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Abstract

We derive an adaptive hierarchical maximum entropy estimate of probability den-
sity functions, whose mathematical structure suggests the name "adaptive cluster
expansion" (ACE). We apply ACE to the problem of locating statistically anoma-
lous regions in otherwise homogeneous textured images, which we demonstrate using
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1 Introduction

The purpose of this paper is to construct a probabilistic models of Images of homogeneous
textures for use In Bayesian decision making. In our past work in this area [1, 2, 3, 4,
5] we successfully used entropic methods to design Markov random field (MR) models
to reproduce the observed statistical properties of textured images. However, the main
drawback of this method was the need for lengthy computer runs to simulate the MRF.
We now wish to formulate a novel MRF structure that requires very little effort to train
and use. There are two essential ingredients in our simplification: we do not use hidden
variables, and we restrict our attention to hierarchical sampling functions of the data.

The use of hidden variables is a flexible way of modelling high order correlations in
data [6], but It needs lengthy Monte Carlo simulations to estimate averages over the hidden
variables. An MRF without hidden variables is specified by a set of sampling functions of
the data, which transforms the data into a set of numbers containing sufficient information
to compute the probability density function (PDF) of the data [4, 5].

The choice of an appropriate set of sampling functions is not easy, because potentially
any function of the data might measure a subtle statistical property that had not been
discovered by the sampling functions used hitherto. In fact, for this very reason, we con-
jecture that this problem is insoluble in principle. We can nevertheless obtain a wealth
of statistical information about the data by restricting our attention to a finite number of
well-defined sampling functions. For instance, in [7] a number of useful textural features
are presented, which may be used to model and discriminate between various textures that
occur in images. However, we wish to design our sampling functions adaptively in a data-
driven manner, so that the resulting set is optimised to capture the statistical properties
of the data. We choose to use adaptive hierarchical sampling functions, because these not
only capture statistical properties at many length scales, but are also very easy to train.

We briefly discussed hierarchical sampling functions in [8], where we conjectured that
topographic mappings (9] might be appropriate for connecting together the layers of the
hierarchy. We investigated this use of topographic mappings in [10, 11, 12, 13, 14, 15] and
found that it could produce useful multiscale representations of the data. We therefore
use multilayer topographic mappings (MTM) to adaptively design hierarchical sampling
functions of data for use in MRF models. In this type of model different layers of the
hierarchy measure statistical structure on different length scales, and shorter length scale
structures are clustered together and correlated to produce longer length scale structures.
We therefore frequently refer to this type of scheme as an adaptive cluster expansion (ACE).

We should point out that although ACE is based upon a tree-structured representation

of the data, it is not equivalent to using a dependence tree as discussed in [16, 17], in which
an n-th order PDF was approximated using a tree-like product of 2-nd order PDFs. ACE
makes use of the PDFs of transformed versions of the data to model high order properties
of the PD.'.

We demonstrate the ability of ACE to adapt to statistical structure in texture by de-
signing a pyramid image processor that adapts to and displays the statistical structure
of an image. There are many ways of displaying such structure, but we simply display
the local PDF of the image: we call this a probability image. By using a representation
in which low probability regions appear as bright peaks we can also display what we call
an anomaly image. Anomaly images prove to be a very effective way of locating isolated
textural anomalies in images that are otherwise texturally homogeneous.

The layout of this paper is as follows. In §2 we use the maximum entropy method to
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estimate the PDF of the data, subject to a set of marginal probability constraints measured
using hierarchical sampling functions, to yield an MRF model in closed form (ie no undeter-
mined Lagrange multipliers). In 13 we extend this result to remove some of the limitations
of its hierarchical structure, such a translation non-invariance, and describe the ACE system
for producing probability/anomaly images. In 14 we present the result of applying ACE to
some textured images taken from the Brodatz set [18].

2 Maximum entropy PDF estimation

In this section we present a derivation of a hierachical maximum entropy estimate Q.., (a)
of an observed true PDF P(m), where we constrain Qm,.(a) so that certain marginal PDFs
agree with observation. Although we consider only the case of a binary tree, we also present
a simple diagrammatic representation of our main result that allows us easily fo extend it
to general trees.

2.1 Basic maximum entropy method

For completeness, we first of all outline the basic principles [19, 20] of the maximum entropy
method of assigning estimates of PDFs. Introduce the entropy functional H

H fde Q() log (Q(())) (1)

in which the PDF Qo(r) acts as a scale' to ensure that the argument of the logarithm is
dimensionless. Qo(v) is used to introduce prior knowledge about P(r) into the maximum
entropy estimate Qm~m(2). Loosely speaking, H measures the extent to which Q(u) is
non-committal about the value that a might take. The maximum entropy method consists
of maximising H subject to the following set of constraints

C,, = J do Q(a)yi(a) - J da P(m) y(a) = 0 (2)

where the yi(e) are the components of a vector V(z) of sampling functions. These con.
straints ensure that certain average values are the same whether they are measured using
Q(m) (ie our estimated PDF) or using P(r) (ie the observed true PDF). By carefully se-
lecting the y(e) we can optimise the agreement between Q(w) and P(m) as appropriate.

Q,.,,(n) may be found by introducing a vector A of Lagrange multipliers, and func-
tionally differentiating H - L AjC1 ,i with respect to Q(w) to yield eventually

QO(.) exp(-(2()))
f d) Qo( ) exp(-A ('))()

The undetermined Lagrange vector A must be chosen in such a way that the constraints
a" satislfed-this Is usually a non-trivial problem'.

'Q.(a) is beqmntly, and incorrectly, omitted oom the entropy expression when a is a dimenwsional
cntiome ariable. This is a dangerouS practice, leading to results that ae difficult to interpret.2Note that equation (3) i one ofa family of PDFs called Gibbs distributions which originally made their
appeanee in statistical thermodynamies.
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Now we shall consider another type of maximum entropy problem in which we constraint
a set of marginal probabilities [5]. We may impose such constraints by modifying Vi(e) and

as follows

Y,(M) - 6(y - X(W)
A, -. AM() (4)

where 6(y - y(o)) is a Dirac delta function. In the {py(e), A) version of the maximum
entropy problem, by varying the value of an index i we could scan through the set of
constraint functions yp(a) and Lagrange multipliers A.. However, in the {6(y - V(s)),A(y)}
version of the maximum entropy problem, by varying the value of a variable y we can scan
through the set of constraint functions 6(y - '(a)) and Lagrange multipliers A(y).

The modification in equation (4) causes the constraints in equation (2) to become

C2 (Y) = I d- Q(z) 6(y - y(z)) - f do P(m)6(y - y(o))

= Q(y)- Pfy)
=0 (5)

where we have defined the PDFs over y as

Q(y) = fd Q(z)6(y-y(a))

P(y) = fdP(m)6(y - y())

Thus the delta function constraints force Q(y) = P(y). Note that we have used a rather
loose notation for our PDFs-P(a) and P(y) are in fact different functions of their respective
arguments. We have made this choice of notation for simplicity, because it will always be
clear from the context which PDFs are the same and which are different.

By analogy with the previous maximum entropy derivation, Q,.,,(z) may be found by
functionally differentiating H - J dy A(y)C 2 (Y) with respect to Q(a) to yield

Qo(a) exp(-A((())))
Q"j() = fda'Qo(z') exp(-A(y(z'))7

-. Qo(a)f(y(-)) (8)

where A(y(z)) is an undetermined Lagrange function of y(z). In equation (8) we present
a simpler notation by introducing an undetermined function3 f(y(z)) to absorb the expo-
nential function and the denominator term that appeared in equation (7). We may impose
the constraints in equation (5), and use the definitions of Q(y) and P(y) in equation (6) to
obtain f(y) in the form

- P(Y) (9)
1(v) = f do' Qo(-a) 6(y - y(o'))

and Q.,.(.) in form

QOo) P(Y(-)) (10)
'= d'Qo(a')6(y(z) - (*'))(

$We shall refer to these f($(2)) functions as Lagrange functions in our discussion, although this is not
an accurate use of nomeneclature.
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Note that this result is a closed form solution because it contains no undetermined Lagrange
functions, unlike equation (3) which contains an undetermined Lagrange vector A. The
normalisation of this solution can be verified as follows

dQo..() dP()J~~~~ fu,~,,a d=- Jdudu6s6( -py d'() (e 

f dyP(y)
=-1 (11)

where we use the identity j dy6(y - y(z)) = 1 to create a dummy integral over y4.

2.2 Hierarchical maximum entropy method

The purpose of this subsection is to present a generalisation of equation (10) that not only
can be solved in closed form, but also allows hierarchical sampling functions to be used.

In practice the result in equation (10) has a limited usefulness. Firstly, we would like to
impose many simultaneous constraints, each using its own constraint function 6(y, - yi(e))
in equation (5), but this cannot in general be done without sacrificing our closed form
solution in equation (10). Secondly, we would like to impose higher order constraints, using
a constraint function 6(y - y(r)). This may easily be done by making the replacement
-- y in equation (10). However, there is a hidden problem, because the greater the

dimensionality of y, the less easy is it to make the necessary measurements to establish the
form of P(y). Fortunately, there is a solution to both of these problems, which we shall
describe below.

Y f11,22

311 - f1,12-" 12 Y121 ----- 21,22----e 22

PiL11 A 1111.112 Y1112 Y1121 f121,122 Y1122 Y12 f211,212 Y1212 Y1221 f221,2223222

1111 0112 e221 C122 0211 e212 221 e222

0- 9111 2 1 2 221 - 222 -

' a l 0 2

Figure 1: Notation used in the hierarchical maximum entropy derivation.

We shall apply the maximum entropy method with constraints of the form shown in
equation (5) to a hierarchy of transformed versions of the input vector a. In order to make
our calculation tractable we introduce the notation shown in figure (1). The ioijk... are vari-
ous partitions of the input vector x, the yij,... are various transformed versions vs...(u,,t...)
of the input t ij...., and the f&,%.... ,q#... are the Lagrange functions fi,&...,,jik '...(p/jI..., p,',.'...)

This artifice is a very useful trick for manipulating integrals overs PDFs, by introducing an extra dummy
intepetlo, swapping the order of the integrals, and integrating out one or more of the variables that you
couldn't integrate in the first place.
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that appear in the generalised version of the maximum entropy solution Qm~t1(m) in equa-
tion (7).

We choose to write the dependence of y/ij_.. directly on the input cl.3k_., even though
the value of p, g... is obtained via a number of intermediate transformations leading from
the leaf nodes of the tree up to node ijk..., because this leads to a transparent hierarchical
maximum entropy derivation. It is convenient to define IIijk...(m.k..) as the product of
the Lagrange functions that appear beneath node ijk ... of the tree. IIik ...(wiik...) has the
following recursion property

(12)
Also introduce a normalisation factor defined as

=ijk, dzi... 6(Yi... - Yijk... (tijk...) )Iik...(,3&...) (13)

which is a sum of IIjk...(zijk...) over all states Zijk.., of the leaf nodes beneath node ijk ...
that are consistent with yiik... emerging at node ijk....

The proof of the general hierarchical maximum entropy result proceeds inductively.
Firstly, we generalise equation (4) to become

p,(u) - 6(Y, ...l - yijk...(2,jk...I))(vYk...1 - Yk...,(,, ,...)
IAi -- IAi ...(Yitk ... 1, Yjk ..2) (14)

Secondly, we generalise equation (8) to become

Qm.m(2) = Qo(-) 1.,2(Y1(M), Y2(-2))fl1(Z1) 112(Z2) (15)

where we use the 'lji$... notation to display the Lagrange function f1,2(,, Y2) that connects
the topmost node-pair (ie node-pair (1,2)) in the tree, but conceal the other terms in

QMqer(-).
We may determine the exact form of 112(Y1, 2) independently of the rest of the La-

grange functions (which are hidden inside the 111(al) and 112(E2) functions) by imposing
the constraint shown in equation (5) and equation (6) (as applied to node-pair (1,2)) to
obtain

PlY1 Y)= Ifdw, dW2 6Q(s - l,1(22))6(2 - MOO~a))Qr..(W

= f,.(Y1,Y,)Z2(Y2) z2(Y2) (16)

which yields

1,2,(Y(1, Y2) = P1,2iY2,2 ) (17)11.(v, w =Z,(Y,) Z,(Y2)

Substituting this result back into equation (15) yields

P= e, 2(,I(X,), 12(22)) 11,(,1) 112(,2) (18)

Z,(YI(0 1)) Z2( 2(u 2))

which correctly obeys the constraint on the Joint PDF PI,2(YI,Y2) of the topmost pair of
nodes in the tree.
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We now marginalise QIm(u) in order to concentrate our attention on the left-hand
main branch of the tree. Thus

Q,,es(ffif) = Jde2 Q.m(9)

= Jde 2 dy 26(Y 2 - Y2(-2))Q-.=(N)

= P1( 1(X1)) Z1 (21) (19)

We now use the recursion property given in equation (12) to extract the Lagrange function
associated with node-pair (11, 12). Thus QI,,,,,,(ui) becomes

Q,,n(-i) = PI(YI(ui)) f1,12(Y1(au), 12(022)) I 1112(12) (20)
Zi(pi(uil))

As before, we may determine the exact form of f11,12(Y1, Y12) independently of the rest
of the Lagrange functions by applying the constraints to node-pair (11, 12) to obtain

- P1,,12(P11412) z_(Y_) (21)
/,(ll 2 )ull~l = P1 (YI) Z1(y1)Z1  (y) (21)

where the value of y1 is to be understood to be obtained directly from the values of Y21 and

Y12 via the mapping which connects node-pair (11, 12) to node 1. Substituting this result
into equation (20) yields

Ql,..(Zl) = Pl,2(yl(212), 12(X12)) Zu,1(2e11) v112(212) (22)ZII(Y22(2f11)) Z22(YI2(212))

By inspection, we see that equation (18) and equation (22) are identical in form once we
have accounted for their different positions in the tree, so we may use induction to obtain
all of the rest of the Lagrange functions in the form

f jk...1,,k ... 2 (Y k ... 1, Y &... 2) = Pj&...1,ik...2(yijk...1, PYdj ...2) Z _... (_i__...)l k...1, , ... k ( ... , W .. ) = P .... (Yijk...) Zik... (Yi...I) Zi....2(( W ... )

(23)
which is analogous to equation (21), and where yijk... is obtained directly from the values
of pVk... 1 and yPqk... 2. The II/Z factors may be discarded once we reach the leaf nodes of
the tree, because the integral in equatirn (13) then reduces to Z = 11.

Finally, by starting with equation (15) and recursively simplifying the HiIt... using equa-
tion (12) and substituting for the Lagrange functions fj ..., i, ,... using equation (23) we
obtain eventually for an n-layer tree

Q " (z*) 2 p il,, ..., i&( 9 ,, , ... ,ih ( Y ,, , ... , I ) ) ,, ... , , ( Y ,,,... , ( Z i i ..., 2 ) )

Li,..~,f Pih ...i,,(Ieii i... i,) (24)

where we have rearranged the terms to collect together the factors that each node-pair
(ili 2 ... if1, ili2 ... i.2) contributes.

Although we have concentrated on deriving Qm.. (z) for a binary tree, the principle of
the derivation carries over unchanged to arbitrary tree structures, and equation (24) may
easily be generalised.
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2.3 Diagrammatic notation

P1  P1/Z1

1 2 81 liI 312 ]11 A3

(a) (b) (c) (d)

Figure 2: The individual steps of the inductive hierarchical maximum entropy derivation.

We now present the steps in the inductive derivation leading from equation (18) to
equat-on (22) as a diagram in figure (2). We use a triangle to represent a subtree, and we
indicate its apex node, its associated II or II/Z factor, and its dependence on 3. Figure (2a)
represents equation (18), which is a pair of trees connected by the joint PDF of their
apex nodes. By integrating over r2 we remove the right hand tree to obtain figure (2b),
which corresponds to equation (19). We then explicitly display the two daughter nodes to
obtain figure (2c), which corresponds to equation (20), although we have grouped the terms
together slightly differently, for simplicity. This exposes one of the Lagrange functions which
we determine explicitly to obtain figure (2d), which corresponds to equation (22). One cycle
of the inductive proof is completed by noting the correspondence between figure (2a) and
figure (2d).

Figure 3: A diagrammatic representation of the hierarchical maximum entropy result.

We represent equation (24) in diagrammatic form in figure (3). The tree structure
represents the flow of the transformations of the original input data 3. Each square cornered
rectangle represents the marginal PDF of the enclosed node-pair (ie one Piz :...j. term from
the second factor in equation (24)). Each round cornered rectangle represents the normalised
marginal PDF of the encosed node-pair (ie one Pizil... ,,l'ih... ,h/(Pil ... ,z~ 2 ... ,2 ) term
from the first factor in equation (24)). Overall, we obtain equation (24) as the product of
the rectangles in figure (3).

This notation makes it easy to generalise the result in equation (24) in a purely dia-
grammatic fashion, by firstly constructing an arbitrary (ie not necessarily binary) tree like
transformation of the input data, and secondly using as maximum entropy constraints the
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marginalP PDF of each set of sister nodes in the tree. This prescription permits many
possible ACE structures, including those in which different constraints effectively operate
between different layers of the hierarchy (by mapping one or more node values directly from
layer to layer).

Each rectangle representing a marginal PDF in figure (3) contributes to the maximum
entropy estimate of the PDF of a cluster of nodes in the input data. Because of the tree
structure, clusters at each length scale are built out of dusters at smaller length scales.
Equation (24) tells us exactly how to incorporate into Q,., m (z) any additional statistical
properties that might be observed when forming larger clusters out of smaller clusters in
this way.

3 Implementation of an anomaly detector

Henceforth we shall refer to our hierarchical maximum entropy method as an adaptive
cluster expansion (ACE), because this phrase describes its essential properties6.

In this section we describe how to implement equation (24) in software. We assume that
the ACE transformation functions have already been optimised using the method7 that we
describe in §A and in [14], so the purpose of this section is to explain how to manipulate
equation (24) into a form that produces a useful output. For concreteness, we produce an
output in the form of an image that represents the degree to which each local patch of an
input data is statistically anomalous, when compared to the global statistical properties of
the input data.

3.1 Two-dimensional array of inputs

Figure 4: ACE connectivity for processing a 2-dimensional array of inputs.

In 12 we represented ACE as if it were operating on a 1.dimensional array of inputs (eg
a time series). In practice this might indeed be the case, but in this paper we choose to
study 2-dimensional arrays of inputs (ie images). There is no difficulty in applying ACE
to an Image, provided that we appropriately assign the leaf nodes to pixels of the image.
In figure (4) we show the simplest possibility in which the image is alternately compressed

Olt is npoqrtant to include the whole of each family of sister nodes in each marginal PDF, because
otherwise the derivation leading to equation (24) fails.

'Apparently, the term ACE cannot be used as a registered trademark because it is "laudatory". This
will moo stop me from using the acronym, for obvious reasons!

'We use topographic mappings to connect the layers of ACE. However, our maximum entropy results
my tree-structured connection of mappings, so one is free to choose other mappings if one so wishes.
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in the north-south and east-west directions. A priori, the choice of whether to start with
north-south or east-west compression is arbitrary, but if we knew, for instance, that the
image had stronger short range correlations in the east-west direction than the north-south
direction, then it would be better to compress east-west first of all. Note that in figure (4)
the topology of the tree is the same as in figure (3), but the way in which the leaf nodes
are identified with the data samples is different.

More generally, we could identify the leaf nodes of the tree with the image pixels in any
way that we please, provided that no pixel is used more than once (to guarantee that the
tree-like topology is preserved). The problem of optimising the identification of leaf nodes
with pixels is extremely complicated, and we shall not pursue it in this paper.

3.2 Histograms

The maximum entropy PDF in equation (24) is a product of (normalised) marginal PDFs.
In a practical implementation of ACE the Yijk... are discrete-valued quantities (for instance,
integers in the interval [0,255)), and the Piij...,I',k'...(Yijk..., Yi'gj'k...) are probabilities (not
PDFs). We estimate the P/j...,ijok, ...(yi,&..., j,,...) by constructing 2-dimensional his-
tograms

1
P i j . ,,k . .( ~ .. yj.... h i.. ,jjk, . h .. .. , ,j 8, .. .( Y i j k .. ., Y i , k ... ) ( 2 5 )

where hijk ....,ij, ,... (ytj ..., yisjok, ... ) is the number of counts in the histogram bin (yjjj,..., yj,j,%,...),

and N is the total number of histogram counts given by

Yij A .. yP j". ..

Note that the estimate in equation (25) suffers from Poisson noise due to the finite number
of counts in each histogram bin.

Before training begins the histogram bins are initialised to zero. They are then filled
with counts by exposing ACE to many examples of input (or training) vectors. Thus
each a vector is propagated up through the ACE-tree, and we then inspect each node-pair
(ijk ... ,i'j'k'...) for which a marginal probability needs to be estimated, and increment
its corresponding histogram bin thus

hih.... uiek .... (yvj,..., yj,',h,...) -- . . ,j,k,...) + 1 (27)

When the training set has been exhausted, histogram bin ijk..., i'j'k'.., records the num-
ber of times that state (Y ij..., Ytil.&...) occurred.

3.3 Translation invariant processing

We wish to detect statistical anomalies in images which have otherwise spatially homoge-
neous statistics, such as textures. An invariance of the statistical properties of the true
PDF P(e) can be expressed as

P(98) = P(u) (28)
where g is any element of the invariance group, which we shall assume to be the group of
translations of the Image pixels. In equation (24) Q.,,.(.) does not respect translation
invariance for two reasons. Firstly, we use transformations y,3 k...(mi,,...) that are explicitly
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translation variant, because the functional form depends on the ijk... indices. Secondly, we
connect together these transformations in translation variant way, because the tree structure
in figure (1) and figure (4) does not treat all of its leaf nodes equivalently. We shall therefore
modify the cluster expansion procedure that we derived in £12.2 to guarantee translation
invariances . This will lead to a much improved maximum entropy estimate Q,.4 m(z) of the
true P(m).

Firstly, use the same transformation function at each position within a single layer of
ACE. Thus in equation (24) we make the replacement

Yii,,... 42(z-,h....ill) -. N1 '-,... i2) (29)

where we indicate that the transformation is associated with the k-th layer of ACE by
attaching a superscript k to each function'. This yields

L,-[,,i2 ,i,= P, i2...( h(.i,)i2...j))11 II .,,2(k (0,1i2...,,2))

pili .. iZi~i .. in(30)

Equation (30) guarantees translation invariance (in the sense of a "single-instruction-multiple-
data" computer) of the processing that occurs when the input data is propagated upwards
through the overlapping trees.

Secondly, assume that that equation (28) holds for all image translations, so that the
marginal PDFs are independent of position. We may make this explicit in our notation by
making the following replacement in equation (30)

Fii,,... ik,,i.,,,...,i.2(-) 2,20.
Pi, I.. ,(.) Ph 2.. ,(.) P, (.) P (.G)

P ili2.... ( ) - P "- '( ) (31)

where we use the same superscript notation as in equation (29). This yields

Q.-(O) 2,o,,,..,fi P(Awi",... '))'(w'(",a... 2))]

Equation (32) guarantees not only tranilation invariance of the transformations that prop-
agate the data through the tree, but also translation invariance of the marginal PDFs of
P(m) that are used to construct Q,,,.,(a).

$The inclusion of this section might seem to be gratuitously pedantic, because usually this translation
invariance is assumed tacitly at the outset. Our detailed approach is forced on us by our desire to derive an
i processing scheme from aist principles, progressing arn the general to the specific

7Ua tuaely, the notation that we introduced in order to clarify our derivations labels the layer of the
tree dowwwwde as 0,1, ... , starting with 0 for the top layer.
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Both of the simplifications in equation (29) and equation (31) reduce the total number
of unknowns that have to be determined. For a given amount of training data we can thus
construct a better maximum entropy estimate Q'.,(.) of the true P(s). The transfor-
mation functions may be optimised better, and the histogram bins have a reduced Poisson
noise.

We usually apply ACE to such large input arrays that it is not appropriate to build a
single binary tree whose leaf nodes encompass the entire input array. Instead, we divide
the input array (which we shall assume is a 2W x 2 M array of image pixels) into a set of
contiguous 2", x 2 12 arrays, each of which we analyse using equation (32). There are no
constraint functions to measure the mutual dependencies between these subarrays, so the
maximum entropy joint PDF of the set of subarrays is a product of terms of the form shown
in equation (32).

n-22"-'1 2'9-%2 2 /D rlrs~2 .la~=\

log W'..)) =o E E E.,. E logk
A=o ,1=1 2=1 2,,...,,,=1 ( ( ,I, )) p;h W 2

2M
-
m
I 

2 M-m 2  2
+ log (P1%-1(W! 1 1 ))(3* E E o, ... j) (3

&1=2 e2=2|i ,3.., =

The summation over (a,, a2) ranges over the 2 r2M-,, -, contiguous subarrays in the overall
2M x 2M array, and the a1 ,a 2 superscript on each Zaj,... vector indicates that it belongs
to subarray (a,, a2 ). Note that we have transformed Qem() -+ log (Q.m(a)) for conve-
nience.

The final step in constructing a fully translation invariant PDF is to modify the sum
over subarrays so that it includes all possible placements of the 2" 1 x 2"" subarray within
the overall 2 M x 2M array. There are 2 2M-1,-1, possible positions when the placement of
the subarray is restricted as in equation (33), whereas there are (2 M - 2-- + 1)( 2m - 2 -2 + 1)
possible positions when all placements of the subarray are permitted. We therefore make
the replacement

2 Mt-m1 2 JM-m2  2 2M-m -M= 2M-21l +1 2M-= +1

F,= E 1 ( 2 M - 2"" + 1)( 2 M - 2"" + 1) E1 pF1

2 MC 2 M
al- 2 1 2 E F, (34)

p: =1 P3=1

in equation (33), where (pi, pl) is the coordinate of the pixel in the top left hand corner of
the 2"" x 2'*2 subarray. If we ignore edge effects, then we may use the approximation in the
final line of equation (34), which is the average of 2""m" separate contributions of the form
shown in equation (33). Equation (34) effectively replaces the original maximum entropy
PDF Q",,r(m) by the geometric mean of a set of maximum entropy PDFs. This averag-
ing effect combines the desirable properties of translation invariance with greatly reduced
Poisson noise problems to yield a greatly improved maximum entropy PDF estimate 0 .

In practice, we would implement each layer of ACE as a frame store, and the transfor-
mation between each pair of adjacent layers as a look-up table. The translation invariant
ACE that we derived in equation (33) (with the replacement given in equation (34)) may

'eftltly speakkng, our averaging prescription is not pert of the maximum entropy method, so our averaged
resn is not a pure maximum entropy estimate.
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Figure 5: Connectivity for multiple overlapping binary trees.

be implemented using the connectivity shown in figure (5). Ignoring edge effects, we may
write equation (33) symbolically as

109~ ~ sQC)="21Flog Py1-2 + ~ log (P-- 1) (5
5=0

where the inner summations range over all positions within a single layer of figure (5). We
omit all of the functional dependencies, because they are easy to obtain from figure (3).
Each P,, 2/(Ph P26) term is represented by a rectangle with rounded corners in figure (3),
and each P-I term is represented by a rectangle with square corners in figure (3). We
have not drawn these rectangles in figure (5) because they would overlap, and thus confuse
the diagram.

3.4 Forming a probability image

Figure 6: Backpropagation scheme for constructing a probability image.

Equation (35) is the fundamental result that we use to construct useful image processing
schemes. However, it would not be very useful simply to calculate the value of log (Q,.) as
a single global measure of the logarithmic probability associated with an image. We choose
instead to break up equation (35) into smaller pieces, and to examine their contribution to
the overall log (Q1 .). In effect, we look at how log (Q ,,.) is built up from the information
in each layer of ACE, which in turn we break down into contributions from different areas
of the Image.

In order to ensure that our decomposition of log (Q,,) can be easily computed, we
use the backpropagation scheme shown in figure (6) to control the data flow through a
translation invariant network of an identical connectivity to the one shown in figure (5).
Each node of this backpropagation network records a logarithmic probability, and is cleared
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to sero before starting the backpropagation computations. The rectangles in figure (6)
represent exactly the same logarithmic probability terms that appeared in figure (3), which
we now use as sources of logarithmic probability that we inject into the backpropagating
data flow.

The detailed operation of figure (6) is as follows. Each addition symbol takes as input a
contribution recorded at a node in the next layer above, adds its own logarithmic probability
source log(Ph/,l(Pt' Pt)), scales the result by 1/4, and it finally adds a copy of this result
to the value stored at each of its own pair of associated nodes, as shown. The values that
accumulate at the leaf nodes represent various contributions to the sum in equation (35). If
the translation invariant version of figure (6) is applied to the translation invariant network
shown in figure (5), then the sum of the values that accumulate at the leaf nodes reproduces
equation (35) precisely.

This method of computing log(Q,,,.) might seem to be circuitous, but it has the great
advantage of both being computationally cheap and forming an image-like representation
of log(Q.,,), which we call a "probability image". Each log(PI2 /(Pk Pt)) term in equa-
tion (35) will contribute equally to 2

"-k pixels in the probability image. These pixels will
be arranged as either a square or a 2-to-1 aspect ratio rectangle according to whether there
is an odd number or even number of backpropagation steps from the k-th layer to the leaf
nodes. The probability image is therefore a superposition of square and rectangular tiles of
logarithmic probability. Each tile corresponds to a node of the network shown in figure (5).

It is useful to display as an image the contributions of a single layer of the network
to the probability image, because different layers contribute to the structure of log(Q,RU)
at different length scales. This image may be displayed in the conventional way, with
small probabilities mapped to black, large probabilities mapped to white, and intervening
probabilities mapped to shades of grey, in which case we call it a "probabilit image". It is
also useful to invert the grey scale so that small probabilities map to black, in which case
we call it an "anomaly image", because regions which have statistical properties that occur
infrequently show up as bright peaks in the image. We find that the use of probability images
and/or anomaly images is an extremely effective way of visually interpreting log(Q..m.) in
equation (35).

3.5 Modular implementation

For completeness we now present a brief description of a complete system for producing
probability and/or anomaly images. This system consists of two tightly coupled subsystems
-an ACE subsystem for decomposing the image data, and a probability image subsystem
for forming the output image.

Figure (7) conbines in one diagram all of the results that we have discussed so far. The
upper part of figure (7) is a pure translation invariant ACE subsystem, whereas the lower
halfIs a beckpropagating probability image subsystem operating as shown in figure (6). The
backpropagating subsystem takes input information from various layers of ACE, as shown.
Modules "I" ae framestores that record the various transformed images. Modules "M" are
look-up tables that record the inter-layer mappings. Modules "T" represent the training
algorithm that we explain In JA, which we enclose in a dashed box because the "T" modules
are switched out of the circuit once the mappings "M" have been determined11 . Modules

1 Thre is a variety of methods at optimiuing -TV ad WIi as topogaphic mnappings, which are distin-
subbed mainly by their -omputationa woe. The bet method that we have ound to date Ails "M" with the
appropriate Opthmised entries in 2.3 second (using a VAistation 3100, end assumning bits per pixel).
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G-.G G*G
.............. ....... ....... ..."

G .. G..... G

Figure 7: Three layer translation invariant ACE system.

"H" are accumulators that record the 2-dimensional histograms, and then regularise and
normalise them appropriately. Modules "P" are framestores that record the various back-
propagated probability images. Modules "log" are look-up tables (in fact only one such
table is needed) that implement a logarithm function. Modules "0" and "0" perform the
addition and scaling operations that we discussed earlier in connection with figure (6). "N"
is scaling factor (which is 1/4 if we wish to reproduce the result in equation (35)). The lines
that are annotated "G" represent a ganging together of the (pointers to) pixels in adjacent
layers of the ACE subsystem and in the probability image subsystem. These ensure that
the entire system works in lockstep, as required.

The simplest mode of operation of this system can be broken down into three stages
Firstly, train each layer (from left to right) of the ACE subsystem on a training image.
Secondly, propagate a test image (from left to right) through the layers of ACE. Finally,
construct a probability image by backpropagating (from right to left) contributions from
the various layers of ACE"2 . Furthermore, it is useful to display separately the probability
(or anomaly) images that emerge from each layer of ACE, as we shall see in 14.

8.6 Relationship to co-occurrence matrix methods

Both the basic maximum entropy PDF Qm,, (8) in equation (24), and the translation
Invariant version of log(Q,,.(e)) in equation (35) that we implement in practice, depend
on various PDFs that are measured in an ACE-tree. The second term of equation (35) may
be written as

QW(,) = VriP a-  (36)

Each P factor is the spatial average of the marginal PDF of pairs of adjacent pixel
values, assuming that we use the identification of leaf nodes with pixels that we show in

"Therem mote complesed sees in which different layers re simultmneousy treined, whilt cona-
maesuing hfimmaln with esch other to improve the Slobal perlbrmance of ACE. We will explain, and
demsmtwe the utlity at, thse re nemeats in a future conunication.
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figure (4). The square root in equation (36) compensates for the fact that the product of
P-1 factors generates the product of two maximum entropy PDFs shifted by one pixel
relative to each other.

By using equation (25) we may approximate equation (36) as a product of histograms.
In this case each histogram is the spatial average of the co-occurrence matrix of pairs
of adjacent pixel values, as commonly used in image processing (7]. Thus we may use
conventional co-occurrence matrix methods to construct a simple form of maximum entropy
PDF, which corresponds to using only one layer of ACE.

This co-occurrence matrix result can be generalised, using equation (24) or equation (35),
to model higher order statistical behaviour. Although these results depend on co-occurrence
matrices measured at various places in the ACE-tree, the contributions which do not depend
directly on the input data (ie the first term of equation (35)) actually model higher order
statistics of the input data. This is because the value yijs... that emerges from node ijk...
of the ACE-tree depends on . so the joint PDF P~ij...1 .i3 ... (s... 1, j-.2) depends on
the statistics of the pair (ijk ...1, ik ... 2). Thus ACE is a very convenient way of combining
together the various orders of statistical information that are contained in co-occurrence
matrices at various places in the ACE-tree, as shown in figure (3).

4 Numerical results

In this section we explain the finer details of how to implement figure (7) in software, and
we present the results of applying the system to four 256 x 256 images of textiles taken from
the Brodatz texture set [18].

4.1 Experimental procedure

We compensated for some of the effects of non-uniform illunination by adding to each
image a grey scale wedge whose gradient was chosen in such a way as to remove the linear
component of the non-uniformity. Not only does this improve the translation invariance of
the image statistics, but it also improves the quality of the hierarchical coding of the image,
because we reduce the need to develop redundant codes which differ only in their overall
grey level.

Throughout our experiments we generate optimal inter-layer mappings using the train-
ing methods that we explain in SA. These are known as topographic mappings in the neural
network literature, and we showed in [13] why they are appropriate for building multistage
vector quantisers. We choose to compress the image in alternate directions using the fol-
lowing sequence: north/south, east/west, north/south, east/west, etc13. This compression
sequence leads to the following sequence of rectangular image regions that influence the
state of each pixel in each stage of ACE: I x 2, 2 x 2, 2 x 4, 4 x 4, etc, using (east/west,
north/south) coordinates. In all of our experiments we use an 8 stage ACE.

The number of bits per pixel that we use in each layer of ACE determines the quality of
the hierarchical vector quantisation that emerges. Increasing the number of bits improves
the quality of the vector quantisation but increases the training time: we need to compromise
between these two conflicting requirements. In our work on simple Brodats texture Images
we have found that 6-8 bits per pixel Is sufficient.

"I.. preetee, eseh imae would have its own optimal identification of loaf nodes with image pine. (see

f (4)).
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It is important to note that there is a limit to the statistical complexity (ie entropy)
of the input data that can be faithfully encoded in a given number of bits. This problem
becomes more severe the greater the data compression factor (ie the further we progress
through the layers of ACE). For instance, if the input image is very noisy then 68 bits
will be sufficient only to give good vector quantisation performance in the first few layers
of ACE. This problem arises because ACE does not have much prior knowledge of the
statistical properties of the input data, so each node of ACE encodes its input without
assuming a prior model1 4. A prior model would allow us to reduce the bit rate. This is a
fundamental limitation to the capabilities of the current version of ACE, which we intend
to address in future.

The choice of the size of the 2-dimensional histogram bins is also important. A property
of the topographic mappings that we use to to connect the layers of ACE is that adjacent
histogram bins derive from input vectors that are close to each other (in the Euclidean
sense), so it is sensible to rebin the histogram by combining together adjacent bins. Thus
we control the histogram bin size by truncating the low order bits of each binary vector that
represents a pixel value. If we do not truncate any bits, then the 2-dimensional histogram
faithfully records the number of times that a pair of pixel values has occured. However,
if we truncate b low order bits of each pixel value then effectively we sum together the
histogram bins in groups of 22b (= 26 x 2 ') adjacent bins, which smooths the histogram.
The more smoothing that we impose the less Poisson noise the histogram suffers. However,
as we smooth the histogram we run the danger of smoothing away significant structure
that might usefully be used to characterise the input image: so we need to make a com-
promise. In our Brodatz texture work we use only 4-6 bits of each pixel value to generate
the histograms in each stage of ACE. Note that we use more bits for vector quantisation
than for histogramming because the vector quantisation needs to be good enough to pre-
serve information for encoding by later layers of the hierarchy, whereas the histogramming
information is not passed to later layers.

In equation (35) we need to estimate the logarithm of various probabilities from the
histograms. We do this in two stages. Firstly, we regularise the histograms by placing a
lower bound on the permitted number of counts. One possible prescription is to ensure
that each histogram bin has a number of counts at least as large as the average number of
counts in all the histogram bins (as determined before regularising the histogram). Thus

kih..,lik'.. il' ..) _ h(y,..i i yk...i, yij,... h > < h > (7
f-- k.. soh .Yj..,Ylll..) h < < h > (

where the angle brackets < ... > denote an average over histogram bins, rounded up to
the next largest integer to avoid setting histogram bins to zero. Secondly, we estimate the
probabilities ilk,',,...) by inserting the regularised histograms into equa-
tion (25). We use a marginalised version of equation (25) to estimate the marginal proba-
bilities P#k..(pd_). Finally, we compute the logarithmic probabilities in equation (35) by
using a table of logarithms of integers, up to the maximum possible number of counts that
could occur in a histogram bin-it suffices to tabulate .logarithms up to log(N).

The prescription in equation (37) is crude but effective. We could improve the perfor-
mance by introducing prior knowledge of the statistical properties of the input data. Our

14a bet, there is a model inplied by our use of a Euclidean distortion measure to design the vector

qamsoer. Losedy speading, we hmplicitly assume that a hierarchical Gaussian mixtures model can be used
to approximate the PDF of the input data.
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histogram smoothing prescription already implicity makes use of prior knowledge of the
properties of the Posson noise process that affects the histogram counts, and prior knowl-
edge of the fact that adjacent histogram bins correspond to similar input vectors. Additional
prior knowledge would further enhance the performance, especially in cases where there is a
limited amount of training data (such as small images, or small segments of larger images).

A pitfall that must be avoided is using histogram bins that are too small when one
intends to train ACE on one image and then use a different image to generate a probability
image. Effectively, the large number of small bins records the details of the statistical
fluctuations of the training image (as particular realisations of a Poisson noise process in
each bin), which thus acts as a detailed record of the structure in the training image. The
histograms thus look very spiky, and in an extreme case there may be a counts recorded
in only a few bins with zeros in all of the remaining bins. If this situation occurs then the
training image records a large log(Q,,,m,), whereas a test image having the same statistical
properties records a small log(Q,..,i). Effectively, the spikes in the training and test image
histograms are not coincident. This problem can be solved by choosing a large enough
histogram bin size.

Finally, we display the logarithmic probability image as follows. We determine the
range of pixel values that occurs in the image, and we translate and scale this into the
range [0,255]. This ensures that the smallest logarithmic probability appears as black, and
the largest logarithmic probAbility appears as white, and all other values are linearly scaled
onto intermediate levels of grey. This prescription has its dangers because each probability
image determines its own special scaling, so one should be careful when comparing two
different probability images. It can also be adversely affected by pixel value outliers arising
from Poisson noise effects, where an extreme value of a single pixel could affect the way
in which the whole of an image is displayed. However, we find that the overlapping tree
prescription in figure (5) together with the backpropagation prescription in figure (6), causes
enough effective averaging together of the histogram bins that we do not encounter problems
with pixel value outliers.

In all of the images that we present below, we compensate for the uneven illumination
by introducing a grey scale wedge as we explained earlier, we use 8 bits per pixel for vector
quantisation, we use 6 bits per pixel for histogramning, and we invert the [0,255] scale to
produce an anomaly image, in which a white pixel indicates a small (rather than a large)
logarithmic probability.

4.2 Texture 1

In figure (8) we show the first Brodatz texture image that we use in our experiments.
The image is slightly unevenly illuminated and has a fairly low contrast, but nevertheless
its statistical properties are almost translation invariant.

In figure (9) we show the anomaly images that derive from figure (8). Note how the
anomaly images become smoother as we progress from figure (9a) to figure (9h), due to
the increasing amount of averaging that occurs amongst the overlapping backpropagated
rectangular tiles that build up each image.

Figure (9e) and especially figure (9f) reveal a highly localised anomaly in the original
image. Figure (9f) corresponds to a length scale of 8 x 8 pixels, which is the approximate
size of the fault that is about 1/4 of the way down and slightly to the left of centre of
figure (8). The fault does not show up clearly on the other figures in figure (9) because
their characteristic length scales are either too short or too long to be sensitive to the fault.
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Figure 8: 256x256 image of Brodatz fabric number 1.



S P Luttrell, 5th November 1990 19

(a) (b)

(g)

Figure 9: 256x256 anomaly images of Brodatz fabric number 1.
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There is a major feature in the bottom right hand corner of figure (9h), where the
anomaly image is darker than average, indicating that the corresponding part of the original
image has a higher than average probability. This is a different type of anomaly to the sort
that we have envisaged so far-it occurs because the corresponding part of original image
happens to explore only a high probability part of the space that is explored by the whole
image. This part of the anomaly image is surrounded by a brighter than average border,
which indicates a conventional anomalous region.

From figure (9) we conclude that ACE can easily pick out localised faults in highly
ordered textures.

4.3 Texture 2

In figure (10) we show the second Brodatz texture image that we use in our experiments.
The image has a high contrast and translation invariant statistical properties.

In figure (11) we show the anomaly images that derive from figure (10). The most
interesting anomaly image is figure (11f) which shows several localised anomalies. About
halfway down and to the left of centre of the image is an anomaly that coxz - onds to a
dark spot on the thread in figure (10). The brightest of the anomalies in the cluster just
above the centre of the image corresponds to what appears to be a slightly torn thread
in figure (10). The other anomalies in this cluster are weaker, and correspond to slight
distortions of the threads. There is another anomaly just below and to the right of the
centre of figure (11g), which corresponds to what appears to be another slightly torn thread
in figure (10). These anomalies all occur at, or around, a length scale of 8 x 8 pixels. Several
of the anomaly images show an anomaly in the bottom left hand corner of the image, which
corrsponds to a small uniform patch of fabric in figure (10).

The results in figure (11) corroborate the evidence in figure (9) that ACE can be trained
in an unsupervised fashion to pick out localised faults in highly ordered textures.

4.4 Texture 3

In figure (12) we show the third Brodatz texture image that use in our experiments.
The image has a very high contrast and statistical properties that are almost translation
invariant. However the density of anomalies is much higher than in either figure (8) or
figure (10).

In figure (13) we show the anomaly images that derive from figure (12). The most
prominant anomaly is in figure (13g), at a length scale of 8 x 16 pixels, which corresponds
to region of figure (12) that is just above and to the left of centre of the image. This region
is anomalous because it is both distorted and has slightly thicker threads than elsewhere.
The large distorted region in the bottom left hand corner of figure (12) does not show up
very clearly to the naked eye in figure (13), but figure (13f) and figure (13h) have significant
peaks in this region. There are also many other localised peaks in figure (13) which can be
traced back to corresponding faults in figure (12).

Comparing figure (13) with figure (9) and figure (11) we conclude that the ability of
ACE to pick out faults is degraded as the density of faults increases. This is because the
faults themselves are part of the statistical properties that are extracted by ACE, and if a
particular fault occurs often enough in the image then it is no longer deemed to be a fault.

4.5 Texture 4
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Figure 10: 256x256 image of Brodatz fabric number 2.
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(a) (b)

(g) (h)

Figure 11: 256x256 anomnaly images of Brodatz fabric number 2.
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Figure 12: 256x256 image of Brodatz fabric number 3.
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(a) (b)

(C) (d)

(e) Mf

(g) (h)

Figure 13: 256x256 anomaly images of Brodatz fabric number 3.
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Figure 14: 256x256 image of Brodatz carpet for training.
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In this section we present a slightly different type of experiment in which we train ACE
on one image and test ACE on another image. To create the two images we start with a
single 256 x 256 image of a Brodatz texture, which we divide into a left half and a right
half. We then use the left half to build up the training image, and the right half to build
up the test image.

In figure (14) we show the training image which is a montage of two copies of the left
hand half of a Brodats texture image. In figure (15) we show the test image which is a
montage of two copies of the right hand half of a*Brodatz texture image, and superimposed
on that is a 64 x 64 patch which we generated by flipping the rows and columns of a copy
of the top left hand corner of this image. This patch is a hand crafted anomaly. Note that
in constructing these images we have scrupulously avoided the possibility that the training
and test images could contain elements deriving from a common source.

In figure (16) we show the anomaly images that derive from figure (15) after having
trained on figure (14). Figure (16f) shows the strongest response to the anomalous patch
in the centre of the image, corresponding to anomaly detection on a length scale of 8 x 8
pixels.

5 Conclusions

Using maximum entropy methods, we have shown how to construct maximum entropy esti-
mates of PDFs by using adaptive hierarchical sampling functions to record various marginal
PDFs of the data. We have also shown how to extend this result so that it can be applied
to translation invariant image processing, such as the detection of statistical anomalies in
otherwise statistically homogeneous textures. Our methods show great promise, not only
because they are amenable to a full theoretical analysis leading to closed-form maximum
entropy solutions, but also because they lead directly to a modular system design which
can locate anomalies in textures.

We have presented several examples where our "adaptive cluster expansion" (ACE)
technique successfully detects anomalous regions in otherwise statistically homogeneous
textures. In all cases ACE adaptively extracts the global statistics of an image at various
length scales during the unsupervised training. ACE then uses these statistics to form
an output image that represents the probability that each local patch of the input image
belongs to the ensemble of patches presented during training. We call this a "probability
image", and its inverse an "anomaly image".

Some possible applications of our results are as follows. Inspection of textiles: this relies
on the assumed stat'stical homogeneity of an unflawed piece of textile, so that faults show
up as anomalies. Detection of targets in noisy background clutter in radar images: this is
basically a noisy version of the textile inspection problem. Texture segmentation: this is an
ambitious goal which requires further analysis in order to derive a computationally cheap
method of handling multiple simultaneous textures.

A Vector quantisation

In this appendix we summarise the hierarchical vector quantisation method that we pre-
uented in detail in [14]. In this paper we use this technique to optimise the inter-layer
mappings in figure (7). We have applied this technique elsewhere to image compression
[11], and multilayer selforganlsing neural networks [i0, 12, 13, 15].
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Figure 15: 256x256 image of Brodatz carpet for testing.
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(a) (b)

(e) Mf

(g) (h)

Figure 16: 256x256 anomaly images of Brodatz carpet.
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A.1 Standard vector quantisation

This subsection contains those details of the theory of standard vector quantisation that
one needs to understand before proceeding to the modified vector quantisation scheme that
we present in f§A.2.

The problem is to form a coding y of a vector a in such a way that a good estimate a'
of a can be constructed from knowledge of y alone. The sketch derivation in this section
is presented in greater detail in [13]. Thus a vector quantiser is constructed by minimising
a Euclidean distortion D, with respect to the choice of coding function y(a) and decoding
function e'(V), where

A fd P(a) Ile - -'(y(z))j' (38)

We may represent the encoding and decoding operations diagrammatically as shown in

input code
a of

Figure 17: Encoding and decoding in a vector quantiser.

figure (17). By functionally differentiating D, with respect to y(a) and a'(y) we obtain

AD, = P(Z) a'(p) alI2=() (39)

6D1  = 2fdoP(m) 6(y-y(a))(M(v)-a) (40)6a'-(())(p()

Setting 6Di/6y(a) = 0 in equation (39) yields the optimum encoding function

p(a) = arg min l2'(Y) - all' (41)
V

which is called "nearest neighbour encoding". Setting 6D 2 /6a'(y) = 0 in equation (40)
yields the optimum decoding function

.'(1) = fdaP()6(y - y(a)) a (42)
fda P(z)6(y - y(o))

which is the update scheme derived in [21). Alternatively, we may use an incremental scheme
to optimise the decoding function by following the path of steepest descent which we may
obtain from equation (40) as

= fA(y - pW))(a - ,'()) (43)

where 0 < e < 1.
An iterative optinisation scheme may be formed by alternately applying equation (41)

and then either equation (42) or equation (43). This scheme will alternately improve the
encoding and decoding functions until a local minimum distortion is located. Alternating
equation (41) and equation (42) is commonly called the "LBG" (after the authors of [21])
or "k-means" algorithm.
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A.2 Noisy vector quantisation

This subsection contains the theoretical details of the optimisation of inter-layer mappings
that we use in our numerical simulations in 54. Thus we generalise the results of j§A.1
to the case where the encoded version of the input vector is distorted by a noise process
[22, 23, 14, 15].

Define a modified Euclidean distortion D2 as

D2 = f do P(a) J dnr(n) Ila - a'(y(-) + n)11' (44)

We may represent the encoding and decoding operations together with the noise process

input .... code g& noisy code reconstruction

a --+ Y noise at-*

Figure 18: Encoding and decoding in a noisy vector quantiser.

diagrammatically as shown in figure (18), which is a trivially modified version of figure 17.
By functionally differentiating D2 with respect to y(z) and a'(y) we obtain

6 - P(Z)Jdn7r(v4) a IIZ,(Y) - Z112I..(2+ (45)
6D2  /

- - 2f dt P(t);r(y - ;(z)) (z'(y) - a) (46)

Equation (45) is a "smeared" version of equation (39), so 6D2/6Y(z) = 0 does not lead to
nearest neighbour encoding because the distances to other code vectors have to be taken into
account in order to minimise the damaging effect of the noise process. However, it is usually
a good approximation to use the nearest neighbour encoding scheme shown in equation (41).
Setting 6D 2/6a'(/) = 0 in equation (46) yields the optimum decoding function

at(Y) = fdo P(a)(y - y(z)) af do, P(x)7r(y - y/(z)) (7

which should be compared with equation (42). Alternatively, we may obtain a steepest
descent scheme in the form

a'(y) = e1(y - p(a))(a - 2,(Y)) (48)

where 0 < e < 1, which should be compared with equation (43).
As in 55A.1, iterative optimisation schemes can be constructed in which we alternate

the optimisation of the coding and decoding functions. Alternating equation (41) (which
approximately solves 6D2/6a'(y) = 0) and equation (48) yields the standard topographic
mapping train ng algorithm [9], which is widely used in various forms in neural network
simulations.

A.3 Hierarchical vector quantisation
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Figure 19: Encoding and decoding in a hierarchical vector quantiser.

In figure (19) we show the simplest type of hierarchical vector quantiser. It consists of an
inner quantiser contained in the dashed box, surrounded by a pair of outer quantisers.

If the part of the diagram contained in the dashed box were removed and direct con-
nections made so that y1 = y1 and y'2 = y2, then figure (19) would reduce to a pair of
independent vector quantisers of the type shown in figure (17). The dashed box contains a
vector quantiser which encodes (yl, y2) to produce a code which it subsequently decodes to
obtain (y,, y).

From the point of view of yP the effect of being passed through the inner quantiser is
to modify y1 thus P1 - y'. A similar argument applies to y2 -- y'. The actual distortions
y1 - yI and y2 - y2 will be correlated in practice, but we shall model them as if they were
independent processes, and thus reduce figure (19) to two independent vector quantisers of
the type shown in figure 18.

This procedure can be extended to a hierarchical vector quantiser with any number of
levels of nesting. From the point of view of the quantisers at any level, we shall model the
effect of the quantisers inwards from that level as indepewidnt distortion processes. It turns
out not to be critically important what precise distortion model one uses, provided that it
approximately represents the overall scale of the distortion due to quantisation.

In [14] we presented in detail a phenomenological distortion model that we used to
obtain an efficient training procedure for topographic mappings and their application to
hierarchical vector quantisers. Alternatively, the standard topographic mapping training
procedure in [9] could be used, but this is a rather inefficient algorithm. The basic training
procedure may be obtained from equation (48) as

1. Select a training vector a at random from the training set.

2. Encode a to produce y(= y(c)).

3. For all y' do the following:

(a) Determine the corresponding code vector e'(y').

(b) Move the code vector ='(y') directly towards the input vector w by a distance
e -(p' - V)I -'(,

4. Go to step 1.

This cycle is repeated as often as is required to ensure convergence of the codebook of code
vectors.
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The standard method [9] specifies that r(y' - V) should be an even unimodal function
whose width should be gradually decreased as training progresses. This allows coarse-
grained organisation of the codebook to occur, followed progressively by ever more fine-
grained organisation, until finally the algorithm converges towards an optimum codebook.

In our own modification [14] of the standard method we replace a shrinking ir(y' - V)
function acting on a fixed number of code vectors by a fixed r(y' - y) function acting on
an increasing number of code vectors. There are many minor variations on this theme, but
we find that it is sufficient to define

e Y,=y

W(y'- Y) C= i'-iy=1 (49)
0 IV'- Y > 1

where we have absorbed e in equation (48) into the definition of i(y' - y). We use a binary
sequence of codebook sizes N = 2,4,8,16,32,..., where each codebook is initialised by
interpolation from the next smaller codebook. We find that the following parameter values
yield adequate convergence: c = 0.1, c' = 0.05, and we perform 20N training updates before
doubling the value of N and progressing to the next larger size of codebook. The N = 2
codebook can be initialised using a random pair of vectors from the training set.
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