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\AESTRACT ,;
This paper presents a statistical procedure (denoted by SIB) designed to test for uni-

directional test bias existing sirxliixltaneously in several items of an ability test. It was
argued in Shealy and Stout (1991) that in order to model such bias with an IRT model, a
multidimensional model is necess*i:y. The proposed procedure, based on this multidimen-
sional IRT modeling approach, statistically tests for bias in one or more items at a time
and is corrected for the mﬁatlon, (or deflation) of the test statistic due to target ability
Q\dlfference, a valid group differende that is conceptually independent of psychological test
bras\\he correction plays the same role as the practice of including the single studied
item in the “matching criterion” score in the Mantel-Haenszel (MH) procedure adapted
for test responses by Holland and Thayer (1988). It is shown through the initial portion of
an extensive simulation study underway (Shealy (1991)) that, with the correction in place,
the procedure performs as well as the MH procedure in many cases when there is a single
biased item, and performs well in the case of multiple item test bias. .
N g
\\

Key Words: item bias, test bias, DIF, latent trait theory, item response theory, target abil-
ity, valid subtest, nuisance determinants, potential for bias, expressed bias, unidirectional
test bias, bidirectional test bias, SIB, Mantel-Haenszel.




INTRODUCTION

The purpose of this paper is to present a statistical procedure (denoted by SIB for
simultaneous item bias) for detecting bias present in one or more test items of a standard-
ized ability test. The procedure is based on the multidimensional item response theory
(IRT) model of test bias presented in Shealy and Stout (1991). By “test bias” we mean
a formalization of the intuitive idea that a test is less valid for one group of examinees
than for another group in its attempt to assess examinee differences in a prescribed la-
tent trait, such as mathematics ability. Test bias is conceptualized herein as the result of
individually-biased items acting in concert through a test scoring method, such as number
correct, to produce a biased test.

Two distinct features of this conceptualization of bias are as follows. First, it provides
_ a mechanism for explaining how several individually-biased items can combine through a
test score to exhibit a coherent and major biasing influence at the test level. In partic-
ular, this can be true even if each individual item displays only a minor amount of item
bias. For example, word problems on a mathematics test that are too dependent on so-
phisticated written English comprehension could combine to produce pervasive test bias
against English-as-a-second-language examinees. A second feature, possible because of our
multidimensional modeling approach, is that the underlying psychological mechanism that
produces bias is addressed. This mechanism lies in the distinction made between the abil-
ity the test is intended to measure, called the target ability, and other abilities influencing
test performance that the test does not intend to measure, called nuisance determinants.
Test bias will be seen to occur because of the presence of nuisance determinants possessed
in differing amounts by different examinee groups. Through the presence of these nuisance
determinants, bias then is expressed in one or more items.

The test bias detection procedure can simultaneously assess bias in several items,
thus addressing the above two features. In contrast, most item bias procedures detailed
in the literature perform tests on a single item at a time: The pseudo IRT procedure
of Linn and Harnish (1981) estimates possibly group-dependent item response functions
(IRFs) without the use of item parameter estimation algorithms when the sample size is
too small for their use. Thissen, Steinberg, and Wainer (1988) employ marginal maximum
likelihood estimation to obtain group-dependent item parameters in a 3-parameter logistic
framework and use the likelihood ratio test to test the equality of the parameters across
group. The Mantel-Haenszel procedure, adapted for test response data by Holland and
Thayer (1988), and which is in wide use, employs the practice of using the score of the
entire test instead of the score of the non-studied items as the “matching criterion” to test
for itemn bias. Etc. Conceivably these procedures could be used once for each item in 2 set
of items being tested for bias, and multiple comparison procedures could be employed to
assess the hypothesis of the entire set being biased. However, if the amount of bias is small
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in each item, a multiple comparison procedure may not pick up bias in the set of items at
all. Moreover this approach cannot address underlying causal mechanisms of bias.

The novelty of our approach to detecting test bias lies not so much with its recognition
of the role of nuisance determinants in the expression of test bias, but rather in its explicit
use of a multidimensional model to motivate the procedure to detect it. The presence of
multidimensionality of test item responses where bias is present has long been recognized
in test and item bias studies: Lord (1980) states “if many of the items [in a test] are found
to be seriously biased, it appears that the items are not strictly unidimensional” (p. 220).
Recently, Lautenschlager and Park (1988) employed a technique of generating simulated
biased item responses using a method of Ansley and Forsyth (1985), which involves using
multidimensional item response functions (IRFs)-and {atent-ability distributions to deter-
mine conditional probabilities of correct response. Kok (1988), taking a multidimensional
viewpoint similar to Shealy and Stout (1991), presents a specific multidimensional IRT
model for bias where the nuisance determinants are compensating abilities, contextual
abilities such as language, and testwiseness.

An important issue addressed by our procedure is that a careful distinction is made be-
tween genuine test bias, often operationally embodied as DIF (Holland and Thayer (1988))
by practitioners, and non-bias differences in exvminee group performance, sometimes called
impact (see, for example, Ackerman (1991) for a careful discussion of impact ac distinct
from bias), that are caused by examinee group differences in target ability distributions.
It is important that the latter not be mistakenly labeled as test bias. The procedure
developed herein makes this distinction in its application.




FORMULATION OF TEST BIAS

Test bias in this paper is modeled using a multidimensional item response theory
(IRT) model, which is assumed to be the model behind the observed test responses. For
purposes of exposition, we restrict ourselves to the case where there is a single nuisance
determinant; this two-dimensional modeling approach is often realistic in practice. Exten-
sions to multiple nuisance determinants are straightforward. For a fuller treatment of the
conception of test bias, including the case of multiple nuisance determinants and item bias
cancellation, in a more general framework, see Shealy and Stout (1991) and Shealy (1989).

We consider two biologically- or sociologically-defined groups, named “reference” and
“focal” groups (after Holland and Thayer’s (1988) naming convention). A random sample
of examinees is drawn from each group, and a test of N items is administered to them.
Typically it is suspected that a part of the test is biased against the focal group; this
group is usually the object of the bias study. The responses to the test items from a
randomly-chosen examinee are denoted U = (U,,... ,Uy), where each U; can take on
0 or 1, according as the response to item ¢ is incorrect or correct, respectively.

The IRT model in general is composed of two components that generate U: (1) a d-
dimensional examinee ability parameter and (2) a set of item response functions (IRFs), one
for each item, which determine the probability of correct response for the items. Here we
restrict the model to haved = 1 or 2, because we are considering a single nuisance determi-
nant in addition to the target ability. The ability vector is (6,7) for an arbitrary examinee
from either group, where § denotes target ability and n denotes the nuisance determinant.
A distribution of (6,n) over the combined group of examinees is induced by choosing ex-
aminees at random; the variable for a randomly chosen examinee is denoted (©, 7). The
IRF for item ¢ is denoted P;(6,7), and it is assumed that all items depend on 6, and one
or more may depend on 7; for those dependent only on 8, the IRF is P;(6). It is implicitly
assumed that an IRT representation for U in terms of (0,7) and {P;(6,7):i=1,... ,N}
is possible; for a fuller treatment of this assumption, see Shealy (1989). In addition, it is
assumed that each P,(6,7) is increasing in (8, 7) when item ¢ is dependent on both abilities
ar.d increasing in 6 when it is dependent on 6 alone; and that each P,(6) is differentiable.
Finally, local independence of U given (6, 7) is assumed.

Test bias in the above-mentioned model is formulated through three components:

(a) The potential for bias, if it exists, resides within the target ability/nuisance determi-
nant distributions of the two groups being studied;

(b) potential for bias is ezpressed in items whose responses depend on the nuisance de-
terminant;! and

1 We remark that Kok’s (1988) formulation is also based upon (a) and (b); Kck’s and
our formulation were developed independently of one another.
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(c) the scoring method of the test, to be viewed as an estimate of target ability, transmits
expressed item biases into test bias.

Potential for test bias is explained prosaically in the following manner. After condi-
tioning on a particular 6, suppose that the reference group has a higher level of nuisance
ability on average than the focal group. Then those reference group examinees with abil-
ity 8 would have an overall advantage over the corresponding focal group examinees when
responding to items at least partially dependent on the nuisance determinants n (formally,
because of the monotonicity of the items IRFs P;(8,7)). Formally, we define the potential
for test bias at 6:

Deflnition 1. Potential for test bias exists-against-the-focal group at target ability level 6
with respect to 17 if 7 | © = 0, G = F is stochastically less than 7| © = 0, G = R, where
“G = F” denotes sampling from the focal group and “G = R” sampling from reference
group. Potential for bias exists against the reference group if the converse holds.

Note that we are restricting consideration to conditional nuisance distributions 7|0 =
8, G = Rand n | © = 6, G = F that are stochastically ordered; that is, where the
two distribution functions do not intersect. Figure 1 displays two distributions that are
stochastically ordered and also two distributions that are not.

place Figure 1 about here

In order for test bias to occur, it must be ezpressed in one or more items. Our definition
of expressed bias for an item, when specialized to Kok’s model, is really the same as that




of Kok (1988, p. 269). It is defined in terms of a marginalization of the multidimensional
IRF P;(6,7).

Definition 2. Let P;(6,7) be the IRF for item i. The marginal IRF for group g (¢ = R
or F) with respect to target ability 6 is defined as

T:g(e) = E[Pi(@,ﬂ) I 0=6,G= g]' (1)

When 7 | 6 has a conditional density, f(n | 8) say, Definition 2 translates into

o0

To@) = [ P 6)en
-0

Definition 3. Ezpressed bias for item ¢ against the focal group occurs at target ability 8

if T;(0) < T;(8); it occurs against the reference group if the converse holds.

A test can consist of many items simultaneously biased by the same nuisance determi-
nant. In this case, items can cohere and act through the prescribed test score to produce
substantial bias against a particular group even if individual items display undetectably
small amounts of item bias. This is the final (and novel) component of our formulation of
test bias mentioned above. We consider the large class of test scores of the form

hU) (2)

where h(u) is real valued with domain u = (u,,... ,uy) such that u; =0 or 1 for ¢ =
1,...,N and h(u) is coordinate wise non-decreasing in u. This class contains many of
the standard scoring proczdures for many standard models; for example, number correct,
linear formula scoring of the form Zfil a;U;, with a; > 0, maximum likelihood estimation
of ability for certain logistic models with item parameters assumed known, etc. In this
paper we restrict attention to number correct as the test score; the results presented herein
are easily extendable to other forms of h(u). The key point about numbei correct scoring
is that each tem is weighted equally. Thus, if a subset of the items is suspected of bias,
we should give equal weight to the items in this “studied” subtest in our attempt to
quantitatively assess the amount of test bias resulting from the simultaneous influence of
thses items. We thus define test bias for a specified studied subtest of items as follows:

Definition 4. Let {U; ,U,,,... ,U;, } be any subtest of items to be studied for bias from
the test of concern and define

b
hL) = U, 3)
i=1
Then this studied subtest of items displays test bias against the focal group at 8 if
Eh(U) |0 =06,G=F] < E[h(U)|© =6,G = R).
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The subtest is biased against the reference group if the converse holds.
Finally, the components of the bias formulation can be integrated using the followir
theorem, adapted from Theorem 4.2 in Shealy and Stout (1991):

Theorem 1. Fix a target ability § and choose the subtest scorine method h(u) of the
form (3). Assume potential for bias against the focal group at 8 holas (Definition 1). Then
test bias exists against the focal group; i.e.,

b b
Y E[U,10=6,G=F]<) E[U,|0=6,G=R) (4)
i=1 j=1
In order to test for bias of the above form, there must be au implicit assumption that a
portion of the test measures only the target ability;-otherwise; a conditional-on-observed
score procedure to detect bias is not possible. This set of items will be denoted the valid
subtest. The issue of the existence and identification of a valid subtest is extremely difficult
to frame philosophically (it is really an issue of construct validity) and must primarily be
an empirical decision based on expert opinion or data at least in part external to the test
being studied; it is not dealt with here. For a fuller discussion, see Shealy and Stout (1991).
For notational simplicity we denote the valid subtest to consist of first n < N items of
the test, and we call the remainder of the N — n items the studied subtest. We note that
use of a valid subtest is operationally equivalent to making use of a subset of items whose
purpose is to partition examinees into “comparable” sets as is done in the MH procedure
described below and other DIF procedures. Hence, the proposed use of a valid subtest in
the SIB procedure can be interpreted either in the strong sense of our test bias paradigm
or in the weak sense of the DIF paradigm (of matching of “comparable” examinees). Thus
use of our statistical procedure for assessing bias in no way requires acceptance of our bias
framework as opposed to a “comparability” framework, where no claims about “bias” are
made.
Using the above conventions, the specification of test bias against the focal group at
6 becomes
N N
Tr6)= ) Tip(8) < ) Tia(6) = Tr(6) ()
i=n+l i=n+1
because T} (6) = E[U; | © = §,G = g] by a simple application of a standard conditioning
formula to Definition 2. T}, (0) is called the studied subtest response function for,group g.

Unidirectional test bias

Test bias heretofore has been considered conditional on a single target ability; we now
turn to a global perspective. If there is test bias against the same group for all 6, then
there is unidirectional bias against this group. Specifically, if

B(6) = Tr(6) - Tr(6)
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is the level of bias against Group F' at §, then unidirectional bias holds if either B(6) > 0
for all 8 or B(f) < 0 for all . A strong form of unidirectional bias, termed uniform
bias by Mellenbergh (1982), is the :ype of bias that the modified Mantel-Haenszel test
statistic devised by Holland and Thayer (1988) is designed to detect. Although the Mantel-
Haenszel approach is not dependent on an IRT framework, it can be put in a Rasch
model IRT framework, with the single biased item having group-dependent item difficulties.
Here, the bias is “uniform” in the sense that Tr(8) is merely Tx(6) shifted horizontally.
Unidirectional bias is less restrictive in that T, () does not have to be a logistic IRF, and
more importantly, Tp(8) does not have to be Tr(6) shifted.

Since we are concerned with bias against the focal group, it is intuitive that a suitable
theoretical unidirectional bias index is

By = /o B(O)f+(6)d8 (6)

where fp(6) is the probability density function of © for the focal group. Equivalent in-
dices weighted by the reference target ability distribution and the combined-group target
distribution are easily conceptualized.

THE BASIC PROCEDURE

The statistical procedure to be presented is based on (6); the hypothesis is
H:By;=0 vs. By >0,

the alternative being one-sided to specifically test for bias against the focal group. The
test statistic to be constructed is essentially an estimate of §;; normalized to have unit
variance. The estimate of f;; is derived first.

Since test bias is analyzed using number correct on the studied subtest, set

N
Y= Z U; (7)

i=n<1

to be the studied subtest score; also set X = Y7, U; to be the valid subtest score. In
selecting the valid subtest score to be number correct, we follow the convention set out in
Holland and Thayer (1988), among many others. Other choices would of course be possible
and could improve the performance of the procedure.

The naive intuition is that examinees with the same valid subtest score are examinees
of approximately equal target ability and thus such examinees are directly comparable in
the assessment of bias. Thus the difference

?Rk_?Fk’ k=0,... 3 1y (8)




where }_’g « is the average Y for all examinees in group ¢ attaining valid subtest score X = k,
should provide a measure of the bias against the focal group (resulting from the reference
group having superior nuisance ability n on average). In particular, if there is no bias (H
holds), then Yg; — Yp = 0 for all k should be observed, and if there is unidirectional
bias against the focal group (B(6) > 0 for all §) then Yg, — ¥p, > 0 for all k, except for
statistical error, should be observed.

The above assertion needs support; it will suffice to argue that

E[?Rk - }_’Fk] =0 forallk if B(G) = 0 for all 9, and

_ - 9
E[YRk - ka] >0 for all k if B(G) >0 for all 4. ( )

For now we restrict the target ability distributions to be equal for the two groups; i.e.,
©| G = R and @ | G = F have the same distribution. It is easy to prove (following (5))
under the model presented herein that

E{f,] = E[Y | X = k,G = g] = E[T,(©) | X =k,G = g]. (10)

Now assume that the valid subtest is long enough so that the distribution of © | X = &,
G = g is tightly concentrated about its mean, and hence that Ty(G) is locally flat within
the range of § where the distribution of © | X = k, G = g mostly resides. Then

E[T,(0) | X = k,G = g = T,(E[® | X = k,G = g]) (11)
= T,(E[0 | X = k]),

because the two target ability distributions are equal and expectation is a linear operator.
Thus, denoting 6, = E[O | X = k],

ElYpy — Ypi) = B(6;). (12)

Thus (9) follows easily; the n 4 1 differences in (8) provide an estimate of B(6) at n +1
points in the §-domain. It is intuitive that an estimate of gy is.

By = Zﬁk(?m — Y (13)
k=0

where p,. is the proportion (among focal group examinees) attaining X = k. Specifically,
if J,), is the number of examinees in group g attaining X =k, then p; = Iri! Sor=o JFe-

In the case where the target ability distributions are the same, then, it is straightfor-
ward that

E(By) = ZpkB(ek) =By (14)
k=0

9




where p, = P[X = k | G = F]. Thus the expected value of f, is & weighted difference
of marginal IRFs, this weighted difference approximating f;, which is a continuously
weighted difference of marginal IRFs. From (14), it follows that Ef, = 0 if 8;; = 0, and
EB, > 0if By > 0. This suggests the standardized test statistic

~

= nﬂff (15)
¢(By)
for testing H, where the denominator is defiried as
n ] ] 1/2
(B =( "2.(—“21’ k,R) + =—&*(Y LF) , 16
B = [ Lat (7,50 1 1B + 5% |1, F) (16)

where 62(Y | k,g) is the sample variance of the studied subtest scores of those group g
examinees with valid subtest score k. A full description of the computation of the test
statistic, with contingencies for exclusion of certain valid subtest scores based on inadequate
examinee counts, is presented in the Appendix. B .. approximately standard normal when
By = 0 and the target ability distributions are the same, because BU is the weighted sum
of approximately normal random variables Yy, — ¥g,; these are approxima.ely normal (for
suitable sample sizes) by the central limit theorem (proof of asymptotic normality of B
omitted).

The regression correction fur target ability difference

The presence of a difference in target ability distributions in test bias studies has been
treated in various contexts in the literature. The issue of the linking of metrics across group
in the estimation of IRT item parameters is one such context (see Linn, et al (1981) for an
IRT item bias approach where linking of metrics is crucial). Holland and Thayer (1988)
also deal with this problem by includirg the single studied item in the matching criterion
score of the Mantel-Haenszel test; they prove that this method completely compensates
for target ability difference (in their context, the distributional difference in the postulated
unidimensional latent trait) when the underlying IRT model is a Rasch model. Millsap
and Meredith (1989) elegantly formulate the problem in terms of a divergence of two
hypotheses (a “conditional on observed score” hypothesis and a “latent trait” hypothesis),
which would occur if target ability difference is present. A “conditional on observed score”
procedure such as (15) in its present form is not adequate to address the separation of
target ability difference from test bias; the presence of target ability difference when in
fact there is no test bias present can statistically inflate B, thereby suggesting test bias
actually is present. It is therefore necessary to formulate a correction for target ability
difference.

10




To motivate the proposed correction it is necessary to show that a decomposition of the
differences Yp; — Y, into “test bias only” and “target ability difference only” components
is possible. First we note that by similar arguments to those used in deriving (10) and (11),

E[?gk] = Tg(ogk)’ (17)

where 8, = E[© | k,g). The condition E[¥p, — Yri]) = 0 requires 8, = 6, as in (11)
where g was removed from the conditioning; but this may not happen if the target ability
distributions are not the same, as Figure 2 suggests. Figure 2, which displays densities

for four distributions, assumes that the distribution of @ | F' is stochastically smaller than
that of © | R.

place figure 2 about here

Note that the (conditional) distribution of © | k, F is stochastically smaller than that
of © | k, R for all k. The standard Bayesian calculation makes this insight rigorous. Thus,
8p) < Op; for all k, and, in the absence of bias, where Tx(6) = Tr(6) = T(6) for all 6,

EYpi = T(8p) < T(8pi) = EYpy

(T(8) is assumed monotone; for mild conditions giving such monotonicity, see Shealy and

Stout (1991)). Thus

EBy =) p(T(6rs) — T(6rs)) > 0.
k=0,

In the case where bias is present, we can thus decompose E[ﬁu]:

ElBy) =Y pi(Tr(Ori) — Tr(Brs)) + > pi(Tr(Bri) — Tr(6ri)

k:.o . k=0 (18)
= > peB(6ri) + Y P TH(6:)(Ork — Ors)s
k=0 k=0

where 6} is between 6, and 0p;. (Tr(f) is assumed differentiable here and the mean
value theorem has been applied.) The first term is due only to test bias; the second is due
only to target ability difference.

11




This approximate decomposition argument is the motivation behind the proposed
correction. Our strategy is to adjust Yy, Yy to ¥2,, Y5, such that the inflating effect of
the group differences in target ability is eliminated. The manner this is accomplished is to
construct Y, and Y%, so that they are estimating the studied subtest response functions
Tr(6) and Tx() at approximately the same target ability 8, defined below (as opposed
to two different ones, as is evident from (17)).

A natural attempt to make adjustments to ¥, and Y, is to approximate T(6) and
Tw(8) in the neighborhood of 0y, and 8z, by linear functions. If we assume that 65, and
6. are sufficiently close together to do this, Tr(6) and T(6) can be linearly interpolated
at 0, = 5(Ori + Ope):

Ty(6) = Ty(Ogs) + mgr(6y — 6,1) (19)

where

— Tg(og,k+1) - Tg(eg,k—l).

b

m
gk
99,k+1 - og,k—l

however, though estimates of T,(,;) (namely, }_’gk) are available for all k, estimates for
{64 : k=0,... ,n} are not. Abilities on the f-scale are not observable; however, one can
estimate abilities on the scale defined by the valid subtest, namely

v = P(6)

where P(f) is the average of the valid subtest IRFs 2 "7 | P/(6). P(@) | G = g is the
true score for a randomly chosen group g examinee, i.e., the valid subtest true score F(©)
for group g. Let

V,(z) = E[P(0) | X = 2,G = g], (20)

the (theoretical) regresion of true on observed (here, valid) score. V,(z) can be easily
estimated using classical true score theory, assuming that the above regression is linear or
nearly so. The estimation of V, (z) is deferred to the appendix. Denote this estimator by
V().

At this point it is expedient to describe three latent scales, which must be simulta-
neously considered in order to understand the correction. Figure 3 delineates the three
scales and should be referred to frequently.

12




place figure 3 about here

So, the interpolation of (19) must be transformed so as to use the easily estimable
V,(k) instead of §,;. Through a monotonic transformation P(6), V,(k) and 6, represent
approximately (“approximately” because P(ng) = V,(k) will be demonstrated below)
the same ability on two different latent scales and thus for our purposes interchangeable.
Note that s = T,(f) defines a monotonic transformation from the fundamental latent
scale to the studied subtest scale, and v = P() defines one from the fundamental scale
to the valid subtest scale. T,(6) must be transformed so we can use the valid subtest
scale as domain, because abilities on this scale can be estimated. Figure 4 illustrates the
appropriate correspondence,

place figure 4 about here

thus defining a new transformation S (v) = T,(P~*(v)) from valid subtest scale to studied
subtest scale, with domain (¢, 1) and range (¢, 1) (¢ > 0 is the guessing parameter, assumed
common for all items in the test).

With this transformation in hand, the correction can be performed in the following
manner. First, by the same arguments as used in (10) and (11), using P(6) in place of
T,(6) in the arugments,

V,(k) = B(E[O | kyg]) = B(6,). (21)

So P~}(V,(k)) = 6, by continuity; and
Ty (P71 (Vy(k))) = Ty(6,a)s
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also by continuity. By definition of Sy(v), this becomes S (V,(k)) = T,(8,;), and thus

by (17),
EY, = S, (V,(k)). (22)

Thus }—’gk is a reasonable estimation of S (V,(k)) for each k. To transform (19) into
an interpolation involving Sy(-), we assume that S;(v) can be approximated by a linear
function in a small region about V,(k), and that Vg(k) and Vi(k) are close enough to
allow the approximation to be effective. Then, we interpolate Sp(Vz(k)) and Sg(Ve(k))
to their respective values at V) = 2(Vg(k) + Vp(k)):

Se(Vie) = §o(Vg(k)) + myu (Vi = V() (23)
where

o _ S(V(k+1)) = 5,(Vy(k —1))
Tk = Ty R 1) =V (k - 1)

is the approximate slope of S (v) in the region of V (k) and V.. All of the above terms on
the right hand side of (23) are estimable; using Y, to estimate S,(V,(k)), we define the
adjusted -;‘k:

?g*k = ng + JMgk(Vk - Vg(k)) (24)

where, recalling that the estimator Vg (z) is given in the Appendix,

A.d' k —_ }_,gyk“l'l - }-’g:k"l
gk = 3 T
T, (k+1) = V,(k—1)

and define V}, = %(f/R(k) + Vi (k)). Because the right hand side of equation (24) is a good
estimator of the right hand side of (23), Yg‘k is thus a good estimator of S (V}). Finally, ?g*k
must be shown to be a good estimator of T (6) at the same 8 for both groups. By definition
of §,(v), S,(Vi) = T,(P~}(V;)). If Op,, and b, are sufficiently close together then P(6)
may be taken to be approximately linear in the neighborhood of 8, = (6, +65;)/2. Thus,
using (21) and assuming approximate linearity of P in the neighborhood of 6,

Ve = 5(Valk) + Ve(k))

= %(P(GRk) + P(851))
= P(6,).

Thus, by the continuity of P(§),
8, = P~1(V}).
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Hence, by the definition of S/(v)
Sg(Vk) = Tg(P_l(Vk)) = Tg(gk)

Thus, because _g“k has been shown to be a good estimator of S (V}), it is shown that
Yy is a good estimator of Ty(6;). Thus, Y3, — ¥, as desired, is a good estimator of
Tr(8:) — Tr(6y), i.e., of the difference of the marginal IRFs at the same 6, establishing
the usefulness of the interpolation (19).

(24) is called the regression correction for target ability difference. Thus, with the
correction (24) in place, (13) can be reconstructed, with

BU = Zﬁk(?ﬁk - ?z«:k) (25)
k=0

and B defined as in (15). Rejection of the hypothesis of no test bias (H : f; = 0) occurs
when B > z,, where P[N(0,1) > z,] = « defines z,. This procedure will be referred to
as the SIB procedure, “SIB” for simultaneous item bias.

Thus, the contribution to the differences Yp; — Yp, due to target ability difference
has been eliminated. It is extremely instructive to note that the correction (24) is the
sample analogue of (23), which is basically the decomposition (19), albeit on a different
latent scale (though the two latent scales, 6 and V/, are indistinguishable up to a monotonic
tranformation).

A modification of the basic procedure to achieve better statistical behavior

Redefine p,. to be the proportion of all examinees (focal and reference group) attaining
X = k. That is py = (Jpr + Jre)/ Lr=o(Irr + Jri)-- Substitute this new p, into (25)
and (16) to obtain the statistic B of (15). Because of a slightly better adherence in
simulation studies to the nominal level of significance when the hypothesis of no test bias
holds, this new choice of p, is recommended over the slightly more intuitive choice based
upon focal group examinees alone. The power performance of both versions of B when
test bias was present was very similar. It is upon this version of the SIB statistic that our
simulation studies reported below are based.

SIMULATION STUDY

In order to assess the performance of the procedure in a variety of testing situations,
a moderate-sized (84 simulation cases) simulation study was performed. Three parameter
logistic item parameters actually estimated from two test data sets, an ACT math test
(estimated by Drasgow (1987)) and an ASVAB auto shop test (estimated by Mislevy and
Bock (1984)), are used to specify the IRFs in the IRT model. Univariate and bivariate

15




normal ability distributions, appropriately centered relative to the test item parameters
(for the purpose of good measurability of target ability), are used for the focal and reference
groups. Two levels of bias and three levels of target ability difference are simulated; tests
with a singly-based item and with three biased items are used in the simulations. The level
of guessing in the tests is varied. Finally, group size pairs of (3000,3000), (3000, 1000),
and (1500, 1500) for the reference group and focal group examinees respectively are used.

Each simulation model is run 100 times (trials). For a particular simulation model, the
item parameters and the two ability distributions for the two groups are fixed; however,
at each trial, a new set of examinees (ability parameters) is generated from the ability
distributions.

When a single item is to be studied in a simulation,.the Mantel-Haenszel procedure as
modified by Holland and Thayer is run in parallel in order to provide an external reference
to compare to and to compare our procedure with.

Item parameters

Estimated item parameters from the above mentioned tests were used to construct test
models; the ASVAB test length is 25, and the ACT test length is 40. Table 1 gives the sum-
mary statistics for the a’s, b’s, and ¢’s as estimated by Mislevy and Bock and by Drasgow;
for the actual parameter values, see Mislevy and Bock (1984) and Drasgow (1987).

place table 1 here

The test for each simulation was generated in the following manner. Let N denote
test length and n, the number of items to be studied for possible bias. First, n, was chosen
to be either 1 or 3. There were two cases to consider.

1. No bias: unidimensional items are used for the entire test.
2. Bias: unidimensional items are used in the valid subtest, and 2-dimensional items are
used in the studied subtest.
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In the first case, n, of the N items were chosen randomly to be the studied ones, and
the remainder were used as the valid subtest. In the second case, n = N — n; items were
chosen at random from either the ASVAB or the ACT test to be the valid subtest, and
the 2-dimensional studied item parameters were chosen according to Table 2. Note that
the studied item guessing parameters are a function of the average and standard deiation
of the guessing parameters on the ASVAB 6r ACT tests; the studied item a’s and b’s are
the same for both tests.
The IRFs are for case 1 (no bias)

_ (1-¢) o
P(0)=c; + T exp(=17a,(8 = .0)) i=1,...,N, (26)

where a;, and b;, are the target discrimination and difficulty for item 7. In case 2 (bias),
items 1 to n were of the form (26), and items n + 1 to N (studied items) had IRF's

- (I-¢) .
R ek e WErm ) B

The final factor in determining the item parameters was whether or not to include guessing;
that is, whether to assume 2PL or 3PL modeling. The presence of guessing is thought
to influence the performance of the procedure. Thus, in some simulation models, the
estimated ¢,’s from the literature were used in conjunction with (26) and (27); in others,
all ¢;’s were set to 0 producing a 2PL model. A detailed description of the experimental
design of the simulations follows.

Ability distributions

Specifying the ability distributions involves choosing the five parameters determining
the bivariate normal distributions for each group in such a way to meet the following goals:

1. Introduce a specified amount of group difference between target ability distributions.

2. Require the test to measure the target ability well, as would be true for any “good”
test.

3. Introduce a specified amount of potential for bias into the distributions.

4. In the case of 2-dimensional studied items (bias case), require that examinee nuisance
abilities be influential in determining the response to the item, e.g., that target and
reference group examinees have moderate nuisance abilities.
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Each goal is elaborated upon separately below. The bivariate distributions for group ¢

(9= R or F) is denoted
(1)~ [(e) [ 1) .

where p = Corr(0,n | G = g) is taken to be the same for both groups (p taken to be
different across group tends to introduce bidirectional bias, where marginal IRFs in 6 for
the two groups cross; see Shealy (1989)). Note that ¢%(© | g) and 02(n | g) are taken to
be 1 in our study.

Goal 1. We first define target zbility difference. We need some notation; let agp =
the proportion of the entire (conceptual) population of examinees who are referece group
members, and ap = 1 — ap be the corresponding proportion for the focal group. (Note:
as Jp and Jp both increase to oo, conceptually, 7R_J'£JI-_‘ — ap and 7R—J_f—); — ap. Here J;
denotes the number of sampled Group g examinees.) Define

Hop — I
dT = GRG 8F (29)
apP

to be the target ability difference between the focal and reference groups, where
0%p = apo®(© | R) +apo(0 | F). (30)

Note that when (28) holds 02, = 1 and thus that dp = pgp — pgp. dp is a quantity
specified in the simulations.

Goal 2. The criterion used tc ensure good measurability of § by the test, is that the
average difficulty (b) of the valid subtest should be close to the average target ability over
the pooled groups. Specifically, g and uyp are chosen so that

b= E[O] = appop + apier (31)

b is taken from Table 1. p,p and p,p are completely determined by specification of dp
and (31).

Goal 3. We use a more restrictive version of Definition 1 to define potential for bias: set
Cs(6) =En|©=6,G=R]-E[n|0=46,G=F] (32)

Cj(6) > 0 is defined to be the potential for bias against the focal group. When (28) holds,
(32) becomes

Cy(6) = Cp = pyp — prtor — (HoF — PHoF)

(33)
= (/“r)R —Hgr)— P(#on - #oF) = (ll,,R - #f,F) - pdr,
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6 dropping out because the ability correlation (p) is equal for both groups. Note that
because Cj is constant for all §, unidirectional bias is being introduced. For a specified
amount of Cg, p, g and p, p are determined partially. The reader should note that potential
for bias can hold even though p,p = p, p unless pop = pgp.

Goal 4. The criterion used to ensure nuisance determinant influence is the following. The
nuisance difficulties for all studied items were chosen to be 0. For an arbitrarily chosen
target ability (say § = 0) we thus want the average nuisance ability to be near 0 as well.
Thus we choose

Eln|0=0,G=R]=-E[n|©=0,G=F] (34)

i.e., the conditional nuisance expectation.at @.= Q is.to.be.centered around the average
studied item nuisance difficulty of 0, for the reference and focal groups. Our intent in this
study was to introduce bias against the focal group, so E[77 | 6, R] > 0 in (34) and thus we
get

0 < pyp = Pler = —(tgr — PEoF); (35)
this will specily p,p and p,r, along with specification of Cj in (33).
There is an additional issue here: how large should Cy4 be chosen to introduce a

“moderate” or “severe” amount of bias into the 2-dimensonal studied items or Table 27
This is treated below, in the experimental design of the study.

Goals 1-4 now completely specify (28): pgp, Hsp, Hyrs and g,p can be found by
olving (29), (31), (33), and (35) simultaneously for them. p, 62(6 | g), and o%(n | g) are
chosen: p = .5, and all ¢’s are 1.

Choice of Cp

The amount of potential for bias Cy in each simulation model was chosen so that the
actual level of bias f8;; produced was such that the power behavior of the statistic can be
well assessed for the given examinee sample sizes, valid subtest use” (recall Table 1), and
biased items used (recall Table 2). These f;; values (rounded to two significant figures)
are shown in Table 3. The governing equations determining Cj from Sy were

bu= [ (Tn(®) - Te(E)fr ()8

where

N
T,(6)= Y E[P(0,n)|0=6,G=g] (36)

i=n+1

with P;(6,7) defined in (27) and the item parameters in (27) defined in Table 2, and the
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parameters of the (©,n) distribution determined from (29), (31), (33), and (35). One
standard often used to interpret from a practitioner’s viewpoint the magnitude of the bias
is that the bias is “moderate” if 0.5 < Apy < 1 while it is “large” if Ay, > 1, where
A sy is the theoretical index based on use of the Mantel-Haenszel log odds ratio proposed
by Holland and Thayer (1988). The rationale for A, and §; are different, but for n, =1
and unidirectional bias, they tend to be highly correlated and are crudely related by

By = Bpy/10.

Thus, roughly, 0.05 < B < 0.1 would constitute moderate bias while g;; > 0.1 would
constitute large bias. Thus in the n, = 1 case, referring to Table 4, the amount of bias
being simulated is actually either (low) moderate or small. Examination of (36) shows that
By is a measure of how much lower the probability of getting the biased item right is for
an average focal group examinee as compared with an average reference group examinee
of the same target ability. Thus f;; has a natural and useful empirical interpretation. In
our context, Ay, by contrast, is a measure of horizontal distance between Tx(6) and
Tr(8) at y = 42 (i.e., the value of Tz ((1 + €)/2) — T ((1 + €)/2)), where ¢ is defined
in Table 1.

place table 4 about here

Experimental design

The design is as follows. For the case of no test bias (Cy = 0), for each test type
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(ASVAB Auto Shop or ACT Math) the following simulations are done:
1 0.0 3000,/3000
ny = {3} X dp=4¢ 0.5 } x Jp/Jp = ¢ 3000/1000
10 1500,/1500
5 guessing
no guessing | °

Here “guessing” means that the estimated ACT and ASVAB guessing parameters are used
in the model and “no guessing” means that all ¢s are set to zero; that is, 2PL modeling
is used. Also, “D" means that this guessing “factor” is randomly assigned within the
36 levels produced by crossing the other factors.

For the case of test bias (Cj3 > J) the following simulation are done for each test type:

, 0 05 3000/3000

1500/1500
5 guessing
no guessing | -

For n, = 1, the nuisance discrimination ay, of the studied item is .8; for n, = 3, the
nuisance discrimination of each of the 3 studied items is .4. These discriminations were
chosen so that the power of the procedure could be well assessed (i.e., so that it would not
be too close to 1). It is informative to note in passing that the power of the proéedure
is expected to be greater when n, is increased from 1 to 3 unless each item individually
displays less bias in the n, = 3 case. This is why the a;, ( = N -2, N -1, N) was chosen
to be .4 in the n, = 3 case, 1 of that used in the n, =1 case.

There are therefore 48 simulation models that incorporate bias. Thus, a total of
84 simulation models were used in the simulation study.

RESULTS OF THE SIMULATION STUDY

The results of the simulation stidy are given in Tables 5-8 and 9-12, with Tables 5-8
summarizing the no test bias simulations and Tables 9-12 summarizing the simulations
having test bias present. The ¢ column indicates whether the model has guessing present
or not. In all n, = 1 cases, the Mantel-Haenszel rejection rate for the hypothesis of no item
bias (based on 100 trials) is reported in the MH column. In all cases the SIB rejection rate
is reported in the SIB column. In all cases where test bias is present (Tables 9-12), the
Cj column presents the amount of potential for bias present (recall (33)); the By column
presents our index of the amount of bias present against the focal group in the model
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(recall (6)); By is the average of the estimates By, of By over the 100 trials; the A,y
column presents the amount of bias present against the focal group in the model from the
Mantel-Haenszel perspective.

Tables 5-8 indicate that both the SIB statistic and the MH statistic display reasonable
adherence to the nominal level of significance of 0.05. There appear to be situaticns of
no bias, which have a target ability difference and which depart from the Rasch model,
where the Mantel-Haenszel procedure displays inflated Type 1 error. (See Zwick (1990),
for a discussion of this problem and an illustrative example.) There is evidence that
in such situations (Shealy (1989)), the SIB statistic adheres closely to the nominal level
of significance. On the other hand there are likely portions of the “parameter space”
of realistic IRT models where our linear regression- correction is stressed and hence the
MH would likely display better Type 1 error performance. More study is required before
it can be claimed that either MH or SIB displays superior Type 1 error performance.
The striking fact is that both procedures seem to be quite robust against the inflating
Type 1 error effect of differing target ability distributions. In this regard, d = 1 from the
practitioner’s perspective is certainly a large amount of target ability difference.

Tables 9 and 11 indicate that both the SIB statistic and the MH statistic are quite
powerful against moderate amounts of bias and fairly powerful against small amounts of
bias in a single biased item. Untabulated simulation studies for larger amounts of bias
produced rejection rates of essentially unity for both the SIB and MH procedures.

Tables 10 and 12 indicate that the SIB procedure is quite powerful against moderate
amounts of bias resulting from several (3 here) items producing bias in the same direction.
The reader should recall that the amount of bias/item was lowered for the n, = 3 case by
reducing the discrimination in the nuisance dimension from a, 5 = 0.8 to a,; = 0.4 {for the
studied items. In both the ny = 1 and n, = 3 cases, the potential for bias as measured
by Cjs was kept the same (Cg = 0.2 or 0.3). These two table show, as claimed, that the
SIB procedure can successfully detect simultaneous item bias, even if the amount of bias
present per item is small.

Tables 9 and 11 show, for the particular bias models of the simulation study, that SIB
is somewhat more powerful than MH, averaging 0.07 higher for those models for which
rejection rates are < 0.9. We do not know whether this greater SIB power generalizes to
other models of bias.

Tables 9-12 provide evidence about the ability of ﬁU to estimate fy;, our measure of
the amount of bias present. For each case B is an indicator of the amount of statistical
bias one might expect in using ﬁu. Clearly statistical bias of roughly +0.01 is present.
The estimated standard errors for By are not recorded, but averaged (roughly) about 1/3
of By Thus if By = 0.05 there is likely a bias of 0.01 and a standard error of 0.017. Thus,
crudely, a 95% confidence interval (if asymptotic normality is a good approximation) would
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be given by 0.04 & 0.028. Here 0.04 = 0.05 — 0.01 is the correction for statistical bias. It
would seem that ,BU provides a useful empirical index of the amount of bias present in a
statistical subtest of items; more work is planned in studying its theoretical and empirical
properties.

SUMMARY AND CONCLUSIONS

The SIB procedure was designed to test for unidirectional test bias residing in one or
more items, using the conception that test bias is incipient within the two groups’ ability
distributions (in terms of a difference in conditional nuisance ability distributions). By
means of the regression correction presented here, the inflation of the SIB test statistic
due to target ability difference (one group having a stochastically larger distribution of ©)
is extracted. This correction represents a conceptual link between conditional-on-observed-
score methods and IRT-based methods, just as the practice of including the studied item
in the comparable examinee criterion in the Mantel-Haenszel procedure of Holland and
Thayer (1988) does. The correction adjusts the studied subtest scores for the two groups so
that they are now estimates of the same latent IRT ability in the case of no test bius, even if
group target abilities exist. It is useful to note that the adjustment, although conceptually
based upon multidimensional IRT modeling, is in fact computed using a classical approach
and hence does not depend on IR." ability or item parameter estimation.

A moderate (84 models) simulation study shows that both MH and SIB display good
adherence to the nominal level of significance, even for large (dp = 1) target ability differ-
ences. In the case of a single biased item, both MH and SIB display good power with SIB
displaying slightly higher power. As designed, the SIB statistic displays good power in the
case of several biased items (3 here), even when the amount of bias/item is fairly small.

A large scale simulation study is in progress with the goal of obtaining a better un-
derstanding of the performance characteristics of both the SIB and the MH statistics with
particular emphasis on investigation of statistical power and adherence to the nominal
level of significance. Based upon the completed portion of this simulation study reported
herein, we would recommend that practitioners use the SIB and MH statistics simultane-
ously. Both are extremely easy to compute and for moderate sized data sets run quickly on
a typical PC configuration. Carefully checked code with a user oriented driver is available
from the authors for running both the SIB and MH statistics on real data sets and also
for doing simulation studies cf performance. ‘




APPENDIX

1. Derivation of Vg(k), the estimated regression of true on observed valid
subtest score, for £k =0,... ,n.

Recall that V, (k) = E[P(O) | k,g] needs to be estimated in order for S (V;) of (23)
to be estimated. Suppressing g for simplicity, we need to estimate V(k) at k =0,1,... ,n.
Although V(k) is not necessarily linear in k (see Shealy (1989), p. 87ff for a discussion),
as an approximation we assume nV(k) is linear in k; i.e.,

nV(k) = a+ 3k.
To estimate V(k), we consider the true score model for the valid subtest score X:
X = T +e (Al)

where

E(e) =0, cov(T,e) =0 (A2)
is assumed and the true score T has the latent variable representation T' = nP(@). Thus
nV(k) = E[T | k}.

Standard regression theory for E(T | k) yields

vk = 1 (ET + PXTOT () EX)) : (A3)
n Ox

But, for the true score model given by (A1) and (A2),

PXTIT _ 4 _ a?(e)
ox =1 o?(X)’ (A4)

is well known (see page 61 of Lord and Novick (1968). Using (Al) and (A2), ET = EX
holds. Thus, by (A3) and (A4),

V(k) = % [EX + (1 - f:%%) (k — EX)] (A5)

holds.
Clearly EX = E[X | g] can be estimated by the average valid subtest score X g
of all Group ¢ examinees taking the test. Thus it remains to estimate o2(e)/o?(X).
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0%(X) = 0%(X | g) can clearly be estimated by the usual sample variance estimate of all
Group g examinees taking the test

J

a r [ 1 . r X7

X |9 gy L% = &) (A6)
i=1

where J;, denotes the number of Group g examinees taking the test and X ; is the valid
subtest number correct score of the jth such Group g examinee. It remains to estimate
02(e); denote this estimation by 62(e). Then the desired estimation of 62(e)/0?(X) will be
given by %(e)/6%(X). A standard conditioning formula yields, indexing the valid subtest
items by ¢ = 1,2,... ,n, and setting X, = X | g, O, = € | g as a reminder that sampling
here is from Group g only,

o’ (X | g) = o*(X,) = o*(E[X, | ©,]) + E[0*(X, | ©,)]

= *mBO,) + Y EIR@)1- P, P

using the standard item response theory assumption of local independence of items, given ©.
Also, by (A2) it is trivial that

o*(X | g) = o*(nP(©) | 9) + o*(e | 9).
Thus, by (A7), )
o*(e9) = EIP(0,)(1 - P(0,)))
This suggests -
#(e ] g) = z:r?,-ga ~0,) (A8)

where U}g is the proportion correct for Group g examinees for valid subtest item ¢. Thus,
using (A5), we will estimate V, (k) by

V,(k) = -71; [)‘{g + (1 - %) (k- Xg)} : (A9)

2. The complete procedure to detect test bias, using the proposed regres-
sion correction.

The SIB procedure in its entirety is presented here. First we set some basic notation.
Groupg (9 = Ror F)has J o examinees taking the test of NV items. The response to item 7
of the jth group g examinee is U,;;. The subtest scores are

n N
X, = Z Uyi; (valid subtest score), Y= Z U,i; (studied subtest score).
=1 i=n+1l
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The classical group item difficulties are U ; = (1/J )E"’ U,;. Let ng) denote summa-

gij*

tion over those group g examinees j w1th L correct on the valid subtest.

1.
2.

(V)

1LY

Compute Jy;, the number of group g examinees with & correct on the valid subtest.

Compute
— 1 (k)
R Y,
Yo 7.

1 (%) _
2 _ Z 2
Sgr = T = 14 (Y5 = ¥oi).

If J, =0, set ¥ = 0;if Jy, <1, set S%, = 0. Y, is the sample average studied
subtest score of group g examinees attaining X, = k, and Sgk is the sample variance.

. Compute Isg(k) = Jy/J, for both groups and all k. Isg(k) is the estimate of the his-

togram of X | G = g. Then compute f’;(k), the MLE of the unimodalized histogram
of X | G = g, over the class of all possible unimodal MLE of the histograms with n+1
possible values (X | G = g is assumed to have a unimodal distribution and hence its
estimate {f’g‘(k), k > 0} should also be unimodal). For details of this procedure, using
the up-and-down-blocks algorithm, see Barlow et al. (1972; pp. 72-73; pp. 223-231).

. Set I(k) = 1 for all k unless either

(a) k=0 orn,

(b) SRL—OorSFL-O .
(c) JpBa(k) < Jpp, or JpPa(k) < Jpin where Jopp, is set by user, usually around 30,
or

(d) k £ necy, where ¢y 2 0 is the user-specified global guessing parameter for the
test. (It is assumed that there is a relatively constant level of guessing across
item, and that there is at least partial knowledge of this guessing value.)

I(k), k = 0,...,n, is the ezaminee inclusion indicator; it is 1 if examinees with

X =k are to have their responses included in the test statistic. (a) excludes the two

extreme valid subtest scores because of their poor estimation of target ability. The

(b) exclusion is obvious. The (c) exclusion is done to assure that each valid subtest

score category has enough examinees to make Yy, and ¥y, approximately normal; the

unimodal mass function is used so that only extreme valid subtest score catagories are
excluded. As for (d), all valid scores below that expected by guessing are excluded.

Compute the regression of true score on valid subtest score:

(a) U . —1-—1‘1 If the result is < 0, set it to 0 (adjustment for guessing).

) X, ‘}, s,

(c) 8*(X 19) =35 ZJ-J - X, )
(d) 8%(e | 9) = Ty Ugel1 - )

(e) i’ Fvesy (1 - }Z;((—;’Ilig)j)




(f) V,(k) = L(X, +b,(k — X)) for both g and k =0
6. Make the regression correctlon

(2) ke = min{k : I(k) = 1}, k, = max{k: I(k) = 1}.

(b) ¥, = L(Vr(k) + Vi(R)), for k, < k < k,.

(c) For k, < k < k,., compute

RN O

AAI = Yg,k+1 - Yg,k—l
g

T+~ T,6-1)

Then compute ¥}, =Y, + Mgk(ffk - Vg(k))

(d) For k =k, and k = k., compute Y% in-the following.way.

i. Define
(1= a)¥, iy +a¥y, HV (k) Sv< V(k+1)
S(v) =14 Y, if v < V,(0)
Yy if v 2 V(n),
and

v=T,(k)
V,(k+1) - V,(k)’

S ,(v) is the linear interpolation of {¥ 0+ 1 Yo}
ii. Compute

1-/t(;lk = ‘SA'g(vk)

fork=Fk,and k =k,

7. Compute the bias statistic.
(a) Compute Jy =

S r=o L(R)J, k> the number of included group g examinees
(b) Compute

Fheo ST - FIIH)
n Ji o2 2 1/2
(Ek:o 7%7(531: + SFk)I(k))

(¢) Reject H : By = 0 in favor of By > 0 at level o if B > z,, where P[N(0,1) >
z,] = a defines z,.

B =

27
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‘Table 1: Means and sds for the ASBAB and ACT item parameters used in the study.

Test 8 o, | 8 || €| oo [N
ASVAB auto/shop | 1.22 | 0.7 | 0.090.72]0.20 | 0.06 | 25
ACT math 1.091035] 0.5 ] 0.61]0.14)0.04 ] 40

Table 2: Item parameters for 2-dimensional studied in the bias case.

ny | Item No. [ a;p | bis | @iy | biy | &

1 | N 1.0{ 00]08]00 ¢

3 | N-2 06]-03]04]00]c~30.
N-1 08] 00]04]00]|¢
N 1.0] 0.3]0410.0[z+ 30.

Table 3: Equivalence table for bias potential and actual test bias.

Cﬁ ay ﬁU

00} ~ 0
0.2]0.80.03
0.310.8]0.05
0.0} - 0
0.2)0.4/0.06
0.3]0.4]0.09

3
o

€] COf COf t=s] pes] 4

Table 4: Equivalence of Assy and Sy when np = 1, using item parameters of Table 2.

Cg ¢’s used AMH ,Bu

0.0 - 0 0
021 0.0 .27 1 0.034
0.2 | actual ¢’s .27 1 0.026
0.3 0.0 .40} 0.051
0.3 | actual ¢’s .39 ] 0.039




Table 5: No bias, ACT, n, =1, a = 0.05.

Jp JR c dT MH | SIB
1500 11500 [0 | .0 .03 .07
1000 13006 {0} .0} .00 .02
3000 | 3000 ] c| 0] .09| .06
1500 1 1500 [0 | .5 | .04{ .04
1000 | 3000 | ¢| .5| .10} .10
3000 | 3000{ec| 5} .05 .03
1500 11500 [ ¢ |1.0| .02 .05
1000 | 3000 | c| 1.0 .05| .10
3000 13000010 .06| .09

Table 6: No bias, ACT, ny = 3, a = 0.05.

Jp JR (o dT SIB
150011500 0} .0 .05
1000 {3000 (0| .0 .02
3000(3000fjc| .0] .07
1500 § 1500 O} .5| .08
100013000 | c| .5 .07
3000 3000j0| .5} .05
150011500 | ¢ | 2.0 | .06
1000 | 3000 | ¢ | 1.0 ] .16
3000 | 3000j0f1.0} .09

Table 7: No bias, ASVAB, n, = 1, a = 0.05.

Jr Jr {c¢|dr | MH|SIB
1500 | 1500 ({0} .0| .08} .07
10001 300010| .0 .04| .04
3000|3000 c| .0} .06] .06
1500 | 1500 [ 0| .5 .13| .14
1000 13000{¢| .5 .04] .03
300013000)c] 5| .05} .04
150011500 [ ¢ | 1.0 .07} .02
1000 {3000 {c¢|1.0f .15| .09
3000{3000j0f1.0] .11] .01




Table 8: No bias, ASVAB, ny = 3, a = 0.05.

Tr | Jr 1c| d; | SIB
1500 | 1500 | 0] .0| .07
1000 | 3000 |0 | .0 | .04
3000 | 3000 | ¢ | 0] .03
1500 | 1500 | 0| .5 .07
‘ 1000 | 3000 | ¢ | .5 .06
3000 | 3000 | 0] 5] .05
1500 | 1500 | ¢ | 1.0] .15
1000 | 3000 | ¢ | 1.0 | .07
3000 | 3000 | 0] 1.0 | .04

Table 9: Bias, a, = 0.8, ACT, n = 1, @ = 0.05.

Jp JR c d:r Cp ﬂu B; AMH MH | SIB
1500 | 1500 |¢| O} .2].026].032} .27 .46 .38
1000 |1 3000y0| O] .21.032}.042) .27 .64} .70
300013000j0} Of .21.032}.035| .27 .91| .95
1500 11560 e} 5| .2}.020].035] .27| .51 | .60
1000 { 300040} 5] .2|.034}.044] .27 .65| .72
3000130000 .5| .2j.034].038}] .27] 91| .94
1500 {1500 {0 O .3}1.048].052] 40| .84} .90
1000)3000)c] O] .3].042].053] .40 .87} .91
300013000 jc! O] .3].042}.045 401 .97] 1.00
150011500 0| 5| .3|.050]|.047| .40| 99| .99
100013000 {c]| 5| .3].042]|.054] .40 80| .34
3000 13000fc| 5| .3].0421.064] .40| .91} .92

Table 10: Bias, a, = 0.4, ACT, n} = 3, & = 0.05.

‘ Jp | Jr | eldr|Cs| By | B, | SIB
1500 {15003 01 O .21.0631.069 .70
1000|3000t c ] O .21.0531.067 .68
300073000 c| O} .21.0537.033 .S0

, 1500 {1500} ¢ | .53] .21.0551.071 .60
1000 {3000} 0| .5] .21.065].083 12
3000(3000(0}f .5] .2].065].074 .96
150011500 0 0] .3].0931.095 91
1000130001} 0 0} .3}.093] .11 .89
300013000) ¢ | Of .3].0807.031 .99
15001150010} .5 .31.097] .12 97
100013000 ¢ .51 .3].084] .11 .89
300013000 c| .5 .31.083} .09} 1.00




Table 11: Bias, a, = 0.8, ASVAB, n = 1, a = 0.05.
Jr | Jr leldr|Csl Bu | B | Ayw | MH | SIB
1500 | 1500 ) ¢| O} .2].026).029| .27 .42| .50
1000 13000{0| O .2].034].039| .27 .83} .19
3000|3000f0| O .2].034].034] .27| 90| .95
1500 | 1500 { ¢} .5} .2}.027 |.035 271 .63 .66
1000 {3000 | 0| .5{ .2|.034}.038 271 631 .70
300030000 .5] .2|.034].036] .27| .89} .91
1500 | 1500 J 0| O .3].0511.052 401 .85) .92
1000 | 3000 f ¢| O} .3).042|.044 40 11} .84
300013000 |c| O .3|.042]|.046| .40| .99} .99
1500 1500 {0 | .5} .31.051{.037 40| 91 .93
10003000 e} 5] .3].038}.048| .40] .77] .82
3000 {3000} c| 5] .3].039).045) .40| .94| .97
Table 12: Bias, a, = 0.4, ASVAB, n; = 3, a = 0.05.
Jr | Jr | cldr|Ca| Bu | B. | SIB
1500 [ 1500 | O} 0] .2].065|.067| .70
100013000 c¢| O} .2].052].056 | .53
300013000 c| Of .27.052].053| .85
1500 §1500 | ¢ | 5| .2|.0521.068| .63
1000130004 0| .5| .2].064[.083] .73
3000130000 .5| .2|.064].072] .92
150011500 | O | O .3|.098] .10| .94
1000300010 O} .37.097] .10 .97
3000{3000fcf O .3/.019].079] .98
1500 {1500 | 0} .5] .3].097|.011] .98
10001 3000) c| .5} .3].076 |.098 | .87
300013000 | c{ .5 .3/.0787.090| .09




210 Education Bidg
University of lilinois
Champaign, IL 61801

Nesark, NJ 07102

Dr. Evs L. Baker

UCLA Center loc the Study
of Evaluation

145 Moore Hall

Univensity of California

Los Angeles, CA 90024

Dr. Laura L. Barnes
College of Education
Unlversity of Toledo
2801 W, Bancrolt Street
Toledo, OH 43606

Dr, Willism M. Bart
Univensity of Minnesota
Dept. of Educ. Peycbology
330 Burtoa Hall

178 Plwbury Dr,, SE.
Minnespolie, MN 55455

Dr. lssac Bejar
Law School Admissions
Servioes

P.O. Box 40
Newiown, PA 189400040

Dr. Irs Bernatein
Depertment of Prychology
Unbvensity of Texs

P.0. Box 19528
Arlington, TX 760190528

Dr, Menucha Birenbsum
School of Education

Tel Aviv University
Ramat Aviv 69978
ISRAEL

Dr. Artbur S, Blatwes

Code N712

Naval "nairing Systems Center
Orlands, F1 32813-7100

Drx. Bruce Bloxoo
Defemse Manpower Data Center
99 Pacific St
Suite 135A
Monterey, CA 939433231

Cét Arnoid Bohrer
A ach Ond :

Sectie Poychologisch
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstrast

1120 Brussels, BELGIUM

Dr. Robert Breaux

Code 281

Neval Training Systems Center
Orlando, FL 32826-324

Distribution List

Dr. Robert Brennan
Americsn College Testing
e

P. O. Baz 168
Towa Gity, 1A 5220

Dr. Gregory Candell
CTB/McGraw-Hill
2500 Garden Rosd
Monterey, CA 93940

Dr, Joba B. Carroll
409 Elliot R4, North
Chapel Hill, NC 27514

Dr. Jobn M. Carroll

IBM Watson Research Center
User Interface Institute

P.0. Bax 704

Yockiown Heighta, NY 10598

Dr. Robert M. Carroll

Wasbingon, DC 20250

Dr. Raymond E. Christal
UES LAMP Science Advisor
AFHRUWMOEL

Brooks AFB, TX 78235

Mr. Hus Hua Chung
University of lllinois
Deparument of Statistics
101 Ulini Hett

728 South Wright Se
Champeipn, IL 61820

Dr. Norman Cuff

Deps
Univ. of Sa. Californis
Los Angeles, CA 900891061

Director, Manpower Program
Center for Naval Analyses
4401 Ford Avenue

P.O. Box 16268

Alemandria, VA 22020268

+
Manpower Support and
Resdiness Program
Center (or Naval Ansiveis
2000 North Besuregard Street
Alexandria, VA 2311

Dr. Sunley Collyer

Office of Naval Technology
Code 22

800 N. Quincy Street
Asfingion, VA 22217-5000

Dr. Hams F. Crombeg
Faculty of Law
Univensity of Limburg

P.O. Box 616

Masstricht

‘Tbe NETHERLANDS 6200 MD

Ma, Carolys R. Crone
Jobns Hopkine University
Department of
Charles & 34th Street
Baltimore, MD 21218

Dr. Timothy Davey

American College Testing Program
P.O. Box 168

lowa City, 1A 52243

Dr. C. M. Dayton
Depsriment of Measurement
Suatistics & Evaluation

Colepe of Education

. Univensity of Maryland

Coliege Pask, MD 20742

Dr. Ralph J. DeAyala
Measurement, Satistics,
and Ewvslustion
Benjsmin Blég, Rm. 4112
Unbvensity of Maryland
Coliege Park, MD 20742

Dr, Lou DiBello
CERL

University of Minots
103 South Mathews Avenue
Urbens, IL 61801

Dr. Dettprasad Divgl
Center for Neval Analysis
4401 Ford Avenuve

Room PYA-IR207
P.0. Box 1320
Piscataway, NJ 082551320

Dr. Friz Drasgow
Univensity of liinois
Department of Psychology
603 E. Daniel St
Champaign, 1L 61620

Defense Technical
Information Center
Cameron Staion, Bidg §
Alexandria, VA 22314

(2 Copim)

Dr. Stepben Dunbar
224B Lindquist Centec
for Measurement

Univensity of lows
lows City, IA 5202

Dr. James A. Earles
Aic Foree Human Resources Lab
Brooks AFB, TX 7828

Dr. Sussn Embretson
Univensity of Kensas
Prychology Depsriment
426 Fraser

Lawrence, KS 66045

Dr. George Englebard, Jr,
Division of Educational Studies
Emory University

210 Fubburne Bidg,

Athnta, GA 3032

ER'C Fadility-Acquisitons
2440 Rencarch Bivd, Suite 550
Rockville, MD 20850-3238

Dr. Benjamin A. Fairbank
Operationa! Technologies Corp,
5828 Callsghan, Suite 228

San Antonio, TX 7628

Dr. Mansball J. Farr, Consultant
Cognitve & Instructional Sciences
2520 North Vernon Street
Arlinglon, VA 22207

Dr. P-A. Federico
Code 51
NPRDC
San Diego, CA 921526800

Dr. Leonard Felt
Lindquist Center
for Measurement
University of Jowa
lowa City, 1A 5242




Unbvenslty of Minois/Stout

Dr. Ricbard L. Ferguson
American

Jowa City, 1A 52248

Dr, Gortard Fischer
Lisbiggasee 573

A 1010 Vienns
AUSTRIA

U Ay Hosdg

S, Ay usrisre
DAPE-MRR

The Pentsgon

Washington, DC  20310-6300

Prol Donald Fi
Univensity of New England
Department of Peycbology
Armidale, New South Wales 2351
AUSTRALIA

M, Paul Foley
Nevy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSRANL, Bidg 410

Dr. Robert D. Gibbons
lllinols State Prychiatric Inst.
R $29W

1601 W, Taylor Street
Chicago, 1. 60612

Dr. Janice Gifford
Unlversity of Massachusetts
School of Educetion
Amberst, MA 01003

Dr, Drew Gitomer
Educational Testing Service
Priocston, NJ 08541

Dr. Robert Glaser

Champeign, IL 61820

Educstional Testing Secvice
Princston, NJ 08541

Ms. Rebeccs Hetiar
Nowy Personnel R&D Conter
Code 6

San Diego, CA 92152-6800

Dr, Thoma M. Hinch
ACT

P. O. Box 168

Tows City, 1A 520

Dr. Paul W, Hotland
Educstional Testing Service, 21T
Rosedale Rosd

Princeton, NJ 08541

Dr. Paul Horst
671 G Street, #1834
Chuls Vista, CA 92010

M. Julia S. Hough
Cambridge Univenity Press
40 West 20tb Strest

New York, NY 10011

Dr. William Howell

Chief Scientist

AFHRL/CA

Beooks AFB, TX 78235.5601

Dr. Lioyé Humpbreys
University of llinois
of

Deparument
603 East Daniel Srest
Champeign, IL 61820

Dr. Steven Hunks
3.104 Edue. N.
University of Alberta
Edmonton, Alberta
CANADA T6G 2GS

Dr. Huynh Huynh
Coliege of Educstion
Unbv. of South Caroline
Columbis, SC 29208

Dr. Robert Jannarone

Elec. and Computer Eng, Dept.
University of South Carolina
Columbia, SC 29208

Dr. Kumar Joag-dev
Univensity of linois
Department of Statistics
101 Uiini Hal

725 South Wright Street
Champeipn, IL 61820

Dr. Douglas H. Jones
1280 Woodfern Court
Toms River, NJ 06753

Dr. Briso Junker

US. Aroly Research Institute
Bax €5
FPO New York 09510-1500

Prol Jobn A. Keas
Departoent of Peychology
University of Newcastie
NS.W, 2308
AUSTRALIA

Dr. Jwa-keun Kitn

Department of

Middie Tennessee Suate
Unlversity

P.O. Box S22

Murfreesbory, TN 37132

Mr, Soon-Hoon Kim
~besed Education

Urbena, IL 61801

Dr. G. Gage Kinpbury

Portland Public Schools

Resesrch and Evalustion Department
501 North Dixon Street

P. O. Box 2107

Portand, OR 97209-2107

Dr. William Koch

Box 7246, Meat. and Ewal Cue.
Unhersity of Texs-Austin
Austin, TX 76703

13 Engineering & Ma.o Bidg.
Weight State University
Deyton, OH 45438

Dr. Leonard Kroeker
Novy Personnel R&D Center

Code 62
San Diego, CA 92152-6800
Dr. Jerry Lebnus

Dr. Michsd Levine
Educational Psycbology
210 Educaton Bidg
University of inois
Champeign, IL 61801

Dr. Charies Lewis
Educstionsl Testing Service
Princeton, NJ 08541.0001

Me, Rodney Lim
University of lllinois
Department of Psycbology
603 B Daniel St
Cohampeign, IL 61820

Dr. Robert L. Lina
Campus Box 249
University of Colorado
Boulder, CO  80309-0249

Dr. Robert Lockman
Center for Naval Anslysis
4401 Ford Avenue

P.0, Box 16268
Aleandris, VA 23000268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541




University of MinowSuout

Dr. Ricbard Luecht
ACT

P. O, Box 168
Jows City, 1A 520

Dr. George B. Macready
t of Measurement
Sutistics & Evalustion
of Educetion
. University of Maryland
College Park, MD 20742

Dr. Gaty Marco

Swp 31-B

Educationsl Testing Service
Priooston, NJ 08451

Dx. Clessen J. Martin
Office of Chief of Naval
Operations (OP 13 F)
Nevy Annex, Reom 2832
Waabington, DC 20350

San Diego, CA 92120

Dr. Qlarence C. McCormick
HQ, USMEPCOMMEPCT
2500 Green Bay Rosd
North Chicago, 1L, 60064

Mr. Cbristopber McCusker
Univensity of lllinois
Deparumwent of Psychology
63 E. Deniel St
Champeign, IL 61820

Dr. Robert McKinley
Educstions! Testing Service
Princeton, NJ 08541

Mr. Alen Mead

¢/o Dr. Michsel Levine
Educstional Peychology
210 Education Bidg,
University of llinois
Champaign, IL 61801

Dr. Tiotby Miller
ACT

P. O. Box 168
lows City, IA 520

Dr. Robert Mislevy
Educations) Testing Service
Princeton, NJ 08541

Ms. Kathleen Moreno
Nawy Personnd R&D Center

Code 62
San Diego, CA 92152-6800

Hesdguariers Marine Corps
Code MP}-20

Wasbingion, DC 20380

Dr. Ratns Nandskumar
Educational Studies
Witlard Hall, Room 2138
Uoiversity of Delsware

[y Newark, DE 19736

Library, NPRDC
Code P20IL
Seo Diego, CA 921526800

Libearian

Noval Center for Applied Research
i Artficial Intelligence

Neval Research Laboratory

Code $510

Wasbingion, DC  20375-5000

Dr. Harold F, O'Nedl, Jr.

School of Educition - WPH 801

Department of Educational
Paychology & Technology

University of Soutbern California

Los Angeles, CA 900890031

Dr. James B. Olsen
WICAT Systems

1875 South State Street
Orem, UT 84058

Office of Naval Resesrch,
Code 1142CS

800 N. Quincy Strest

Astington, VA 22217-5000

(6 Copies)

Dr. Judith Orssanu
Basic Research Office
Army Research Institute
5001 Eenbower Avenue
Alexandria, VA 22333

Dr. Jemse Orlansky

Institute for Defense Analyses
1801 N. Beauregard St
Alexandria, VA 2211

Dr. Peter J. Pasbley
Educationa! Testing Service
osd

Rosedsle R
Princeton, NJ 08541
Wayne M. Patience

Asmerican Council on Educat
GED Testing Service, Suite 20
One Dupont Cirde, NW
Washingion, DC 20036

Dr. James Paukon

of Peychology
Portland State University
P.O. Box 751
Portand, OR 97207

Dept. of Administrative Sciences
Code $4

Naval Postgraduste School

Mouoterzy, CA 939435026

Dr. Mark D, Recksse
ACT

P. O. Box 368

Tows Caty, 1A 220

Dr. Makolm Ree
AFHRL/MOA

. Brooks AFB, TX 78235

Mr, Steve Reis

N660 Elliott Halt
Univensity of Minpesots

7 B River Roed
Minnespokis, MN 554550044

Dr. Carl Roms
CNET-PDCD

Building %0

Great Lakes NTC, IL 60068

University of Soutb Caroline
Columbia, SC 29208

12712%

Dr. Funiko Samejima
Deparunent of
Univensity of Tennessee
310B Austin Pesy Bidg,
Knoxville, TN 379160900

Mr, Drew Sands
NPRDC Code 62
San Diego, CA 921526800

Lowell Schoer

Peychological & Quantitative
Foundations

College of Educastion

Univensity of lows

Tows City, 1A 5242

Dr. Mary Schn
4100 Parkside
Carlsbed, CA 92008

Dr. Dea Segall
Nawy Parsonne R&D Ceater
San Diego, CA 92152

Dr. Robin Sbealy

University of 1llinois
runent of Statistics

101 Iini Halt

728 South Wright St

Champaign, IL 61820

Dr, Kazuo Shigemasy
7-9-24 Kugenums-Kaipan
Fujisewa 253

JAPAN

Dr. Randall Sbumaker
Naval Ressarch Laboratory
Code 3510

4555 Overlook Avenue, S.W,
Wasbingion, DC 20375.5000

Dr. Richard E Soow

Dr. Richard C. Sorensen
Navy Persoanel RAD Center
San Diego, CA 921526800

Dr. J
Acr”l Spray

P.O. Box 168
Tows City, 1A 5248

Dr. Marths Stocking
Educstional Testing Service
Princeton, NJ 08541

Dr. Poter Stoloff

Center for Noval Antlysis
4401 Ford Avenue

P.O. Box 16268

Aleandria, VA 223020268

Dr. Willism Stout
Univensity of Jliinois

of Statistics
101 Jliini Hall
725 South Wright St
Champaign, IL 61820

Dr. Haribsran Swaminatbas

Laboratory of Prychometric and
Evaluation Research

School of Education

University of Massachusetts

Amberst, MA 01003

M. Brad Sympsoa
Navy Persoonel RAD Center

Code 2
San Diego, CA 921526800




Unversity of Iinois/Stout

Dr. Jobn Tangney
AFOSR/NL, Bug 410
Bolting AFB, DC 203326448

Dr. Kikumi Tatsuoka
Educationsl Testing Service
Mall Swp BT

Prinoston, NJ 08541

Dr. Maurice Tatsuoka
Educational Testing Service
Mad Stop (3T

Princeton, NJ 08541

Dr. David Thissen
Deparument of Peychology
Univenity of Kansas
Lawrence, KS 66044

Mr. Tbomas J. Thomas
Jobns Hoptins University
Depariment of Peychology
Charles & 34th Street
Baltimore, MD 21218

M. Gary Thomasson
University of Iilinois
Educationa! Peychology
Champeign, IL 61820

Dr. Robert Tautskswa
Uaniversity of Missouri
Depertment of Statistics
222 Math. Sciences Bidg,
Columbis, MO 65211

Dr. Ladyard Tucker
University of linois
Deparupent of Prychology
603 E. Daniel Strest
Champeipn, IL 61820

St Paul MN 55134

Drx, Frank L. Vicino
Navy Personnel R&D Center
San Diego, CA 921526800

Dr. Howsrd Wainer
Educational Testing Service
Princeton, NJ 08541

Dr. Michsel T, Waller
University of Wisconsia-Mivauk

Educational Paycbology Department
Box 413

Mbwaukee, W] 53201

Dr. Miog-Mei Wang
Educationa! Testing Service
Mal Siop 03-T

Prioceton, NJ 08541

Dr. Thomas A. Warm
FAA Acsdey AACOID
P.0. Bax 25082

Oklsboma City, OK 73128

Dr. Briso Waters
HumRRO

1100 S. Wasbington
Almandria, VA 2314

Dr. David J. Weiss

Né660 Elliort Hall
Univensity of Minnesots
75 B River Rosd
Minoeapolia, MN 55485, ¢

Dr. Ronsld A. Weitzma.
Box 146
Carmel, CA 93921

Major Jobn Weish
AFHRL/MOAN
Brooks AFB, TX 78223

Dr. Dougias Wetzel
Code 51

Navy Personned R&AD Center
San Diego, CA 921526800

Dr. Rand R. Wikox

Unlvenity of Soutbern
Californis

Deparupeat of Prychology

Los Angeles, CA 90089-1061

German Military Representative
ATTN: Woifgang Wildgrube
Streitkraefieamt

D-5300 Bons 2
4000 Brandywine Street, NW
Wasbingion, DC 20016

Dr. Bruce Willisms
Department of Educstional
P

University of 1llinots
Urbana, IL 61801

Dr. Hilds Wing

Federal Avistion Administration
800 Independence Ave, SW
Washington, DC 20591

Mr. Joba H Wolfe
Navy Pensonnel R&D Center
San Diego, CA 92152-6800

Dr. George Wong

Biostatistics Laboratory

Memorial Siosn-Kettering
Cancer Centar

1275 York Avenue

New York, NY 10021

Dr. Wallsce Wolfeck, T
Navy Personnel RAD Center
Code 51

Sen Diego, CA 921526800

Dr. Keotaro Yamaomoto
0T

Edvestional Testing Service
Rosedale Roed

Princeton, NJ 08541

Dr. Wendy Yen
CTBMcGraw Hill

Del Moote Research Pack
Monterey, CA 93940

Dr. Joseph L. Young
Natiooal Science Foundation
Roowm 320 .

1800 G Street, N.W.
Washington, DC 20550

Mr. Antbory R. Zara

National Councll of State
Bosrds of Nursing, Ine.

625 North Micbigan Avenue

Suite 1544

Chicago, IL 60611

2%




