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ABSTRACT

. 'Theoretical constraints limit the diffraction efficiency obtainable from multi-
level diffractive optical elements. The scalar theory, commonly used to predict
. diffraction efficlencies, is overly optimistic. An extension to this theory is presented
and ¢ompared with rigorous. electromagnetic theory calculations. The extended
- scalar theory adds a degrée of intultion in understanding why the diffraction effi-

ciency of these elements Is limitad,
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1. INTRODUCTION

Diffractive optical elements are being considered as potential solutions to a number of optical
design problems that are difficult or impossible to solve with conventional refractive and reflective
elements. Two unique characteristics of diffractive elements can be exploited; the first is the
dispersion property. Diffractive structures bend light rays of longer wavelengths more than those
of shorter wavelengths, which is the reverse of refractive materials; therefore, diffractive structures
minimize or eliminate the dispersive effects of refractive materials.

The second unique characteristic is the relative ease with which arbitrary phase profiles can
be implemented. Advances in both diamond turning technology and the use of semiconductor
fabrication equipment have made possible the construction of a variety of diffractive elements. Dia-
mond turning technology allows fabricating diffractive surfaces over iarge areas in a relatively short
period of time. However, there are limitacions: the phase profile has to be circularly symmetric,
and the accuracy with which a diffractive profile can be made is dependent on the tip size of the
diamond turning tool.

Using semiconductor fabrication equipment to make diffractive elements has become a pow-
erful technique. This particular approach produces a stepped approximation, referred to as a
“multilevel structure,” to the ideal profile. As the number of levels becomes large, the diffractive
structure approaches the continuous profile. Diffractive elements can be made with feature sizes
down to 0.5 um. The diffractive profiles can be very general with no symmetry restrictions, for
example, lenslet arrays, which are being used to increuase the collection efficiency of detector arrays
and as components of wavefront sensing devices, These arrays are composed of individual diffrac-
tive lens profiles that are corrected for spherical aberration. Each lens has a rectangular aperture
so that 100% of the area is covered. Such lenslet arrays would be difficult to fabricate any other
way.

The diffractive optical elements that are fabricated by diamond turning or by using semicon-
ductor fabrication equipment are surface relief elements. Surface relief diffractive elements are a
particular class of diffractive elements that impart a phase delay to an incident waveftont in a very
thin layer close to the surface of the element. The thickness of this layer is on the order of the
incident wavelength, The phase delay is imparted to the incide: ¢ wavefront by selectively removing
material from the surface of the substrate,

Diffrartive optical elements are different from reflective or refractive elements in that a light
ray incident on u diffractive element is split into many rays, only one of which travels in the desired
direction; its magnitude, relative to the sum of the magnitudes of all the split light rays, is called
the diffraction efficiency. In most cases, a diffraction efficiency of one is desired, which is equivalent
to all the light traveling in the chosen direction.

The diffraction efficiency that can be expected in practice from a particular difiractive element
is limited by theory as well as by fabrication tolerances. The ability to fabricate diffractive elements
has improved dramatically over the past few years -— so much so that the attainable diffraction




efficiency for many elements (particularly those operating in the far infrared) is limited almost
exclusively by theory. Performance degradation of diffractive optical elements due to fabrication
errors has been investigated by others [1,2]. This report concentrates on the strictly theoretical
limitations of achievable diffraction efficiency. It is, therefore, assumed that the surface relief profiles
can be fabricated with infinite accuracy, The resulting diffraction efficiency calculations place a
theoretical upper limit on attainable performance.

Whether a diffractive element will work for a particular application is ultimately determined
by the obtainable diffraction efficiency; for example, consider the case of a lenslet array that is
used to increase the light-gathering ability of a detector array. Certain detector arrays are made
with a substantial fraction of dead space on the detector plane. A lens, properly placed in front
of each detector, would effectively concentrate the light that would have fallen on the dead space
onto the detector. For typical detector arrays under consideration, the increase in light-gathering
cepacity that a lenslet array can achieve is about a factor of 4, assuming that the lenslets have
a diffraction efficlency of 100%. If the diffraction efficiency were only 50%, the increase in light-
gathering efficiency would be only a factor of 2. Jf the diffraction efficiency dropped to 25%, the
lenslet array would contribute absolutely nothing, Therefore, the diffraction efficiency that can
reasonably be expected from a diffractive element is an important parameter.

Conventional lens design programs are now commonly used to model and optimize diffractive
phase profiles. These lens design codes assume that the diffraction efficiency of a diffractive element
is 100%. These codes are capable of determining phase profiles, but obtainable diffraction efficiency
has to be determined separately. Theoretically, diffraction efficlency is a function of a number of
parameters: the index of refraction of the substrate, the size of the zones of the diffractive profile
relative to the incident wavelength, the polarization and angle of incidence of the incident light,
and the depth and shape of the surface profile within a zone.

In theory, Maxwell's equations can determine exactly the diffraction efficiency of any diffrac-
tive structure. In practice, it is not possible to obtain exact solutions for the majority of cases.
Numerical solutions are possible for certain diffractive structures; however, the necessary algorithms
are very computationally intensive.

One of the simplest and most widely used ways to predict diffraction efficiencies is to use
a scalar theory. The scalar theory of diffraction from a surface relief structure is based on a
simplification of Maxwell's equations and a simplified mode] of the surface relief structure. The
region of validity of the scalar theory is in the limit of the wavelength-to-zone spacing approaching
zero. In other words, the size of the diffracting feature has to be very large compared with a
wavelength of the incident light. The light is, therefore, deviated from the incident direction by a
small angle. Section 2 describes the scalar theory and uses it to predict diffraction efficiency.

When the ratio of the wavelength-to-zone spacing approaches one, the incident light is de-
viated by large angles approaching 90 deg. It is in this regime that the scalar theory completely
breaks down. Reliable estimates of diffraction efficiency can noc longer be obtained from the scalar
theory; however, numerical solutions to Maxwell’s equations can be obtained for periodic diffracting




structures, i.e., gratings. If the grating period becomes much larger than a few wavelengths, the
algorithm becomes too computationally intensive, Section 3 describes briefly the electromagnetic
theory approach used to solve Maxwell’s equations numerically for periodic structures.

In determining the diffraction efficiency of a grating, the scalar theory is valid for large period-
to-wavelength ratios while the electromagnetic theory can only be used for very small period-to-
wavelength ratios. A large void is left between the two limits where the scalar theory is not very
accurate and the electromagnetic theory is numerically prohibitive. An approach to obtaining more
reliable results for the diffraction efficiency in this region of period-to-wavelength ratios is to extend
the scalar theory. This extended theory, developed in Section 4, combines aspects of geometrical
optics with conventional scalar theory.

Section 5 compares the results of the three theories for a few representative examples, and
the consequences of the theoretically obtainable diffraction efficiency for various applications are
discussed,




2. SCALAR THEORY OF DIFFRACTION EFFICIENCY

The scalar theory of diffraction is based on the assumptions that light can be treated as a
scalar rather than vector field and that the electric and magnetic field components are uncoupled.
Two conditions are commonly stated as necessary for the scalar theory to have any validity: the size
of the diffracting features must be large compared to the incident wavelength, and the diffracted
field must be observed far from the diffracting structures (3],

A further approximation, referred to as the “Fresnel approximation,” allows an integral solu-
tion of the propagation of the light fleld. The Fresnel approximation assumes that spherical waves
can be approximated by quadratic waves. Within the realm of Fresnel diffraction, given the light
field at some initial plane, the light field can be determined at any plane. Mathematically, the
process of Fresnel diffraction is expressed by

UGa) = [ de [ dyUan,zo)exp {52 ((e - a0 + (- o)), (1)

where the initial light field, U(zo, o), is propagated a distance z, resulting in the light field U/(2,y).
Multiplicative factors preceding the integral are generally not important and are omitted.

If the propagation distance is Jarge enough so that the quadratic phase term in the inte-
gral of Equation (1) can be ignored, the resulting expression, again neglecting the unimportant
multiplicative factors, becomes

Ulfaf) = [ de [~ dyUao, o) exp {~i2lfuzo + fytal), (2

where f. = 2/Az and fy = y/Az. Equation (2) represents the approximation known as the Fraun-
hofer diffraction and is the foundation for calculating diffraction efficiencies of surface relief diffrac-
tive elements in the scalar regime. For a perlodic structure, l.e., grating, the amplitudes of the
various diffraction orders can be determined Ly a simple Fourier transformation of the grating
transmittance function. This simplificotion will be used to ralculate the theoretical performance
of multilevel phase grat'ags. It should be noted that in the scalar theory, the diffraction efficiency
of an arbitrary diffractive optical element can be directly related to the diffraction efficlency of
a grating [4). It is, therefore, only necessary to determine the diffraction efficiency of a grating
structure.

2.1 Diffraction Efficlency of a Multilevel Phase Grating

The surface relief profile of a one-dimensional, multilevel phase grating is shown in Figure 1.
In order to calculate the diffraction efficiency of this grating structure, the far-field of one grating
period has to be determined. The transmittance function of one period can be described by the




summation of the transmittances of N subperiods of width T/, where N is the number of phase
levels within one period of dimension T.

N-PHASE STEPS
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Figure 1. Surface relief profile of a one-dimensional, multilevel phase grating.

Each subperiod is a rect function of width T'/N, centered at £ = (m + 1/2)T/N, where m
Is an integer from 0 to N — 1. In the scalar approximation, the phase delay imparted by each
subperiod can be expressed as ¢ = maoo/N, where ¢ is the largest phase delay of all subperiods.

The far-fleld amplitude distribution of a subperiod, centered at a position z, with a width
T/N and a phase delay of ¢, can be calculated from Equation (2) with the result

U'(f) = %exp{%%wf} exp {1279} (3)

The far-field amplitude distribution of a total period can then be expressed as a summation
of the far-field amplitude distributions of the N subperiods within the total period:

N-
Z’"" (TIN) exp {~itm((m+ DT/N)f}exp lizemdo/N). ~ (0)

*Tf/N

Repeating the period an infinite number of times constrains the far-field to have nonzero
values only at positions f = [/T', where | is an integer that represents the lth diffraction order. The
far-field amplitude of the Ith diffraction order can be written as

N-1
A; = exp {-—ml/N}'—lE-;—r;I/—JV—)- 1/N) Z exp {~i2n(l - ¢o)m/N}. (5)
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The diffraction efficiency n; of the lth order is 4;4],

. sin?(rl/N)

N~-1
s YN exp{~i2n(l = do)m/N)J ()

m=0

The summation in Equation (6) can be readily evaluated

sin?(n (! — ¢0))

N-1
|3 exp{~i2n(l - go)m/N}]* = sin?(n(l - ¢p)/N)’

m=0

Substituting the result of Equation (7) into (6) gives the expression for the diffraction efficiency
of the ith order as

_sin(m(l - ¢g))  sin(nl/N) .
= nl : sin(m(l - ¢o)/N)]2’ (8)

where N is the number of phase levels, ¢y = N, and ¢ is the phase depth change in waves of one
subperiod.

Equation (8) s the basis for calculating diffraction efficiencies of surface relief diffractive
optical elements. Within the scalar theory reglon of validity, this equation can determine the
amount of light in any diffraction order for any number of phase levels. Equation (8) shows that for
a given number of phase levels, N, the diffraction efficiency of the [th diffraction order is a function
of one parameter, ¢g. This @9 parameter can be related to the physical step height of a multilevel
structure, as well as the incident wavelength and the angle of incidence of light impinging on the
diffractive surface.

Figure 2 illustrates the relationship between the parameters necessary to define ¢, in terms
of physical properties. Two light rays are shown impinging on two neighboring subperiods in
a multilevel structure. The index of refraction of the diffractive element is n and the angle of
incidence is 6. The physical step height between the neighboring subperiods is éd.

The parameter ¢, previously defined as the phase difference in waves between two neighboring
subperiods, is therefore defined in terms of the parameters of Figure 2 as

= 3 (mn - 3a), 0

where the distances y; and y; are geoinetrically determined to be
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Figure 2. Light rays traced through two neighboring subperiods.
n=— % + sin 63(z ~ 6d tan ) (10)

and
6d

¥ = — -~ +8in6y(z — 6dtanb). (11)

cus 6y

Inserting Equations (10) and (11) into (9) results in an expression for ¢ that can be trigono-
metrically reduced to

= %—{ncoseg - cos b1 }. (12)

Relating 6; to 87 in Equation (12) through Snell's law results in the following expression for ¢
as a function of the step height, the index of refraction of the substrate, and the angle of incidence
in air:

o= 0, cont] "

The parameter ¢p in . uation (8) is, again, ¢p = N¢. It should also be noted that for the
case of normal incidence 6, becomes zero, and Equation (13) reduces to the simple expression




¢ = bd(n ~ 1)/ (14)

2,1.1 Examples

Equation (8) is a general scalar theory expression used to determine the diffraction efficiency
of multilevel diffractive elements. An equivalent scalar theory expression for continuous profile
diffractive elements, such as those fabricated by diamond turning techniques, can be found by
taking the limit of Equation (8) as the number of levels N approaches infinity. The resulting
expression for an infinite number of phase levels becomes

o _ [sin(-rr(l - ¢o))]2‘ (16)

el o er s

(m(l - ¢o))

Notice that the diffraction efficiency of the first order, 7°, becomes 100% when ¢p = 1. This is the
result of the scalar theory that claims that 100% diffraction efficiency is possible.

The first diffraction order is usually of most interest and usually requires the highest diffraction
efficiency. The diffraction efficiency of the first. order is maximum when ¢p = 1. The first-order
diffraction efficiency of an optimized N-level element can be found by setting | and ¢p both equal
to one:

_ (sin(w/N)
7{V_[ (‘H'/N) ' (16)

expressing the maximum first-order diffraction efficiency one can expect from an N-level element
in the scalar approximation.

The ¢p parameter can be expressed as a function of the total depth d of the diffractive profile
rather than the depth 6d of a subperiod. The total depth d is simply related to éd, by d = (N —1)éd.
The ¢y paramete:, for normal illumination, becomes

b0 = () B, 07)

Setting ¢y equal to one determines the optimum total depth for an N-level diffractive profile
on a substrate of index n, to be used at a wavelength A:

N-1) A

|
d="=5 (n-1)

(18)

in the limit of the number of levels approaching infinity, the well-known expression for the
optimum depth, d = A/(n — 1), is obtained.




It is a fact that the diffraction efficiency of a diffractive structure is wavelength dependent.
From the previous analysis, it can be deduced that the optimum step height for normal incidence
and wavelength Ag is

Ao

0d = Nin-1)'

(19)

Substituting Equation (19) into (13) results in an expression for ¢ from which ¢¢ can be
determined to be

vn? — 8in? B, @ — cos by

Ay
[ (n- 1) I

Po = (20)

Equation (8),' in conjunction with (20), can be used to determine the diffraction efficiency
of an N-level element as a function of wavelength and incident angle, for which the first-order
‘diffraction efficiency has been maximized for wavelength Ao and normal incidence.

Figure 3 plots the first-order diffraction efficiency as a function of wavelength for various
values of N. The element was optimized, as described above, to have a maximum diffraction
efficiency at wavelength Ao and normal incidence.

Figure 4 plots the first-order diffraction efficlency at wavelength Ay as a function of incident
angle for various values of N. The element was optimized to have a maximum diffraction efficiency
at wavelength Ag and normal incidence. The figure reveals that in the scalar approximation the
diffraction efficiency of these elements is very insensitive to the angle of incidence, This result
reflects positively on the concept of placing diffractive surfaces or: refractive optical elements, with
the intent that the diffractive surface minimizes the aherrations of the refractive element. In such
cases, the period-to-wavelength ratio of the diffractive structure is usually large, lending credibility
to the scalar approximations; however, the range of incident angles impinging on the diffractive
surface becomes quite large. Figure 4 shows that the diffraction efficiency, in general, will not suffer
very much as a consequence of the large range of input angles.
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3. RIGOROUS ELECTROMAGNETIC THEORY OF DIFFRACTION
EFFICIENCY

In Section 2, analytical expressions for the diffraction efficiency of surface relief phase gratings
were developed using & acolar theory. As mentioned earlier, the diffraction efficiency of structures
© more complex than simple gratings can be directly related to the diffraction efficiency of the grat-

lngs through a nonlinear lirniter anaiysis {4). This allows a closed form solution of the dxﬂ‘raction '

. efﬁciency for any mrface relief diffractive optical element.

The scalar theory is usefal for designing surface relief diffractive elements with periods that

" are much larger than the wavelength for which the element is to be used.  When the periods
on the diffractive element become comparable in magnitude to the wavelength, the scalar thecry

(developed in Section 2) gives unreliable values for difiraction efficiency. The amount of discrepancy
between the diffraction efficiency predictions of the scalar theory and reality is a function of the
period-to-wavelength ratio and the index of refraction of the substrate.

In order"tb'get’a more reliable prediction of expected diffraction efficiencies, & more accurate

theory must be used. In principle, Maxwell's equations could be solved for a particular diffractive
structure, giving results that would be extremely accurate. in practice, the solutions to Maxwell's
equations have to be calculated numerically.

Various approaches to solving the electromagnetic equations of grating diffraction exist. Al-
though they are equally valid, this report uses the approach first employed by Moharam and
Gaylord [6), which is based on a coupled wave theory approach to solving Maxwell's equations. A
brief outline follows, (Because the details are too numerous to discuss in this reperi, the reader is
referred to Reference 8.)

An electromagnetic fleld incident on a phase grating can be divided into three main regions.
The first, described by a homogeneous permittivity €y, is where the incident and reflected fields
propagate. The second is the modulation region of the grating profile, with permittivity alternating
between €; and €3, the permittivity of the third region. This third region is where the transmitted
field propagates and is characterized by the homogeneous permittivity ¢s. In all three regions,
permeability is equal to the permeability of free space.

The electromagnetic flelds in the first and third regions can be expanded as sums of plane
waves with the wave vectors determined from the Floquet condition, In the second region, the
electromagnetic fields are expressed as Fourier expansions of the space harmonic fields. The second
region is divided into N layers of equal thickness, each represented by the characteristics of the
grating at the middle of the layer. The permittivity of each layer can be represented by a Fourier
expansion. The permittivity in the second region, €3, alternates within a layer between ¢; and 3.

The solution for the amplitudes of the reflected and transmitted diffiraction orders is achieved
by applying Maxwell's equations at the boundaries between the N layers. The electric and magnetic
fields must have continnous tangential components.

13




An extensive computer code, DIFFRACT, has been developed based on the coupled wave
theory. The accuracy of the code is dependent on the number of layers used to describe the grating
modulation region and the number of orders retained in the Fourier expansion of the electromagnetic
fields. The computation time necessary to solve for the diffraction efficiency increases linearly with
the number of layers. In other words, the amount of computer time used to solve an N layer grating
structure is twice that of an N/2,

The computation time necessary to solve for u grating is proportional to the cube of the
number of orders retained in the Fourier expansion. In order to obtain an accurate solution, all
the propagating orders, as well as a few evanescent orders, should be retained. The number of
propagating orders from a grating is determined by the period-to-wavelength ratio; the larger the
ratio, the more propagating diffraction orders. The computation time is, therefore, a strong function
- of the period-to-wavelength ratio, Furthermore, the maximum period-to-wavelength ratio grating
that can reasonably be solved is dependent on the available computing power. In general, gratings
with period-to-wavelength ratios greater than 10 become unreasonable to try to solve using this
algorithm, :

As seen sbove, one of the main constraints of the rigorous coupled wave theory, as well as other
rigorous electromagnetic theories, is the limit on the maximum period-to-wavelength ratio grating
that can be solved. The scalar theory, on the other hand, is only valid in the very large period-to-
wavelength regime. A void remains between the usefulness of the two theories where unfortunately,
a large percentage of the diffractive structures are being considered for various applications.

Another property of the rigorous electromagnetic theory is that it lends itself to very little
intuitive insight into what to expect for diffraction efficiencies from gratings. Section 4 presents
an intermediate theory for multilevel diffractive optical elements that attempts to bridge the gap
between the scalar and the rigorous electromagnetic theories. This intermediate theory partially
explains, in an intuitive fashion, the falloff of diffraction efficiency as a function of period-to-
wavelength ratio.




4. EXTENDED SCALAR THEORY OF DIFFRACTION EFFICIENCY

The scalar theory of diffraction, as described in Section 3, is valid only for diffractive struc-
tures that have very large period-to-wavelength ratios, The rigorous electromagnetic theories of
grating diffraction allow numerical solutions for only small period-to-wavelength ratios due to the
computational complexity of the algorithms, A useful theory would function in the region of inter-
mediate values of perlod-to-wavelength ratios, would be more accurate than the scalar theory, and
would be computationally simpler than the rigorous electromagnetic theories.

The intermediate theory presented here, called the extended scalar theory, is like the scalar
because it is strictly valid only in the confines of very large period-to-wavelength ratios, but for
intermediate values of period to wavelength, agreement with reality is much better.

The major assumption that the extended scalar theory attempts to avoid is that the phase
delay of the incident light, caused by the grating, occurs in an infinitely thin layer. The effects of
the finite thickness of the grating profile are taken into consideration.

The finite thickness of the grating profile is treated by combining the scalar theory (based
on wave propagation) with a geometrical theory (based on ray tracing). The incident light field is
assumed to propagate through the thickness of the grating profile according to geometrical optics,
Once the light exits the grating profile, the scalar theory based on wave propagation is applied.

4.1 Optimum Grating Profile Depth

As mentioned above, the most widely used scalar theory assumes that the phase delay as-
sociated with a surface relief phase grating occurs in an infinitely thin layer on the surface of the
substrate. This phase delay is physically implemented, however, by etching away certain areas of
the substrate surface. The phase delay is the result of the optical path length difference due to
the variation in surface profile thickness. The conversion of a phase delay into a physical thickness
for a diffractive element designed to have a maximum first-order diffraction efficiency was shown
in Section 2 to result in a physical depth of d, where d = A/(n ~ 1). Notice that the optimum
depth based on the scalar theory is only a function of the wavelength and index of refraction of the
substrate.

The mathematical assumption that the phase delay occurs in an infinitely thin layer is obvi-
ously unrealistic. Only for the case of substrates with extremely large refractive indices would the
theory begin to agree with reality. Therefore, the scalar value of depth d is also an approximation,
The questions “How bad is the assumption of the scalar theory?” and “What is the actual optimum
depth?” need to be answered.

The approach used to determine the optimum depth by extending the scalar theory is shown
in Figure b for the case of light normally incident on the substrate boundary and traveling from
the substrate into air. The angle, 84, at which the first diffraction order travels from the grating is
simply determined by the grating equation




sinfy = \/T. (21)

» SNELLS LAW: nsin (0t) m .|n(e,+a)
» GRATING EQUATION: sin 8y = -,}
+ SOLVE FOR d

Figure 5. Geometrical ray trace through a surface relief grating,

If one now considers each period of the grating to consist of a miniature refractive prism, light
rays can be traced geometrically through each facet. The angle that the light rays exit the prism,
Bp, is simply governed by Snell's law

nsina = sin (fp + a), (22)

where a = arctand/T'.

An intuitive argument would suggest that the first diffraction order will have its maximum
efficiency when the angle of the light rays traced through the prism 6, is equal to the angle of the
first diffraction order 64. The result of setting 6, equal to 84 and solving for d is

d= 4 ' (23)
n~+1-
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Notice that this value of the grating depth is different from the scalar theory value. The
most apparent difference is that the optimum depth given in Equation (23) is a function of the
grating period, whereas the scalar theory value is independent of it. This immediately implies that
for structures more complicated than gratings, the depth of the diffractive profile should vary as a
function of the local period of the structure. Furthermore, it is worth noting that in the limit of
the period T going to infinity, Equation (23) reduces to the scalar theory value.

From this point on, the depth value determined from Equation (23) is referred to as the
“optimum depth” and represented by dop. The scalar depth value is represented by dgpp. In order
to see how the optimum varies from the scalar theory depth, it is useful to plot the ratio of the two
as a function of the period-to-wavelength ratio, as shown in Figure 6 for two values of the index of
refraction of the substrate. As expected, the ratio of dop/dapp 8symptotically approaches a value
of one as the period-to-wavelength ratio increasss, The depth ratio deviates significantly from a
value of one at small period-to-wavelength ratios. The exact period-to-wavelength ratio at which
the deviation becomes significant is dependent on the index of refraction of the substrate. For high
index of refraction substrates, the deviation occurs at smaller period-tu-wavelength ratios than for
low index of refraction substrates.
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Figure 6. Extended scalar theory prediction of optimum depth as a function of the period-
to-wavelength ratio,

Equation (23) was derived for normal incidence on the substrate boundary with the light
traveling from the substrate into air. A more general expression for the optimum depth can be
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derived using a similar approach to that used to derive Equation {23). Again, the idea is to simply
equate the diffraction angle of the grating to the deviation angle of the prism for an arbitrary angle
of incidence. The result of such an approach is the expression for the optimum depth as a function
of incident angle as well as the wavelength-to-period ratio and the index of refraction:

A

dopt = A . (24)
ny1 < (8in ;)2 - /1= (% + nsinb;)?

Notice that Equation (24) reduces to (23) when the incident angle 6; is set equal to zero.
Equation (24) can also be used to determine the optimum depth for normal illumination when the
light is traveling from air into the substrate. In Equation (24), 8, is defined as the incident angle in
the substrate material. For the case of normal illumination from air into the substrate, sin 8; has
to be set equal to —n—')-. The result is the optimum depth for normal incidence traveling from air
into the substiate:

A
d”‘_n 1-(A/nT) -1 (26)

For all cases as the wavelength-to-period ratio approaches zerc, the depth approaches the scalar
theory value of dopp = A/(n = 1).

The depth values determined above were based un a somewhat intuitive argument. There is
no proof that the expressions derived determine the depth that results in a maximum first-order
diffraction efficiency. To test these cxtended scalar theory depth values, the DIFFRACT program
(described in Section 3) was used to calculate the theoretical first-order diffraction efficiency for
various wavelength-to-period ratio gratings. The minimum ratio tested was 0.5, corresponding to
a 30.deg diffraction angle for the first order. Calculations were done for both high- (n = 4) and
low-index (n = 1.5) substrates. The depth of the gratings was varied over a region that included
the optimum as well as the scalar theory depth. In all cases, the first-order diffraction efficiency
was maximized when the depth was near that predicted by the extended scalar theovy.

Figures 7 and 8 plot the first-order diffraction efficiency as a function of the wavelength-to-
period ratio. Curves are plotted for gratings having depth values equal to both the scalar theory
and the optimum. Figure 7 plots a substrate with a low index of refraction (n = 1.5), and Figure 8
plots a substrate with a high index (n = 4). The calculations for the high-index substrate include
a single layer antireflection coating; the low-index substrate had none. In all cases, the optimum
depth value, as predicted using the extended scalar theory, results in a higher diffraction efficiency
than that predicted usiiig the scalar theory.
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Figure 7. First-order diffraction efficiency as a function of the wavelength-to-period ratio
for an n = 1.6 substrate.
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4.2 Extending Scalar Theory Prediction of Diffraction Efficiency

Diffraction efficiency predictions based on the scalar theory are completely independent of the
wavelength-to-period ratio. Figures 7 and 8 clearly show, however, that the diffraction efficiency
is a function of the wavelength-to-period ratio. One of the major reasons that the scalar theory
fails to predict this falloff is, again, largely due to the assumption that the phase delay occurs in
an infinitely thin boundary of the substrate. '

The concept of geometrically tracing rays through the finite depth of the diffractive structure
and subsequently applying the scalar theory can be used to extend the prediction of diffraction
efficiency. This approach, though obviously not an exact solution to the diffraction problem, is
more consistent with the electromagnetic theory calculations.

The most apparent feature that emerges from geometrically tracing rays through the depth
of the diffractive structure is an effect referred to as “light shadowing.,” Figure 9 illustrates the geo-
metrical ray trace and shows the light shadowing resulting from a finite thickness structure. Light
rays traveling in a direction normal to the substrate boundary are refracted at the substrate/air
interface. The angle that the light rays deviate is determined from Snell's law, The depth d is as-
sumed to be the value determined in Scction 4.1 that optimizes the first-order diffraction efficiency,
The period of the grating is T, and the index of refraction of the substrate is n.

The light rays that exit the grating structure in the first diffracted order no longer fill the
entire grating area. Immediately after the grating, the ratio of the area filled with light to the total
area is called the duty cycle (DC) and is equal to AT/T. From a geometrical construction, the
DC for the case illustrated in Figure 9 can be expressed as

DC=1~ Fivﬁé(w- (26)

Once the light rays are traced through the grating profile and the DC of the first diffraction
order is determined, the scalar theory is applied to the exiting field. The light in the first diffraction
order immediately after the grating resembles an unfilled aperture, It is a well-known result of the
scalar theory that the amount of light that travels undiffracted through an unfilled aperture is equal
to the DC of the unfilled aperture.

The light that is traced through one period of the grating encounters a stepped profile if the
grating is made in a multilevel fabrication process. For this case, a fraction of the incident light
equal to the DC given by Equation (26) is lost. Therefore, the fraction of light that resides in the
first diffraction order can be approximately expressed by the product of the DC' squared and the
efficiency predicted from the scelar theory. Note from Equation (26) that the DC and, therefore,
the first-order diffraction efficiency, is a function of the wavelength-to-period ratio; going to zero,
the DC approaches one, and the first-order diffraction efiiciency approaches the scalar theory value.
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Figure 9, Light shadowing caused by finite depth surface relief profile.

A further extension could be approximated by including polarization effects. The scalar theory
and its extension are polarization independent. These effects could be added to the extended scalar
theory by including losses at the grating fucet boundaries due to Fresnel reflection losses,

The extended theory is designed to be strictly valid only in the large period-to-wavelength
ratio limit, as is the scalar theory, and more accurate for moderate wavelength-to-period ratios.
As the period-to-wavelength ratio decreases, the extended scalar theory breaks down. The theory
completely breaks down for a given index of refraction at the point where the slope of the individual
facets within one period become large enough so that a light ray traced at the boundary will suffer
from total internal reflection. Combining the equations for total internal reflection and the optimum
grating depth results in an upper limit on the wavelength-to-period ratio for which extended scalar
theory has any validity, This upper limit is expressed as

)mae = Y 1-1/n% (27)

(

A
T




for example, the extended scalar theory for a substrate with an index of refraction equal to 4 will
totally break down when the wavelength-to-period ratio is equal t~ 0.97. For a substrate with a
1.5 index of refraction, the breakdown occurs at a wavelength-to-period ratio of 0.74. Section b
compares the extended scalar theory with rigorous electromagnetic calculations. The maximum
value of the wavelength-to-period ratio used in these comparisons is 0.5.




5. COMPARISON OF SCALAR, EXTENDED SCALAR, AND
ELECTROMAGNETIC THEORIES

Three theories have been presented that can predict the diffraction efficiency from diffractive
optical elements; each has strong points and weaknesses, and each complements the other in terms
of information.

Obviously, the electromagnetic theory results in an exact solution to the problem of diffraction
from a grating, Solutions to the electromagnetic theory can only be calculated numerically aud
computation time increases rapidly as the perind-to-wavelength ratio increases; thus, there are two
limitations. The first is the upper bound on the period-to-wavelength ratio for which a solution
can be calculated, which is a function of the computer speed and how long one is willing to wait
for the solution. The second limitation is the lack of any real insight into try'ng to optimize the
diffraction efficiency of a diffractive structure,

The scalar theory is the least accurate yet easiest to use of the three; it allows for analytical
exprersions for the diffraction efficiency as a function of physical parameters. The analytical expres-
sions give an insight into the design and/or feasibility of diffractive optical elements for a particular
application. The diffraction efficiency calculated using the scalar theory is completely independent
of the period-to-wavelength ratio. The value calculated can be used, however, as an upper bound on
the obtainable diffraction efficiency. Scalar theory accuracy increases as the period-to-wavelength
ratio increases. Thus, the theory becomes valid whun the electromagnetic theory cannot be used
due to computation time,

the extended scalar theory fills the void between the scalar - .a the electromagnetic. It
retains the closed-form solution of the scalar theory and has a functional dependence on the period-
to-wavelength ratio. Using the basic concepts of the extended scalar theory allows for a degree of
insight into the optimum design of grating structures.

A graphical comparison of che results from the three theories is useful to visualize the differ-
ences in predicting diffraction efficiencies. Figures 10 and 11 plot the predicted first-order diffraction
efficiencies as a function of the wavelength-to-period ratio for substrates with refractive indices of
1.5 and 4, respectively. The grating profiles are 16 phuse level approximations to the optimum con-
tinuous profiles. The gratings on the n = 4 substrate are assumed to have an optimum quarter-wave
antireflection coating; the n = 1.5 substrate is uncoated.

The most important feature of Figures 10 and 11 is the significant deviation between the scalar
and the other two theories for moderate wavelength-to-period ratios. The curves confirm that the
scalar theory is only valid for very small wavelength-to-period ratios. Another feature illustrated
in the figures is the effect of the index of refraction of the substrate. Higher-index substrates suffer
a smaller diffraction efficiency falloff than do low-index substrates. This effect is readily explained
from the light shadowing concept presented in Section 4.
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Figure 10. Predicted first-order diffraction efficiency as a function of the wavelength-to-
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Figure 11. Predicted first-order diffraction efficiency as a function of the wavelength-to-
period ratio for u grating on a substrate with n = 4,




It has been noted that the diffraction efficiency results of the extended scalar and the electro-
magnetic theories are dependent on the period-to-wavelength ratio; therefore, diffractive structures
more complicated than simple periodic gratings have diffraction efficiencies that are a function
of position on the element. Assigning a single diffraction efficiency value to an element requires
sampling the aperture,

The diffraction efficiency of a diffractive lens, for example, can be approximately determined
by assigning a periodicity to the lens that is a function of radial position, The lens can then
be divided into annular regions of equal area. Each annular region is assigned a period equal to
the period at its center. The extended scalar or the electromagnetic theory cen then be used to
determine the approximate diffraction efficiency of the annular regions. Since each region is of
equal area, the lens can be assigned a diffraction efficiency that is simply the average of all the
efficiencies of the annular regions. The accuracy of this approach is determined mainly by the
number of annular regions into which the lens is segmented.

Using the approach described above, a first-order diffraction efficiency can be assigned to
s diffractive lens as a function of its numerical aperture. Figures 12 and 13 plot the theoretical
diffraction efficiencies as a function of numerical aperture for substrates with indices of refraction
of 1.5 and 4, respectively. The substrate with an index of refraction of 4 !s, as in the previous
calculations, assumed to have an antireflection coating, The substrate with an index of refraction
of 1.5 is uncoated. Curves are plotted from calculations of the electromaguetic and the extended
scalar theories,
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Figure 18. Predicted first.-order diffraction efficiency of a diffractive lens as a function
of numerical aperture for a substrate with n = 1.5.
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Figure 18, DPredicted first-order diffraction efficiency of a diffractive lens as a function
of numerical uperture for a substrate withn = 4,

Th~ extended scalar theory calculations in Figures 12 and 13 were done for diffractive lenses
with an optimum depth, while the electromagnetic theory calculations were done for diffractive
lenses that had optimum depth profiles, as well as the approximate depth, determined from the
scalar theory. Since opiimum depth is & function of period, it varies for a lens as a function of
radial position. Diffractive lenses with radially varying depths cannot realistically be fabricated
using lithographic techniques; however, they can be produced using diamond turning methods,

Another difference is that the extended scalar theory is polarization independent, while the
electromagnetic theory is dependent on the polarization of the incident light. On a radially sym-
metric diffractive lens, different angular positions are illuminated with different polarizations. The
net effect over the entire aperture is simply an average of the diffraction efficiencies of the tranverse
electric (TE) and trunsverse magnetic (TM) polarization states.

The main point elucidated in Figures 12 and 13 is that the diffraction efficiency from a
diffractive lens is thooretically limited. The difference in efficiency between that predicted from
the scalar theory and that predicted from a more accurate theory is dependent on the numerical
aperture of the lens, and the difference becomes quite large as the numerical aperture increases.
Diffraction efficiency is also a function of the index of refraction of the substrate. Diffractive lenses
of a given numerical aperture have a higher theoretical efficiency on high-index substrates than on
low-index substrates.
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