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ABSTRACT
In the field of material damping a number of measures are used to express the level of damping
which a material possesses. Such measures are required when evaluating material and system
responses to dynamic loading conditions. The most widely used measures of damping capacity
include the tangent of the phase lag, tan *, damping ratio, , specific damping capacity, V, loss
factor, T1, inverse quality factor, Q-1, and log decrement, 6. Each of these damping constants
are defined in relation to the method used to measure them. Thus it can sometimes be difficult
to compare the damping capacity of one material to another. By their inherent definitions, the
measures of damping capacity listed above can be simply interrelated when damping levels are
within the range 0 < tan * < 0.14 (i.e. Q-1 = 11 = tan * = EYE" = 6/a = V/2n = 2;). However,
these widely used interrelationships are actually approximations based on two simple anelastic
models and an assumption of low damping. This assumption simplifies otherwise complicated
nonlinear conversions. When higher levels of damping are of interest (0.14 < tan 4) the simple
linear relationships given above can produce up to 40% error when converting from one
damping measure to another. In this paper the basic measures of damping will be reviewed and
the exact formulas which relate the various damping measures will be presented. Both the exact
formulas and the approximations will be given in the discussion and in a table contained in the
summary section. The nonlinear relationships will be useful in cases involving high damping,
especially when damping levels are rear tan * = 1.
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INTRODUCTION

Simply stated, damping is the dissipation of energy in vibrating systems which results in

either the control of the amplitude of oscillations or their eventual decay. In mechanical systems
damping can be classified as passive or active. Active damping uses externally applied feedback

control forces to limit the deformation and motion of large structural configurations. Passive

DTRC-SME-91/05 I



damping makes use of properties which are inherent to the system and which arise from energy

dissipation taking place within stressed elements of a vibrating system or from energy being

imparted to a surrounding dissipative medium. The passive damping which is of interest in this

discussion involves mechanically stressed materials or structural elements and the energy

dissipation associated with cyclic strain or stress.

The science of passive damping is separated into two areas: material damping and system

damping. In material damping the energy dissipation inherent to the material is of interest.

Some mechanisms which produce material damping in metals include movement of point or line

defects and relative movement of domain walls. In polymeric materials the damping is often

due to rotation or sliding of long monomer chains. In either case these dissipative effects are

often broadly referred to as "internal friction," and this is a term which is widely used in the

literature. In mechanical and structural assemblies the overall energy dissipation of the system is

of interest and this can result from the addition of extra dissipative devices or materials (e.g.

riveted joints with friction, viscous dampers, plastically deforming elements, viscoelastic layers)

and/or damping due to interaction of the structure with its environment.

In material damping two primary classes of materials are studied: metal alloys and

polymers. Each class has advantages and disadvantages as independent materials. Overall

metals have good stiffness, strength, and creep characteristics. However, metals possess

damping capacities which are generally much lower than that of polymers especially when

service temperatures are near the polymer glass transition temperature. Generally speaking,

polymers have excellent intrinsic damping capacities but suffer from poor stiffness, strength, and

creep characteristics and also suffer from strongly temperature dependent material properties.

To treat these independent problems designers have developed schemes that implement polymer

layers or devices into metal structures thus improving the overall system damping. Also,

researchers are attempting to develop new ways to increase the intrinsic damping in metals [1].

The discussion in this paper centers around the various measures of damping which are

used to determine the dissipative capability of homogeneous linear materials. A variety of
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damping measures are commonly used and the choice of one single measure depends on

application, test method or both. The measures of damping which are most commonly used

arise from an assumption of some mechanical model of physical behavior. The mechanical

model can be chosen for the sake of simplicity or for the sake of modeling a more complex

physical behavior. The latter choice is preferable although it is often impractical due to

mathematical nonlinearities. For this reason simple models of damping are used in the majority

of cases.

The primary measures of damping used in analysis and experimentation can be derived

from two simple models of anelastic behavior namely the Kelvin-Voigt model and the complex

modulus model. Following the definition in [2], anelastic material behavior requires that the

following conditions be imposed on stress, strain, and equilibrium in a material:

1) For each value of stress in a material there must be an equilibrium value of strain (as a

corollary, this condition requires a complete recovery of strain upon unloading to zero

stress).

2) The equilibrium response is arrived at following some sufficient time delay (self

adjustment or relaxation).

3) A linear stress-strain relationship is required.

This definition differs from that of an ideally elastic material only in the condition imposed by

Item 2. For an ideally elastic material the equilibrium response is instantaneous and thus the

difference between an ideally elastic material and an anelastic material is based only on the

condition of instantancity [2].

The condition of linearity is of utmost practical importance to both the derivation and

meaning of the measures of damping. Fortunately many materials under low to moderate

stresses (i.e. stresses much lower than the yield point) satisfy the conditions of linearity [2].

Linearity is embodied in the principle of superposition which states that when a sequence of

stresses are applied to a material at different times the newly applied stress contributes to the

resulting strain as though it were acting alone. In more specific terms this means that if there

DTRC-SME-91/05 3



exists a stress history a1 (t) which produces a strain history sl(t) and a separate stress history

02 (t) which produces a strain history of e2(t) then the sum Ol(t) + 02(t) will produce a strain of

E1(t) + E2(t)

The purpose of this paper is to present the models upon which the different measures of

damping capacity are based and, through analytical methods, present the inter-relationships

among them. It is shown that the nonlinear conversion of one damping measure to another

produces a significantly different result when compared to the widely used linear conversions

and that some of these conversions are valid for a only a limited range of values. These

nonlinear relationships will be helpful in the correlation of material damping data.

DISCUSSION

The measures of damping which are most commonly used in dynamic analyses and

reporting of experimental data are the following: tangent of the phase lag (tan 4), the damping

ratio ( ), the specific damping capacity (p), the loss factor (TI), the inverse quality factor (Q-1),

and the log decrement (6). These measures are used because they can derived from two simple

models of mechanical behavior: 1) the Kelvin-Voigt (KV) model and 2) the complex spring

(CS) (or Kimball-Lovell complex modulus [3]) model. Both these models represent simple

anelastic behavior [2,4]. In the discussion we will sometimes refer to the KV and CS models as

damped material elements.

In deriving the various damping measures we will consider two idealized cases involving

both the KV and CS models. The first case will be that of an inertialess system to which a

harmonic force is applied. This system is an idealized representation of a damping material

under the influence of an applied harmonic force. The second case will be that of a one-

dimensional system with inertia. Inertia will be included by the addition of a single rigid

external mass to the damped material element. For these two cases we will show that the steady

state dynamic response characteristics are quite different for the KV and CS elements; especially

when the energy dissipation levels are large.
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Note that when considering a single degree of freedom (SDOF) system that contains

inertia we will restrict the inertia to be a rigid and external mass. In many cases of actual

materials and test samples distributed inertia is important. However, all cases involving

distributed inertia can be shown to be mathematically equivalent to the SDOF oscillator [2]. As

a major consequence of this it follows that for a given frequency of vibration the damping

exhibited by a homogeneous linear material is independent of the test specimen design and of the

loading configuration [2,5].

SDOF MATERIAL REPRESENTATIONS

Let us first give the mathematical equations and mechanical analogies of the two models

without inertia. First, consider the Kelvin-Voigt model which consists of a perfectly elastic

spring arranged in parallel with a dashpot that behaves as a linearly viscous fluid. The model

representation and associated equations are as follows:

k(orE) ci+k-F (1)

IF (or d)

c (or y) iS x (or e) ye+iE=o (la)

In Eq. (1) F and x are generalized force and deformation variables where F represents the force

applied across the entire element, x represents the deformation of the model away from the

undeformed geometry of the spring, k is the elastic spring constant, and c the viscosity

coefficient of the dashpot. F, x, k, and c are the counterparts of stress, strain, elastic modulus,

and Newtonian viscosity, respectively, of the material. For example Eq. (la) is the material

counterpart of Eq. (1) for the case of uniaxial stressing where a is the stress, E is the strain, E is

the elastic modulus, and y is the Newtonian viscosity coefficient. Similar material counterparts

could be written for the cases of shear loading and bulk response.

In the KV model the spring is an elastic element which provides a purely elastic restoring

force and the dashpot provides linearly viscous damping. Becau' the spring and dashpot are
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arranged in parallel, anelastic behavior is produced in simple step loading and unloading

conditions [4]. For fully cyclic loading conditions the dashpot removes a portion of the energy

which is input to the system and thus giving rise to damping.

Next consider the CS model. This model consists of a single spring which is

characterized by a complex number as follows:

k* (or E*) k*x - F (2)

SF (or 6)

-x (or e) E*= a (2a)

where

k* = k, + ik2  E*=E1 +iE2 ,

In Eq. (2) the real part of k* (k1) is frequently called the storage modulus and the imaginary part

of k* (k2) is called the loss modulus. Eq. (2a) is the material counterpart to Eq. (2) for the case

of uniaxial stressing. It is important to note that this model is truly valid only for the case of

harmonic input (for an explanation regarding this restriction see [2]). Also, because the behavior

is linear, the stiffness and damping constants of the material can be simply related to the stiffness

and damping constants of a specimen [5].

Recall that mass has not been included in either of the simple representations given thus

far. Such representations are considered to be simple models of material behavior where inertia

terms are negligible compared to the stiffness and damping terms. Thus, in the discussion of the

cases which include inertia we will sometimes refer to the KV and CS models as damped

material elements.

Now let us take each model and solve for its response to the case of sinusoidal force

input in the steady state. Specifically let F = F0 sin at where F0 is the peak force and W is the

frequency of harmonic input. Note that for the two models to have equivalent stiffness we are

specifying that k in the KV model is equal to k, in the CS model, i.e. k = kj. The steady state
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solution for the case of the KV model is straightforward [6,7] and the details will not be repeated

here. With some knowledge of the complex variable theory [7] the steady state solution for the

CS model is also straightforward. It turns out that the steady state solution for both models can

be written as follows:

F = F0 sin cot (3)

x = X0 sin (ot-) (4)

where X= F0  (5)

tan for the CS model (6a)
Cn

tan = for the KV model (6b)

Here X0 is the amplitude of the steady state response and * is a phase angle by which the

response lags the input.

TANGENT OF THE PHASE LAG: TAN

Because the material response, x, lags the force input by the phase angle, 4, (also called

phase shift and loss angle) a number of commercially developed testing devices (e.g. the

Polymer Laboratory DMTA and the Dupont DMA) have been designed to experimentally

determine a material's damping capacity by measuring the phase shift. Therefore we have just

defined one of the measures of damping: namely tan 4. In the case of the CS model tan 4 is

determined by material properties alone, as seen in Eq. (6a). Also, because tan 4 is a constant,

the overall amplitude X0 is determined only by material properties and the amplitude of the force

input. Thus the overall response of the CS element is independent of the applied frequency.

Specifically, tan * is dependent upon the loss modulus k. However, due to the linearly viscous

nature of the damping in the KV model tan 4 is dependent upon the product of the viscosity
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coefficient and the frequency (see Eq. (6b)) and thus the response of the KV element to

sinusoidal input is dependent upon the frequency. Therefore when using the CS model one

assumes that the effect of damping on the material response is present even at very low

frequencies and that this damping is constant, while for the KV model the response is greatly

affected by the rate of sinusoidal input.

When the force, Eq. (3), input is plotted against the response Eq. (4) the result is an

elliptical hysteresis loop as shown in Figure 1. More specifically the plot is that of an ellipse

which is inclined with respect to the x axis. Two straight lines which show the inclination of this

axis are given in the plot. First note the solid line which is called the storage modulus line; this

line represents the stiffness of the spring (k) in the KV model and the storage modulus (k1) of the

CS model. Also, note that this line connects the origin to the point of maximum deformation.

The second straight line shown is dashed and represents the major axis of the ellipse. As the

damping decreases the major axis rotates toward the storage modulus line and the hysteresis loop

becomes thinner, ultimately collapsing onto the storage modulus line in the limit of zero

damping. This progression is shown in Figure 2 for three different values of tan : tan 1, .6,

and .2.

Recall from Eq. (6b) that tan = co/k for the KV element. Thus in order to increase tan

in the KV model it is only necessary to increase the frequency w of the harmonic input. Since

no material constants are changed in the process, Figure 2 clearly shows one feature of the

frequency dependent nature of the KV model. Namely, for an increase in the frequency of

harmonic force input, the hysteresis loop widens, the major axis of the ellipse rotates away from

the storage modulus line, and the position of peak deformation decreases. Such behavior will

not be exhibited in the response of the complex spring. Recall from Eq. (6a) that tan f = k2/k1.

Also, by examining Eq. (5) it is clear that the frequency of loading does not affect the amplitude

of the response. Thus the complex spring, in an of itself is a rate independent damping element.

Note however that the KV model response will be equivalent to the CS model response if the

damping coefficient in the KV model has the property that c=k2/A. This equivalence is valid
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only for the case where (o is the constant frequency of a single frequency harmonic input. Thus

the CS model can be considered to be a special case of the KV model, but only when the loading

is harmonic with a single frequency of (o and also when k2 = cw.

SDOF SYSmEs wrr INERm

Before proceeding to other measures of damping let us consider the second idealized case

wherein a single rigid mass is externally attached to each of the damped material element. When

the mass is acted upon by a harmonic force we have what is known as the simple harmonic

oscillator. This is depicted below:

Dampin Elment F-- Fo sin cot

[---. x

For the purposes of the discussion here the damping element is represented by either the CS or

KV model. Also note that x is the displacement of the mass away from a reference configuration

wherein the damped element is undeformed and is without any residual stresses. The response

of the harmonic oscillator will lead to a number of quantities which are used as measures of

material damping.

The equations which govern the harmonic oscillator are as follows for the two models

under consideration:

mi + k*x = F0 sin ot (CS Model)

mx + + kx = F0 sin ot (KV Model)

The steady state solution of either of the above differential equations is as follows [2,7]:

x = X 0 sin (co-0) (7)
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Folk

where X°= F 2]2 (8)

~fI4j_] + tan2

tan 0 = J tan(9)

(on = is the natural frequency

and as before

tan = - for the CS model

tan =- = 2 t. for the KV modelk (n

Here 0 is the phase lag of the displacement of the mass with respect to the force applied to the

mass whereas is the phase lag of strain with respect to stress in the material. Also, is the

damping ratio in the KV-mass model (defined as t = c/%c where cc is the critical value of

damping: cc = 2jm). Note that for the case of quasi-static loading (where w/wn a 1) the

solution reduces to that of the inertialess system, Eqs. (4)-(6), with 0 .

SPECIFIC DAMPING CAPACI:

With this background now in place let us now proceed to the evaluation of other

measures of damping. Presently let us consider the measure of damping known as the specific

damping capacity. The specific damping capacity (denoted as V) is defined by the following

expression:

AW
W =(10)

Here AW represents the energy absorbed per cycle of deformation in the steady state and the

quantity W in the denominator is a measure of stored energy. AW is also called the absolute
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damping energy of the specimen [5] and therefore V is a relative damping measure. For the KV

and CS elements without mass AW can be found directly by using Eqs. (3) and (4) in

conjunction with the following integral:

Man

AW= f Fdx= f Fk dt
cycle 0

which yields

AW = a FXO sin

A variety of definitions for stored energy can be used in the expression for V. For

example, in [5] W is defined to be the total strain energy for the entire specimen at maximum

deformation. Other authors (e.g. [8]) take W to be the peak potential energy solely in the elastic

component of the model. Still others have defined W to be the instantaneous kinetic plus

potential energies of vibrating systems with inertia [9]. Thus the choice of W which is made

greatly influences the value of V. In the following paragraphs we will individually consider

these three specific definitions of the energy storage term, W, applied to both the inertialess

material response and to the system response with inertia.

First let us consider the case of the inertialess material response where W is a strain

energy quantity; specifically let W1 be the strain energy stored in the material upon loading from

zero deformation to maximum deformation i.e.

I X

Wi=fFdx= fFidt
0 1

(0

The strain energy represented by W1 is shown as the cross-hatched region of Figure 3. Using

Eqs. (3) and (4) in the above integral produces the following result:
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W1 - T  c s = OOCS +2tan

Following a similar process let us next examine the slightly different case where W is the

strain energy stored in the inertialess material upon loading from zero force to maximum force,

i.e.

XOCOS # 2

W2 = fFdx=fFidt

This strain energy is shown as the cross-hatched region of Figure 4. Interestingly, the result of

integration is identical to that of the previous case

W2=TQcos. 1+!tanq] =W 1

Thus the strain energy stored when loading from zero force to maximum force is identical to the

strain energy stored when loading from zero deformation to maximum deformation. This result

is not intuitively expected because the shape of the stress-strain curve follows an elliptical loop

rather than a loading path which passes through the origin. It should be pointed out that the

equivalence of W1 and W2 is a consequence of linearity; for nonlinear materials (i.e. materials

with non-elliptical hysteresis loops) W1 # W2.

Next, consider yet another definition of stored energy for the inertialess material

response. In this third case let W be defined as the energy stored in the purely elastic component

of each damped material element and let this energy be computed for the case of maximum

deformation in the cyclic response. The elastic component of the KV and CS models is a purely

elastic spring and is represented by the stiffness constant k. The shaded portion of Figure 5

represents the maximum potential energy stored in the spring, which is
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ws= o Ik2= X os,

Therefore, at maximum deformation, the energy stored in the elastic component of the material

model is a quantity which has a simpler form than strain energies W1 and W2.

According to Eq. (10), for the three separate definitions of stored energy W1, W2, and

W3 which apply to the inertialess material response, the specific damping capacity becomes VI,

VI2, and V43 as follows for both the KV and CS models:

1 -- 2--2 tan p3 = 2n tan*
1 + tan

Clearly V3 gives the simplest relationship between tan 4 and V. In fact, V3 defines a relationship

which is widely used.

Next we will consider the computation of V for the oscillating system with either KV or

CS type damping this time adding mass. Even though the vibrational response is now different

because of the inertia which is present, we will be able to arrive at a definition of V which is

identical to Vp3. However in order to obtain this identity it will again be necessary to make a

careful selection of the stored energy term W.

The solution for the response of the harmonic oscillator will afford us two very important

analyses; the first analysis involves the computation of the specific damping capacity and the

second analysis involves the computation of the inverse quality factor. Because the energy

dissipation is associated with the steady state response of the damped spring-mass system (Eq.

(7)) we will specially denote the dissipated energy as AWsys:

AW5p= f Fdx= fR dt
cycle 0
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In this case the energy dissipation is quite different than that of the previous case because of the

added mass and thus the result is strongly dependent upon the frequency w

tan
AWsys = a Fo"0 sin 0 = [ FoX[] + t an2

J_;_1]+ tan2

The energy storage quantities that were used for the inertialess response (W1, W2 , and

I"3) may also be used for the simple harmonic oscillator. However the most convenient

expressions for V are produced by using the third energy definition. Following the methodology

used in [9] the stored energy W is specified as a simple energy storage term, as was done in the

case of W3. Thus let us consider W4 to represent the energy stored in the elastic spring at

maximum deflection in the cyclic oscillation. No restriction is placed on frequency and the

result is as follows:

W4 2 0

Using Eq. (8) and rearranging W4 gives

1

I+ tan24

and therefore

A W5
'V4-- - - 2n tanq

Alternatively, W could have been specified as the total energy stored in the damped

spring-mass oscillator, i.e. the instantaneous potential energy of the spring plus the instantaneous

kinetic energy of the mass:
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1 1 .
W5 = 2  + 2

Plugging the response, Eq. (7), into W5 produces the following result:

Note that the energy stored in the damped system is dependent upon both frequency and on the

instantaneous position x. However, when the system is oscillating at resonance the energy stored

in the system becomes constant for every position in the cycle:

W51 = 1 9

lWsI 2 kRes 2 tan , XOR. = XOI

By computing the specific damping capacity of the system at resonance the following result is

produced which is identical to V3:

AWl
'V5= W52n tan*

The specific damping capacities which pertain to the harmonic oscillator are exhibited in

Vp4 and V5. Thus when considering an oscillating spring-mass system with damping of either the

Kelvin-Voigt or the complex spring type, the tangent of the phase lag can be determined by

computing either of the following: (AWy/W 4 or (AWsys/W 5)I.=w,) where AWs s is the

damping energy dissipated per cycle, W4 is the energy stored in the spring at maximum

deflection X0, and W5 is the total energy of the oscillating spring-mass system.

Loss FACTOR: Ti

The next measure of damping considered is the loss factor. By using proper energy

storage definitions the loss factor allows for a simple and direct inter-relationship between actual

energy absorbed and phase lag. The symbol denoting loss factor is lj and is defined as follows:

Vr 1 = AW-- l W (11)

D2T-M-2n/ W
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Using this definition, and referring back to our recent definitions of W we have the following

results:

tan"Tl =12= t
1 +!!tan

T13 = tan and also T14 115 = tan

To the best of the authors' knowledge the definitions given by ilI and T12 have not been reported

nor are they of primary interest. However the definitions given by T13, 1i4, and v15 are of primary

interest because of their simple form and because the conversion 1 = tan is widely used in

damping work. It is important to note, however, that the form of this widely used conversion is

due entirely to the definition of W in the denominator of Eq. (11). Therefore workers in the field

of damping who report measured values of the loss factor should precisely specify what they are

using as their measure of stored energy or, more simply, report the specific damping capacity.

It is important to reiterate that Ti = tan * only in the three specific cases for which p = 2n

tan *. The first case pertains to the system without inertia. The loss factor TI in this case is

defined by 1/2n times the energy dissipated during one full cycle of deformation for an

inertialess linear material which can be modeled by either a complex spring or a Kelvin-Voigt

element, divided by the energy stored an the purely elastic component of the material at

maximum deformation. The second and third cases pertain to the vibrating linear SDOF system

(i.e. the system with inertia) with the element attached to the mass being either of the KV or CS

type. In the second case the loss factor is defined as the product of 112n and the energy

dissipated by the system in one full cycle of steady state resonant deformation divided by the

total energy of the system at resonance (kinetic energy of the mass plus potential energy of the

spring). Finally in the third case the loss factor is defined by 1/2n times the energy dissipated by

the system in one full cycle of steady state deformation (at any frequency) divided by the energy

stored an the purely elastic component of the damping element at maximum deformation. Only
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by defining the loss factor precisely in these terms is il = tan +. Thus for these special

definitions q represents a constant material damping property in the case of a complex spring

and a frequency dependent damping property in the case of the Kelvin-Voigt model (see Eqs.

(6a) and (6b)).

MERE QUAMTY FACTOR: Q-i

The next measure of damping which we will consider is the inverse quality factor (Q1).

This measure is based on the frequency response of the damped spring-mass system under

harmonic steady state conditions. Also called the resonance curve breadth factor, Q.1 is

determined by the half power bandwidth of the response amplitude vs. frequency plot and it is

convenient because in conditions of low damping it can be simply related to the previously

discussed measures of damping.

The frequency dependent response amplitude, X0, of the damped spring-mass system was

given earlier in Eq. (8). By dividing X0 by Fo/k we now obtain the magnification ratio, M.

Since tan # is different for the KV and CS systems the magnification ratio must be considered

separately for these systems.

xo 1M =M = 1k ' MC jiSj] (12a)
I- - j + tan2*

1o 22 (12b)MA'r- [.On] I 2 C--n2

The dimensionless magnification ratio is so named because it magnifies a static deflection of

Folk to the dynamic response amplitude X0. In other words by multiplying M with the static

deflection produced in a spring of stiffness k by steady force F0 , we obtain the amplitude of

steady state vibration that results when the same force acts harmonically dynamic with frequency

Co.
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A concise graphical interpretation of the response can be made by plotting M against

ow€o n (called the frequency ratio) as shown in Figure 6 and 7 for the KV and CS models

respectively. The curves given in these figures are known as frequency response curves and

clearly show that the magnitude of the steady state response is strongly dependent upon both the

frequency and the amount of damping. The two sets of frequency response curves are similar in

that the damping level (t in the KV-mass model and tan + in the CS model) controls the height

of the response peak near the region of resonance. Indeed the resonant peak is sharply defined

for low levels of damping and becomes infinite in the limit of zero damping. However, as

damping is increased the peaks of both response curves are lowered dramatically.

There are a few notable differences in the separate response curves, Figures 6 and 7,

which should be pointed out. The first difference is the position of the peak response on the

frequency scale. In both figures the peak is located at the position of resonance (W/Wo, = 1) when

damping levels are small enough so as to approach zero. However as the amount of damping

increases the peak of the KV response shifts away from the resonant frequency to lower

frequencies whereas the position of peak response of the CS model remains located at (on. This

is due to the fact that the KV element by itself acts in a frequency dependent manner while the

CS element does not. Also, as w/Wn approaches zero for the KV-mass system, M=1 regardless

of the amount of damping. This is because the viscous damping force vanishes as the rate of

loading approaches zero. Such behavior is not exhibited in the CS element. In the CS element

energy is dissipated independently of the rate of loading and a damping force is produced even

in the limit of quasi-static loading, i.e. at w/w n=O. Thus in the quasi-static condition M is

reduced away from an upper bound of M=1 as tan * is increased in the CS element. In addition,

the response associated with the CS model has a dynamic response peak located at .o/o =1 for

all levels of damping whereas the peak response associated with the KV model becomes barely

distinguishable from M=1 as damping is increased past [ - 0.5. Indeed the peak of the

resonance curve of the KV-mass system becomes M=1 and is located at w/wn=O for adequately

high levels of damping (i.e. as t approaches 1).
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The definition of the inverse quality factor used in the damping analyses of mechanically

vibrating systems was actually borrowed from the theory of electrical circuits. Therefore it is

important that we give a brief background of the quality factor as it applies to the electrical

theory. This is useful because resistor-inductor-capacitor (RLC where the symbols R, L, and C

represent resistance, inductance, and capacitance, respectively) circuits are analogous to spring-

mass-damper (/anc) systems. Indeed, the following quantities are analogous to one another:

applied force and impressed voltage, charge and displacement, resistance and damping (in fact

resistance is a dissipative mechanism), inductance and mass, and elastance (1/C) and stiffness.

In our discussion of the quality factor of electrical systems we will use the specially

superscripted symbol Qe. The quality factor, Qe, was originally developed to express a figure of

merit (or quality) of highly underdamped resonant electrical circuits or filter networks which, for

certain important applications, need to be as free from damping as possible. By definition, for

any resonant circuit, the sharpness of the resonant frequency response is determined by the

amount of energy that can be stored in the circuit, compared with the energy that is lost during

one complete period of resonant oscillation [10]. Note that this quantity is analogous to our

previous definition of V and il of mechanical damping. Indeed, for electric circuits the general

definition of quality factor states that Qe is equal to the product of 2n, and the ratio of stored

electromagnetic energy to energy lost in the total network [11].

However, when considering the condition of electrical resonance in either parallel or

series RLC circuits the quality factor can be shown to reduce to the following expression [10]:

Here the subscript r denotes the resonant condition and co is the resonant frequency of the

circuit. The frequencies o)2 and w1 define two points on the response curve that have a value of

1/'2 times the response at resonance. And because the response squared is proportional to the

power dissipated during cyclic loading these frequencies are called the half-power point
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frequencies. In this context the difference )2-w 1 defines the so-called half-power bandwidth of

the frequency response and we specify that )2>0) . Although this relationship is derived

specifically for parallel and series resonant RLC circuits it is commonly used for all electrical

networks whose magnitude plots exhibit frequency selectivity (i.e. resonance) [ 11].

It is the relationship for Qe as given by Eq. (13) which is used for mechanical damping.

Specifically, as it applies to the response amplitude vs. frequency plots of mechanical systems,

the inverse relationship of Eq. (13) is used as a measure of mechanical damping [2,6,12]. Thus

the inverse quality factor of mechanical systems is defined as:

Q- _ -__(__1 (14)
WOn

Here, wn, 0)1 and a)2 all have the same meaning as in the electrical analogy; W1 and o)2 define the

half power points of the magnification ratio vs. frequency ratio plots of mechanically vibrating

systems and w., is the natural frequency. Specifically co1 and ) 2 are the response frequencies

which satisfy X0(co) = -TL [Xol~.

Let us consider Q-1 first for the CS model and then for the KV model. The response

amplitude at resonance is denoted as XORes and, according to Eq. (8), is equal to Fo/(k tan ).

The frequencies co1 and 0)2 are found by equating Eq. (8) with (1/I)KoRee squaring both sides,

rearranging, and solving the following equation for w:

[ 1 2] + tan2 2 tan2

The roots of this equation are as follows: 12 = 1 tan
On(1,2)

and the result for the inverse quality factor is:

20(_02"01 _ 1 +tan-/-taun (15)(on
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This equation is analogously derived in [8].

Before proceeding further we wish to make an observation regarding the magnification

ratio. Note that if Eq. (12a) is evaluated for (o = (on a simple relationship between the

magnification ratio and tan is produced, namely M(on) = 1/tan . This relationship can be

used to determine damping experimentally rather than (o2 - wl)/(On. Indeed, it would appear

that the height of the peak of M would be easy to measure from a given set of experimental data.

However, in actual experimental conditions only the height of the response peak is measured and

this height, by itself, does not convey an adequate amount of information to determine the

damping. In such case the inverse quality factor must be used.

Even though the response amplitude is real-valued and defined for all values of tan it is

important to note that Q-1 is not. In fact Q-1 is real valued only when the arguments under each

square root are positive; thus Q-1 is defined only in the range of -1 < tan +: 1. However actual

materials cannot possess negative damping and must have tan * Z 0 since tan = 0 represents a

perfectly elastic material. Therefore we further restrict Eq. (15) to the range: 0 : tan _ 1. The

need for this restriction can be seen visually in Figure 8 where the square of the magnification

ratio is plotted against the frequency ratio. Careful examination of this plot reveals that when

tan * < 1 there will always exist two specific half power frequencies, W, and 0)2, corresponding

to points on either side of won where M2s(co) = M2cs(on)/2. Note that as tan increases and

approaches the upper limit of tan = 1 the frequency w1 shifts to the left. At tan =1 the half

power frequencies are co1 = 0 and o2 = 1.41w.. However, as the damping increases past this

upper limit the only half power frequency which can be determined from the plot is a)2 and this

frequency lays to the right of won. To the left of o. it is clear that Cs(w)> Mc(0)/2 and wo1

is indeterminate. Thus Eq. (15) can only be used for 0 < tan * _ 1.

When damping levels are very low we can simplify the expression for Q-1 by using the

series expansion for the square root quantities [13] in Eq. (15); doing this Eq. (15) becomes
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Q-1 =tan*( I +gtan2*+ tan4+"".

When considering only small values of tan + (i.e. tan a 1) any terms in the series with an order

of two or higher are negligible with respect to unity and the following approximation can be

used:

Q-1 P tan for tan a 1 (16)

The exact and the approximate forms of Q-1 are plotted vs. tan * in Figure 9. Notice that the

exact form, Eq. (15), deviates significantly from the approximate form, Eq. (16), especially in

the region of tan ,=I. A plot of the error between the approximate and exact values of Q-1 is

shown in Figure 10; at tan * = I the error is significant and has a value of 29%. At lower values

the error is less; at tan * = .5 the error is significantly reduced to a value of 3.4%. At tan 9 = .1

the error is only .13%. Thus Q-1 = tan + is accurate for small levels of damping. In fact, the

approximation is accurate to within 1% error in the range 0 < tan < .28 but not outside.

We can make a similar analysis of the KV-mass system for Q-1. In this case we will use

Eq. (12b) and square both sides. By solving MAv(w) = Mv(on)/2 for the half power point

frequencies and by substituting the results into Eq. (14) the following inverse quality factor is

obtained for the KV-mass system:

Q2t2 l+ -- 2t2 -2 l (17)

The first term in Eq. (17) is o)2/w n and the second term is (O/W.. By setting col/w. = 0 it is

possible to determine the upper limit on i, i.e. the limit for which Q-1 remains real valued. Thus

Eq. (17) is valid only when t is in the following range: 0 _ _ .353.

When the damping is low, it is possible to simplify Eq. (17) as was done previously for

the inverse quality factor of the CS-mass system. For cases of very low damping we can say that

t 1 and assume that t2 is negligible with respect to unity. Thus

22 DTRC-SME-91/05



41 + 2t 41 -2tfor ta

By applying the proper series expansion [13] to the square root quantities above and dropping

terms of order t2 or higher we obtain the following simplified approximation:

Q; w 2t for t a 1 (18)

The exact and approximate inverse quality factors of the KV-mass system are compared

in Figure 11. This figure is similar to that shown earlier for the CS-mass system (Figure 9). As

t approaches the upper limit for its use in Eq. (17) we again note that the exact values of the

inverse quality factor are significantly higher than those of the approximation. The error

between the exact and approximate inverse quality factors is plotted in Figure 12. At the upper

limit of t = .353 the error is 42%. At lower values of t the error is reduced; at a value of t =

.177 the error is 6.5% and at t = .0353 the error is 0.25%. For accuracy to within 1% error the

damping ratio is limited to the range of 0S <S _.0705.

Thus the inverse quality factor, Q-1, is related to two important measures of damping

namely tan ) and i The way in which Q-1 is related to these measures can be either simple and

linear or more complicated and nonlinear depending upon the amount of damping. If damping is

very small then one may use the simple approximation (given by either Eq. (16) or Eq. (18)) to

convert from Q-1 to either tan * or t. However, if damping levels are higher then the exact form

of Q-1 (given by either Eq. (15) or (17)) is recommended.

LOG DECREMENT: 6

The next measure of damping considered is the log decrement which is denoted as 6.

This quantity gives a measure of the free decay of oscillations in damped systems possessing

mass. In many simple systems with low damping levels the free response is recorded

exper.mentally and the decay envelope is observed to be exponential. Then by taking the natural

logarithm of any two successive amplitudes of oscillation a constant ;s .btained which can be

used as a convenient measure of damping; this constant is called the logarithmic decrement. In
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order to determine the simplest interrelationship between 6 and material properties we need only

to solve the equations which govern the free decay of the KV and CS models with mass. These

equations are deducible from our earlier differential equations governing systems with inertia

and are as follows [2,7]:

2
CS: i+ wn(+itan*)x=O0 (19a)

KV: + 2tOn i + 2O (19b)

Let us briefly discuss Eq. (19a) as it applies to the free decay problem. First, note that

the complex modulus is contained in the coefficient multiplying x. As we noted earlier, the use

of complex modulus is truly valid only for the case where both the response x and the force F

are purely harmonic in time. In the present case we are considering the free decay of vibration

in systems which, after an initial excitation, are isolated from external forces. Thus because a

harmonic input is not present the free response cannot be a simple harmonic unless internal

friction is absent. But, since we are including internal friction (in the form of a simple anelastic

model) the free response resulting form the solution of Eq. (19a) must have a decaying

amplitude and thus does not possess a simple harmonic form. Therefore the use of Eq. (19a) is

not strictly correct for the case of free vibrations. However, for cases of adequately small

damping the free response closely approximates simple harmonic behavior and for these cases

the results involving log decrement can be useful.

The solution of the freely decaying CS-mass system, Eq. (19a), can be found [2] as:

x = xo ei(O*t  (20)

where co* = (on  1 + i tan and xo is an arbitrary initial displacement. The square root of the

complex number contained in co* can be simplified by following the rules of complex variable

theory [7] and employing appropriate trigonometric relations. The result is as follows:
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*= wo (1 + ib)

where (On 1 0 < <2

V1tan2
2

b = tan
2

The frequency c 0 is the damped natural frequency and bo 0 is the rate of free decay; both these

quantities are directly affected by the magnitude of the damping. Plugging (0* back into Eq.

(20) produces the following result:

X = X0 ebot eilot (21)

As b (or +) decreases to very small numbers the value of the damped natural frequency Co%

approaches that of its undamped counterpart wn. Thus for adequately small levels of damping

the response given by Eq. (21) approaches that of simple harmonic behavior.

By computing the ratio of the response at time t to the response one free decay cycle

later, and then taking the natural logarithm of this ratio we are making use of the definition of

the log decrement.

6 = In x(t) f 2n b for 05 * < i (22)

Using the definition of b, which contains the loss angle, we obtain the following result:

6 = 2n tan 2 (23)

Thus for this simple model of free decay the log decrement is conveniently related to the loss

angle $.
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If the damping is very small such that tan (#/2) w #/2 then the following approximation

may be formed via Eq. (23):

2for1 (24)

Many researchers prefer to work with tan q rather than . Therefore if the loss angle is also

small with respect to unity such that tan - * then the following approximation can be used:

6 w a tan* for * < 1 (25)

Both approximations given by Eqs. (24) and (25) have been reported [2] and are widely used.

Recall that in our earlier discussion we noted that the use of Eq. (19a) was not strictly

correct because the complex modulus is contained in the coefficient of x and the subsequent free

response was not a simple harmonic. Indeed by inspection of Eq. (21) it is seen that as the

damping increases (i.e. as b increases) the rate of free decay will also increase and thus the

response will further depart from simple harmonic behavior. For 0)0 to be within 1% of the

natural frequency, the damping must be in the range of 0. tan --.286 (or 0 < 6:5 .281A). At

the upper limit of tan * = .286 the error incurred by using Eq. (24) is .6% while the error

incurred by using Eq. (25) is 2%. With respect to Eq. (23), Eqs. (24) and (25) become less

accurate as damping increases. Figure 13 shows that Eq. (24) actually underestimates the exact

value of 6 and Eq. (25) overestimates it. The error between the estimated and exact values of 6

increase significantly as tan * approaches unity. This is shown in Figure 14. One should keep in

mind, however, that the accuracy of the CS model in governing free decay decreases as damping

increases due to the assumption simple harmonic motion. Ultimately it is up to the judgement of

the engineer conducting free decay analyses as to whether or not the CS model is useful for their

purposes, and for what levels of damping it may apply.

According to Nowick and Berry [2], when the damping problem is to be solved exactly

one must utilize a specific differential equation to relate the stress and strain in the material of
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interest. When this is done the relationship between 6 and * will not be as direct as it is in Eq.

(23).

To illustrate this point we can use the free decay of the KV-mass system which is found

by solving Eq. (19b) for the initial conditions of x(O) = x0 and (O) = v0 . The result is obtained

in a straightforward manner [6,7] and is as follows:

x = X e'Ont sin( r t2Wnt + )

Xo
where X = sin

Vo + tCOnXO

NI , -- OnX0

Taking the log decrement according to its definition produces the following result:

On 0=5 t 0 1 (26)

An approximate form can be used when t is small, i.e.

6-2nt $ ; ,1 (27)

and this approximation is accurate to within 1% of Eq. (26) in the range of 0 5 t < .141 (or 0 _ 6

s .886).

Eqs. (26) and (27) are simple and useful relationships. However recall that the definition

of t (given following Eq. (9)) involves not only the damping coefficient c but also the stiffness k

and mass m. Thus 6 for the KV-mass system is tied not only to the damping and stiffness of the

material but also to the mass. This result is in contrast to the previous case in that 6 of the CS-

mass system was directly related to *, which is determined only by the damping and stiffness of

the material.
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A similar point is made by Nowick and Berry [2] in regard to the "standard anelastic

solid" (i.e. a spring arranged in series with a KV element). The "standard anelastic solid" is a

model in which both the response amplitude and the loss angle * are frequency dependent and

the dependence is such that the # vs. co curve displays a peak. By using this model to represent

system behavior an important inference can be made between the log decrement and the loss

angle. The important result, originally given by Zener [14], states that the peak value m of the

loss angle is related to the peak value 6 m of the log decrement as follows:

6 6 1
tan*m *m -M [ +-

Apparently, even in the case of low damping materials the approximations given by Eqs. (24)

and (25) are only first corrections if the material of interest simulates the behavior of the

standard elastic solid.

To further elaborate on this point let us compare the first and second order corrections of

6m for the special value of tan m 0.1

1st order 6 m .1n

2nd order 6m 2 I -]P .In => 6m - .106n

Assuming that the second order correction is more accurate than the first the error incurred by

using the first order approximation is 5.7%, which is an appreciable amount. As pointed out by

Nowick and Berry [2], this result is significant in that an observed exponential decay of

oscillations does not automatically guarantee the validity of Eqs. (23)-(25).

It should be noted that the exponential decay of oscillations in damped systems is another

direct consequence of the linearity built into the models used to mimic material or system

behavior. Furthermore, if the amplitude envelope of an observed set of decaying oscillations is

not exponential in time, then the material or system being considered is not anelastic and the
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damping is a function of strain amplitude [2]. Such materials and systems are termed

"nonlinear" because they cannot be represented by any of the linear models of anelasticity.

SUMMARY

In this paper, the exact relationships which allow for conversion from one damping

measure to another are derived and presented. All theoretical work was based on two simple

models of linear anelasticity: the model of Kelvin and Voigt and the complex modulus model.

These relationships show that when the storage energy term of the specific damping capacity is

suitably defined, the relationship between it and other measures of damping is significantly

simplified. Also, the approximate conversion between the inverse quality factor and tan * is

shown to underestimate the correct value by approximately 30% or less. A similar error was

produced by using approximate conversions involving the logarithmic decrement.

A summary of results is presented in Tables 1-3. Table 1 gives the basic definitions of

the various damping measures; Table 2 gives the exact relationships between the various

damping measures and the loss angle #, and finally, Table 3 presents the widely used

conversions between damping constants along with an associated set of applicability ranges.
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Table 1. Damping definitions.

DAMPING DEFIrronS REMAMK

Tangent of the Phase Lag

tan *= k2Complex Spring OS *c-

Eq. (6a) k1: elastic (or storage) modulus
k2: loss modulus

tan # = =2 - Kelvin-Voigt c: damping coefficient
k 2 I

Model, Eq. (6b) k: elastic stiffness
w: frequency of harmonic input
: damping ratio

_____________________________w.: natural frequency

Specific Damping Capacity

V=AW Eq 1) AW: the energy dissipated per cycle of
Ec.(0 harmonic steady state oscillation.

W.a quantity representing energy storage
during the oscillation (e.g. strain energy,
elastic potential energy, kinetic energy,

____ ____ ___ ____ ___ ____ ___ ____ ___ etc.)

Loss factor

AW AU, W.: are defined the same as above.
T1 I 2nWEq- (11)

Inverse Quality Factor

Q- Q= - 01 Eq. (14) u2- w1 : the half-power bandwith of the
L.In frequency response peak.

con: the natural frequency.

Logarithmic Du int

6 = InXR Eq (22) Xn '.he amplitude of a free decaying
6 n E. 22 response after na cycles.
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Table 2. Exact conversions.

EXACT CONVERSIONS REMARKS

k2  3
tan =k CS Os <X

T,) 22 K

tan+ = t KV
k Wn

= 2n tan# KV& CS 09#<X

Relationship holds when
W=Ik0

where X0 is the response amplitude of the

oscillating steady state system either with
or without inertia.

or when
W- (kX2~ + 1mj2][)_o

1 2 1 1 . =

where x and ; are the instantaneous

position and velocity of the mass.

T)= =tan* KV&CS 0! *<2

Relationship holds for W defined as above

Q s = 41 +tn- -tan, Ostan s I or OsQ- s

Q,, ". 1 rl 2 ,2+ 2 t i 'lt 2 Osts.3535 or Q-1 s 41.5

/1 -2t.2.-21 + t2

6z2n tan 2 tCS 0 S or Ost~s2r

6 -M KV Os 1sl or Os6sw
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Table 3. Approximate conversions.

DAMPING APPROXIMATION RANGE SO ERROR OF APPROX. s 1%

Q- -tan CS O stan s.28

Q-1.2 KV 0 s t s.070 or 0 s Q-1 s.14

6 -r4 CS Os s.30 or Osbs.94

6 -tan CS 0 s tan s.19 or Os6s.60

6 - 2At KV O ss.14 or 0 s 6:s.88

GENERAL APPROXIMATIONS VALID TO WITHIN 1% OF EXACT VALUE:

CS:ntan ii= .Q-m- Os tan s.19

KV: VI =-' w 2-" 0 s s.070

2- 4w--
O)2- (On1

32 DTRC-SME-91/05



Steady State Harmonic Response of CS or KV Models

(Xocos~o.Fe)
F = Fasin wt..

x = Xosin(it-r) (O.Fosin9o)

Y, = F./(kf+an) X

0 00 (Xosinyp.O)
0

Storage Modulus -ne

ok, Major Axis

0
Displacement* x

Fig. 1. Characteristics of linear anelastic steady state hysteresis.

Steady State Harmonic Response at Various Values of tan y

1.250 .................................. ...

1.000

0.750 - tan 9 = 0.2
- tan P = 0.6

0.500 ........ tan 9P = 1.0

0.250
0.000

0.25

-0.500

-0.750

-1.000

-1.250............................i -
-2.000 -1.000 0.000 1.000

x/(FO/k)

Fig. 2. Elliptical hysteresis for varying levels of damping.
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Steady State Harmonic Response of CS or KV Models

! F = Fasin wt

x = Xosin(wt-p) (O,Fosin,)

X. = Fo/(kj 1+tan'V) (X.,FcosP)

0

0
Displacement, x

Fig. 3. Strain energy developed when loading from zero
displacement (or strain) to maximum displacement.

Steady State Harmonic Response of CS or KV Models

(Xocos,Fe)
F = Fosin wt
x = Xosin(wt-p)

Xe= .(J+a',

o0 (-Xosinv'.0) - - -

00

Displacement: z

Fig. 4. Strain energy developed when loading from zero
force (or stress) to maximum force.
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Steady State Harmonic Response of CS or KV Models

F =Fosin wt)

x = Xosin(wt-P)

X= Fo/(k41+tanP) (Xo.Focos#,)

0

Displacement: x

Fig. 5. Energy stored in the elastic component of KV

or CS models (= .5 X)"

Amplitude Xo/(Fe/k) vs w/c.: Kelvin-Voigt-Mass Model

4.50.................. ..........................

4.00

3.50
= 0.125

3.00 0.25
--- 0.375

A =0.5
2.50 = 0.625

07
' :20 ...... = 0.75

1.50 - .. , \

1.00 - .

0.50 .:.

0.00................. ... ......
0.00 1.00 2.00 3.00

W/wR

Fig. 6. Plot of magnification ratio of KV model for
various levels of t,
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Amplitude X/(F,/k) vs w/j. Complex Spring-Mass Model
4.50 .. ... .

4.00

3.50
- tani ep = 0.25

3.00 -- tan V, = 0.5
--tanjo =0.75

.w - - -tanjo = 1.0-2.50 --- tan V=1.25

'2. 00 ----- tan So = 2.05

1.50

1.00

--------------------

0.00............................
0.00 1.00 2.00 3.00

w/wn

Fig. 7. Plot of magnification ratio of CS model for
various levels of tan *.

2.0 (X/(Fe/k)) 'vs w(.1/u: Complex Spring-Mass Model

1.75

1.50

10

IN. ta 9P =1.25
C 1.00 --- tnj .

c' 0.75

0.00
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Fig. 8. Square of magnification ratio of CS model.
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Plot of Exact Q'1 and Approximate Q-1 vs tan v
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1.25 Aprox: Q-=tan

'010
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0.00 - . ... . .
0.00 0 0.50 1.20

tan phi

Fig. 9. Exact and approximate curves of Q-1 for the
CS model.

Plot of Error Between Q-b.t and Q-'A.. vs tan V
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0.00 ........ ..... ........... ... ................

0.00 0.40 0.80 1.20
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Fig. 10. Plot of error incurred by using approximate
Q-1 for the CS model.
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I I I Ihull

Exact Q' and Approximate Q- vs in KV Model
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Fig. 11. Exact and approximate curves of Q-1 for the
KV model.

Plot of Error Incurred by Using Q-i,,,. vs
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Fig. 12. Plot of error incurred by using approximate

Q-1 for the KV model.
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Plot of Exact 6 and Approximate 6 vs tan p
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Fig. 13. Exact and approximate curves of log decrement

for the CS model.

Plot of Error Between 6d. and 6 1pmz vs tan 4o
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Fig. 14. Plot of error incurred by using approximate equation

for 6 in the CS model.
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