all training vectors
have values in the range [0,1), 2) there is at least one training vector where that feature
has value zero, and 3) there is at least one training vector where that feature has value
one. The purpose of this transformation is to ensure that all features have thé same scal-
ing and that the input vectors will be scaled similarly to the initial weights for the con-
nections between nodes in the network. The nonmalization also places the inputs in the

same range as the outputs of the network nodes. After the training vectors have been

normalized, the network can be trained to classify those vectors.
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The network is trained with the back-propagation method using equations (2.16),
(2.17), and (2.18) and the festute vectors contained in the training set. The weights and
thresholds in the network are initialized randomly using a uniform distribution between
0.5 and 0.5. The desired output vector has value 0.9 for the element corresponding to
the class of the input vector and all other elements are 0.1. The values 0.1 and 0.9 are
used instead of 0 and 1 because the sigmoidal function on the output nodes |see equation
(2.15)] can only reach zero and one for infinite negative and positive inputs, respectively.
Forcing the output to zero and one would cause the weights to the output ;lodcs to
become very large {Rumelhart86:329). The network is trained until the distance between
the desired omput and the actual output drops below a preset threshold. This trammg
method will drive the outputs to 0.1 and 0.9; however, a modification should be investi-
gated where if the output is greater than 0.9 for the node which is supposed to be active, '
then do not drive the output toward 0.9; and if the output is less than 0.1 for a node which
is supposed to be inactive, do not drive the output toward 0.1. This modification would
allow but not force the outputs to zero and one. The result may be better performance

than that achieved using the present method of training. After the network has been

trained, it can be used for classification.

The trained multilayer perceptron was thea used to perform classification of the
feature vectors in the test set. The feature vectors were transformed according to equa-
tion (3.4) and input to the network. The output of the network was examined to deter-
mine classification. There are several ways to determine classification from the output
vector. For example, the maximum output could simply determine the class. A different
technique was used in this project. Two thresholds were set: a n:inimum;within;class
threshold and a maximum oul-of-ciass threshold. For a network output to be unambigu-
ously classified, it was required that a single element in the output must be above the
within-class threshold and all other elements must be below the out-of-class threshold. If

this condition was not met, the output was declared ambiguous.
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This chaptet has outlined the algorithms developed during the research to perform
tactical target detection and classification using doppler and relative range images. The

results of applying this set of algorithms to the AFWAL database will be discussed in the
next chapter,

A

3-16 ’




4. Segme ‘1ation and Classification Results

4.1, Introduction

In the last chapter, algorithms were developed for the segmentation and classifica-
tion of doppler and relative range images. These algorithms were applied to actual sensor
data from ll;e AFWAL database to test their effectiveness. The results will be discussed
in two parts. The first part will present the results of applying the segmentation algo-
rithms including a discussion of aspects qf the results pertaining to the task of classifying
objects in the image. The second part vlfill discuss the results of the two classification
methods appliéd’. to the segmented images. Two of the new doppler segmentation algo-
rithms successfully segmented over 87 percent of the images tested. Both of the classifi-
cation methods demonstrated were successful; however, the lack of sufficient test data
limits the conclusiveness of the results. The segmentation results will be presented first

followed by the classification results.

4.2. Segmentation Results

In this section, the results of applying the three doppler segmentation techniques
and the relative range segmentation algorithm to the AFWAL database will be discussed.
The effectiveness of lﬁe segmentation techniques were evaluated by a human obscrver.

The observer examined the source image for a given scene and the segmented
doppler or relative range image and judged the segmeﬁtation effectiveness on two
aspects: 1) the percentage of pixels on target detected and2) percentage of background
pixels falsely labeled target pixels (noise). For the target rating, the following codes were
used: excellent = all target pixels detected; good = approximately two-thirds of the target

pixels detected; fair = approximately one-third of the target pixels detected; and poor =

none or very few target pixels detected. For the noise rating, the following codes were

used: excellent = no noise pixels; good = approximately 100 noise pixels; fair =
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approximately 1,000 noise pixels; and poor = several thousand noise pixels resulting in
large contiguous noise regions. The doppler segmentation results will now be presented

using this rating system.

4.2.1. Doppler Segmentation Resulls

The doppler images were segmented using three separate algorithms. The results of
applying each algorithm to the doppler images will now be discussed. 'l'h;e doppler
images analyzed are listed in Tables C.5, C.6, C.7, and C.8 of Appendix C. A total of
180 images were analyzed using each of the three methods. The images were selected to

have a wide variety of target sizes, speeds and background noise.

Ao

4.2.1.1. Optimal Thresholding Results

The first segmentation technique applied to the doppler images was the optimal
thresholding technique (OT) describéd in Chapter 3. The fesults are summarized in
Tables 4.1 and 4.2. As shown in the table, this method of segmentation perfonmed véry
well in the majority of cases. For 87.2 percent of the images analyzed, the identification
of target pixels was good or better. Noise immunity was good or better for 77.7 percent
of the images analyzed. Figure 4.1 is an example where the segmentation was judged
excellent-good. Figure 4.2 shows the source image using a special display method to
highiight the target. Note that nearly all target pixels have been properly identified and
that noise pixels are non-existent, Figure 4.3 is a segmentation which was judged poor.
Figure 4.4 is the source image displayed using a greyscale coding scheme. In this case,

all the target pixels were missed, and there is a large number of noise pixels in the image.

The twenty-two images in which the targets were not located were characterized by
moderate to severe carrier dropout. That is, specular reflection of the laser beam away
from the detector resulted in a loss of signal and concomitant spurious doppler values.
Figure 4.4 shows a case where the beam is being specularly reflected from runways in

the scene yielding spurious doppler retumn values. Figure 4.5 is a joint histogram of the
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Table 4.1 Doppler Segmentation - Target Location

Quality OT (%) | OTUCI (%) | BLE (%)
Excellent 84.4 0.0 71.1

| Excellent-Good 0,6 00 12
Good 22 43.3 10.6
Good-Fair 0.0 1.7 3
Fair 0.0 1.1 3.9

| Fair-Poor 0.6 0.6 0.6
Poor 122 _3534 34

Table 4.2 Doppler Segmentation - Noise Immunity

Quality OT (%) | OTUCI (%) | BLE (%)

o s—

| Excellent 644 _66.7 92.2
| Excellent-Good | 0.0 1.1 1.7
rﬁ@ 13.3 _256 44
Good-Fair _28 22 0.0
| Fair_ 39 1.7 1.7
|_Fair-Poor 22 2.2 0.0

Poor 13.4 0.6 0.0 |

doppler return value versus the carrier intensity. As can be seen, a large number of pixels
in the image have spurious doppler values. The computation of the image average for

this image results in a value between the zero motion doppler value and the spurious
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Figure 4.1 Dogplcr Segmentation of Scene 3033 Using OT. Compare this seg-
mentation with the raw doppler in Figure 4.2. This segmentation was judged .
excellent-good. ~

Figure 4.2 Raw Doppler of Scene 3033 Using a Special Display. Compare with
the segmented image in Figure 4.1.
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Figure 4.3 Doppler Segmentation of Scene 3204 Using Optimal Thresholding.
Compare the segmentation with the raw doppler in Figure 4.4, This segmenta-
tion was judged poor.
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Figure 4.4 Raw Doppler Image of Scene 3204. Compare with the segmented
image in Figure 4.3,
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doppler value. Hence, the resultant segmentation groups the target pixels with the back-
ground and the spurious doppler retums are identified as target pixels. Figure 4.3 shows
the resultant scgmcntation.' Obviously, there is a need to compensate for the presence of
carrier dropout during the segmentation process. The second method of segmcntn\tion

was developed for this purpose.

e e
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Figure 4.5 Joint Histogram for Scene 3204. Note the large number of spurious
doppler values.

4.2.1.2. Optimal Thresholding using Carrier lntensity Results

" The second method of segmentation, optimal thresholding with carrier dropout
compensation (OTUCI), was intended to provide accurate segmentations in the presence
of carrier dropout. The results of this segmentation method are summarized in Tables 4.
and 4.2. This method of segmentation received at best a target rating of good for any
segmentation. The reason for this is that all the segmented targets had small holes in the
interior due to carrier dropout on the target. Figure 4.6 shows the raw doppler for a scenc
with severe carrier dropout using a special display method to highlight the targets. The
mode of the image was displayed black, and all other doppler values were mapped
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nonmally from black to white. Figure 4.7 shows the raw doppler using the normal display
method. Note that the targets are barely visible because their doppler returns differ very
little from the background; hence, the contrast between the targets and the background is

very low. Figure 4.8 shows the result of segmenting the doppler image. Note that there

is little noise in the segmentation due to carrier dropout: noise is effectively eliminated
by this method. Also, the method missed one of the targets because it was moving in the
opposite direction of the primary target. Figure 4.9 shows the resultant segmentation

using the first method (OT). Note that the\ targets were lost completely.

- oo e - - o S —

Figure 4.6 Raw Doppler of Scene 3207 Using a Special Displ:g Method.

Con;‘g?ire with Figure 4.7. Note the enhancement of targets using this display
method.

From Table 4.1 it is apparent that the method failed to detect the presence of the tar-
get for more than half of the images analyzed. Although the roise performarice was quite
good, the failure to detect more than half of the targets required modification to the
method to improve the detection of targets while maintaining noise immunity.

The problem with detection of targets stemmed from the fixed threshold used for

the carrier and its application to all doppler retums. For some doppler images the
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Figure 4.7 Raw Doppler of Scene 3207. Compare with Figure 4.6. Note the
difficulty of identifying targets in the raw doppler image.
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Figure 4.8 Doppler Segmentation of Scene 3207 Using OTUCL. Note that a
target was found in the presence of carrier dropout and the amount of noise in
the segmentation is low. : '
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Figure 4.9 Doppler Segmentation of Scene 3207 Using Optimal Thresholding.
Note that no targets were detected using this method.

spurious doppler returns had carrier intensities above the 130 threshold as shown in_ Fig-
ures 4.4 and 4.5. Since the spurious dopbler values are very far from the zero motion
value, they have a large effect on the computation of the image average. Also, a large
number of the zero motion pixels are eliminated because the associated carrier intensity
is below the threshold. Elimination of these background pixels makes it easicr for the
image average to be swayed by the spurious doppler returns. The result is that even
when there are only a few spurious doppler returns with carrier intensity above the thres-
hold, they overpower the genuine target returns resulting in a poor segmentation as
shov.vn in Fig. 4.10. The third doppler segmentation technique was developed to over-

come these problems.

4.2.1.3. Background Lobe Elimination with Carrler Thresholding Results

The Background Lobe Elimination with Carrier Thresholding method (BLE) was

developed to provide effective detection of targets in doppler images in the presence of

spurious doppler returns due to carrier dropout. The results of applying this method to
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Figure 4.10 Doppler Segmentation of Scene 3204 Using OTUCL Note the
failure to detect the targets due to the presence of carrier dropout.

the doppler images are summarized in Tables 4.1 and 4.2. This method of segmentation
is better than either of the two previously discussed methods (see Table 4.3 for a com-
parison). The target location performance is slightly better than the first method and
much better than the second method while the noise performance is much better than the
first method and somewhat better than the second method. This method failed to find
some portion of the targets in an image only 3.4 percent of the time compared to 12.2
percent for the next best method (OT), Figure 4.11 is the segmentation resulting from
lpplying this method to Figure 4.4, The method successfully detected the targets in the

presence of severe carrier dropout. However, this method is not without its weaknesses.

The primary weakness of this methbd of segmentation results from the merging of
the background lobe and the target lobe. When there is a large spread of doppler return

values from the target near the zero motion value, portions of the target are lost. Figure
4.2 is the raw doppler displayed with the background set to black, and Figure 4.12 is the

resultant segmentation using this method. Note from the joint histogram (Fig. 4.13) that
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Table 4.3 Doppler Segmentation Comparison

OoT (%) | OTUCI(%) | BLE (%)

Target Location 87.2 433 88.9
| Good or Better

Noise Immunity 711 934 98.3
_ Good or Better - E

Figure 4,11 Doppler Segmentation of Scene 3204 Using Background Lobe El-
imination. Note the targets were detected in the presence of severe carrier dro-

pout.

the target return values are  ntiguous with the background (zero motion) values. When

the algorithm removes the background lobe, only the fastest moving portions of the .target

’

are retained.

A weakness of all three segmentation methods is the inability to detect in a single
image targets which are moving both towards and away from the detector. Since all 3

three methods perform at some point a binary thresholding of the image, either the
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Figure 4.12 Doppler Segmentation of Scene 3033 Using Background Lobe El-
imination. Note the failure to detect all portions of the target.

Ihie =410
e i aliaadl i) |

Figure 4.13 Joint Histogram of Scene 3033. Note that the target return values
are contiguous with the%ackground.

\

targets moving toward or away will be merged with the background. The targets in such

an image which are found will be those with the greater number of pixels; hence, the
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final segmentation will s..:Sw the largest targets in the field of view. The targets moving
in the opposite direction which are lost will have fewer pixels; hence, these targets are
smaller. Future research should include modification of these methods to eliminate this
weakness.

In summary, it was found that the Optimal Thresholding method worked well
except in the presence of carrier dropout. The method located most targets and produced
litlle or no noise. The Optimal Thresholding using Carrier Intensity method reduced the
noise due to specular reflection significantly but failed to detect targets over 50 percent
of the time. The Background Lobe Elimination with Carrier Thresholding method was
superior to eiiﬁ; of the two methods. This method was imimune to noise due to specular
reflection and found the targets for all but the most difficult cases. The results of the

relative range segmentation algorithm will be discussed next.

4.2.2. Relative Range Segmentation Results

The algorithm developed by C. Tong (GE-86D) for the segmentation of relative
range images was tested on 74 images. The algorithm was successful at finding flat tar-
gets within the images. Table 4.4 summarizes the segmentation results. Figures 4.14 and
4.15 show the original relative range image and the final scgmented image as an example

of the performance of this technique.

The algorithm has three main weaknesses: 1) splitting of targets, 2) noise from low
range éradient backgrounds; and 3) segmentation of buildings. Figures 4.16 and 4.17
exemplify the problems listed. Note that the turret of the tank has been sepmuéd from
the body of the tank. Target splitting is a serious problem for classification algorithms
based on the sithouette of objects because, for example, the shape of a split ;ank is radi-
cally different from an unsplit tank. Also note in Figure 4.17 that the foreground has been
included in the segmentation because it has a sufficiently low range gradient for the algo-

rithm to identify it as a target. Finally, observe that the buildings in the upper portion of




Table 4.4 Relative Range Segmentation - Target Location and Noise Immunity

Quality Target Location (%) | Noise Immunity (%) '
Excellent : 00 6.8 |

| Excellent-Good 1.4 6.8

| Good 29.1 36.5

Good-Fair 13.5 12.2 /

Fair 338 23.0

| Fair-Ppor ' 40 94

| Poor 17.6 5.4
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re 4.14 Relative Range Image for Scene 3195

the image have been included in the segmentation. Although in general that may not be a
problem, it is a problem here because only vehicles are being sought (it should be noted,
however, that Tong developed this algorithm for the detection of man-made objects

which included bulldings). Except for the low range gradient background images, the,)
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Figure 4.15 Relative Range Segmentation of Scene 3195

segmentations were generally free of spurious regions.
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Figure 4.16 Relauve Range Image of Scene 3026 ’

The segmented images were then processed to identify the distinct regions and com-

pute the Zernike moment invariants. These feature vectors were then used to classify the
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Figure 4.17 Relative Range Segmentation of Scene 3026. Note that 1) the tank
has been split into two parts, 2) the noise in the foreground due to the low
range gradient, and 3) the buildings have been included in the segmentation.

segmented regions. The results of classification using this approach will be discussed in

the next section.

4.3. Classification

After the source images were segmented, the moment invariants were computed for
all distinct regions within the images. These feature vectors were then classified us-ing
two different methods: a nearest-neighbor decision rule and a multilayer perceptron. The
results of using the nearest-neighbor decision rule will be presented first followed by the

results for the multilayer perceptron,

4.3.1. Nearest-Neighbor Classification Results

A classical approach to classifying the f~~ture vectors was implemented using a

nearest-neighbor algorithm after reducing the dimensionality of the feature vectors using

Fisher linear discriminants. As stated eatlier, two subsets of the AFWAL database were
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used for the classification tests. The results for each subset will be discussed scparately.
Also, 8 test was performed to guaran'tee that the feature vectors being calculated were

position, scale, and rotation invariant (PSRI). This test will be discussed first.

4.3.1.1. I'SRI Test of Feature Vectors

A test of the feature vectors calculated was performed to insure that the featuses
were invariant under changes in position, scale, and rotation of the object. For this pur-
pose, three objects were selected: 1) front \:iew of a tank, 2) side view of a tank, and 3)
side view of 2 POL. From each object, several new objects were generated which dif-
fered from the~original by either a change in position, scale, or rotation. For position
changes, five different positions were used:.l) centered, 2) shifted up and to the left, 3)
shifted up and to the right, 4) shifted down and to the left, and 5) shifted down and to the
right. The amount of shift was one fourth of the image height. For scale changes, nine
different scales were used from 1.0 to 0.2 by steps of 0.1. For rotation changes, eight dif-
ferent rotations were used from zero degrees to 315 degrees by steps of 45 deéreeg. The

direction of rotation was counter clockwise for positive rotations.

The feature vectors were found to be relatively invariant under changes in position,
scale, and rotation. The results of the test will be displayed in scatter plots. A scatter
plot is generated by performing the feature space dimensionality reduction (Fisher linear
discriminants) and plotting the first two coordinates of each transformed feature vector.
Since there are only three classes, the reduced feature space is guaranteed to be at most
two dimensional. Figure 4.18 is the scatter plot for the reduced feature vectors when the
scale of the objects was changed; Figure 4.19 is the scatter plot when the rotation of the
objects was changed; and Figure 4.20 is the scatter plot for the reduced featu}e vectors of
all the objects generated including position, scale, and rotation changes as well as the ori-
ginal objccts. A scatter plot could not be generated using the objects which differed only

in position because the software used to compute the Fisher linear discriminants could
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not calculate the transformation when the within-class scatter was zero. The feature vec-
tors were manually verified to be identical when only the position of the object was

changed.
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Figure 4.18 Scatter Plot of Feature Vectors for Scale Changes

From the scatter plots, it is evident that the feature vectors are not perfectly invari-
ant under the operations of scaling and rotation. The reason for this is that an object is
represented by a discrete set of pixels in a plane. When the object is rotated or scaled,
the boundary pixels are moved to new locations in the image plane where there may or
may not be a pixel location. If there is no pixel location for the new point, the nearest

pixel location must be selected. This approximation of the rotated or scaled boundary

results in minor fluctuations in the feature vectors for the scaled and rotated objects. This
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Figure 4.19 Scatter Plot of Feature Vectors for Rotation Changes

test verified that the feature vectors were PSR, The next test was to determine the abil-
ity to separate classes of objects. lts ability to perform this separation has already been

alluded to in the PSRI test.

4.3.1.2. Small Database Test Results

The first subset analyzed consisted of three classes which were to be tecogniz;d.
With three classes, the dimension of the transformed feature space is guarant.eed to be-at
most two; hence, the transformed feature vectors can be plotted in the 2D-plane to exam-
ine the separation of the classes. The original feature vector contained eleven moment

invariants based on the silhouette of the object and eleven moment invariants based on
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Figure 4.20 Scatter Plot of Feature Vectors for Rotation, Scale and Translation Changes

the border of the object. Figure 4.21 shows the scatter plot obtained when only the
moment invariants for the silhouette were used. The eigenvalues determined during the
computatic;n of the Fisher linear discriminants were 2.6697 and 0.89855. As can be seen,
the classes are somewhat separated but not as much as one would like. Figure 4.22 shows
the scatter plot when only the moment invariants for the border are used. Here the cigen-
values are 1.2962 and 0.33213. Again, the classes are separated but not s much as
desired. When both the silhouette moments and the border moments are used, the scatter
plot of Figure 4.23 results. The eigenvalues for this case are 507.28 and 100.66. As can
be seen, the use of both sets of moments provides exceptional separation of the classes

indicating that classification of an unknown feature vector should be quite reliable.
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These results are, however, misleading because the number of samples involved is insuf-

ficient.
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Figure 4.21 Scatter Plot of Small Database Using Silhouette Moments

The reason for the apparent excellent separation of the classes when both the
silhouette and border moments are included is that the number of features being used is
too large for the number of available samples. Foley [Foley72] discusses the relationship
between the error rate for the design-set data and the ratio of samples per class to the
number of features. The design-set error rate is the rate of errors when testing a classifier
with the same data used to design it. Foley states that for a two-class problem when the

ratio of total number of samples to the number of features is less than one, the design-set V

error rate is zero (Foley72:618). In the above case, there are six front views of tanks, ten
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Figure 4.22 Scatter Plot of Small Database Using Border Moments

side views of tanks, and § side views of POLs; hence, when both silhouette and border

moments are used, the ratio of total samples to features is % which is less than one.

When both sets of moments are used, the above rule is violated. As can be seen from
Fig. 4.23, the design-set error rate is, indeed, zero. Foley shows that as the ratio of sam-
ples per class to the number of features approaches zero the design-set error rate
approaches zero and that for ratios below three, the design-set error rate i's extremely
biased below the true error rate [Foley72:621). Foley concludes that the number of sam-
ples per class to the number of features should be greater than three for the design-set.

error rate to be indicative of actual performance of the classifier [Foley72:623). This is
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Figure 4.23 Scatter Plot of Small Database Using Silhouette and Border Moments

known as Foley's rule. In the above case, the ratio of samples per class to the number of
features never exceeds one even when only a single set of moments is used; therefore, the
design-set error rate will not indicate true classification ability. To avoid being directly
affected by Foley's rule, all classifiers were designed using two-thirds of the sample vec-
tors and tested with the remaining one-third. Hence, the design-set error rate was not

used in evaluating the classifiers performance.

The nearest-neighbor classifier correctly classified four out of five test tanks and
incorrectly classified both POLs used for testing. For the two POLs, the distance from
the test vector and the nearest class was more than ten times as great as the average dis-

tance between 8 correctly classified test tank and the nearest class, llence, the lasge
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distance for the POLs indicates a poor match between the test vector and any of the refer-
ence classes. Apparently, more data is needed to properly characterize a POL in this

feature space. Foley's rule would require 66 samples per class fur reliable results.

AY

4.3.1.3. Large Database Classification Results

The classification results for the larger database subset show promise; however,
Foley's rule was not satisfied regarding the number of samples per class per feature. The
largér database subset consisted of eleven classes as described in Table C.3 of Appendix
C. Of these eleven classes, five classes were distinct (that is, not simply different aspects
of the same g&!!ct): tank, jeep, POL, 1.25 ton truck, and 2.5 ton truck. The eigenvalues
from computing the Fisher linear discriminants are listed in Table 4.5. It is apparent

from the cigenvalues that there are only about four dimensions of discrimination in the -

transfonmed feature vectors. Note an eigenvalue of zero indicates no variation between
transformed vectors for the corresponding dimension. Since eleven classes were used to
compute the Fisher linear discriminants, there could have been at most ten non-zero
eigenvalues. Since it is difficult to display a scatter plot with four dimensions, the results

of testing the classifier will be presented instead of scatter diagrams.

Table 4.5 Eigenvalues for Large Database

Rank | Eigenvalue || Rank Eiéenvalue

1 49755E+00 || 6 2.7946E-02

2 6.1017E-01 || 7 2.5266E-04 ]

3 3.4125E-01 || 8 3.9190E-05 Lo
4 2.0287E-01 || 9 2.5925E-06 |
5 8.0128E-02 || 10 | 1.0586E-06
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The classificr performed well for recognizing tanks and poorly for all other classes.
Since there were ;mly four samples for 1.25 ton trucks head-on and three samples for
1.25 ton truck side views, these classes were eliminated from the design-set. The confu-
sion matrix of the test is shown in Table 4.6. Tanks were correctly recognized 76.5 per-
cent of the time. The other classes were not reliably determined. 1t is likely that there
' was insufficient data to characterize the other classes. Certainly Foley’s rule was not

satisfied for any classes except tank where the total number of tanks used was 60.
Foley’s rule requires 66 in this case; hence, the tank class should be fairly well character-

\
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Table 4.6 Nearest-Neighbor Confusion Matrix for Large Database. Reference
Data (Columns) vs Test Data (Rows).

Tank | Jeep | POL | Truck, )

2.5ton i

Tank 13 3 1] o |

Jeep 1 i 0 1 |
POL 3| o of 2
Truck, 2.5 ton o] O 1 1

The feature vectors were also classified u;ing a neural network, in particular, a mul-
tilayer perceptron. The results of using this method for classification will be discussed

next.
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4.3.2. Muitilayer Perceptron Classification

The multilayer perceptron was used to perform classification on the two database
subsets described earlier. Each classifier was trained using two-thirds of the available
samples and tested with the remaining one-third. The test results for the small database
subset will be described first followed by a discussion of the results fo;' the large database

subset.

4.3.2.1. Small Database Results

The multilayer perceptron pctformﬁd approximately the same for the small database
subset as the clissical nearest-neighbor. Two sets of data were classified using the mul-
tilayer perceptron. The first set of data consisted of the raw moment invariants, and the
second set consisted of the Fisher linear discriminants for the training data. For the raw
moment invariants, the system unambiguous!; cla;siﬁed all five test tanks as tanks. The
two test POLs were split: one was unambiguously classified a POL and the othet a tank
Similarly for the Fisher linear discriminants, four out of five tanks were correctly classi-
fied, and both POLs were incorrectly classified. With such a small test set, it is not possi-
ble td generalize on the differences between the results for the raw moments and the
Fisher linear discriminants. Both seem to work equally well. The minimum within-class
threshold was 0.80, and the maximum out-of-class threshold was 0.20, Table 4.7 lists the
pertinent details regarding the training of the network. After testing the multilayer per-
ceptron with the small database subset, the next step was to apply it to a larger database

with more than two classes.

4.3.2.2. Large Database Results ' .

The multilayer perceptron did not perform as well with the larger database as it did
with the small database. The large data base included tanks at four different aspect
angles, jeeps, POLs, and 2.5 ton trucks. The front views of the jeeps, POLs, and trucks

were used for classification. Also included ip testing the algorithm were severs! objects
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Table 4.7 Multilayer Perceptron Training Data for Small Database

Raw Moments P!she.r l:inear
|_Discriminar

Number of Classes 2 2
Number of Features 22 2
Training Rate (1)) 0.25 0.25
Momentum (o) 0.9 0.9
First Layer Nodes . 100 100
Second Layer Nodes | 30 30
"I Output Error Criterion 001 0.01
Averaging tnierva 20 20
Total Iterations 3700 444
Total Training Errors 144 39

generated by the relative range segmentation which did not correspond to vehiclés.
These objects were used as clutter to determine the ability of the network to reject objects
for which it had not been trained. Again the multilayer perceptron was tested using two
sets of data: the raw moment invariants and the Fisher linear discriminants. The training
parameters and results are listed in Table 4.8, and the test results are summarized in
Tables 4.9 and 4.10. There are several possible reasons for the poor performance of the
network. Possible reasons include 1) insufficient data to characterize all classes of
objects and 2) overlap of classes in the feature space. Each of these will be discussed
separately.

It is likely that there was insufficient data to characterize the distributions of the

classes being identified. The AFWAL database, as previously discussed, is heavily

423 :
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Table 4.8 Multilayer Perceptron Training Data for Large Database

Raw Moments | Fisher Linear
e —————SEINEOLS.
Number of Classes 4 - 4
Number of Features 22 4
Training Rate (n) 0.25 ' 0.25
Momentum (a) 09 - 09
First Layer Nodes e 200 100
..} Second Layer Nodes _ - 60 30
Output Error Criterion 008 028 >
Averaging Inerval 0 20
Total Iterations 25650 3110
Total Training Errors 3553 848

skewed towards tanks. There are 274 tanks in the database out of 426 total targets. The
large database subset also had a large number of tanks and much fewer objects for the
other classes. The small number of objects for the other classes probably did not provide
enough information about the distributions for the classes in order for the network to
properly segment the decision space. As noted earlier, Foley's rule was only approxi-
mately satisfied for the class tank; all other classes had far fewer samples than required.
It is also likely that there was a significant amount of overlap between the c!asses in
the feature space. Overlap in the feature space could result for several different reasons.
First, some of the classes were very similar in shape. For example, the jeeps, POLs, and
trucks were all basically rectangular objects. As previous segmentations have shown, the

objects used for classification are very rough with very little detail (see Figures 4.8, 4,11,

4-28 ;




Table 4.9 Multilayer Perceptron Confusion Matrix for large Database and
Clutter Data Using Raw Moment Invariants, Reference Data (columns) vs

Test Data (Rows),
Unambiguous Output Ambiguous Output
Tank | Jeep | POL | Truck, | Correct | Incorrect
2.5ton
Tank 19 1 0 0 1 l
Jeep, 2 0 0 ' 0 0 1
POL 0 0 8 0 0 2
Truck, 0 0 0 1 0 1
2.5ton
Clutter 10 2 0 0 N-A 9

4.15, and 4.17). Thus, the jeeps, POLs, and trucks had generally similar shapes. Since
only a few Jow order moments were used for shape description, fine shape detail is lost;
hence, the jeeps, POLs, and trucks are bound to show overlap in this feature space.

A second reason for overlap in the feature space is due to noise in the shape seg-
mentations. Noise in the shapes can come from changing aspect angles, occulting by
other objects, carrier dropout, and so on. The noise results in the shapes of objects for a
given class having a great deal of variation. This variation in shape can be translated into
variation in the feature vectors resulting in the classes overlapping due to the spread of

the distributions. It is likely that both of these factors played a part in the overlap of the

classes.
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‘Table 4.10 Multilayer Perceptron Confusion Matrix for Large Database and
Clutter Data Using Fisher Linear Discriminants. Reference Data (columm) vs °

Test Data (Rows). \
Unambiguous Output Ambiguous Output
Tank | Jeep | POL | Truck, | Correct | Incorrect
2.5 ton
Tank 13 3 0 0 1 5
Jc_:gg 1 0 0 0 0 2
POL 0 0 0 0 0 2
Truck, 1 0 0 0 0 |
2.5ton
Clutter 0 17 0 | 0 N-A 4

A comparison of the test results for the two types of input data, raw moment invari-
ants and Fisher linear discriminants, indicates that the use of raw moment invariants is
better. For the two categories with the most number of test samples (tanks and clutter)
the performance was better using the raw moment invariants. Further research is

required to determine if this is a general result and why.

4.4. Resulls Summary .

In summary, two of the doppler segmentation algorithms developed were effective
at detecting targets in an image. Both of the classification methods were useful for clas-

sifying targets; however, the multilayer perceptron outperformed the statistical nearest-

neighbor classifier in every test. The classifiers were good at detecting tanks, but there

—
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were insufficient samples to properly characterize the other classes. The next chapter

will present conclusions and make recommendations for further research.
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5. Conclusions & Recommendations

In this thesis, the problem of machine vision for the purpose of detecting and identi-

fying targets in a tactical scenario was investigated. Doppler and relative range images

were uscd for source imagery, and the targets of interest were M60 tanks, POLs, jeeps,

1.25 ton trucks, and 2.5 ton trucks.

8.1, Recommendations

The algorithms developed during the research show promise for locating and identi-

fying tactical targets in a scene. There are six recommended avenues of further research

to improve the confidence in these results and to improve the overall solution: identifying

tactical targets.

Although two of the doppler segmentation algorithms were effective, an alternative
method using the joint doppler-casrier histogram is recommended. As noted earlier,
both methods will be only partially successful when an image contains targets mov-
ing both towards and away from the detector. Also, the Background Lobe Elimina-
tion method relies on two arbitrary thresholds for the carrier intensity and the main
lobe width. A method which does not rely on arbitrary thresholds is preferred.

The joint histogram provides all the infonnation required to reliably segment a
doppler image. From the joint histogram, it is immediately obvious which doppler
retums are spurious and which are genuine. Note from Figure 4.13204 that the
spurious doppler returns are clumped together, the background lobe is a thick line,
and any targets are represented by lines parallel to the background line. A doppler
segmentation which finds the target lines should be developed based on these sin-

ple properties of the joint doppler-carrier histogram.

The approach used shows promise for classifying tactical targets in doppler and

relative range imagery. In order to validate the approach, more data should be




obtained to allow the full characterization of all target classes of interest. With 22
features currently being used, Foley's rule requires 66 samples per class. There is
currently only sufficient data to characterize MG0 tanks. The recently acquircd
Army Night Vision Laboratory laser radar data may provide the needed additional
data. Also, Rome Air Development Center (RADC) has laser radar data which mny
be useful for validating the algorithms developed in this thesis.

The moment invariants computed used only up to fourth order moments. If the
current feature vector proves to be insufficient when more data is analyzed, then
higher order moments should be inciuded in the feature vector. The higi-lcr otder
momcni;;";\rill allow more precise shape definition. Howeves, the addition of more

features will require more samples per class to satisfy Foley’s rule.

The shapes derived using the segmentation algorithms were very crude. Often a
human observer could not determine the classification using the shape alone; how-

ever, when the observer examined all the images available for the scene, he could
almost always properly identify the object. Feature vectors spanning the entire set
of images available should be developed which do not rely entirely on the shape of
the object. Three non-shape specific features are suggested: 1) estimation of the
size of the object, 2) infrared intensity pattern over the object, 3) range variation
over the object. Estimation of the size of the object will soon be possible when the
new AM/FM laser radars are used because absolute range data will then be avail-

able. The other suggested features can be computed using the existing data.

Since each image type does not always give information about the class of an object
(for example, a stationary target will have no doppler retum), a heuristic algorithm
should be developed which will combine all the available evidence from the various
sensors to perforn classification. This algorithm will be required to combine the

evidence from multiple sensors. This avenue is now being pursued at the Air Force

Institute of Technology by a doctoral student, Captain M. Roggemann
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(Roggemann87). Itis recomimended that evidential or probabilistic approaches such

as those described in [Lee87] be investigated.

6. ‘The multilayer perceptron and the back-propagation method should be investigated
for the purpose of answering such questions as a) what is the best method of nor-

- malizing the input data and setting the connection weights >to provide the fastest
convergence, b) how does the number of nodes in the first and second layers effect

the speed of convergence, c) how should the number of nodes in the first and second
layers be selected, d) can the speed of convergence be improved by modifying the
back-propagation method to not upda.te weights when the actual output is greater
than thé'-a:sired output for an output node which is supposed to be active (this
modification was noted in chapter 3), and e) will best classification performance be

realized using the raw moment invariants or the Fisher linear discriminants?

8.2. Conclusions

The algorithms employed demonstrated classification of tactical targets from
doppler and relative range imagery. The lack of sufficient data (according to Foley's

rule) to charapterize all the classes of interest, however, limits the conclusiveness of the

results,

The segmentation algorithms were effective in finding the targets in doppler and
relative range images. The new Optimum Thresholding and Background Lobe Elimina-
tion segmentation algorithms for doppler images proved to be highly reliable in locating
the targets in an image finding a majority of the target pixels 87.2 and 88.9 percent of the
time, respectively. The Background Lobe Elimination method was immune to spurious
doppler returns due to carrier dropout. The relative range segmentation aléoﬂthm was
effective in locating portions of the targets in an image. However, the resulting seg-
mented shapes (doppler and relative range) often did not have sufficient shape to pcﬁnit

classification even by a human observer.
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The ngike moment invariants were shown to be useful in classifying the shapes of
the detected objects. Both methods of classifying the feature vectors show promise.
However, the lack of sufficient data to characterize the distributions for the classes
prevents the asscrtion that these moment invari:ats are sufficient to discriminate the
classes of interest. Tanks were comrectly classified using the nearest-neighbor decision
rule 76.4 percent of the time while the multilayer perceptron achieved 86.4 percent

correct classification for tanks.

There are four pritnary contributions generated by this thesis. First, this research has
produced two gopplcr radar scgmcmatior; algorithms which have proved to be highly
reliable over a wide range of target and background conditions. The Background Lobe
Elitnination method proved to be effective €ven in the presence of noise due to severe
carrier dropout. The second contribution is the application of neural networks to renl
world sensor data. It has been shown that the multilayer perceptron can be effectively
used for automatic target recognition. Third, this research has shown that the multilayer
perceptron performs classification better than the best statistical classifier possible. The
neural network has significant advantages over the traditional statistical classifiers. First,
the neural network is inherently extensible through the addition of more nodes, and the
ad:ition of more nodes will not significantly degrade performance because the nodes in
dch layer operate in parallel. Another advantage of the neural network is fault tolerance.
Since the decision ruie implemented by the neural network is distributed through the net-
work in the connection weights and thresholds, the system shouid degrade gracefully as
nodes and weights are lost. Also, neural networks can implement highly complex parti-
tions of the feature space automatically through the training process. Finally, neural net-
works are computationally quick because calculations in each layer occur in parallel.
The fourth contribution of this research is the demonstration of a classification algorithm
which performed as well as a human observer could using the same available informa-

tion.
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With the results of this thesis, another researcher has available segmentation algo-
rithms for both doppler and relative range images in a software environment which is
easy to use and provides powerful and diverse tools. The next step in the research is to
coml;inc these scgmentations with information from the other sensors to improve the

classification performance, In particular, the different modality sensors, the passive visi-

ble and infrared, should be utilized.

The software environment developed provides a rich set of tools for the aéquisition
and manipulation of images and regions extracted from images. The next reseascher can
start working jgﬂmediately at a higher level of image processing rather than developing a
basic image processing facility. The way is now clear for a truly multisensor approach

using the AFWAL database and the software and algorithms developed at AFIT.
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Appendix A : Computing Fisher Linear Discriminants

Introduction

The use of Fisher Linear Discriminants (also known as principal components
analysis) is a standard technique in pattern analysis which is applied to a feature space in
order to make classification easier. The primary advantage of principal component
analysis is a reduction in the dimensionality of the decision space with a minimal reduc-
tion in classification performance. That is, the features vectors are transformed from d
dimensions to ¢ —1 dimensions where c is the number of classes to recognize. Although
this transformation maps many vectors in the original space to a single vector in the deci-
sion space, the performance in the new space is close tc optimal and is optimal when the
original feature vectors are Gaussian random wvariables with equal covariances
[Duda73:118].

The use of ILS for principal components analysis consists of five primary steps: 1)
read the feature vectors from text files into ILS format files, 2) normalize the data, 3)
compute the Fisher Linear Discriminants, 4) transform the feature vectors, and 5) dimen-
sionality reduction of the transformed vectors. Each step will be described separately,
but first some ILS terminology will be defined.

ILS Terminology

ILS terms to be discussed are primary and secondary ﬁlgs, feature data, records, ele-
ments, items, and fields. ILS uses files for input and output for almost all operations.
The primary files are normally the input data for an operation while the secondary files
are used to output data. ILS file names consist of two parts. The first part is up to four
alphabetic characters. The second part is a number between 1 and 9998. For a given ILS
session, the alphabetic prefix is constant while the numbers are changed to send data to

different files. The file names are defined using the FIL command. When a command




writes data to a secondary file, the file must have been previously opened. To open a

file, use the OPN command.

ILS can work with several types of data. The type of data used for feature vector
analysis is called feature record data which is a vector of real numbers. In ILS terminol-
ogy, each vector is called an item, and the individual components of each vector are
called elements. An ILS record can contain more than one item (vector); however, nor-

mally the number of records is equal to the number of items (vectors) in a file.

Each feature record in ILS has several fields associated with it that describe the data
contained in the record. For principal components analysis, only two fields are used:
field-1 and field-2. The user decides what the two fields mean. Each field can contain
up to eight alphanumeric characters. Normally, one of the two fields will indicate which
class the feature vector comes from. This use allows the BPA command to perform clas-

sification of test vectors given a set of reference vectors.

In this section, essential ILS terminology has been defined. In the next section, the
method for reading textual data into ILS will be described.

Reading Text Files from ILS

The first step is to read the feature vectors from a set of text files into ILS feature
record files. The text files must be in the following format. For each vector, there are
three parts 1) field-1, 2) field-2, and 3) the components of the vector. The fields must
cach start on the beginning of a new line in the text file. ILS will read only the first eight
characters from each line. The component data must begin on or after the line following
field-2. The component data can have any columnar spacing and valid FORTRAN float-
ing point format. When using Ada, the numbers can simply be printed out in the usual

exponential notation.

To read the text files the WRT command is used. The WRT command reads text
data from the file WRTIN.DAT; hence, each text file must be copied to that name as it is
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read in. This requirement makes a multi-window workstation very useful when running
ILS since one window can run ILS while the other window is used to copy the input data
to the file WRTIN.DAT. The WRT conimand is an exception to the above rule about
primary and secondary files. Since the input data comes from a file outside ILS, the out-
put is sent to the primary file instead of the secondary file. The command to read the text
file is WRT FF1,(dimension) where (dimension) is a number indicating the dimension of
the feature vectors. It is recommended that each text file contain feature vectors for only
one class (in the case of reference data) and that the ILS files be numbered consecutively
for each group of reference data. The reason for this is that other ILS commands use

multiple files which must be numbered sequentially.

The feature vectors have now been read into files which can be easily manipulated

using ILS commands. The next step in the process is to normalize the feature vectors.

Feature Vector Normalization

Feature vector normalization consists of insuring that the mean of each component
is ze;'o and the variance is one across all reference vectors (not within a given class).
This process insures that scaling of the axes is uniform for all components of the feature
vectors; hence, no single component can dominate the calculation simply due to a differ-
ence in scaling. The normalization process consists of four steps: 1) combining the vec-
tors into one file, 2) computing the mean and standard deviation vectors, 3) translating
the feature vectors, and 4) scaling the feature vectors. The feature vectors are combined
into a single file using the TRE command. The mean and standard deviation are com-

puted using SME 3,1.

To translate and scale the data the BOP command is used. The primary file is the
original feature vector file for a given class; the primary B file is the file produced by the
SME 3,1 command; and the secondary file is where the translated feature vectors for a

given class will be sent. As implied, each class of feature vectors is separately translated
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and scaled. The command to translate the data is BOP S,,,2. When scaling the data, the
primary file is the translated fi'= for a given class; the primary B file is the product of
SME 3,1; and the secondary file receives the scaled data. The command to scale the data
is BOPD,,2,2.

The feature vectors have now been normalized, so that the scaling on each axis is
the same; hence, no arbitrary feature can dominate the feature vector simply due to a
scale difference between the features. The next section will describe how the Fisher

Linear Discriminants are computed from the normalized feature vectors.

Computing Fisher Linear Discriminants

The Fisher linear discriminants are actually a transformation matrix which rotates
and scales the original feature space into another vector space with a reduced dimen-
sionality while maintaining classificatioﬁ capability. The SME command is used to com-
pute the Fisher linear discriminants. The primary file is set to the file number for the first
class (every class file must be sequentially numbered following the first class). The
secondary file receives the Fisher linear discriminant data. The command to perform the
analysis is SME 6,(num classes) where (num classes) is a number representing the
number of classes being analyzed. This command produces the within-class scatter
matrix, between-class scatter matrix, eigenvélucs, and eigenvectors for the transforma-
tion. Theoretically, the maximum number of non-zero eigenvalues is one less than the
number of classes; however, due to the finite amount of data and limited precision of the
computer, the other eigenvalues will be very small but not zero. The number of non-zero
eigenvalues indicates the dimensionality of the transforined vector space. For example,
if only the first two eigenvalues are large compared to the rest, then the decision space is
a plane. See Duda and Hart Pattern Classification and Scene Analysis for a complete

explanation of the Fisher linear discriminants.

In this section, the method for computing the Fisher linear discriminants has been




described. The next section will discuss how the transformation is applied to the feature

vectors.

Feature Vector Transformation

The Fisher linear discriminants are computed using the PCO command. The pri-
mary file is the first class of the normalized feature vectors. The primary B file is the file
produced by the SME 6 command. The transformed data for each class is placed in a
separate file. The secondary file receives the first class and each succeeding file receives
the following classes. These secondary files must be opened prior to executing the PCO
command. The files can be opened using the following concatenated command string
FIL Snnnn/OPN S(num classes) where nnnn is the file number of the first file to receive
the first class and (num classes) is the same as before. Once the primary and secondary
files are set use the following command to transform the feature vectors PCO ,,(num
classes) where (num classes) is the same as before. If the transformed data is two dimen-
sional (according to the eigenvalues), it can be effectively plotted now using the com-
mand PLR S. The PLR command prompts for the required information. In order to sévc
the plotted graphs on disk use ASG GO1 before executing the PLR command. Then the
plots will go to the file GRAPH.DAT as well as being displayed on the screen.

Feature Vector Dimensionality Reduction

If it is desired to later use the transformed feature vectors for classification tests, the
dimension of the transformed vectors must be reduced to the dimension indicated by the
cigenvalues. The dimension must be reduced because the higher dimensions contain
spurious values which prevent the classification utility BPA from working correctly. The
dimension of the feature vectors can be reduced using the MRE command. This com-
mand is interactive. When requested for the elements (components) to be moved use 1,

-(limension) where (dimension) is a number indicating the dimension of the transformed
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vector space. The minus sign indicates that all elements from 1 to (dimension) inclusive

are to be moved.

Conclusion

The Fisher linear discriminants provide a powerful technique for reducing the
dimensionality of the feature space while preserving for the most part the classification
effectiveness of the original feature space. ILS can work with feature spaces up to 32
dimensions under the current release (for 32 bit systems).” See the descriptions of the
commands SME and PCO in ILS Volume II and the application note on Pattern Analysis

in ILS Volume I for more information.
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Appendix B : Using ILS for Classifying Feature Vectors

Introduction

ILS can be used to classify feature vectors using a variety of classification decision
rules. The use of ILS for implementing a simple nearest neighbor decision rule will be
described here. The decision rule to be used consists of computing the distances between
a test vector and the mean for each class. The class mean which is closest to the test vec-
tor is selected as the class of the test vector. Other more complex decision rules are
available under ILS using the command BPA. It is assumed that the feature vectors have
been preprocessed using PCO and that the reader is familiar with ILS terminology (For
an explanation of these, see Appendix A).

Using ILS for nearest neighbor classification requires three steps: 1) computation of

reference means, 2) transformation of raw feature vectors into the decision space, and 3)

classification using BPA.

Reference Means Computation

The reference means are computed using the SME command. The primary file is
set to the first class. The secondary file receives the computed means. The command
used is SME 1,(num classes) where (num classes) is the number of classes being

analyzed.

Test Vector Transformation

Once the reference means are computed, the test vectors must be transformed in the
same way the reference vectors were transformed using PCO. After the test vectors have

been transformed, the classification can be performed.
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Test Vector Classification

The ILS command BPA performs the classification. The output of BPA is normally
sent to the lineprinter (which is actually a file SYSSPRINT.DAT on the VAXstation sys-
tem. This file is not accessible while ILS is running; hence, it is normally desirable to
redirect the output from this file to the screen). To send the output of BPA to the screen
instead of the lineprinter, use the command ASG LP6. To restart sending output to the
lineprinter use the command ASG LP7.

The command BPA will also output distances and the confusion matrix to ILS files
if desired. If the distances are to be saved, the secondary file should be opened using
OPN S. If the confusion matrix is to be save, the secondary B file should be opened
using OPN SB. The primary file is set to the file containing the means of the reference
vectors, i.e., the product of the SME 1,(num classes) command. The primary B file is set

to the file number of the first set of test vectors (normally from a given class).

The class is determined by either field-1 or field-2. The user is prompted for which
field to use and which characters within the field to use. Once the primary file has been
set and the secondary files opened, the command to start classification is BPA. Select

option 1 for Euclidean distance measure and answer all questions from BPA.

Conclusion

The ILS command BPA provides an effective method for testing the classification
effectiveness of a given feature space. Other more powerful techniques are also available
using the BPA command. See the description of BPA in ILS Volume II and the applica-

tion note on Pattern Analysis in ILS Volume III for more information.
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Appendix C : Source Data Used for Segmentation and Classification

This appendix consists of a set of tables which describe the details of the source

data used for testing the segmentation and classification algorithms.

Table C.1 Target Classes for Small Database

Class | Aspect Angle | Training Samples | Testing Samples
(deg)
| —— ——— — ——— — ———— ———————
Tank 0 4 2
90 7 3
POL 90 3 2

(ai.



are the first five letters of the file names used to store the images in the AFWAL data-
base.

The following table lists the images used for the small database. The names listed

Table C.2 Small Database Source Images

Doppler Relative Range
D3028 R3033
D3033 R3083
D3035 R3090
D3042 R3190
'D3051 R3195
D3066
D3074
D3088
D3090
D3195
D3197

(US




The following table gives the target classes used for the large database subset. For
classes where the number of training samples is zero, the test vectors were used to deter-

mine the ability of the classification algorithm to reject untrained classes.

Table C.3 'I"arget Classes for Large Database

Class Aspect Angle | Training Samples | Testing Samples
(deg)
- —
Tank 0 14 6
45 8 4
90 8 4
315 13 3
Jeep All 6 3
POL 0 4 2
90 0 3
Truck, 1.25 ton 0 0 4
45 0 3
Truck, 2.5 ton 0 4 2
90 0 2




Table C.4 Source Images for Large Database

3100 Series 3200 Series 3300 Series
D3104 D3112 | D3200 D3302
D3116 D3117 D3203 D3308
D3126  D3128 D3204 D3311
D3135  D3136 D3208 D3313
D3140 D3142 | D3209 D3314
D3145  D3147 D3211 D3322
D3149  D3153 D3215 D3324
D3157 D316l D3238 D3326
D3164  D3165 D3257 D3327
D3166 D3178 | D3258 D3328
D3179 D3180 | D3268 D3330
D3192 D3278 D3332

D3286 D3333
D3288 D3334
D3338
D3339
D3344
D3345
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The following four tables list the AFWAL database doppler images used to evaluate

the performance of the segmentation algorithms. A total of 180 doppler images were
evaluated.

Table C.5 Series 3000 Doppler Images Segmented

D3026 D3028 D3030 D3033
D3035 D3038 D3040 D3042
D3045 D3047 D3051 D3053
D3055 D3057 D3061 D3064
D3066 D3069 D3071 D3074
D3077 D3078 D3079 D3080
D3081 D3085 D3087 D3088
D3090 D3092 D3096 D3098




Table C.6 Series 3100 Doppler Images Segmented

D3100
D3113
D3136
D3142
D3158
D3165
D3174
D3179
D3183
D3193
D3199

D3104
D3114
D3137
D3149
D3159
D3166
D3175
D3180
D3184
D3195

D3105

D3116

D3140
D3153
D3161
D3170
D3176
D3181
D3185
D3196

D3112
D3117
D3141
D3157
D3162
D3171
D3178
D3182
D3192
D3197
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Table C.7 Series 3200 Doppler Images Segmented

D3200 D3201 D3202 | D3203
D3204 D3205 D3206 D3207
D3208 D3209 D3211 D3213
D3214 D3215 D3217 D3218
D3219 D322 D3226 D3227
D3230 D3231 D3232 D3233
D3234 D3235 D3237 D3238
D3239 D3241 D3242 D3244
D3245 D3246 D3247 D3249
D3250 D3251 D3255 D3256
D3257 D3258 D3268 D3269
D3278 D3279 D3280 D3281
D3282 D3285 D3286 D3287
D3288 D3289 D3291 D3292
D3293 D3294 D3295 D3297 .
D3298  D3299
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Table C.8 Series 3300 Doppler Images Segmented

D3300
D3304
D3308
D3313
D3320
D3326
D3330
D3334
D3340
D3346
D3350
D3354

D3301
D3305
D3309
D3314
D3321
D3327
D3331
D3335
D3343
D3347
D3351

D3302
D3306
D3310
D3315
D3322
D3328
D3332
D3338
D3344
D3348
D3352

D3303
D3307
D3311
D3319
D3324
D3329
D3333
D3339
D3345
D3349
D3353
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Table C.9 Relative Range Images Used for Evaluating Segmentation Algorithm

R3023 R3024 R3025 R3026
R3027 R3028 R3029 R3030
R3031 R3032 R3033 R3034
R3035 R3036 R3037 R3038
R3039 R3040 R3041 R3042
R3043 R3044 R3045 R3046
R3047 R3048 R3049 R3050
R3051 R3052 R3053 R3054
R3055 R3056 R3057 R3058
R3059 R3060 R3061 R3062
R3063 R3064 R3065 R3066
R3067 R3068 R3069 R3070
R3071 R3072 R3073 R3074
R3075 R3076 R3077 R3078
R3079 R3080 R3081 R3082
R3083 R3084 R3085 R3086
R3087 R3088 R3089 R3090
R3091 R3092 R3093 R3094
R3095 R3096 R3097 R3098
R3099
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Appendix E : Zernike Moment Invariants

The following eleven moment invariants were used as shape descriptors for the
regions detected. The moment invariants were derived by Teague from Zernike moments
in [Teague80]. The moments W'y, are derived for an object using equations (2.3) and

(2.4). These moments are position, scale and rotation invariant.

S1 =321 20+ 02)-11/% _ (E.1)

S2 =99 xn~Wn)? + 41 )?1/n? (E2)

S3 = 16[(Wos—31'21)? + (W30-3W12)1/ %2 (E3)

S4 = 144{(Wos+'2 ) + (W30+3K'12)* )/ 2 (E.4)
13824

Ss= A {3 =312 )W 03+ 21 (W aa+H'21 P -3(W30+1'12)?]

—(1'30-31"12)(W 30+ 12) [( 30 HL 12)2 =3(W 03+ 21 )21} (E.5)

S¢= —8%{ (02~ 20) (W03 H21 2~ 30 HV 122 4101 (Waa+HU2 YW 30 H 12)}  (E.6)

S7 = 25[(Wao—61'2+1'04)? + 16(1'31—41"13)%1/ 72 (E.7)
Sg =25{T4(1'0a—1"40) + 3(“’20“#'02)]-2 + 4[4y +1'13)-3p 1 )22 (E.8)
S9 = 5[6(Ws0+21 " 2+1'04) — 6(20+H'02) + 1]/% ] (E9)

Sio= %0-((1»1'40-6I»1'22+u'04)
X14[(Woa—H'a0) + 3('20-102)1? — 414(1'31HL13)-31"11 1)
- 16[4(1'0s—140) + 3(1 201 02)]
X[4(W'31+H1"13) = 311 113 1 13)) (E.10)
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