b Il!l Illllllllllﬂllllllll’lllllllllll

A USER’S GUIDE TO THE
TEXPLAN SYSTEM

RL-TR-91-46
in-House Report
March 1991

we:s GRARY
| DTIC TAB
; Ungancvnged
! Justificatio
!
! |
. . . | By !
Michele Kubis and Colleen A. McAuliffe | Distributlon/ i
5 Avallapility Codes |

‘ dssession Ior T ;'
o
a
O

Aklil 371/0”-
Di t ! Spucial

ML

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

o ,v"}. F* A ‘;‘T& '-’:\-’
e - ot
¥
H Y5 i 3
,__....-n--—.
— n‘mﬂ—"‘" -

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

92 5 13 080

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-46 has been reviewed and is approved for publication.

APPROVED:

92

S})MUEL A. DINITTOQ, JR., Chief
C* Software Technology Division
Directorate of Command and Control

APPROVED:

fomst)

Raymond P. Urtz, Jr.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER:

RONALD RAPOSO
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(COES) Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

L

REPORT DOCUMENTATION PAGE

" Form Approved
OMB No. 0704-0188

Quthering and maintaining the dats nesded, 8rd compisting and reviewing the

mmmhudehwumt mp-mmmhm-hmm
colection of iformation. Send corTTments regarding this busden estimete or sry cther sspect of this

colsction of rfornetion, inclcing suggestions for reducing this turden to Washington Heaciguartars Services, Otectorate for Infarmation Operations andReparts, 1215 Jsfferson
Davis Higrwey. Subs 1204, Afington, VA 222024302, snd to the Office of Maregamer—t and Bucigat, Psperwork Rechuction Projsct (0704-0188), Washington, DC 20503,

SONCHING Wieting Cits SOLICES,

2 REPORT DATE
March 1991

1. AGENCY USE ONLY (Leave Blank)

3. REPORT TYPE AND DATES COVERED
In-House Jun 90 - Sep 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A USER'S GUIDE TO THE TEXPLAN SYSTEM PE - 62702F
PR - 5581

6. AUTHOR(S) TA - 27
Michele Kubis and Colleen A. M<Auliffe wu - 30

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rome Laboratory (COES) REFQRANYMAER ¢
Griffiss AFB NY 13441-5700

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Rome Laboratory (COES) N/A
Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Douglas A. White/COES/(315) 330-3564

12a DISTRIBUTION/AVANLABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Msdmumn 200 words)

constitute each section.

This report is a guide to the use of the TEXPLAN (Textual EXplanation PLANer) natural
language generation system in its application to a knowledge-based battle simulation system.
TEXPLAN is a natural language text generator which composes single and multiparagraph texts
and can be logically divided into two major components:
which realizes an explanation as English text, and a test planner which plans the content of the
explanation. The purpose of this report is to provide details of these two components,
dissecting them into different sections, then describing the underlying functions which

a linguistic realization component

14. SUBJECT TERMS 15 NUMBER OF PAGES
Natural Language Generation, Text Planning, Artificial e ;:;E CODE
Interface
17. SECURITY CLASSFICATION 18, SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION (20, UMITATION OF ABSTRACT
UNCL LA F
UNCLASSIFIED UNCLASSIFIED IFIED SAR
NEN 754001 2005600

BLE OF TE

17

20

24

27

29

31

35

41

42

47

48

Application System

Domain Knowledge: Objects, Events, and States
Domain Methods/Plans/Goals

Support Knowledge: (e.g., General Principles)
Generic and Specific Knowledge/Meta-knowledge

~ [:
(Text Planning Select Content and or Perspective
(Strategic) Structure and 'Order Content
¥
h Act Model

Semantic Interpretation

Representation

1
Syntactic/Grammatical Choice
I

Presentation

Linguistic Realization Local cohesive devices Semantic,
(Tactical) (e.g., cooreference, connectives) Syntactic,
LI Lexical, and
Lexical S'elecuon Morphological
Morphological Synthesis Knowledge
{
\ Orthographic Layout

TEXPLAN DIAGRAM

This diagram illustrates the different components of the TEXPLAN natural
language generation system. The representation of the application system
consists of domain knowledge, domain methods, plans and goals, and generic
and specific knowledge. The presentation bracket divides TEXPLAN into two
components: text planning and linguistic realization. The text planning
component pians what to say and how to say it, based on the specific goals to
be realized and the models to be used. The linguistic realization component
involves the organization and interpretation of information gathered into
specific messages. These messages are constructed using rhetorical predicates
which are chosen by the planning component of the system to realize its goals.
The linguistic component organizes the messages through semantic
interpretation and syntactic choices. It also chooses cohesive devices (words to
clarify goals), and synthesizes the proper surface structures of words,
eventually leading up to the final surface form, generated English text.

ii

R TI

TEXPLAN (Textual Explanation Planner) is a natural language text
generator which composes single and multi-paragraph texts (Maybury,
1990c). TEXPLAN can be logically divided into two major components: a
linguistic realization component which realizes an explanation as English
text, and a text planner which plans the content of the explanation. The
purpose of this report is to provide details of these two components,
dissecting them into different sections and then describing the underlying
functions which constitute each section.

TEXPLAN has been ported to LACE (Land Air Combat in ERIC), a
knowledge-based battle simulation system (Anken, 1989) written in the
programming language ERIC (Hilton, 1987). TEXPLAN uses special accessor
functions written in ERIC to retrieve information about the LACE
application. This information is represented in LACE as an object-oriented
frame-like language. The LACE system generates this information about
its missions and objects from the Route Planner, the Cartographic database
(Hilton and Anken, 1990) and the ORACLE database (Knowledge Systems
Concept, Inc., 1989). The Route Planner contains information relating to the
missions (e.g., offensive-counter-air-missions), the Cartographic database
contains information about the generated map-objects (e.g., towns,
airstrips and lakes) and the ORACLE database contains information about
targets such as air-facilities, aircraft and sam-sites (surface-to-air-missile
sites).

TEXPLAN uses a message, represented in a list, to determine the
organization of the components of a sentence. This list is organized to
include subject(s), articles, direct objects, indirect objects and modifiers.
Each component has a specific position in the message, allowing the
sentence generator to recognize the usage of a word based on its position
in the structure.

To generate grammatical text, TEXPLAN uses an on-line dictionary
and a representation of English syntax and semantics. It is also able to
create entries for words that are not already in its dictionary. For
example, there are thousands of objects in LACE. Since listing them in the
dictionary would be inefficient and time-consuming, the dictionary
automatically generates entries for them. This ability to create entries
increases TEXPLAN’s versatility, since it can use words that do not exist in
the dictionary file. It uses specific functions that retrieve or create word
entries, or that construct different types of entries for different types of
objects. The lexical entries in the dictionary are the components of the
message lists which are manipulated to produce grammatical English.

At the paragraph level, TEXPLAN can describe and compare entities,
and plan directions to and from entities in the LACE application. TEXPLAN
combines different types of sentences, using a library of plan operators, to
form groups of text that realize specific goals. Individual goals are
actualized through a selection of rhetorical predicates. A rhetorical
predicate (rp) conveys specific information about an object or objects in
the LACE application. For example, there are rhetorical predicates that
define entities, describe their attributes, and so on. Each rp corresponds to
one sentence. Using the plan operators, TEXPLAN reasons about how best
to organize these rhetorical predicates to generate an effective text.

This report is structured as follows. First it discusses the linguistic
realization component, which includes the different kinds of rhetorical
predicates, the sentence-level syntax and semantics, and the dictionary.
The report then discusses the text planning component, and how TEXPLAN
produces descriptive and comparative texts as well as route directions.
The report concludes by indicating future directions which include the
generation of reports about events in the LACE simulation.

SECTION 1

The first step in understanding how TEXPLAN works is to become
familiar with all of the system’s rhetorical predicates. This section will
acquaint the reader with all of the rhetorical predicates used by TEXPLAN.
The predicates are used to generate different types of sentences which
contain different types of information. They form messages or lists which
organize this information. These messages are then manipulated by the
other functions in the sysiem until the final generated text is realized.

There are some functions that are important to a majority of the
predicates in the system. Relevant-attributes returns the most important
and the most informative attributes (characteristics) of the given entity. It
calls the function relevant-attributes-1, which uses a list of what is
irrelevant along with a list of all of the entity’s slots to find the relevant
attributes. Relevant-attributes-2 is also used by several functions and is
identical to relevant-attributes, except relevant-attributes-2 does not
include location and roads as relevant attributes. Attribute-value-pairs is
also used by many of the predicates. It returns the attribute properties
and their values in a predicate list structure.

The format for this section is as follows: name the predicate,
describe what it does and how it does it (including a description of any
important functions that it calls), list the message and give an example of
the type of sentence(s) that can be produced when the predicate is used.

Definiti

The definition predicate is one of the most basic predicates in
TEXPLAN. Its output is easy to generate; definition simply defines what
class a specific entity is from.

Example

Message: (DEFINITION
((#<TOWN GRIMMA>)) -
((#<CLASS TOWN>)))

- Text: Grimma is a town.

Logical-definition is more descriptive than the definition predicate.
It not only describes what the entity is, but it also describes all of the
distinctive attributes of the entity, using the function differentia-
attributes.

Example

Message: (LOGICAL-DEFINITION
((#<TOWN FREIBERG>))
((#<CLASS TOWN>))
NIL
NIL
((LOCATION NIL INDEF ((13 DEGREES-LONGITUDE)
(51 DEGREES-LATITUDE)))
(STATUS NIL INDEF FULLY-FUNCTIONAL)
(POPULATION NIL INDEF 25000-TO-100000)
(ROADS 2 NIL
(#<road-segment 173 33UUS8441 33UUS8041>
#<road-segment 101 33UUS8440 33UUS8441>
#<road-segment 101 33UUS8441 33UUS8046>
#<road-segment 173 33UUS9049 33UUS8441>))))

Text: Freiberg is a town with a location of thirteen degrees
longitude and fifty-one degrees latitude, a functional-
status of fully-functional, a population of 25000-to-
100000, and two roads (Route 101 and Route 173).

C logical-definiti

Compare-logical-definition is exactly like logical-definition, however
compare-logical-definition is used when comparing two entities. The two
entities are tested by the function compare-logic-def for similarity.
Depending on their relationship, either the word “equivalently”, “similarly”,
or “in-contrast” is used in the final surface form at the beginning of the
sentence.

Example 1

Message: (COMPARE-LOGICAL-DEFINITION

((#<TOWN ERFURT>))

((#<CLASS TOWN>))

NIL

NIL

((SIMILARLY)

(LOCATION NIL INDEF ((11 DEGREES-LONGITUDE)
(51 DEGREES-LATITUDE)))

(STATUS NIL INDEF FULLY-FUNCTIONAL)

(POPULATION NIL INDEF 100000-OR-MORE)

(ROADS S NIL (#<road-segment...))))

Text: Similarly, Erfurt is a town with a location of eleven
degrees longitude and fifty-one degrees latitude, a
functional-status of fully-functional, a population of
100000-or-more, and five roads (Route 7f, Route 5f,
Route 274f, Route 7, and Route 4).

Example 2

Message: (COMPARE-LOGICAL-DEFINITION
((#<CLASS MIG-27>))
((#<CLASS FIGHTER>))
NIL
NIL
((IN-CONTRAST)
(NICK-NAME NIL INDEF ((FLOGGER-D)))
(COMRAD NIL INDEF ((1380.0 KILOMETERS)))
(MAXSPD NIL INDEF NIL) (MAXWT NIL INDEF NIL)
(CRUISE-SPEED NIL INDEF ((490 METERS-PER-SECOND)))
(A-FACTOR NIL INDEF VERY-WEAK)
(B-FACTOR NIL INDEF STRONG)
(MAXFUEL NIL INDEF ((2000 UNITS)))
(METERS-PER-POUND-FUEL 233.0)
(MAX-SPEED NIL INDEF ((5 METERS-PER-SECOND)))))

Text: In contrast, a MIG-27 is a fighter with a nick-name of
Flogger-D, combat radii of 1,380 kilometers, a maximum
speed capacity, a maximum weight, a cruise-speed of 490
meters-per-second, an offensive capability of very-weak,
a defensive capability of strong, a maximum fuel capacity
of 2,000 units, 233.0 meters per pound of fuel, and a
maximum speed of five meters-per-second.

s ic-definiti

Synonymic-definition tests to see if an entity has a code-name or a
nick-name in the underlying application. If it does, the function
synonymic will find the name and return it. If it does not, it will say that
the entity has no code name.

Example 1

‘Message: (SYNONYMIC-DEFINITION
((#<CLASS MIG-29>))
((NICK-NAME NIL INDEF ((FULCRUM)))))

Text: A MIG-29 has a nick-name of Fulcrum.
Example 2
Message: (SYNONYMIC-DEFINITION
(#<TOWN FREIBERG>))
((CODE-NAME NO NO-ARTICLE)))
Text: Freiberg has no code name.
all ll I.

The attributive predicate describes the attributes (i.e. the
characteristics or properties) of an entity. Its primary function is
attributes, which returns the relevant attributes of the entity.

Example

Message: (ATTRIBUTIVE
((#<CLASS LAND-ROLL>))
((FREQUENCY 4 INDEF NIL NIL NIL (GH 1))
(VERTICAL-BEAMWIDTH NIL INDEF ((1 DEGREE)))
(HORIZONTAL-BEAMWIDTH NIL INDEF ((3 DEGREEYS)))
(MAP-DISPLAY NIL INDEF NIL)))

6

Text: A land-roll has four band designators (g, h, i, and j), a
vertical beamwidth of one degree, a horizontal
bandwidth of three degrees, and a map-display.

Elaboration

This predicate describes the attributes of an entity that are not of
major importance. It calls the function elaborative-attribute-value-pairs
to return these attributes.

Example

Message: (ELABORATION
((#<LAKE WIPPER-TALSPERRE> #<CLASS LAKE>))
((BLOCK NIL INDEF #<BLOCK 32UPC5010>)
(NAME NIL INDEF ((“WIPPER-TALSPERRE”)))
(PERIMETER 3 INDEF NIL NIL NIL
(32UPC5216 32UPCS5315 32UPC5214))))

Text: The lake Wipper-Talsperre has a block of Block
32upc5010, a name of wipper-talsperre, and three
perimeters (32upc5216, 33upc5315, and 32upc5214).

nsti n

Constituent describes the constituents of an entity. It calls the
function constituents, which specifies what attributes can be considered
constituents (i.e. parts or subparts) of an entity.

Example 1

Message: (CONSTITUENT
((#<TOWN EILENBURG> #<CLASS TOWN>))
((ROADS 2 NIL (#<road-scgment...))))

Text: The town Eilenburg has two roads (Route 107 and Route 87).

Example 2

Message: (CONSTITUENT
((#<AIRSTRIP BRANDIS> #<CLASS AIRSTRIP>))
((RUNWAY 2 INDEF NIL NIL NIL (33UUS3689 33UUS3889))))

Text: The airstrip Brandis has two runways (33uus3689 and
33uus3889).

Classificati

This function returns the offspring (children or next lowest level in
the hierarchy) of a class object. It does not work on instances, since they
do not have offspring (instances constitute the lowest level in the
hierarchy).

Example

Message: ((#<CLASS LAKE>)) ((INSTANCES-OF 39 ARTICLE))
NIL
((#<LAKE HRACHOLUSKY>) (#<LAKE BECKEN>)...)))

Text: There are thirty-nine instances of lakes: Hracholusky, Becken,...
Location

The location predicate retrieves the latitude and longitude of an
entity. In addition, if the entity is a town, the predicate informs the reader
of the town’s country of affiliation, if that information is contained in the
database. Location also mentions all of the towns in the same block as the
entity, and their distance and direction from the entity of interest.

Example

Message: (LOCATION
((H<TOWN AS>)) ((#<CLASS TOWN>))
((LOCATION (CZ))
(EXTERNAL-LOCATION (DEGREES-LONGITUDE 12
NO-ARTICLE N!L DEGREES-LATITUDE 50)))
((NORTH-EAST KILOMETERS NO-ARTICLE
(#<CLASS TOWN> #<TOWN SELB>)) 7)))

Text: As is a town located in Czechoslovakia at fifty degrees

latitude twelve degrees longitude seven kilometers
north-east of town Selb.

Directional-I %

The directional-location predicate is a simple version of the location
predicate. It just returns the latitude and longitude of an entity.

Example

Message: (RELATIONAL-LOCATION
((#<TOWN MERSEBURG> #<CLASS TOWN>))
((DEGREES-LONGITUDE 12) (DEGREES-LATITUDE 51)))

Text: The town Merseburg is located at twelve degrees
longitude and fifty-one degrees latitude.

Relational-locati

Relational-location tells where one map-object is in relation to
another map-object. It gives the latitude and longitude coordinates of the
object of interest, and the distance and direction from the reference object.

Example

Message: (RELATIONAL-LOCATION
(#<TOWN FREIBERG>)) ((#<CLASS TOWN>))
((LOCATION (GC))
(EXTERNAL-LOCATION (DEGREES-LONGITUDE 13
NO-ARTICLE NIL DEGREES-LATITUDE 51)))
((SOUTH-EAST KILOMETERS NO-ARTICLE
((#<CLASS LAKE> #<LAKE AATALSPERRE>)) 344)))

Text: Freiberg is a town located in East Germany at fifty-one
degrees latitude thirteen degrees longitude 344
kilometers south-east of lake Aatalsperre.

Relational-point-locati

This predicate uses the function determine-closest-point to find the
point closest to the place of interest that is located on a road. This function
determine-closest-path is explained in greater detail in Section 8. Once the
closest point on a road is determined, the relational-point-location
predicate gives the distance and direction of the place of interest in
relation to this point.

Example

Message: (RELATIONAL-POINT-LOCATION
9

((#<LAKE FRIEDERSEE> #<CLASS LAKE>))

NIL
((EXTERNAL-LOCATION (NORTH KILOMETERS NO-ARTICLE
((THIS POINT)) 2))))

Text: The lake Friedersee is located two kilometers north of
this point. [this point refers to the closest point to the
lake that is located on a road]

This predicate illustrates an entity by listing its parents, and the
attributes which make it unique from the other entities in the same class.

Example

Message: (ILLUSTRATION-BY-LOGICAL-DEFINITION
((#<CLASS LAND-ROLL>))
((#< CLASS RADAR>))
NIL
NIL
((FREQUENCY 4 INDEF NIL NIL (GH 1))
(VERTICAL-BEAMWIDTH NIL INDEF ((1 DEGREE)))
(HORIZONTAL-BEAMWIDTH NIL INDEF ((3 DEGREES)))))

-Text: A land-roll, for example, is a radar with four band
designators (g, h, i, and j), a vertical beamwidth of one
degree, and a horizontal beamwidth of three degrees.

Classification-illustrati

Classification-illustration illustrates an entity by first listing its
parents. Then if the entity has any offspring, they are listed as well.

Example 1

Message: (CLASSIFICATION-ILLUSTRATION
((#<CLASS RADAR>))
((#<CLASS SENSOR>) (#<CLASS SIMULATION-ICON>)))

Text: A radar, for example, is a sensor and a simulation-icon.
Example 2
Message: (CLASSIFICATION-ILLUSTRATION

((#<CLASS FIGHTER>))
((#<CLASS AIRCRAFT))

10

NIL

((#<CLASS YAK-28>)(#<CLASS SU-19>)
(#<CLASS SU-17>) (#<CLASS SU-9>)
(#<CLASS SU-7B>) (#<CLASS MIG-31>)
(#<CLASS MIG-29>) (#<CLASS MIG-27>)
(#<CLASS MIG-25>) (#<CLASS MIG-23>)
(#<CLASS MIG-21>) (#<CLASS MIG-17>)
(#<CLASS F-111>) (#<CLASS F-16>)
(#<CLASS F-16>) (#<CLASS F-15>)
(#<CLASS F-5E>) (#<CLASS F-4>)
(#<CLASS ATTACK-AIRCRAFT>)))

Text: A fighter, for example, is an aircraft such as a YAK-28, a
SU-19, a SU-17, a SU-9, a SU-7b, a MIG-31, a MIG-29, a
MIG-27, a MIG-25, a MIG-23, a MIG-21, a MIG-17, an F-111,
an F-16, an F-15, an F-5e¢, an F-4, and an attack aircraft.

Analogy

Analogy takes two entities and initially states that the first one is
like the second one. It then calls non-analogous-properties, which
compares the common attributes of the two entities and finds the common
attributes with different values. It lists these values for the first entity.

Example

Message: (ANALOGY
((#<TOWN GOTTINGEN> #<TOWN MOST>))
NIL
NIL
((LOCATION NIL INDEF ((10 DEGREES-LONGITUDE)
(52 DEGREES-LATITUDE)))
(POPULATION NIL INDEF 100000-OR-MORE)
(ROADS 2 NIL (#<road-segment...))))

Text: Gottingen is like Most, however Gottingen has a location
of ten degrees longitude and fifty-one degrees latitude,
a population of 100000-or-more, and two roads (Route
3 and Route 27).

Compare-Contrast

This predicate compares the values of the attributes of two entities
using the function comp-cont. Comp-cont checks the equality of various
attribute values, and tells whether or not the values are the same or
different.

11

Example

Message: (COMPARE-CONTRAST
((#<CLASS THIN-SKIN>) (#<CLASS FLAT-FACE>))
((CLASS SAME DEF) (FREQUENCY DIFFERENT INDEF)
(MAP-DISPLAY SAME DEF)))

Text: A thin-skin and a flat-face have the same class, a
different band designator, and the same map-display.

Inference

Inference takes two entities and establishes the relationship between
them using the function infer. Infer checks the similarities of the classes
of the two entities as well as the attributes common to both of them. It
concludes that the two entities are either similar or different based on the
similarities of their classes and attributes.

Example 1

Message: (INFERENCE
((#<CLASS F-16>) (#<CLASS YAK-28>))
((CLASS SIMILAR NO-ARTICLE)))

Text: Therefore, an F-16 and a YAK-28 are similar classes.

Example 2

Message: (INFERENCE
((#<TOWN BERLIN>) (#<CLASS WATERWAY>))
((OBJECT DIFFERENT NO-ARTICLE)))

Text: Therefore, Berlin and a waterway are different objects.
Comparison

Comparison is the exact same predicate as inference, however
inference adds a “therefore” at the beginning of the sentence and
comparison does not.

Example 1

Message: (COMPARISON
((#<LAKE BECKEN>) (#<LAKE FRIEDERSEE>))

12

((INSTANCES SIMILAR NO-ARTICLE)))

Text: Becken and Friedersee are similar instances.

Example 2

Message: (COMPARISON
((#<CLASS TOWN>) (#<CL.ASS RADAR>))
((CLASS DIFFERENT NO-ARTICLE)))

Text: A town and a radar are different classes.

Compare-similar-attributes informs the reader of the availability of
any common-valued attributes between two entities. It uses the function
same-values? to return a list of common-valued attributes and their
values. If the entities don’t have any common-valued attributes or any
same-valued attributes, compare-similar-attributes will concede that fact.

Example 1
Message: (COMPARE-SIMILAR-ATTRIBUTES
((BOTH THEY NO-ARTICLE))
((STATUS NIL INDEF FULLY-FUNCTIONAL)
(RUNWAY LARGE INDEF NIL)))
Text: They both have a functional-status of fully-functional
and a large runway.
Example 2

Message: (COMPARE-SIMILAR-ATTRIBUTES
((THEY)) ((ATTRIBUTES COMMON NO-ARTICLE NIL NO)))

Text: They have no common attributes.

Example 3

Message: (COMPARE-SIMILAR-ATTRIBUTES
((THEY)) ((ATTRIBUTES IDENTICAL NO-ARTICLE NIL NO)))

Text: They have no identical attributes.

13

This predicate returns the attributes that are common to two entities
but have different values. It uses the function common-properties to find
these attributes. It then calls list-different-values, which lists each set of
different values and puts each list in a list along with the name of that
particular attribute.

Example

Message: (COMPARE-DIFFERENT-ATTRIBUTES
((#<CLASS RUNWAY> #<RUNWAY PEENEMUNDE-RUNWAY-14532S>)
((#<CLASS RUNWAY> #<RUNWAY PUTNITZ-RUNWAY-075255>))
((AFFILIATION DIFFERENT NO-ARTICLE NIL NIL NIL (((GC))((UR))))
(AIR-FACILITY DIFFERENT NO-ARTICLE NIL NIL NIL
(((AIR-FACILITY PEENEMUNDE)) ((AIR-FACILITY PUTNITZ))))
(LENGTH DIFFERENT NO-ARTICLE NIL NIL NIL
(((2.744 KILOMETERS)) ((3.201 KILOMETERS))))))

Text: However, Peenemunde-Runway-14532s runway and
Putnitz-Runway-07s25s runway have different
affiliations (East Germany versus Soviet Union),
different air facilities (Peenemunde versus Putnitz), and
different lengths (2.744 kilometers versus 3.20lkilometers).

Entity-class-comparison relates two entities by stating that they are
both members of a certain class. This class is found by using the function
compare-search-lists, which retrieves the lowest-level common class in the
two entities’ search lists.

Example 1

Message: (ENTITY-CLASS-COMPARISON
((CLASS #<CLASS SU-9>) (CLASS #<CLASS F-111>))
((#<CLASS FIGHTER> NIL NO-ARTICLE)))

Text: An SU-9 and a F-111 are both fighters.

Example 2

Message: (ENTITY-CLASS-COMPARISON
((#<TOWN TAUCHA>) (#$<WATERWAY EUROPA-CANAL>))
((CLASS #<CLASS CARTO-OBJECT> NIL NO-ARTICLE)))

14

Text: Taucha and Europa-Canal are both carto-objects.

However-comparison

This predicate compares two entities by combining their definitions
into one sentence. The arrangement is similar to that of the definition
predicate.

Example 1

Message: (HOWEVER-COMPARISON
((#<TOWN APOLDA> NIL NO-ARTICLE)
(#<AIRSTRIP STOD> NIL NO-ARTICLE))
((#<CLASS TOWN>)) ((#<CLASS AIRSTRIP>))))

Text: However, Apolda is a town and Stod is an airstrip.

Example 2

Message: (HOWEVER-COMPARISON
((#<CLASS SAM> NIL NO-ARTICLE)
(#<CLASS LAKE> NIL NO-ARTICLE))
(((#<CLASS GROUND-VEHICLE>)) ((#<CLASS CARTO-OBJECT>))))

Text: However, a surface-to-air missile is a ground-vehicle
and a lake is a carto-object.

Point-by-point-comparison compares the properties that two entities
have in common. It compares them one at a time, using the list of
attributes sent from the function common-properties. The rhetorical
predicate also uses a random generator to choose between “whereas” or a
semicolon as a contrasting connective.

Example 1

Message: (POINT-BY-POINT-COMPARISON
((#<HELIPORT DRESDEN-HELLERAU>) (#<AIRSTRIP GERA>))
((STATUS NIL INDEF FULLY-FUNCTIONAL)) NIL NIL
((STATUS NIL INDEF PARTIALLY-FUNCTIONAL)))

15

Text: Dresden-Hellerau has a functional-status of fully-
functional whereas Gera has a functional-status of
partially-functional.

Example 2

Message: (POINT-BY-POINT-COMPARISON
((#<HELIPORT DRESDEN-HELLERAU>) (#<AIRSTRIP GERA>))
((LOCATION NIL INDEF ((14 DEGREES-LONGITUDE)
(51 DEGREES-LATITUDE)))) NIL NIL
((LOCATION NIL INDEF ((12 DEGREES-LONGITUDE)
(51 DEGREES-LATITUDE)))))

Text: Dresden-Hellerau has a location of fourteen degrees
longitude and fifty-one degrees latitude;, Gera has a
location of twelve degrees longitude and fifty-one
degrees latitude.

The rhetorical predicate section presents a basis for the remaining
sections of this report. It provides the format for each predicate’s
message, as well as an example of the type of text it can produce. The
remainder of this report will explain how TEXPLAN is able to use the
rhetorical predicates and their messages to generate multi-sentence
English text. The next few sections relate how these rhetorical predicate
messages can be manipulated by the system to actually generate the type
of sentences illustrated in this section.

16

RANSLATEF TION

The function translate takes the message organized by a rhetorical
predicate and prepares it for realization to surface form. It accomplishes
this through four levels of processing: pragmatics, semantics, relational-
associations, and syntax. These four levels are realized in the functions
assign-pragmatic-function, assign-semantic-function, assign-relational-
function and assign-syntax-function, respectively. Each of these functions
are detailed below.

Pragmatic analysis is performed by the procedure assign-pragmatic-
function. This function considers focus and context to make
pronominalization decisions when realizing multi-sentence text. However,
since focus and context were not addressed by this work, this function
does not return a value (see Maybury (1990) for a detailed discussion of
focus and text generation).

Semantic analysis of the message is performed by assign-semantic-
function. This function basically distinguishes the special types of lists that
may occur in the fourth position of the message. These four special types
of lists refer to phrasal adjuncts and include instrument, location, function,

17

and external-location. If one of the lists in the fourth position of the
message belongs to one of these categories, special steps must be taken in
the realization of the surface form for that particular list. The keyword
“instrument” signals that “with” should be inserted before the realization of
that particular list. “Function” is the keyword that signals that “for” should
be inserted before the realization. “Location” signals that the words
“located in” should be inserted. Finally, “external-location” signals that
either “located”, “located at”, or “at” should be used. The choice in this case
depends on the value of the fourth position of that particular list. Assign-
semantic-function also chooses the verb for the sentence. This is done by
the function rp-action. This function looks up the “action” or verb that
corresponds to the rhetorical predicate that it is trying to translate. For
example, the rhetorical predicate attributive relies on the verb “have.”

After assigning semantic roles to the rhetorical predicate
constituents, the function assign-relational-function generates the different
structures of a sentence. It first calls the functions make-pp, make-v and
make-np, which generate the prepositional phrases, verb phrases and
noun phrases of a sentence, respectively (see Section 3). Assign-relational-
function then calls the function insertions. This function inserts one or
more connectives into a sentence, basing its choice of connective on the
rhetorical predicate being used. The actual insertion would be performed
by a specific function, called by insertions. For example, the usage of the
rhetorical predicate inference would signal the function therefore-
insertion, which would then insert a “therefore,” at the beginning of the
sentence.

As soon as the proper sentence structure is formed, assign-syntax-
function takes a list of all of the word entries for a sentence and returns
the surface form of each word along with its syntax. This function can be
very confusing, due to the fact that unfortunately not all words have the
same list formats. Most word entries are in one list, but there are some

18

word entries that are embedded in three lists. Assign-syntax-function
first checks to see if a word is in three lists. If so, it “takes” the word out
of the lists, retrieves the surface form and syntax of the word, and
recurses on the rest of the words in the original list. In addition,
sometimes there are two words embedded together in 3 lists (like a value
listed with its unit of measure). If this is the case, the function will
individually include each word in the final function output. Also, a specific
combination of [/ist and append functions were needed to make the
function run each time it recursed. The final function output consists of a
list of lists; each individual list containing the surface form of a word and
its syntactic features.

Having detailed how the translate functions are used to transpose the
rhetorical predicate messages into English surface form, we now focus on
how the system actually interprets the organization of the messages to
realize grammatically correct and meaningful sentences.

19

ECTION

ANTI

Sentence generation in TEXPLAN begins with a message or a list
representing a sentence. This message or list is built using a rhetorical
predicate (see Section 1). This structure represents a sentence and its
components, which can include subjects, articles, direct objects, indirect
objects and modifiers. This structure is versatile: by using different forms
of the components or by suppressing a component in the message,
different types of sentences can be generated. The message consists of
seven positions which may contain either a value or “nil”. These positions,
each of which will be detailed in turn, represent the subject, direct object,
article, prepositional phrases, quantifiers, and descriptions of direct
objects. '

The first position is the grammatical position for the subject. The
value of this slot may be either a list, or a list of lists. There are four basic
forms that this value may take:

1. Simple subject ((subj))

2. Modified subject ((subj mod))

3. Compound subject ((subjt) (subj2))

4. Modified compound subject ((subjl modl) (subj2 mod2))

The second position in the list is reserved for the direct object. Its
value may also be either a list or a list of lists. It too has four forms that
are similar to the forms of the subject slot.

20

The third position in the list represents the article to be used with
the subject. The value of this slot must equal one of four keywords:

1. indef - a, an
def - the
3. no-article suppress article placement
4. nil - use the default value of this slot

The fourth position is used for prepositional phrases that refer back
to the subject. The preposition associated with this slot is the word “of”.
The value of the slot must be a list of lists; a list being comprised of a
prepositional object and an optional modifier. In the case of more than one
list, multiple prepositional objects will be created.

The fifth position is the slot for prepositional phrases that refer back
to their own object. The preposition associated with this slot is “with”. The
layout of this slot is similar to the overall layout of the message, such as:

(((subject)) ((direct-object)) article (simple-prepositions))

This slot is primarily used when generating a sentence that tells the user
about an entity’s attributes and their values. For example, the message for
defining town Freiberg (using the rhetorical predicate logical-definition)
would be:

(LOGICAL-DEFINIT1ON

((#<TOWN FREIBERG>))

((#<CLASS TOWN>))

NIL

NIL

((LOCATION NIL INDEF ((13 DEGREES-LONGITUDE)
(51 DEGREES-LATITUDE))) (STATUS NIL INDEF FULLY-FUNCTIONAL)

(POPULATION NIL INDEF 25000-T0O-100000) ROADS 2 NIL
(#<road-segment 173 33UUS8441 33UUS8041>
#<road-segment 101 33UUS8440 33UUS8441>
#<road-segment 101 33UUS8441 33UUS8046>
#<road-segment 173 33UUS9049 33UUS8441>))))

Here, the relevant attributes of Freiberg (location, status, population, and
roads) are listed in the fifth position of the message along with their

21

values. The value in this slot must be a list of lists. Multiple lists will
create multiple prepositional phrases which refer back to their own object.

The sixth position is the grammatical slot for a quantifier. In the
surface form, the quantifier is placed before the subject and before any
modifiers of the subject. The quantifier may include words like “few”,
“some”, “all”, and “most”.

The seventh position in the message is the slot for a list which
follows the direct object. The purpose of this list is to clarify and describe
the direct object, usually by listing its parts. The value of this slot must be
a list. The surface form is similar to the slot value, except for the insertion
of commas and the word “and” when there are multiple elements in the
list.

The manipulations of this message are performed by the functions
make-np, make-pp and make-v, each of which are described below. They
are all called by the function assign-relational-structure (see Section 2).

Make-np

The function make-np forms noun phrases. It inserts conjunctions,
selects determiners, pluralizes words, and selects the necessary
punctuations for the final surface form. Make-np then arranges the words
in the correct grammatical order for final realization.

Make-pp

The function make-pp produces prepositional phrases. It is called by
assign-relational-structure for each indirect object to be used in the
sentence. Each indirect object has a specific preposition which is used to
generate the prepositional phrase. This preposition is sent to make-pp by
assign-relational-structure and is returned by make-pp as part of a
prepositional phrase.

Make-v

The function make-v returns a verb phrase. It selects the proper
form of a verb based on its tense (“past”, “present” or “future”) and its

22

voice (“passive” or “active”). For example, given (be present active) as the
arguments, make-v would return the different present active forms of the
Verb “be” (i.e. SCiS”, “are’?’ (‘am”).

Having detailed the message structure and how it is manipulated to
produce a final grammatical surface form, we now turn to a description of
the lexical entries that make up these messages; the entries that represent
every word and symbol used by the system.

23

SECTION 4

ICTIONAR

The dictionary refers to all of the lexical entries in TEXPLAN, which
includes the entries explicitly listed in the dictionary file as well as the
entries automatically generated by the rystem. The dictionary file consists
of entries of the most frequently used words and symbols in TEXPLAN,
including verbs, adverbials, prepositions, and words that possess a specific
surface form that cannot be automatically generated. For example, the
final surface form of the acronym “SAM” is not “SAM”, but “surface-to-air
missile.” The generated entries for words not listed explicitly in the
dictionary file are formed by specific functions. Entries in the dictionary
file are grouped according to their parts of speech. Nouns are in one
section, verbs in another, and so on. For each new dictionary entry that is
manually added by the user, the function make-dictionary-entry must be
run with the new entry as the argument. This will place the new entry on
the top of the stack of old entries. If the word is already in the dictionary,
the most recent entry will be used by the system. The following
subsections describe the different functions used to generate lexical
entries.

Look-up
Look-up is a function which returns a specific dictionary entry for

each word and symbol used in the final text. The dictionary entry of a
word guides the sentences generator in incorporating the word into a

24

sentence. A dictionary entry is a list consisting of the word and its syntax,
semantics and realization. The syntax of a word varies, depending on its
part of speech. In general, however, it includes the part of speech,
agreement and morphological information. Semantics include a logical form
meaning representation of the lexical item. Realization is the final
generated English form of the word. For example, the dictionary entry for
the word “town” is:

(town ((noun count sing neuter) town “town”)

where town is the word given, noun is the part of speech, count is the type
of noun it is (either mass noun or count noun), sing refers to the word’s
singularity (plur would mean the word is plural), neuter is the gender of
the word, town is the semantic form, and “town” is how the word would be
printed in the final text. ,

The look-up function first considers whether or not a word has a
lexical entry already stored into the dictionary. If it does, it returns it. If
it does not, it automatically generates one. Look-up will automatically
generate lexical-entries for numbers, since numbers do not have entries
previously stored into the dictionary. Look-up returns the extended
written form of a number for numbers less than 100 (i.e. ninety-nine), and
using the numerical representation of a number for numbers greater than
or equal to 100 (i.e. 101).

If the word is a LACE or MAP object, look-up will call the function
dictionary-entry-of-LACE-object (see below). This function returns a
dictionary entry of a word if one exists, otherwise it generates one. If the
word does not fit into a specific category (like a number or a LACE or MAP
object), look-up assumes that it is a noun, and generates a noun entry.

Dictionary-entry-of-LACE-object is a function which actually builds a
dictionary entry for a LACE or MAP object that does not already have an
entry. If the object is a class object, and it does not already have an entry
in the dictionary, the function returns an entry with noun syntax, using the

25

object’s print-name as its final surface form. For example, the dictionary
entry for #<CLASS RADAR> is:

(#<CLASS RADAR> ((noun count sing neuter) #<CLASS RADAR> USER::RADAR))

If the object is an OCA mission (Offensive Counter Air Mission), then the
function returns the proper-noun syntax, because this a uniquely-named
individual. If the object is an instance, then the function instance-entry is
called (see below). Instance-entry generates lexical entries for specific
instances. If the object does not fall under any of these three categories,
the function assumes that it is a noun, and returns a noun entry.

Instance-entry

Instance-entry distinguishes between the different types of
instances in the LACE and MAP systems. Different types of instances
require different methods to build their proper dictionary entries. For
example, roads and intersections are both MAP objects but they have
distinct surface forms (i.e. “Route 173” versus “the intersection of Route 97
and Autobahn E63”). If the instance is not one of the types of instances
tested for in the function, it is assumed to be a proper noun, and an entry
for a proper noun is returned.

This explanation of how the lexical entries are formed completes the
discussion of the linguistic realization component of TEXPLAN. What
follows is an explanation of the text planning constituent of the system.
These subsequent sections address the issue of how TEXPLAN selects and
orders sequences of rhetorical predicates to generate a coherent multi-
sentence text that realizes a specific goal.

26

SECTION S

The purpose of the text planner is to combine various rhetorical
predicates into a paragraph that achieves a particular goal. The planner
reasons about communicative actions (represented as plan operators) to
produce a hierarchial text plan that can be executed to accomplish a goal.
Each plan operator is make up of seven slots: name, header, constraints,
preconditions-essential, preconditions-desirable, effects, and
decomposition (described below). Multiple plan operators may exist that
accomplish the same goal; however, each operator achieves it by different
means. When asked to plan text, the planner selects the first plan operator
that will accomplish the goal. If this plan meets all of the essential
preconditions and the parameters are within the domain of that particuiar
plan, then the planner uses that plan to generate the text.

The name slot is a short English description of what that particular
plan operator does. Every plan operator has a unique name slot.

The header slot identifies the name of the rhetorical act and the
parameters involved in the action defined by the plan operator. Multiple
plan operators may have the same headers, since there may be multiple
ways to accomplish one high-level action (i.e. rhetorical act).

The purpose of the constraints slot is to guide the selection of plan
operators. Some plans will not work if given a particular class or if the
object does not have specific characteristics. @~ However, in the LACE

27

application, many of the plan operators work for all object parameters, so
the constraints slots are set to the default value of “t”.

The preconditions-essential slot helps select among different plan
operators that accomplish the same goal and that satisfy the constraints
slot. This slot establishes conditions on the parameters, and if these
conditions are not met, the next plan operator that accomplishes the same
goal will be selected. The value of this slot ensures that the plan operator
that best accomplishes the goal will be selected.

The preconditions-desirable slot is currently set to “t” for all the
plan operators. It is intended to be used in the future for further
decomposition of conditions for better planning of text.

The effects slot indicates what the action characterized by the plan
operator will achieve if executed. It describes the changes in the intended
knowledge, beliefs and desires of the hearer. In this way, as text is
generated, the system can record a list of expected changes in the cognitive
state of the hearer.

The decomposition slot actually breaks down the communicative
action captured by the plan operator into lower-level actions. These
actions consists of illocutionary speech acts (e.g. inform, request), which
call rhetorical predicates, and rhetorical acts which include acts such as
describe, define, compare, and enable. These rhetorical acts invoke other
plan operators.

Now that the overall organization of the text planning component of
the system has been explained, the final few sections will describe the
different plan operators that have been built and/or reconstructed for use
in the LACE application.

28

SECTION 6

TEXPLAN uses two sets of plan operators, describe and define plan
operators, to give descriptions of entities in the system. The describe and
define planners are interdependent; the second is 1 component of the first.
They have very similar structures and often result in similar descriptions.
The describe and define operators also share the same versatilities in their
description options.

There are eight working describe plan operators. However, only one
of them will be detailed in this report since it was the only one used for
the LACE application. This plan operator, describe-by-defining-entity, is
shown in Figure 6.1. The header slot shows the name of the rhetorical act
(describe), along with the speaker and hearer notations, and the place
reserved for the entity, illustrated in italics. This plan operator calls for the
define rhetorical act, as illustrated in the plan operator’s decomposition
slot.

NAME: ‘describe-by-defining-entity

HEADER: ‘(describe S H _entity)

CONSTRAINTS: ‘(and (entity? _entity) (or (HASTE S) (HASTE H)))
PRECONDITIONS-ESSENTIAL:

‘(and (KNOW-ABOUT S _entity)
(WANT S (KNOW-ABOUT H _entity)))
PRECONDITIONS-DESIRABLE: t
EFFECTS: ‘(KNOW-ABOUT H _entity)
DECOMPOSITION: ‘((define S H _entity)))

Figure 6.1. Describe-By-Defining-Entity Plan Operator
29

After define is called, the system sequentially tests the preconditions of
each of the three different define plan operators until it finds a suitable
definition method for its entity. For the purpose of the LACE application,
this plan operator, define-using-logical-definition (shown in Figure 6.2), is
the only one in use. Note that this is due to the fact that it has no
preconditions, and will subsequentially always be chosen by the system.

NAME: ‘define-using-logical-definition
HEADER: ‘(define S H _entity)
CONSTRAINTS: t

PRECONDITIONS-ESSENTIAL: t
PRECONDITIONS-DESIRABLE: t

EFFECTS: nil

DECOMPOSITION: ‘((inform S H (logical-dcfinition _entity))

Figure 6.2. Define-Using-Logical-Definition Plan Operator

The logical-definition rhetorical predicate used in this plan operator
informs the hearer about an entity by describing its superclass and its
distinguishing features. The two other define plan operators found in the
text-plan file make use of the rhetorical predicate synonymic-definition
(see Section 1), and a rhetorical predicate not yet written, antonymic-
definition. Other describe plan operators in the file describe attributes,
constituents, subclasses or instances of an entity, or motivate an
illustration of a given entity.

Having provided an outline of the different define and describe plan
operators, the next section deals with another group of operators; the
compare plan operators.

30

THE COMPARE PLANNER

While the define and describe plan operators are used to characterize
one entity, the compare planner is used to make comparisons between two
entities. There are three major types of comparison plan operators that
allow this planner to diversify its method of comparison:
similarities/aifferences-comparison, point-by-point-comparison and
compare-describe-in-turn. The choice among these alternatives is guided
by the essential preconditions in the plan operators. For example, the
similarities/differences-comparison plan operator can only be used on two
entities that have more than one common attribute with the same value
and more than one common attribute with a different value. The essential
preconditions of the point-by-point-comparison operator require that the
two entities be different entitics that have common attributes with
different values. The third comparison operator, compare-describe-in-
turn, has no essential preconditions. It is used as a last resort if the
preconditions of the other two comparison plan operators fail.

The first type o. comparison plan operator, similarities/differences-
comparison, can be broken down into three rhetorical predicates (rp). The
system first informs the hearer of the inferred relationship between the
two entities using the rp comparison. Next, it informs the hearer of the
common-valued attributes of the two entities with the rp compare-similar-
attributes. Finally, compare-different-attributes retrieves the different-
valued characteristics of the entities. Each characteristic is then coupled
with a list containing two values (the values of the characteristic for each

31

entity). This decomposition can be seen in the actual
similarities/differences-comparison plan operator shown in Figure 7.1.

NAME: ‘similarities/differences-comparison
HEADER: ‘(compare S H _entityl _entity2)
CONSTRAINTS: t

PRECONDITIONS-

ESSENTIAL: ‘(and (> (length (common-properties-and-values
(list _entityl _entity2))) 1)
(> (length (common-propertics-1 (list _entityl _entity2))) 1))

DESIRABLE: t
EFFECTS: nil
DECOMPOSITION: ‘((inform S H (comparison _entityl _entity2))

(inform S H (compare-similar-attributes _entityl _entity2))

(inform S H (compare-different-attributes _entityl _entity2))))

Figure 7.1. Similarities/Differences-Comparison Plan Operator

For example, TEXPLAN uses this plan operator to compare a MIG-27 and a
MIG-29, which generates the following output:

A MIG-27 and a MIG-29 are similar fighters. They both have a
maximum fuel capacity of 2,000, 233.0 meters per pound of fuel,
and a maximum speed of five meters per second. However, the
MIG-27 fighter and the MIG-29 fighter have different nick-names
(Flogger-D versus Fulcrum), different cruise-speeds (490 meters-
per-second versus 660 meters-per-second), different offensive
capabilities (very-weak versus very-strong), different defensive
capabilities (strong versus weak), and different combat radii
(1,380 kilometers versus 1,200 kilometers).

The next type of comparison plan operator is point-by-point-
comparison. The point-by-point-comparison plan operator uses four
rhetorical predicates. Entity-class-comparison informs the hearer of the
lowest-level class that the two entities have in common. The system next
uses the rp however-comparison to inform the hearer of which class each
object is from. The third rhetorical predicate, point-by-point-comparison,
compares each of the objects' different-valued attributes. This is done
using a mapcar type of macro (for-all) to run the rp on each attribute. The
fourth rp is compare-similar-attributes. Its usage in this plan operator
can be misleading, since the two objects being compared by the point-by-

32

point-comparison have no similar attributes. However, compare-similar-
attributes simply informs the hearer of this fact; it doesn’t actually try to

compare any attributes. The point-by-point-comparison plan operator is
illustrated in Figure 7.2.

‘point-by-point-comparison
HEADER: ‘(compare S H _entityl _entity2)
CONSTRAINTS: t
PRECONDITIONS-
ESSENTIAL: ‘(and (eq (infer (list _entityl! _entity2)) ‘different)
(and (> (length (common-properties (list _entityl _entity2))) 1)
(eq (common-properties-and-values
(list _entityl _entity2)) nil)))
PRECONDITIONS-DESIRABLE: t
EFFECTS: nil
DECOMPOSITION:
‘((inform S H (entity-class-comparison _entityl _entity2))
(inform S H (however-comparison _entityl _entity2))
(for-all (common-properties (list _entityl _entity2))
(inform § H (point-by-point-comparison (_entityl! _entity2 _var))))
(inform S H (compare-similar-attributes _entityl _entity2))))

Figure 7.2. Point-by-Point-Comparison Plan Operator

An example of this type of comparison using the town Freiberg and the
lake Becken (from the LACE application) is:

Both Freiberg and Becken are carto-objects. However, Freiberg
is a town and Becken is a lake. Freiberg has a location of thirteen
degrees longitude and fifty-one degrees latitude whereas Becken
has a location of eleven degrees longitude and fifty-one degrees
latitude. Freiberg has a functional-status of partially-functional,;
Becken has a functional-status of fully- functional. They have no
identical attributes.

The final type of comparison plan operator is compare-describe-in-
turn, which is based upon four rhetorical predicates. The system first
informs the hearer of the logical definition of the entity using the rp
logical-definition, which defines the first entity and describes all of its
relevant attributes. The second rp, compare-logical-definiton, performs
the same function as logical-definition, but compare-logical-definition also
infers the relationship between two entities and relays this to the hearer,

using a cue word like “similarly” or “in contrast”, while at the same time
33

conveying the fact that it is comparing the second entity to the first. It
then uses the rp compare-contrast to compare all of the similar attributes
of the two entities (both equal and different-valued). Finally, inference
concludes that the entities are either similar or different, based on a
comparison of their attributes. This comparison technique is formalized in
the plan operator shown in Figure 7.3.

NAME: ‘compare-describe-in-turn
HEADER: ‘(compare S H _entityl _entity2)
CONSTRAINTS:‘(and (entity? _entityl) (entity? _entity2))
PRECONDITIONS-ESSENTIAL: ‘none
PRECONDITIONS-DESIRABLE: t
EFFECTS: nil
DECOMPOSITION:
‘((inform S H (logical-definition _entityl))
(inform S H (compare-logical-definition _entity2))
(inform S H (compare-contrast _entityl _entity2))
(inform S H (inference _entityl _entity2))))

Figure 7.3. Compare-Describe-In-Turn Plan Operator

Comparing two towns, Merseburg and Erfurt, which are represented in the
LACE application, this plan operator would generate the following
paragraph: '

Merseburg is a town with a location of twelve degrees longitude and
fifty-one degrees latitude, a functional-status of fully-functional, a
population of 25000-to-10000, and two roads (Route 181 and Route
91). Similarly, Erfurt is a town with a location of eleven degrees
longitude and fifty-one degrees latitude, a functional-status of fully-
functional, a population of 10000-or-more, and five roads (Route

7f, Route Sf, Route 274f, Route 7 and Route 4). Merseburg and Erfurt
have the same class, a different location, the same functional-

status, a different population, and several different roads.

Therefore, they are similar instances.

Having shown how TEXPLAN is capable of diversifying its
ccmparisons of two entities found in the LACE application, we now detail
the methods used to provide travel directions from a town in the
application to another object in the LACE system.

34

SECTION 8

Just as it is able to inform the hearer about entities using
descriptions and comparisons, TEXPLAN can also inform the hearer how ‘o
travel between two points. These locational instructions (i.e. route plans)
are produced by the enable-go plan operator, enable-to-get-to, which is
capable of giving two types of directions: directions to objects connected by
roads (such as towns or intersections) and directions to objects not
connected by roads (such as lakes, dams or any object in the Map Display
System that has a location). Both types of directions are introduced by the
relational-location predicate which tells the user where the place of
destination is in relation to the point of origin. This particular predicate
provides the latitude and longitude coordinates of the destination point,
the distance to the destination point, and the direction of the destination
point in relation to the origin. Next, a point-by-point route is given. The
route-planner that is currently being used, called find-decent-path, is the
same route-planner used by LACE to move mobile SAM sites. It was
designed to find a relatively short path in a reasonable amount of time.
Once the path is found, it is given to genny-path, a function which
condenses the path to eliminate segments that are components of the same
road, and adds the final destination as the last element of the list. This is
illustrated in Figure 8.1 for a short path:

35

Input: (intersection<#> road-segment S57<#> road-segment 57<#> intcrsection<#>)

\

Function: genny-path

¥

(intersection<#> road-segment S57<#> interscction<#> town<#>)

Output:

Figure 8.1. Genny-Path Function Input/Output

The path is given to go-event-predicate which in turn calls go-event-town,
go-event-intersection, go-event-road, or go-event-true-destination (used
only when the destination object is not connected by roads) depending on
the value of the current-segment. Go-event-predicate updates the local
spatial focus of attention (i.e. the current entity in the space being
discussed). There are several variables that trade the spatial focus,
including previous-segment, current-segment, next-segment, next-next-
segment, final-segment, and destination (the last two will be the same only
in the case of non-road-connected directions). This local spatial focus is
necessary to determine the distance and direction traveled on a particular
road and to pronominalize (e.g. “from here”).

Another feature of the directions produced by TEXPLAN is that
sentence introductions are randomly selected. Not only does this produce
variety within the paragraph, but it also limits the chance that two
identical requests for directions will result in the same response. "The
range of introductions are: “From here”, “From that town”, “From that
intersecdion”, and “From (town-name)”. The directions also substitute
“continue on” for “take” if they have gone through a town, but remain on
the same road. These lexical variations make the directions less repetitive
and more like the text a human would produce. The examples below
illustrate this lexical variation:

Merseburg is a town located at fifty-one degrees latitude twelve
degrees longitude one hundred thirty-two kilometers north-west of
town As.

36

From As take Route 21 south-east five kilometers to the Intersection
of Route 92 and Route 21.

At that intersection take Route 92 north-west thirty-six kilometers
to Oelsnitz.

From Oelsnitz continue on Route 92 north-west thirty-eight
kilometers to the Intersection of Route 175 and Route 92.

From that intersection take Route 2 north-east twenty-eight
kilometers to the Intersection of Route 2 and Route 176.

From there take Route 176 north-west thirty-nine kilometers to the
Intersection of Route 91 and Route 176.

At that Intersection take Route 91 north-east sixteen kilometers to
Merseburg.

Directions to objects that are not connected by roads are basically the
same as directions to objects that are connected by roads. However, since
the route planner cannot determine a path to an object that is not
connected by a road, TEXPLAN must give it a substitute for the destination.
The best choice for this substitute is the closest intersection to the
destination. Give-closest-intersection searches a thirty kilometer radius to
find the closest intersection to the destination. This function is similar to
the LACE function that sweeps the area around a SAM site for targets. It
adds a small incremental distance at varying angles to get a locus of points
around the destination point. It increments its sweeping distance until it
reaches a maximum of thirty kilometers. The LACE function find-block is
used to determine the map blocks that the points are located in. Then the
ERIC command (ask map-block recall your intersections) returns all the
intersections in a particular block. A distance function is used on each of
the intersections to determine the closest intersection to the destination.
The route planner is then asked to plan a route between the town of origin
and this intersection. Next, TEXPLAN calculates the point found on one of
the roads in the intersection that is the closest point to the destination,

37

bringing the user closer to the destination. This is done by the select-
closest-point function. First all the road-segments that have an endpoint
at the intersection are found by using the ERIC command (ask intersection
recall your roads). Second, each of these road segments are placed in a
group which includes all of the road segments from the intersection closest
to the destination to the next intersection on that particular road. Third, a
geometrical algorithm is used on each of the road-segments. This
geometrical algorithm finds a point on the road-segment that is the closest
to the destination creating a perpendicular line from each road-segment to
the destination, then finding the perpendicular line with the shortest
distance (see Figure 8.2). It finds a perpendicular line to the destination,
the total distance traveled from the intersection to the beginning of the
perpendicular line, and the distance traveled along that particular road-
segment to reach the destination point. Fourth, a sorting function is used
to place the road-segment with the closest point to the destination in the
last position of the list and determine the total distance traveled from the
intersection to that point (adding up the length of each individual
segment). These road-segments are placed in a new list and the sorting
function is performed again across road-segment groups to get the final
solution. The final solution is in the form:

(road-seg-name dist-trav-along-road-seg dist-from-destination
dist-from-inter)

The predicate go-event-true-destination uses this information to tell the
user the distance and direction the user must travel to the closest point to
the destination.

The final predicate in this text-plan is the relational-point-location
predicate. It uses the road-segment information to tell where the new
point is in relation to the destination. Due to the fact that the point is only
represented by a distance and a direction traveled along a road-segment, it
must be converted into map coordinates to determine the distance and
direction with respect to the destination. This is done by determining the
change in the x-direction and y-direction of the road-segment, then
determining the ratio of the length of the road-segment with the length of
the portion of the segment traveled. By multiplying the ota o ‘n the x-

38

direction and y-direction, the change in these directions for the portion of
the segment traveled can be determined. These changes are added to the
road-segment end-point that is closest to the intersection to get the map-
coordinates of the closest-point to the destination. An example of
directions given to an object that is not connected by roads is:

Friedersee is a lake located at fifty-two degrees latitude twelve
degrees longitude forty kilometers north-east of town Leipzig.

From Leipzig take Route 183 north-east thirty-four kilometers to the
Intersection of Route 183a and Route 2.

From there continue on Route 2 north-east four kilometers to the
Intersection of Route 107, Route 183 and Route 2.

At that intersection take Route 183 north-west eleven kilometers to
the Intersection of Route 183 and Route 100.

From there take Route 183 west 4.0 kilometers.

The lake Friedersee is located two kilometers north of this point.

39

Destination

Closest Intersection

destination

pointl

point2

Figure 8.2: This figure shows how the closest point to the destination

on a road segment is selected. A perpendicular line is drawn to each

of the four road segments. Sometimes a line must be drawn to extend

the road segment to find a perpendicular line. The function "select-
closest-point” discards these cases by determining if the distance

from the perpendicular line. from the beginning point of the perpendicular
line is greater than the length of the line segment.

40

N ION

This report is a brief overview of some of the components and
capabilities of the TEXPLAN text generation system. The report breaks
down the major components of the system, including the most important
functions used in each component. However, the functions described in
this report utilize more specific update and accessor functions to
communicate with the underlying application. Although an explanation of
these functions is beyond the scope of this report, a list of the most
important and most used functions in TEXPLAN, along with their function
calls, can be found in the appendix of this report.

A future goal of the work on TEXPLAN is to transport the system to
LACE; to generate reports of the events that occur during the simulation.
TEXPLAN has the capability to either give a description of the events in the
simulation as they pertain to one object or as they pertain to the whole
simulation. It is important to remember, however, that the simulation
must be run before TEXPLAN can generate text.

This report has described three classes of text produced by TEXPLAN:
descriptions, comparisons, and route directions. The system composes text
by reasoning about the different kinds of information contained in the
underlying application (e.g. LACE). Information is identified using
rhetorical predicates which are realized as English text using an on-line
dictionary and grammar. As illustrated in this report, this process
ultimately results in coherent and cohesive English prose.

41

APPENDIX

ED FUNCTIONS IN THE
TEXPLAN SYSTEM:

42

These functions are grouped according to their locations in the
TEXPLAN (i.e. GENNY) directory. Each grouping represents a subdirectory
and the file in which the function(s) can be found (underlined and in bold).
Each function is listed with its argument(s) in italics. The functions used to
run the system have their function calls listed as well.

Dicti lookup:
(look-up object)
(dictionary-entry-of-LACE-object object)

(instance-entry object)

Dicti kedicti)

(make-dictionary-entry entry)

Pl . kb-interface:
(access-value thing slot)

(append-value thing slot new-value)

(update-value thing slot value)

(go-event-predicate path)

(go-event-town previous-segment current-segment next-segment next-
next-segment final-segment destination)

(go-event-intersection previous-segment current-segment next-segment
next-next-segment final-segment destination)

(go-event-road previous-segment current-segment next-segment next-
next-segment final-segment destination)

43

(go-event-true-destination previous-segment current-segment next-
segment next-next-segment final-segment destination)

(give-closest-intersection e)
(select-closest-point intersection road-segs destination)

(closest-point-distances intersection destination road-seg)

(genny-path route)

Pl . Jicates:
(trans predicate-type object)
Trans is the abbreviated ve;sion of the function translate.
(instantiate-predicate type object speech-act)
Function call: (instantiate-predicate ‘rhetorical-predicate object ‘define)
(attribute-value-pairs object attribute-slots)

(relevant-attributes object)

Realizati -t late:
(translate rp+focus+context)
(assign-semantic-function rp)
(assign-relational-function rp case pragmatics)
(rp-action rp)

(insertions relational-structure form voice)

Realizati hsyn:

(morph-syn root entry)

Realizati .

(assign-syntax-function lexical-list)

Realizati lati I .
(make-np agents focus context connective &optiona‘l (no-pronom nil))
(make-nps agents focus context connective &optional

(suppress-pronominalization nil))
(make-all-nps agents focus context connective &optional (no-pronom nil))
(select-determiner rp-skeleton entry context)

Select-determiner will only take lists as arguments.

Realizati face-f .
(surface-form lex-punct-list)

Function call: (surface-form (trans ‘rhetorical-predicate object(s))

Maybury>genny>planning>planner:
(plan-and-display-text effect)
Function call: (trans ‘(plan-operator s h object(s)))

The object in this function must be in the object form: #<TOWN FREIBERG>.
If there are two objects, they must be listed: (list #<TOWN FREIBERG>
<TOWN GOTTINGEN>).

45

(find-decent-path start finish)

46

REFERENCES

Anken, C. S. October, 1989. “LACE: Land Air Combat in Eric.” Rome Air
Development Center TR-89-219, Griffiss AFB, NY.

Hilton, M. L. and C. S. Anken. February, 1990 “Map Display System: An
Object-Oriented Design and Implementation.” Rome Air Development
Center TR-90-54, Griffiss AFB, NY.

Hilton, M. July, 1987. “ERIC: An Object-Oriented Simulation Language.”
Rome Air Development Center TR-87-103, Griffiss AFB, NY.

Knowledge Systems Concepts, Inc. August, 1989. “Cooperative Red and
Blue Database System.” Final Technical Report, contract number
F30602-87-D-0095. Prepared for Rome Air Development
Center/COES, Griffiss AFB, NY.

Maybury, M. T. September 1990c. “Planning Multisentential English Text
Using Communicative Acts.” PhD Dissertation, Cambridge University
Computer Laboratory: Cambridge, England.

47

Maybury, M. T. August, 1989. “Knowledge Based Text Generation.”
Rome Air Development Center TR-89-93, Griffiss AFB, NY.

Maybury, M. T. June, 1990a. “Using Discourse Focus, Temporal Focus, and
Spatial Focus to Generate Multisentential Text.” Proceedings of the
S5th International Workshop on Natural Language Generation, Linden
Hall, Dawson, PA, 3-6 June, 1990.

Maybury, M. T. July, 1990b. “The Four Forms of Explanation Presentation:
Description, Narration, Exposition, and Argument.” Proceedings of the
AAAI-90 Workshop on Explanation, Boston Hynes Center, Boston,
MA, July 30, 1990.

Maybury, M. T. September 1990c. “Planning Multisentential English Text
Using Communicative Acts.” PhD Dissertation, Cambridge University
Computer Laboratory: Cambridge, England.

48

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas ., competence is previded to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of c3r systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

