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1. Introduction

"... Resonance implies the presence inside the well of a certain amount of carriers which, at
least in the most common experimental situations, are not there at the beginning. When
dealing with electrons, this means that a space charge builds up. If the resonant eigenstate
can accommodate enough charge this affects the potential energy making it time dependent
and giving rise to a feedback mechanism linking the changes in potential energy with carrier
trapping." This prescient statement by Ricco and Azbel (1984) is at the heart of the
operation of all quantum device structures incorporating resonant tunneling contributions,
and the means by which this feedback mechanism occurs is at the core of virtually all
measurement and theory of quantum structures. It suggests that all devices constructed
from resonant tunneling structures are dependent on the ability to move charge in and out
of the resonant tunneling quantum well. How is this charge distributed? Once the
distribution of charge is determined how are we to manipulate the spatial positions of the
charge, and within what time constraints, to advantageously design devices? This last
question was at the core of the Phase I SBIR study; the results of which are discussed in the
sections below. Before this discussion, we note that at least three significant device
applications have emerged from the capabilities and physics addressed during the Phase I
study. These include: (1) The design of a resonant tunneling diode (RTD) self excited
oscillator, (2) the design of an optically induced high speed RTD switch and (3) the design
of a high current level three terminal RTD transistor. Each separate application forms part
of a recommended future study.

To establish what all quantum transport RTD theory must describe we first summarize the
experimental state of understanding of RTD. We turn to the results of Eaves and
Co-workers (1989), and point out, as is often the case, that the interpretation rests heavily
on adjunct comutations performed incorporating Schrodinger's equation coupled to a
assumed distribution of carriers. All results are steady state results.

The detailed experiments of Eaves and Co-workers (1989) were performed on asymmetric
structures; and while we would like to see similar detailed experiments performed on
symmetric structures, the essential physics is likely to be independent of this asymmetry.

The band structure, current-voltage characteristics, and areal distribution of charge within
the structure are displayed in figures la through lc. The salient features of these
measurements and additional ones discussed in Eaves and co-workers (1989) are:

(1) The threshold voltage at which resonant tunneling and current begins to flow, Vth,
occurs at values below the voltage at peak current, Vp.

(2) Resonant tunneling occurs when the energies in the bound state of the accumulation
layer on the emitter side of the double barrier, and the quantum well essentially coincide.

(3) The screening effect of the charge buildup in the quantum well is responsible for the
extended voltage range over which resonant tunneling is observed.

(4) When the applied voltage is between Vth and V , only a very small voltage change
across the emitter barrier is needed to charge up th'well. Due to the screening effect of
the charge, almost all the extra voltage drop falls across the collector barrier and the
depletion layer.
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(5) The rates at which carriers enter the quantum well into the quasi bound state are
different than the rates at which carriers leave the quantum well and tunnel to the emitter.
Tunnelling takes place at a fixed energy. The implication is that conservation of transverse
energy under bias does not occur. If the storage time in the well is very long (> I ps)
carriers are likely to achieve thermalization. The parameters of thermalization are electron
temperature and quasi-Fermi level with a Fermi level in the quantum well that is different
from that of the emitter.

(6) As V increases above Vp a transition occurs in which charge is expelled from the
quantum well. Further increases in bias result in increases in charge on the emitter side of
the barrier.

The above discussion of Eaves and coworkers (1989) suggests two distinct contributions to
the electric characteristics of resonant tunneling structures. First, coherent scattering of the
type similar to Fabry-Perot scattering; second, incoherent contributions arising form
carrier-carrier scattering and perhaps, e.g., phonon scattering. At any bias level
contributions of each are expected, and the issues include determining the relative weights
of each. Detailed analysis under the Phase I study tends to confirm these conclusions.

But the analysis of Eaves and co-workers (1989) rest on relatively straightforward
applications of Schrodinger's equations and Poisson's equation with intuitive approaches to
temporal constraints and does not provide a simulation tool for extracting the essential time
dependence of quantum device physics. Indeed the engineering and physics community
requires for the successful development of quantum device structures, the quantum
transport equivalent to the drift and diffusion equations! Scientific Research Associates,
Inc. (SRA) has been developing such programs and the Phase I SBIR study was involved in
further development and implementation of its time dependent algorithm for determining
the transient behavior of resonant tunneling structures. The unique feature of the study
was the implementation of SRAs algorithm for solving the time dependent Liouville
equation. The motivations for this as discussed in the Phase I proposal were as follows:

"...one of the more significant aspects of quantum device behavior is its time dependence
and the mixing of quantum states. Here conventional approaches of analyzing this
phenomena generally involve the evaluation of eigenstates and perturbations thereof.
While these approaches are not incorrect, they are unlikely to yield useful information
when the perturbations significantly depart from equilibrium. Implicit in the approach of
analyzing quantum phenomena are the equations used. ... Presently, with few exceptions,
see, e.g., Frensley (1987), most descriptions of quantum device behavior involving large
numbers of carriers are based upon the single particle Schrodinger equation. This, is
inadequate, as discussed by Frensley (1985) in that temperature effects, time dependent
phenomena and dissipative effects are not a natural part of the governing single particle
equations. Self-consistency is also an issue. Further, if all of these deficiencies could be
overcome the quantum transport algorithms should be available to a broad range of
scientists and engineers. To paraphrase Iafrate (1989) 'user-friendly' quantum mechanical
algorithms are needed to provide a basis for much of the new quantum based devices".

The specific technical objectives of the Phase I study were represented by the tasks of the
Statement of Work. These included:
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(1) Applying the density matrix algorithm for solving the time dependent Liouville
equation, coupled to Poisson's equation to calculate the steady state characteristics of
RTDs;

(2) Calculate the time dependent behavior when a small ac signal is superimposed upon the
dc result;

(3) Examine the time dependent behavior when the applied frequency correspond to the
sum and difference frequencies of the quasi bound states.

Each of these tasks was completed. In addition calculations were performed to determine
the time it takes to fill and empty a quantum well. Time constants associated with the
transient behavior of the device were estimated. For a GaAs/A1GaAs structure the time to
fill and empty the quantum well was estimated as 500fs. Thus oscillations in the terahertz
range are feasible. Additionally dc calculations were performed for a structure that is
generically similar to the indium based quantum well that has resulted in large peak to
valley ratios.

The issues that needed to be addressed with respect to resonant tunneling structures were:

(1) the physics of charge filling and emptying of the quantum well;

(2) the time constants associated with the filling and emptying of the quantum well,

(3) the material parameters associated with the structure;

(4) and simultaneously the applications of the RTD.

Under the Phase I SBIR study issues (1) and (2) were addressed through numerical
simulation. The numerical simulation program which has been under development at SRA
for several years, with support from several research funding agencies, including AFOSR
under which the Liouville algorithm was initially developed, represents a significant
advance over simulations undertaken before. It is recommended that in a future study,
issues (1) and (2) should be continued but the emphasis should be on issues (3) and (4).

2. Governing Equations

The density matrix, p, satisfies the liouville equation of motion:

(1) ihap/at=[H,p]

where H is the Hamiltonian for the problem, and the brackets represent the standard
quantum mechanical commutation operation. For transport in one dimension, the density
matrix in the coordinate representation, p(xx't), satisfies the equation of motion:
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(2) ih[ap(x,x',t)/at + {ap(xx',t)/at}scattering

_.(h 2/2m)[a 2/ax 2 _a 2 /ax, 2 ]p (x,x',t) + [V(x,t)-V(x',t)]p (x,x',t)

The scattering operator is Hermetian and is represented in the proposed study
phenomenologically, as discussed below. The expectation value of any operator A in the
coordinate representation A(x',x) is:

(3) <A> = f dxdx'p (xx',t)A(x',x)

Note: if we erase all of the x' dependence in equation (2), including the spatial derivatives
and the term V(xt) we retrieve Schrodinger's equation. Thus there is an 'apparent'
similarity. But the similarity ends here, for equation (2) states that a one dimensional
physics problem requires a two dimensional differential equation. The origin of the second
dimension lies in the fact that as in the Boltzmann transport equation in one dimension,
transport requires both an incorporation of psition and momentum. Scattering, of course,
requires that momentum be treated as a three dimensional variable. In the discussion
below, the transverse components of momentum are treated as separable variables except
as they effect scattering. Two variables implies that the second variable is a transformed
version of the momentum variable. In the calculations described the density matrix is solved
simultaneously with Poisson's equation:

(4) a 2 V/ax 2 =-[e 2 / ][p(x)-po(X)]

where p (x) is the diagonal component of the density matrix and represents the density of
carriers.

The density matrix is a 'matrix'. As is well known the elements of the matrix are dependent
upon a 'basis'. Often the elements of the density matrix are classified in terms of quantum
states. While in the discussion below we have chosen to deal with the density matrix in the
'coordinate' representation, this choice is not limiting in that a matrix transformation takes
one matrix and transforms it into a mathematically equivalent matrix. The transformation
results in an alternative physical description, but not new physics. The advantage of treating
the density matrix in the coordinate representation is that the observables have a distinct
spatial and temporal evolution that is not apparent from other descriptions.

While we will illustrate solutions to the equation of motion of the density matrix, we list
the types of quantities that are required to describe quantum transport phenomena. We
note that unlike the moment approaches to examining transport, these quantities are
obtained from the density matrix. First there is the density of particles; which as discussed
above is the diagonal element of the density matrix, p (xx). Second, there are the current
density and energy density matricies. The diagonal components of the current density
matrix are the position dependent expectation value of current; the diagonal components of
the energy density matrix are the position dependent expectation values of energy. We list
the three relevant quantities, all three of which contain real and imaginary components:
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(5) density matrix: p(xx')

current matrix: j(xx')

energy matrix: E(xx')

the time dependence is suppressed.

What does the density matrix look like? For free particles in the absence of any potential,
and under time independent conditions, the density matrix (ignoring the exclusion
principle) is given by:

(6) p (xx') = I [exp-Ei/kbT]u (x)* i* (x)

The diagonal elements of equation (6) are given by

(6a) p (xx) = I [exp-Ei/kbT] Ai(x) i* (x)

and represent a Boltzmann distribution of particles. The diagonal elements of the density
matrix represent particle density.

In identifying the other terms it has been deemed useful by Frensley (1990) and ourselves
to introduce a coordinate transformation; this transformation simplifies the form of the
equations and is extremely useful in highlighting the necessary computational requirements
In performing these transformations we recognize that the second derivative operators in
equation (2) can be expressed as follows:

(7) C 2/ax 2-a 2/x' 2 = [a lax-a ax'[a /lax + a la 'x]

Then with the transformation:

(8) q = (x + x')/2, = (x-x')/2

a/a =alax+alax' 8/aa =aax-alax'

we find:

(9) a 2 /ax 2 -a 2/x' 2 =[a/a][8/a n]

In terms of the transformed variables the current density matrix (see also lafrate et al,
(1981) starting from a Wigner (1932) representation):

(10) j(xx') =-(i/2mi)[a p(x,x')/ax'-a p(xx')/ax]

= (ii /2mi)a p(ql + C,q - )/a C

It is important to note that evaluating the derivatives along the line " =0, yields the
expectation value of current density. Note that since p (xx') = Rep (x,x') + ilmp (x,x'),
and j(xx') = Rej(xx') + Imj(xx'), Rej(xx') is obtained from Imp (xx') and Imj(xx') is

-7-



obtained from Rep(xx'). This is an extremely important result. Because we will assert that
current transpor through the device is represented by the diagonal elements of the real
part of the current matrix j(xx'). Thus if the density matrix is real the current is zero. The
density matrix for free particles in the absence of any potential is real, thus the net current
associated with a collection of free particles is zero. In terms of momentum states, this
implies that for every quantum state with momentum k there is a quantum state with the
opposite momentum -k.

It is worthwhile noting that with the definition of the current and density matricies we can
write down a matrix continuity equation including off-diagonal elements:

(11) 8pOr +C,q/-0)lt+8j(q +C,17-0)l8

Along the diagonal, " - 0, and the real part of the above differential equation yields the

'familiar" continuity equation.

The energy matrix (see also lafrate et al (1981)) is defined as:

(12) E(xx') =-(h 2/8m)[8 2 p/8x 2 -28 2 p/axax' + 8 2 plx' ]

-( 2/8m)8 2 p/lC 2

Again, evaluating the derivatives along the line f = 0, yields the expectation value of energy.
Because the energy matrix is a new quantity we try to place this into the context of energy
conservation. This is achieved by taking derivatives of the density matrix equation (2), with
respect to C. We find, with j(xx') =p(x,x')/m:

(13) a p(xx')/a t + 2a E(xx')/a q =

-(112)a [V(x)-V(x')]/a r" p (xx')-(1/2) [V(x)-V(x')la p (xx')/a

Now, ala C [V(i7 + C )-V(7 -C )] = [V'(q + C ) + V'(i7 -C )], where the prime denotes derivative

with respect to the argument of the respective functions. Thus along the diagonal:

(14) a p(xx)/a t + 2a E(xx)/a q = -a [V(x)/a p (xx)

Since p(xx') and E(xx') are density dependent quantities, equation (13) is Newton's Law
for momentum density.

The above description is an indication of the types of terms to be evaluated in the density
matrix.

3. Results

3a. Steady State Results

The calculations that follow are for GaAs/AlGaAs RTD in which the GaAs quantum well is
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50k wide. The AlGaAs barriers are either 50A wide, or in one case, to compare with the
experimental results of Eaves and co-workers (1989) include an asymmetric 100A barrier.
The time independent GaAs/AIGaAs calculations fall into four categories:

(1) Figures 2 and 3; 1500A structure, with successively
(i) GaAs, 625A, 101 '/cm3,
(ii) GaAs, 50A, 101 /C.3,

(iii) AIGaAs, 50, 101 '/cm', barrier 300 mev
(iv) GaAs, 50A, 101 '/cm3,
(v) AIGaAs, 50K, 10 1 6/m, barrier 300 mev
(vi) GaAs, 50A, 101 S/cm3,

(vii) GaAs, 625K, 101 S/cm3,

(2) Figures 4, 5 and 6; 1500A structure, with successively
(i) GaAs, 475A, 101 B/cm3,

(ii) GaAs, 200A, 101 6/cm3,
(iii) AIGaAs, 50A, 101 '/cm', barrier 300 mev
(iv) GaAs, 50A, 101 6/cm',
(v) A1GaAs, 50K, 101 S/cm', barrier 300 mev
(vi) GaAs, 200K, 101 '/cm3,
(vii) GaAs, 625K, 101 8/cm',

(3) Figure 7; 1500K structure, with successively
(i) GaAs, 400K, 101 8/cm',
(ii) GaAs, 200K, 101 'lcm',
(iii) A1GaAs, 50K, 101 '1Cm', barrier 300 mev
(iv) GaAs, 50K, 101 5/cm',
(v) AlGaAs, 10A, 10 1 '/cmr, barrier 300 mev
(vi) GaAs, 200K, 101 '/cm',
(vii) GaAs, 500K, 101 S/cm',

(4) Figure 8; 1500A structure, with successively
(i) GaAs, 425A, 101 '/cm',
(ii) GaAs, 200A, 10 1 'cm',
(iii) AIGaAs, 100K, 101 '/CM, barrier 300 mev
(iv) GaAs, 50K, 101 '/cm',
(v) AIGaAs, 50K, 101 /crM, barrier 300 mev
(vi) GaAs, 200A, 101 S/cm',
(vii) GaAs, 475A, 101 8/cm',

Figure 2 displays the potential, the density distribution and a term referred to as the
quantum potential, discussed below. These calculations are performed for bias levels prior
to the peak current value in the RTD. The peak current is assumed to occur when the
quasi-bound state in the quantum well reaches a characteristic energy state near the edge of
the accumulation layer. For these calculations it is assumed that the quasi-Fermi level of
the emitter and the quasi-Fermi level of the quantum well are at the same value. This value
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of the quasi-Fermi level is based upon an assumption as to what the distribution function
should be within the quantum well. The quasi-Fermi level of the collector barrier is
assumed to linearly decrease until the end of the collector barrier, at which point it is equal
to that of the collector contact. The calculation reveals that the charge in the quantum well
increases with increasing bias as suggested by Ricco and Azbel (1984), and as has been seen
experimentally (Eaves and co-workers (1989)). Note that as the bias is increased, the
increasing charge in the well is accompanied by an increasing potential energy drop across
both the emitter and collector barriers, but that the largest potential drop is across the
collector barrier. The presence of charge within the quantum well screens the emitter
barrier as discussed by Eaves and workers (1989) and only small emitter changes
accompany the bias changes. As indicated by the arrows, the density of carriers in the
quantum well increases, the density of carriers in the accumulation layer increases and the
density of carriers in the collector region decreases. The net charge density is unchanged.

For diagnostic purposes we have introduced the quantum potential:

(15) Q - [2/2m[a IJ p/ax2]!J p

which represents the real part of the energy operator in Schrodinger's equation. We find
that Q + V(x), yield an approximate representation of the energy of the quasi-bound state
within the quantum well. In figure 2 we display the term Q + V, and note that it decreases
with increasing collector bias. Near Vp, Q + V in the quantum well is approximately equal
to Q + V in the accumulation region.

The situation in figure 3 corresponds to the case in which there is a current drop. Note for
this calculation it was assumed that once the electron density within the quantum well
exceeded a value of 101 2/cm2, that there would be strong carrier scattering. As discussed
by Eaves et al (1989), a new quasi fermi level forms that is different from that of the
emitter. For the calculation the Quasi-Fermi level was taken to vary linearly from its value
at the emitter barrier to its value at the collector barrier. We note here that for this case,
that the charge in the well has disappeared. This removes the screening of the emitter
barrier which can now be lowered, there is an increase in charge upstream of the emitter,
and the sum of Q + V is no longer constant, indicating that the tunneling process is no
longer one of resonant tunneling.

The above calculations were repeated for the situation in which there were 200A spacer
layers on either side. The reason for this calculation was that there was experiment
(Ray et al.(1986)) to which comparison could be made. These experiments were for 500A
space layers and some adjusting was necessary. The space charge calculations are displayed
in figures 4 and 5, and the comments made in connection to those associated with figures 2
and 3 are applicable here. The interesting feature is the close agreement of the peak to
valley ratios with experiment as shown in figure 6. This point should not be underestimated
in that virtually all previous calculations with the exceptions of several Wigner function
calculations have led to peak to valley ratios that are orders of magnitude in excess of those
seen experimentally.

To summarize the significance of Figures 2 through 6, we note that for voltages to Vp
transport across the quantum well is approximately Fabry-Perot coherent scattering.
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Beyond Vp a significant contribution from incoherent scattering is required to lower the
emitter barier with the consequent drop in current.

The situation discussed above is present in the case of asymmetric structures of the type
discussed by Eaves and co-workers (1989), but there are several interesting features that
should be noted. As displayed in figures 7 and 8 for the case when the wide barrier is at the
collector side there is a gradual buildup of charge in the quantum well, with features very
similar to those of figures 4 and 5. For the case where the wide barrier is at the emitter,
there is a larger potential drop across the emitter barrier with a consequent lowering of the
bottom of the conduction band below that when the wide barrier is at the collector. The
result is a rapid increase with bias of charge within the quantum well. It is anticipated that
the peak current will occur for lower values of VP, when the thin barrier is the collector.
This is confirmed by Eaves (1991).

3b. Time Dependent Results

Time dependent calculations were initiated to determine the characteristics of the filling
and emptying of the quantum well. As discussed above the filling and/or emptying of the
quantum well occurs at a fixed value of applied bias and occurs after of thermalization
processes. These calculations were performed in which (a) initially the well is empty, figure
9; and (b) initially the well was filled, figure 10. The calculations are for the structure of
Figures 2 and 3, at -200 mev, but with the heavily doped regions reduced from 625A to 475A.
Since the potential drop across these regions is small the alterations in the results from
reducing the device length is expected to be negligible.

Figure 9 displays a sequence of calculations in which the quantum well is being filled. The
equilibrium distribution as well as the initial charge distribution within the well are
indicated. Under equilibrium conditions there is charge in the quantum well. The
equilibrium distribution represents the zero applied bias case. The iniln distribution is
under bias and displays charge accumulation on the emitter side but no charge in the
quantum well. The transient filling of the well occurs as a result of the anticipated cooling
of the electrons as the voltage decreases across the barriers. While this occurs at a fixed
external bias, the device is connected to the external bias through a resistor, and as the
current across the resistor increases the voltage across the double barriers decreases This
change is accomplished numerically by altering the quasi-fermi level within the double
barrier region, from varying linearly across the well, to a value that is constant across the
well.

Figures 9(b) through 9(f) display calculations showing the progressive filling of the
quantum well. The initial state is represented in figure 9a with accumulation on the emitter
order, and zero charge in the quantum well. The final state is that of figure 10a. Frame 9b
through 9f include all previous time sequences, and thus represent overlays. The
oscillations in density represent incident and reflected space charge contributions. At 50fs,
approximately 10% of the maximum space charge has entered the well suggesting a
switching time of 500fs.

Figure 10 displays a sequence of calculations in which the quantum well is being emptied.
The initi distribution is under bias and displays charge in the well. The final distributions
is represented by figure 9a. The transient empWn occurs as a result of an anticipated
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heating of the carriers as the voltage across the barriers increases. While this occurs at a
fixed external bias, the device is connected to the external bias through a resistor, and as the
current across the resistor dereases, the voltage across the double barrier diode increases.
This change is accomplished numerically by altering the quasi-fermi within the double
barrier region, from a constant across the quantum well to one that varies linearly
downward across the quantum well. As in figure 9, each frame includes all previous time
sequences. At 10fs, approximately 2% of the charge has been removed suggesting a
switching time of 500fs.

Figure 11 displays a sequence of time plots to determine the time dependent response of a
filled quantum well to a sinusoidal time dependent change in potential 200 (mev) +
10(mev) sinwt. The presence of the charge in the well prevents the structure from following
the time dependent variation of potential. Figure 12 displays a sequence of time plots to
develop the time dependent response of an cmjy quantum well to a time dependent
change in potential. Both figures 11 and 12 are for a frequency of 1014 radians/sec. The
absence of charge in the well permits the structure to follow the time dependent change in
bias.

Figure 13 and 14 displays the results of a time dependent calculation for a structure
nominally similar to that of figure 11. There are differences. Figures 13 and 14 include a
barrier height of 350 mev. For this case we estimate a second quasi-bound state near 300
mev. The quantum well was probed at frequencies near the estimated frequency difference
between the ground state at the first excited state. The results are qualitatively similar to
that of figure 11, and demonstrate that the response of the system is dependent upon the
fact that the carriers do not respond instantaneously to an imposed excitations. This last
feature suggests that the primary means of determining the response of the RTD to
external sources is to simulate the operation of the device in an environment close to that in
which it will be operated.

It should be noted, however, that part of the motivation for choosing frequencies
corresponding to the energy difference of the quasi-bound ground state and the first excited
state was to determine if the quantum well could be viewed as an "atom". The initial
calculations suggest that the presence of space charge tends to prevent this. But the
absence of systematic frequency tuning prevents us from making an unequivocal statement.

3c. Material Dependence

An issue that has surfaced in the studies of the RTD is the role of material properties. The
studies of Reed et al. (1986) with an InGaAs quantum well suggest a strong material
dependence, and indeed this is observed. Figures 15 and 16 display calculations for a
structure similar to that of figures 2 and 3, but with one significant exception: the center of
the quantum well, over a distance of 30A is lowered in energy by 100 mev with the device
structure reduced to 1200A. While this is not InGaAs the trend is toward InGaAs. First
note, that even though the quantum well is narrower than that of figure 2, there is
considerably more change in the quantum well. Note also the apparent absence of emitter
accumulated charge, and to consequent upward slope of the potential across the emitter
barrier. For voltages above Vi, there is a reduction of charge in the well, but for the same
linearly varying quasi-fermi level as in figure 3, the charge reduction is mitigated. Indeed if
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we compare the bottom of the conduction band in figure 2 and 16, it is seen that the carriers

have a longer tunneling region to traverse toward the collector contact.

4. Future Research

The Phase I program identified four broad areas of interest of study. It is recommended
that further studies attempt to design structures that exploit these characteristics of RTDs.
The fir issue is how high in frequency can these structures be electrically operated. The
second issue is the switching speed of the RTD. The third issue concerns the power levels
of RTD's. The fourth issue involves material properties. We examine each issue
separately.

4a. Frequency Issues

The Esald tunnel diode, the Gunn diode and others are capable of being operated as
self-excited oscillators. In this configuration, as represented in figure 17, the RTD which
when undergoing self-excited oscillations has an equivalent circuit schematically
rcpresented by inset (a) in figure 17, which shows a dc negative differential resistor in
parallel with a voltage dependent capacitor. When the device is not operating as a self
excited oscillator, the equivalent circuit is more like that of inset (b) where the resistor is a
saturated current resistor.

When does one equivalent circuit enter the picture and the second leave the picture? The
principal investigator has discussed this most recently with respect to transferred electron
Gunn oscillators. In that case it was determined that apart from circuit parameters,
negative differential resistance disappeared at frequencies in excess of the time it took for
carriers to transfer from the I to the L valley in GaAs.

For the resonant tunneling picture we are not specifically concerned with k space transfer,
but instead the response time of the charge density waves within the quantum well. As
figures 11 through 15 show the response time is dependent upon the amount of charge in
the well. It is anticipated that at sufficiently high frequencies negative differential
conductivity will disappear. This will be the upper frequency limit for RTD's. Thus one
new task should be undertaken to determine the upper frequency limit of the RTD when
used as a local oscillator in a self-excited oscillating circuit. If self-excited oscillators at
terahertz frequencies can be achieved, then structures for reasonable power levels will be
considered. To deal with this task the equation of motion of the density matrix, and
Poissons equation must be coupled to an ordinary differential equation representation of
the circuit of figure 17:

(16) Vbias = Vrtd + IR + LdI/dt

4b: Speed Issues

The calculations of figures 9 and 10 display the time dependent filling and emptying of the
quantum well. The results of the calculation stress that the resonant tunneling structure is
controlled by the amount of charge in the quantum well. If this is the case, then the
situation envisioned in figure 18 should be possible. In figure 18 we sketch the dc current
voltage characteristics of a resonant tunneling structure biased just below threshold. We
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illuminate the structure with light whose wavelength is such as to permit generation of
excess electron-hole pairs in the quantum well. While we have not examined the
distributions of holes in such a structure the excess distribution of electrons should result in
the charge rearrangement described in figures 9 and 10 and provide a means of switching to
the state B described in figure 18. Further the results suggest that if the bias point was at
the lower A' point, that with increased illumination switching would also occur.

The above concepts have been demonstrated by England, et al. (1991). For an
A1GaAs/GaAs RTD with the current voltage characteristics displayed in figure 18b, optical
switching was observed. Under zero illumination, the experiments indicated switching at
0.692V. Close to the intrinsic switching point only 10wW of power was needed to switch.
However as the voltage is moved further from the switching a near exponential increase in
power is required to switch the device. The tentative explanation of England et al (1991) is
consistent with our discussion and is related to the charge rearrangement within the RTD.
England et al (1991) argue that the switching offers the possibility of controlling substantial
current changes with small optical signals, i.e., the development of an "optical thyristor".
The advantage of using an RTD as a switch is that the structure remains in the switched or
unswitched mode while electrical power is applied. In this respect, as discussed by England
et al (1991), it can operate as a static optical memory.

It is recommended that the RTD be studied as an optical switch. Several components are
needed. Firit an equation similar to that of equation (2) will be included for holes. The
coupling of electrons and holes through the Liouville equation is part of SRA's ongoing
program. Second an equation for generating excess electron-hole pairs must be
introduced. SRA has experience in this area. Third, the presence of traps modifies all of
the relevant equations. In Poisson's equation the background density is replaced by an
expression for the net background charge density

(17) po(N + - P-)

which represents the net background density. (Poisson's equation will also include holes.)
If N and P denote the net numbers of donor and acceptor impurities including ionized and
neutral (denoted by the subscript 'o')

(18) N=N + +N o
P =P- +Po

The scattering term in equation (2) includes a term representing generation and
recombination, Rn, which for a single set of donor trap levels is represented by the
following equation:

(19) Rn=Cn+[pdNo-pN+]

The coefficients Cn +, Pd, represent capture cross sections and equilibrium concentration
values.

Thus new work is recommended that will involve coupling the density matrix equation for
electrons and holes with Poissons equations, a simple resistive circuit, and the rate
equations for the carrier trapping to examine the RTD as an optical switching element.
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4c. Power Level Issues

One issue with resonant tunnelling structures has been the power levels. Recent
experiments by Dellow et al (1991) suggest a means of addressing this. For vertical FET
structures shown in figure 19 they demonstrated gated control of resonant tunneling. This
structure immediately suggests the fabrication of PBT-like structures in which the base
surrounds the RTD, as shown in figure 19c. Figure 19c displays one cell of a permeable
base transistor. Clearly, if this could be fabricated satisfactorily high frequency current
levels could be achieved. The study would involve the design of the RTD/PBT. This is a
two dimensional program, these results of which require implementation of a two
dimensional algorithm. Such an algorithm is already under development under a
concurrent AFOSR program. It is worthwhile recognizing that while the PBT is apparently
difficult to fabricate, the advantage for phase coupling of multiple RTDs in a PBT
configuration may provide compelling reasons to reconsider the PBT for possible near
terahertz operation.

5. Conclusions

The Liouville equation of motion for the density matrix has been solved numerically to
obtain time-independent and time-dependent characteristics of RTD's. Time-independent
solutions show that as the bias is increased the density of carriers in the quantum well
increases, the density of carriers in the accumulation layer increases and the density of
carriers in the collector region decreases. The increasing charge in the well is accompanied
by an increasing potential drop across both the emitter and collector barriers, but the
largest potential drop is across the collector barrier. For these calculations it is assumed
that the quasi-fermi level of the emitter and the quasi-fermi level of the quantum well are at
the same value. Beyond the peak current, the quasi-fermi level was assumed to vary linearly
from its value at the emitter barrier to its value at the collector barrier. In this case the
charge in the well has disappeared. Peak to valley ratios of the computations are in close
agreement with experiment. Computations carried out to simulate an InGaAs quantum
well show a strong material dependence of RTD characteristics.

Time dependent computations carried out for a RTD indicate that a characteristic time
scale for such a device is the time required to fill or empty the quantum well. This time
scale was estimated to be about 500 fs for the RTD considered here. Computations of the
response of the RTD to a sinusoidal time-dependent potential suggest that the space charge
in the quantum well prevents the well from being viewed as an "atom" when probed at
frequencies corresponding to the energy difference of the quasi-bound ground state and the
first excited state.
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Figure 17. Schematic of a circuit in which an RTD would permit sustained circuit
oscillations. Insets display equivalent circuit elements for (a) negative differential resistor
in parallel with a voltage dependent capacitor, and (b) saturated resistor in parallel with a
voltage dependent capacitor.
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Figure 18. (a) The RTD as an optical switch. Device biased at steady point A.
Illumination causes an increase in charge in quantum well, rearrangement of voltage within
structure and switch along load line. To switch from A' requires more illumination. (b)
Experimental IV curves of device that switched optically (England et al., 1991). (c)
Switching power as a function of bias (England et al., 1991).
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Figure 19. (a) Schematic of a vertical RTD FET (Dellow et al., 199 1). (b) IV and structure
of the RTD FET (Dellow et al., 1991). (c) One cell of a proposed RTD/PBT.

- 35 -


