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" ABSTRACT

-This paper presents a statistical procedure (denoted by SIB) designed to test for uni-
directional test bias existing simultaneously in several items of an ability test. It was
argued in Shealy and Stout (1991) that in order to model such bias with an IRT model, a
multidimensional model is necessry. The proposed procedure, based on this multidimen-
sional IRT modeling approach, statistically tests for bias in one or more items at a time
and is corrected for the inflation (or deflation) of the test statistic due to target ability

. difference, a valid group differene that is conceptually independent of psychological test
'-'bias.he correction plays the lame role as the practice of including the single studied

item in he-'matching criterion score in the Mantel-Haenszel (MH) procedure adapted
for test responses by Holland and Thayer (1988). It is shown through the initial portion of

an extensive simulation study underway (Shealy (1991)) that, with the correction in place,
the procedure performs as well as the MH procedure in many cases when there is a single
biased item, and performs well in the case of multiple item test bias.

Key Words: item bias, test bias, DIF, latent trait theory, item response theory, target abil-

ity, valid subtest, nuisance determinants, potential for bias, expressed bias, unidirectional
test bias, bidirectional test bias, SIB, Mantel-Haenszel.



INTRODUCTION

The purpose of this paper is to present a statistical procedure (denoted by SIB for
simultaneous item bias) for detecting bias present in one or more test items of a standard-
ized ability test. The procedure is based on the multidimensional item response theory
(IRT) model of test bias presented in Shealy and Stout (1991). By "test bias" we mean
a formalization of the intuitive idea that a test is less valid for one group of examinees
than for another group in its attempt to assess examinee differences in a prescribed la-
tent trait, such as mathematics ability. Test bias is conceptualized herein as the result of
individually-biased items acting in concert through a test scoring method, such as number
correct, to produce a biased test.

Two distinct features of this conceptualization of bias are as follows. First, it provides
a mechanism for explaining how several individually-biased items can combine through a
test score to exhibit a coherent and major biasing influence at the test level. In partic-
ular, this can be true even if each individual item displays only a minor amount of item
bias. For example, word problems on a mathematics test that are too dependent on so-
phisticated written English comprehension could combine to produce pervasive test bias
against English-as-a-second-language examinees. A second feature, possible because of our
multidimensional modeling approach, is that the underlying psychological mechanism that
produces bias is addressed. This mechanism lies in the distinction made between the abil-
ity the test is intended to measure, called the target ability, and other abilities influencing
test performance that the test does not intend to measure, called nuisance determinants.

Test bias will be seen to occur because of the presence of nuisance determinants possessed
in differing amounts by different examinee groups. Through the presence of these nuisance

determinants, bias then is expressed in one or more items.
The test bias detection procedure can simultaneously assess bias in several items,

thus addressing the above two features. In contrast, most item bias procedures detailed

in the literature perform tests on a single item at a time: The pseudo IRT procedure
of Linn and Harnish (1981) estimates possibly group-dependent item response functions
(IRFs) without the use of item parameter estimation algorithms when the sample size is
too small for their use. Thissen, Steinberg, and Wainer (1988) employ marginal maximum
likelihood estimation to obtain group-dependent item parameters in a 3-parameter logistic
framework and use the likelihood ratio test to test the equality of the parameters across
group. The Mantel-Haenszel procedure, adapted for test response data by Holland and
Thayer (1988), and which is in wide use, employs the practice of using the score of the
entire test instead of the score of the non-studied items as the "matching criterion" to test
for item bias. Etc. Conceivably these procedures could be used once for each item in a set
of items being tested fbr bias, and multiple comparison procedures could be employed to
assess the hypothesis of the entire set being biased. However, if the amount of bias is small
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in each item, a multiple comparison procedure may not pick up bias in the set of items at
all. Moreover this approach cannot address underlying causal mechanisms of bias.

The novelty of our approach to detecting test bias lies not so much with its recognition

of the role of nuisance determinants in the expression of test bias, but rather in its explicit
use of a multidimensional model to motivate the procedure to detect it. The presence of
multidimensionality of test item responses where bias is present has long been recognized
in test and item bias studies: Lord (1980) states "if many of the items [in a test] are found
to be seriously biased, it appears that the items are not strictly unidimensional" (p. 220).
Recently, Lautenschlager and Park (1988) employed a technique of generating simulated
biased item responses using a method of Ansley and Forsyth (1985), which involves using

multidimensional item response functions (IR-Fs)-and latent-abilit-y distributions to deter-
mine conditional probabilities of correct response. Kok (1988), taking a multidimensional
viewpoint similar to Shealy and Stout (1991), presents a specific multidimensional IRT
model for bias where the nuisance determinants are compensating abilities, contextual
abilities such as language, and testwiseness.

An important issue addressed by our procedure is that a careful distinction is made be-
tween genuine test bias, often operationally embodied as DIF (Holland and Thayer (1988))
by practitioners, and non-bias differences in ext-minee group performance, sometimes called
impact (see, for example, Ackerman (1991) for a careful discussion of impact as distinct
from bias), that are caused by examinee group differences in target ability distributions.
It is important that the latter not be mistakenly labeled as test bias. The procedure
developed herein makes this distinction in its application.
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FORMULATION OF TEST BIAS

Test bias in this paper is modeled using a multidimensional item response theory
(IRT) model, which is assumed to be the model behind the observed test responses. For
purposes of exposition, we restrict ourselves to the case where there is a single nuisance
determinant; this two-dimensional modeling approach is often realistic in practice. Exten-

sions to multiple nuisance determinants are straightforward. For a fuller treatment of the

conception of test bias, including the case of multiple nuisance determinants and item bias
cancellation, in a more general framework, see Shealy and Stout (1991) and Shealy (1989).

We consider two biologically- or sociologically-defined groups, named "reference" and
"focal" groups (after Holland and Thayer's (1988) naming convention). A random sample
of examinees is drawn from each group, and a test of N items is administered to them.
Typically it is suspected that a part of the test is biased against the focal group; this

group is usually the object of the bias study. The responses to the test items from a
randomly-chosen examinee are denoted U = (U1,... ,UN), where each Ui can take on

0 or 1, according as the response to item i is incorrect or correct, respectively.
The IRT model in general is composed of two components that generate U: (1) a d-

dimensional examinee ability parameter and (2) a set of item response functions (IRFs), one

for each item, which determine the probability of correct response for the items. Here we
restrict the model to have d = 1 or 2, because we are considering a single nuisance determi-

nant in addition to the target ability. The ability vector is (9, 77) for an arbitrary examinee
from either group, where 9 denotes target ability and 7i denotes the nuisance determinant.

A distribution of (9, 77) over the combined group of examinees is induced by choosing ex-
aminees at random; the variable for a randomly chosen examinee is denoted (E, 77). The

IRF for item i is denoted Pi(9, q), and it is assumed that all items depend on 9, and one

or more may depend on q; for those dependent only on 9, the IRF is Pi(9). It is implicitly

assumed that an IRT representation for U in terms of (E), 77) and {Pi(9, 77) : i = 1,... , N}
is possible; for a fuller treatment of this assumption, see Shealy (1989). In addition, it is

assumed that each P,(, 77) is increasing in (9, ql) when item i is dependent on both abilities

and increasing in 9 when it is dependent on 9 alone; and that each P,(9) is differentiable.

Finally, local independence of U given (9, 77) is assumed.
Test bias in the above-mentioned model is formulated through three components:

(a) The potential for bias, if it exists, resides within the target ability/nuisance determi-

nant distributions of the two groups being studied;
(b) potential for bias is expressed in items whose responses depend on the nuisance de-

terminant;' and

We remark that Kok's (1988) formulation is also based upon (a) and (b); Kok's and

our formulation were developed independently of one another.

4



(c) the scoring irethod of the test, to be viewed as an estimate of target ability, transmits
expressed item biases into test bias.

Potential for test bias is explained prosaically in the following manner. After condi-
tioning on a particulax 0, suppose that the reference group has a higher level of nuisance
ability on average than the focal group. Then those reference group examinees with abil-
ity 0 would have an overall advantage over the corresponding focal group examinees when

responding to items at least partially dependent on the nuisance determinants 77 (formally,
because of the monotonicity of the items IRFs Pj(O, 77)). Formally, we define the potential

for test bias at 0:

Definition i. Potential for test bias exists-against4he-focal group at target ability level 0
with respect to 71 if 17 10 = 0, G = F is stochastically less than 27 I 0 = 0, G = R, where
"G = F" denotes sampling from the focal group and "G = R" sampling from reference
group. Potential for bias exists against the reference group if the converse holds.

Note that we are restiicting consideration to conditional nuisance distributions 7710 =

0, G = R and 77 1 E = 0, G = F that are stochastically ordered; that is, where the
two distribution functions do not intersect. Figure 1 displays two distributions that are
stochastically ordered and also two distributions that are not.

place Figure 1 about here

In order for test bias to occur, it must be expressed in one or more items. Our definition

of expressed bias for an item, when specialized to Kok's model, is really the same as that
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of Kok (1988, p. 269). It is defined in terms of a marginalization of the multidimensional

IRF Pi(0, n).

Definition 2. Let Pi(8, tq) be the IRF for item i. The marginal IRF for group g (g = R

or F) with respect to target ability 0 is defined as

Ts,(0) = E[P(e, 77) I e = O,G = g]. (1)

When r7 I 0 has a conditional density, f(77 I 0) say, Definition 2 translates into

T=() I O)d1 .

Definition 3. Expressed bias for item i against the focal group occurs at target ability 0
if TiF(O) < TR(O); it occurs against the reference group if the converse holds.

A test can consist of many items simultaneously biased by the same nuisance determi-

nant. In this case, items can cohere and act through the prescribed test score to produce

substantial bias against a particular group even if individual items display undetectably

small amounts of item bias. This is the final (and novel) component of our formulation of

test bias mentioned above. We consider the large class of test scores of the form

h(U) (2)

where h(u) is real valued with domain u (ul,... ,UN) such that ui = 0 or 1 for i =

1,... ,N and h(u) is coordinate wise non-decreasing in u. This class contains many of
the standard scoring proc'mdures for many standard models; for example, number correct,

linear formula scoring ol' the form EN1 ajUi, with a, > 0, maximum likelihood estimation

of ability for certain logistic models with item parameters assumed known, etc. In this

paper we restrict attention to number correct as the test score; the results presented herein

are easily extendable to other forms of h(u_). The key point about number correct scoring

is that each "tem is weighted equally. Thus, if a subset of the items is suspected of bias,

we should give equal weight to the items in this "studied" subtest in our attempt to

quantitatively assess the amount of test bias resulting from the simultaneous influence of
thses items. We thus define test bias for a specified studied subtest of items as follows:

Definition 4. Let {U, U,,... , Usb} be any subtest of items to be studied for bias from

the test of concern and define
b

h(V_) = Ui,. (3)
*7=1

Then this studied subtest of items displays test bias against the focal group at 0 if

E[h(U) I e = 0, G = F] < E[h(U.) I = 0, G = R].
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The subtest is biased against the reference group if the converse holds.
Finally, the components of the bias formulation can be integrated using the followir,

theorem, adapted from Theorem 4.2 in Shealy and Stout (1991):

Theorem 1. Fix a target ability 9 and choose the subtest scorip- method h(u) of the
form (3). Assume potential for bias against the focal group at 0 hola. kDefinition 1). Then
test bias exists against the focal group; i.e.,

b b

ZE[u E =0,G=F]<Z E[Ui.I e=0,G=R]. (4)
j=1 j=1

In order to test for bias of the above form, there must be aii implicit assumption that a
portion of the test measures only the target ability;-otherwise; a conditional-on-observed
score procedure to detect bias is not possible. This set of items will be denoted the valid
subtest. The issue of the existence and identification of a valid subtest is extremely difficult
to frame philosophically (it is really an issue of construct validity) and must primarily be
an empirical decision based on expert opinion or data at least in part external to the test
being studied; it is not dealt with here. For a fuller discussion, see Shealy and Stout (1991).
For notational simplicity we denote the valid subtest to consist of first n < N items of
the test, and we call the remainder of the N - n items the studied subtest. We note that
use of a valid subtest is operationally equivalent to making use of a subset of items whose
purpose is to partition examinees into "comparable" sets as is done in the MH procedure
described below and other DIF procedures. Hence, the proposed use of a valid subtest in
the SIB procedure can be interpreted either in the strong sense of our test bias paradigm
or in the weak sense of the DIF paradigm (of matching of "comparable" examinees). Thus
use of our statistical procedure for assessing bias in no way requires acceptance of our bias
framework as opposed to a "comparability" framework, where no claims about "bias" are
made.

Using the above conventions, the specification of test bias against the focal group at
0 becomes

N N
Tp() _ TiP(O) < F, TiR(O _ TW(O)  (5)

i=n+l i=n+1

because Ti.(O) = E[Ui I 0 = 0, G = g] by a simple application of a standard conditioning
formula to Definition 2. T,(O) is called the studied subtest response function for. group g.

Unidirectional test bias

Test bias heretofore has been considered conditional on a single target ability; we now
turn to a global perspective. If there is test bias against the same group for all 0, then
there is unidirectional bias against this group. Specifically, if

B(O) = TR(O) - TF(O)
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is the level of bias against Group F at 0, then unidirectional bias holds if either B(8) > 0
for all 0 or B(8) < 0 for all 0. A strong form of unidirectional bias, termed uniform

bias by Mellenbergh (1982), is the iype of bias that the modified Mantel-Haenszel test
statistic devised by Holland and Thayer (1988) is designed to detect. Although the Mantel-
Haenszel approach is not dependent on an IRT framework, it can be put in a Rasch
model IRT framework, with the single biased item having group-dependent item difficulties.
Here, the bias is "uniform" in the sense that TF(B) is merely TR(9) shifted horizontally.
Unidirectional bias is less restrictive in that T,(0) does not have to be a logistic IRF, and
more importantly, TR(O) does not have to be TF(O) shifted.

Since we are concerned with bias against the focal group, it is intuitive that a suitable
theoretical unidirectional bias index is

flu = 19 B(O)fF(O)d8 (6)

where fF(O) is the probability density function of e for the focal group. Equivalent in-

dices weighted by the reference target ability distribution and the combined-group target
distribution are easily conceptualized.

THE BASI1C PROCEDURE

The statistical procedure to be presented is based on (6); the hypothesis is

H:flu=O vs. flu>0,

the alternative being one-sided to specifically test for bias against the focal group. The
test statistic to be constructed is essentially an estimate of flu normalized to have unit
variance. The estimate of flu is derived first.

Since test bias is analyzed using number correct on the studied subtest, set

N

Y = (7)
i=n+l

to be the studied subtest score; also set X = E Uj to be the valid subtest score. In

selecting the valid subtest score to be number correct, we follow the convention set out in

Holland and Thayer (1988), among many others. Other choices would of course be possible
and could improve the performance of the procedure.

The naive intuition is that examinees with the same valid subtest score are examinees
of approximately equal target ability and thus such examinees are directly comparable in
the assessment of bias. Thus the difference

'Rk - 'F, 01, ,, (8)



where gk is the average Y for all examinees in group g attaining valid subtest score X = k,
should provide a measure of the bias against the focal group (resulting from the reference
group having superior nuisance ability q on average). In particular, if there is no bias (H

holds), then YRk - ?Fk -- 0 for all k should be observed, and if there is unidirectional
bias against the focal group (B(O) > 0 for all 0) then PRk - YFk > 0 for all k, except for

statistical error, should be observed.

The above assertion needs support; it will suffice to argue that

E[YPRk - :Fk] 0 for all k if B() = 0 for all 0, and

EYRk - ?Fk] > 0 for all k if B(O) > 0 for all 0..

For now we restrict the target ability distributions to be equal for the two groups; i.e.,

0 1 G = R and 0 1 G = F have the same distribution. It is easy to prove (following (5))
under the model presented herein that

E£(?gk] = E[Y IX = k,G = g] = E[T(0) I X = k,G = g]. (10)

Now assume that the valid subtest is long enough so that the distribution of 9 1 X = k,

G = g is tightly concentrated about its mean, and hence that T,(0) is locally flat within
the range of 0 where the distribution of 9 I X = k, G = g mostly resides. Then

E[T(E9) I X = k,G = g] -T.9(E[O X = k,G = g]) (11)

= T2(E[G IX = k]),

because the two target ability distributions are equal and expectation is a linear operator.

Thus, denoting Ok = El® I X = k],

EIYRk - YFk]-- B(Ok). (12)

Thus (9) follows easily; the n + 1 differences in (8) provide an estimate of B(O) at n + 1
points in the 6-domain. It is intuitive that an estimate of /3u is.

n

1u = Pk(?Rk - PFk) (13)
k=O

where Pk is the proportion (among focal group examinees) attaining X = k. Specifically,
if Jgk is the number of examinees in group g attaining X = k, then Pk = JFk1 _ =o JFk"

In the case where the target ability distributions are the same, then, it is straightfor-

ward that
n

E[U]- I:PkB(Ok) (14)
k=O

9



where Pk = P[X = k I G = F]. Thus the expected value of /lu is a weighted difference

of marginal IRFs, this weighted difference approximating flu, which is a continuously

weighted difference of marginal IRFs. From (14), it follows that E - 0 if flu = 0, and

E~u > 0 if fu > 0. This suggests the standardized test statistic

B = (15)

for testing H, where the denominator is defined as

,50u) ( ( 2(Y k,R)+ 62(Y I k,F) )2 (16)
k=0 JFk

where &2(Y I k,g) is the sample variance of the studied subtest scores of those group g

examinees with valid subtest score k. A full description of the computation of the test

statistic, with contingencies for exclusion of certain valid subtest scores based on inadequate

examinee counts, is presented in the Appendix. B :Z approximately standard normal when

flu = 0 and the target ability distributions are the same, because / is the weighted sum
of approximately normal random variable. yRk - YFk; these are approximauely normal (for

suitable sample sizes) by the central limit theorem (proof of asymptotic normality of B

omitted).

The regression correction fur target ability difference

The presence of a difference in target ability distributions in test bias studies has been

treated in various contexts in the literature. The issue of the linking of metrics across group

in the estimation of IRT item parameters is one such context (see Linn, et al (1981) for an

IRT item bias approach where linking of metrics is crucial). Holland and Thayer (1988)

also deal with this problem by including the single studied item in the matching criterion

score of the Mantel-Haenszel test; they prove that this method completely compensates

for target ability difference (in their context, the distributional difference in the postulated

unidimensional latent trait) when the underlying IRT model is a Rasch model. Millsap

and Meredith (1989) elegantly formulate the problem in terms of a divergence of two

hypotheses (a "conditional on observed score" hypothesis and a "latent trait" hypothesis),

which would occur if target ability difference is present. A "conditional on observed score"

procedure such as (15) in its present form is not adequate to address the separation of

target ability difference from test bias; the presence of target ability difference when in

fact there is no test bias present can statistically inflate B, thereby suggesting test bias

actually is present. It is therefore necessary to formulate a correction for target ability

difference.
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To motivate the proposed correction it is necessary to show that a decomposition of the

differences ?Rk - :Fk into "test bias only" and "target ability difference only" components
is possible. First we note that by similar arguments to those used in deriving (10) and (11),

E[ 9k] T9 (0
9 k), (17)

where O9 k = E I k,g]. The condition E[Y]Rk - Fk] 0 requires 0Rk OFk , as in (11)

where g was removed from the conditioning; but this may not happen if the target ability

distributions are not the same, as Figure 2 suggests. Figure 2, which displays densities

for four distributions, assumes that the distribution of E I F is stochastically smaller than

that of E I R.

place figure 2 about here

Note that the (conditional) distribution of E I k, F is stochastically smaller than that
of 0 I k, R for all k. The standard Bayesian calculation makes this insight rigorous. Thus,

OFk < ORk for all k, and, in the absence of bias, where TR(O) = TF(O) = T(O) for all 0,

EYFk -- T(OF) < T(ORk) -- EYRk

(T(O) is assumed monotone; for mild conditions giving such monotonicity, see Shealy and

Stout (1991)). Thus
n

.Eu ZEpk(T(ORk) - T(OFk)) > 0.
k=O.

In the case where bias is present, we can thus decompose E[U]:

n nl

E[4u] - Pk(TR(GRk) - TF(ORk)) + ZPk(TF(ORk)- TF(OFk))
k=0 k=0 (18)

n n

-ZPkB(ORk) + EPkTF(GO)(ORk -

k=O k=O

where Ok: is between 0Rk and OFk. (TF(O) is assumed differentiable here and the mean

value theorem has been applied.) The first term is due only to test bias; the second is due

only to target ability difference.
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This approximate decomposition argument is the motivation behind the proposed

correction. Our strategy is to adjust PRk YFk to Ypk, P"k such that the inflating effect of

the group differences in target ability is eliminated. The manner this is accomplished is to
construct ?Ak and PA so that they are estimating the studied subtest response functions
TR(G) and TF(O) at approximately the same target ability 9 k defined below (as opposed
to two different ones, as is evident from (17)).

A natural attempt to make adjustments to Y'Rk and YFk is to approximate TR(9 ) and

TF(O) in the neighborhood of 9 Rk and 0Fk by linear functions. If we assume that 9 Rk and
9 Fk are sufficiently close together to do this, TR(&) and TF(9 ) can be linearly interpolated
at ok = (9Rk + 9F):

Tg(Ok) = Tg(0 ,9 ) + mgk(Ok - Ogk) (19)

where

m.qk = Tg(o,k+l) - Tg( 0
9,k-1)

9.g,k+l - O9g,k-1

however, though estimates of T(Ogk) (namely, P'k) are available for all k, estimates for

{9 k : k = 0,... , n} are not. Abilities on the 9-scale are not observable; however, one can

estimate abilities on the scale defined by the valid subtest, namely

v = P()

where P(O) is the average of the valid subtest IRFs I =1 Pi(O). P(G) I G = g is the

true score for a randomly chosen group g examinee, i.e., the valid subtest true score F(E)

for group g. Let

V.(x) = E[P(0) I X = x,G = g], (20)

the (theoretical) regresion of true on observed (here, valid) score. V(x) can be easily

estimated using classical true score theory, assuming that the above regression is linear or
nearly so. The estimation of Vg(x) is deferred to the appendix. Denote this estimator by

At this point it is expedient to describe three latent scales, which must be simulta-

neously considered in order to understand the correction. Figure 3 delineates the three

scales and should be referred to frequently.

12



place figure 3 about here

So, the interpolation of (19) must be transformed so as to use the easily estimable
,(k) instead of 0gk. Through a monotonic transformation P(9), VJ(k) and 0

9 k represent

approximately ("approximately" because P(Vgk) Vg(k) will be demonstrated below)

the same ability on two different latent scales and thus for our purposes interchangeable.
Note that s = Tg(9) defines a monotonic transformation from the fundamental latent
scale to the studied subtest scale, and v = P(9) defines one from the fundamental scale

to the valid subtest scale. Tg(9) must be transformed so we can use the valid subtest
scale as domain, because abilities on this scale can be estimated. Figure 4 illustrates the
appropriate correspondence,

place figure 4 about here

thus defining a new transformation Sg(v) = Tg (P-1 (v)) from valid subtest scale to studied

subtest scale, with domain (c, 1) and range (c, 1) (c > 0 is the guessing parameter, assumed
common for all items in the test).

With this transformation in hand, the correction can be performed in the following

manner. First, by the same arguments as used in (10) and (11), using j5(0) in place of

Tg(O) in the arugments, y (k) - P5(E[e I k,g]) = 15(09k). (21)

So P- (V(k)) -gk by continuity; and

T- Tg(Ogk),
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also by continuity. By definition of Sg(v), this becomes S,(V(k)) - Tg(Ggk), and thus
by (17),

EY 9 k S(V(k)). (22)

Thus Yk is a reasonable estimation of S9 (V(k)) for each k. To transform (19) into
an interpolation involving S9(.), we assume that Sg(v) can be approximated by a linear
function in a small region about V(k), and that VR(k) and VF(k) are close enough to
allow the approximation to be effective. Then, we interpolate SR(VR(k)) and SF(VF(k))

to their respective values at Vk = (VR(k) + VF(k)):

S,(Vk) S,(V(k)) + m*k(Vk - V(k)), (23)

where

m*k= S(Vg(k + 1)) - Sg( V(k - 1))
9k= V(k + 1) -V(k -1)

is the approximate slope of S,(v) in the region of V,(k) and Yk. All of the above terms on
the right hand side of (23) are estimable; using Yik to estimate So(V(k)), we define the
adjusted Y"*k:

Ygk = Ygk + -gk(fVk - V9(k)) (24)

where, recalling that the estimator Vg(x) is given in the Appendix,

Al - g,k+l - Y'g,k-1
Afg = f7g(k + 1)1- 'k-i

and define Vk = (VR(k) + VF(k)). Because the right hand side of equation (24) is a good

estimator of the right hand side of (23), P*?k. is thus a good estimator of Sg(Vk). Finally, *k
must be shown to be a good estimator of T9 (0) at the same 0 for both groups. By definition
of S 9 (v), S9 (Vk) = T(P-(Vk)). If oRk and 9 Fk are sufficiently close together then 5(0)

may be taken to be approximately linear in the neighborhood of ek = (9 Rk + OFk )/2. Thus,
using (21) and assuming approximate linearity of 5 in the neighborhood of Ok,

k = (VR(k) + VF(k))

1 (P(oRk) + 5(oFk))

Thus, by the continuity of P(O),

S-P-(Vk).
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Hence, by the definition of Sg(v)

S(Vk) = T(P D(V)) - T9 (Ok)"

Thus, because has been shown to be a good estimator of Sg(Vk), it is shown that
Y9"*k is a good estimator of T(9 k). Thus, Yk - "h, as desired, is a good estimator of

TR(Ok) - TF(O), i.e., of the difference of the marginal IRFs at the same 0, establishing

the usefulness of the interpolation (19).

(24) is called the regression correction for target ability difference. Thus, with the

correction (24) in place, (13) can be reconstructed, with

n

Pu = -P;k Fk) (25)
k=O

and B defined as in (15). Rejection of the hypothesis of no test bias (H : flu = 0) occurs

when B > z,,, where P[N(0, 1) > zJ = a defines z,,. This procedure will be referred to

as the SIB procedure, "SIB" for simultaneous item bias.

Thus, the contribution to the differences YRk - "Fk due to target ability difference

has been eliminated. It is extremely instructive to note that the correction (24) is the

sample analogue of (23), which is basically the decomposition (19), albeit on a different

latent scale (though the two latent scales, 0 and V, are indistinguishable up to a monotonic
tranformation).

A modification of the basic procedure to achieve better statistical behavior

Redefine Pk to be the proportion of all examinees (focal and reference group) attaining

X = k. That is Pk = (VFk + JRk)/ " =o(JFk + JRk). Substitute -this new P3k into (25)

and (16) to obtain the statistic B of (15). Because of a slightly better adherence in

simulation studies to the nominal level of significance when the hypothesis of no test bias

holds, this new choice of Pk is recommended over the slightly more intuitive choice based

upon focal group examinees alone. The power performance of both versions of B when

test bias was present was very similar. It is upon this version of the SIB statistic that our

simulation studies reported below are based.

SIMULATION STUDY

In order to assess the performance of the procedure in a variety of testing situations,

a moderate-sized (84 simulation cases) simulation study was performed. Three parameter

logistic item parameters actually estimated from two test data sets, an ACT math test

(estimated by Drasgow (1987)) and an ASVAB auto shop test (estimated by Mislevy and

Bock (1984)), are used to specify the IRFs in the IRT model. Univariate and bivariate
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normal ability distributions, appropriately centered relative to the test item parameters

(for the purpose of good measurability of target ability), are used for the focal and reference

groups. Two levels of bias and three levels of target ability difference are simulated; tests
with a singly-based item and with three biased items are used in the simulations. The level

of guessing in the tests is varied. Finally, group size pairs of (3000,3000), (3000, 1000),
and (1500, 1500) for the reference group and focal group examinees respectively are used.

Each simulation model is run 100 times (trials). For a particular simulation model, the

item parameters and the two ability distributions for the two groups are fixed; however,

at each trial, a new set of examinees (ability parameters) is generated from the ability
distributions.

When a single item is to be studied in a simulation,.the AMantel-Haenszel procedure as

modified by Holland and Thayer is run in parallel in order to provide an external reference
to compare to and to compare our procedure with.

Item parameters

Estimated item parameters from the above mentioned tests were used to construct test

models; the ASVAB test length is 25, and the ACT test length is 40. Table 1 gives the sum-

mary statistics for the a's, b's, and c's as estimated by Mislevy and Bock and by Drasgow;
for the actual parameter values, see Mislevy and Bock (1984) and Drasgow (1987).

place table 1 here

The test for each simulation was generated in the following manner. Let N denote

test length and nb the number of items to be studied for possible bias. First, nb was chosen
to be either 1 or 3. There were two cases to consider.

1. No bias: unidimensional items are used for the entire test.

2. Bias: unidimensional items are used in the valid subtest, and 2-dimensional items are

used in the studied subtest.
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place table 2 about here

In the first case, nb of the N items were chosen randomly to be the studied ones, and

the remainder were used as the valid subtest. In the second case, n = N - nb items were

chosen at random from either the ASVAB or the ACT test to be the valid subtest, and

the 2-dimensional studied item parameters were chosen according to Table 2. Note that

the studied item guessing parameters are a function of the average and standard de',iation

of the guessing parameters on the ASVAB -6i ACTTests; the studied item a's and b's are

the same for both tests.

The IRFs are for case 1 (no bias)

P(O) = Ci +- ci) i = 1,... ,N, (26)Pi(9)= c +1 + exp(-1.7aie(O - hiO)

where aie and big are the target discrimination and difficulty for item i. In case 2 (bias),

items 1 to n were of the form (26), and items n + 1 to N (studied items) had IRFs

(1 -ci)Pi(0,17) = Ci + exp(-1.7(aie(O - bie) + ai,(O - bi,,))) i = n ... , N. (27)

The final factor in determining the item parameters was whether or not to include guessing;

that is, whether to assume 2PL or 3PL modeling. The presence of guessing is thought

to influence the performance of the procedure. Thus, in some simulation models, the

estimated ci's from the literature were used in conjunction with (26) and (27); in others,

all ci's were set to 0 producing a 2PL model. A detailed description of the experimental

design of the simulations follows.

Ability distributions

Specifying the ability distributions involves choosing the five parameters determining

the bivariate normal distributions for each group in such a way to meet the following goals:

1. Introduce a specified amount of group difference between target ability distributions.

2. Require the test to measure the target ability well, as would be true for any "good"

test.

3. Introduce a specified amount of potential for bias into the distributions.

4. In the case of 2-dimensional studied items (bias case), require that examinee nuisance

abilities be influential in determining the response to the item, e.g., that target and

reference group examinees have moderate nuisance abilities.
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Each goal is elaborated upon separately below. The bivariate distributions for group g

(g = R or F) is denoted

(7g'2) P89 P] (28)

where p = Corr((, 17 1 G = g) is taken to be the same for both groups (p taken to be
different across group tends to introduce bidirectional bias, where marginal IRFs in 0 for
the two groups cross; see Shealy (1989)). Note that a2(o I g) and a 2(77 I g) are taken to

be 1 in our study.

Goal 1. We first define target ability difference. We need some notation; let aR =

the proportion of the entire (conceptual) population of examinees who are referece group
members, and aF = 1 - aR be the corresponding proportion for the focal group. (Note:

as JR and JF both increase to co, conceptually, j + a R and -- aF. Here J

denotes the number of sampled Group g examinees.) Define

dT= POR - OF (29)
o'sp

to be the target ability difference between the focal and reference groups, where

OOp = CRa0( IR) + CFai( IF). (30)

Note that when (28) holds aop = 1 and thus that dT = PIR - I-eF dT is a quantity

specified in the simulations.

Goal 2. The criterion used to ensure good measurability of 0 by the test, is that the

average difficulty (b) of the valid subtest should be close to the average target ability over
the pooled groups. Specifically, ILeR and /OF are chosen so that

= E[O] -eRI'e + aF 18F. (31)

is taken from Table 1. PIR and YOR are completely determined by specification of dT

and (31).

Goal 3. We use a more restrictive version of Definition 1 to define potential for bias: set

C#(O) = E[77 1e = 0,G=,R]- E[771 =0,G= F]. (32)

C() > 0 is defined to be the potential for bias against the focal group. When (28) holds,

(32) becomes

C#(O) = C6 = I R - PI'GR - (ILF - PI'OF) (33)

= (1,R - A/F) - P(XOR - YOF) = (/-,R - 1 ,F) - pdT,
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0 dropping out because the ability correlation (p) is equal for both groups. Note that

because C,0 is constant for all 9, unidirectional bias is being introduced. For a specified

amount of C,, 1pt R and PYF are determined partially. The reader should note that potential

for bias can hold even though P,R = A,F unless POF = POR.

Goal 4. The criterion used to ensure nuisance determinant influence is the following. The

nuisance difficulties for all studied items were chosen to be 0. For an arbitrarily chosen

target ability (say 0 = 0) we thus want the average nuisance ability to be near 0 as well.

Thus we choose

E[ I E = o,G = R] = -E[77I = 0,G = F] (34)

i.e., the conditional nuisance expectation.at -E= 0 is..to.he.centered around the average

studied item nuisance difficulty of 0, for the reference and focal groups. Our intent in this

study was to introduce bias against the focal group, so E[-7 10, R] > 0 in (34) and thus we

get

0 < 12,7R - PPOR = -(YnF - PAeF); (35)

this will specify InR and P,7F, along with specification of Co in (33).

There is an additional issue here: how large should C# be chosen to introduce a
"moderate" or "severe" amount of bias into the 2-dimensonal studied items of Table 2?

This is treated below, in the experimental design of the study.

Goals 1-4 now completely specify (28): PeR, PF, y,?R, and P,,F can be found by

3lving (29), (31), (33), and (35) simultaneously for them. p, a2 (9 I g), and a2(7 I g) are

chosen: p = .5, and all a's are 1.

Choice of C

The amount of potential for bias Cp in each simulation model was chosen so that the

actual level of bias Ru produced was such that the power behavior of the statistic can be

we]l assessed for the given examinee sample sizes, valid subtest used (recall Table 1), and

biased items used (recall Table 2). These fu values (rounded to two significant figures)

are shown in Table 3. The governing equations determining Cf5 from Pu were

fv=  (T (9)
flu =J R) - TF())fF(9)d9

where
N

T9(9)= E[P(e,7) 1 = 0,G = g] (36)
i=n+1

with P(9, .j) defined in (27) and the item parameters in (27) defined in Table 2, and the
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place table 3 about here

parameters of the (0, 17) distribution determined from (29), (31), (33), and (35). One

standard often used to interpret from a practitioner's viewpoint the magnitude of the bias

is that the bias is "moderate" if 0.5 < AAH < 1 while it is "large" if AMH >_ 1, where

AMH is the theoretical index based on use of the Mantel-Haenszel log odds ratio proposed

by Holland and Thayer (1988). The rationale for AM,, and 1u are different, but for nb 1

and unidirectional bias, they tend to be highly-correlated and are crudely related by

l U -AMH/1O.

Thus, roughly, 0.05 < Pu < 0.1 would constitute moderate bias while flu > 0.1 would

constitute large bias. Thus in the nb = 1 case, referring to Table 4, the amount of bias

being simulated is actually either (low) moderate or small. Examination of (36) shows that

fu is a measure of how much lower the probability of getting the biased item right is for

an average focal group examinee as compared with an average reference group examinee

of the same target ability. Thus Ou has a natural and useful empirical interpretation. In

our context, AMH, by contrast, is a measure of horizontal distance between TR(O) and

TF(G) at y = + (i.e., the value of Tj 1((1 + 6)/2) - T j((1 + Z)/2)), where Z is defined

in Table 1.

place table 4 about here

Experimental design

The design is as follows. For the case of no test bias (C6 = 0), for each test type
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(ASVAB Auto Shop or ACT Math) the following simulations are done:

.0 xJR/JF 3000/1000

nb{3 xdT 0.0 3000/1000
3i1,0 1500/1500

D { guessing I
no guessing J'

Here "guessing" means that the estimated ACT and ASVAB guessing parameters are used

in the model and "no guessing" means that all cs are set to zero; that is, 2PL modeling

is used. Also, "D" means that this guessing "factor" is randomly assigned within the

36 levels produced by crossing the other factors.

For the case of test bias (C6 > 3) the following simulation are done for each test type:

xd- oo oo
3 r  {xI= XJR/JF= 3000/3000

'Ib 1 xd 0.0 xCA 5  1 ,IrF 3000/10003J0.5 1.0 1500/1500

D { guessing
no guessing}

For nb = 1, the nuisance discrimination aN, of the studied item is .8; for nb = 3, the

nuisance discrimination of each of the 3 studied items is .4. These discriminations were

chosen so that the power of the procedure could be well assessed (i.e., so that it would not

be too close to 1). It is informative to note in passing that the power of the procedure

is expected to be greater when nb is increased from 1 to 3 unless each item individually

displays less bias in the nb = 3 case. This is why the ai,1 (i = N - 2, N - 1, N) was chosen

to be .4 in the nb = 3 case, of that used in the nb =1 case.

There are therefore 48 simulation models that incorporate bias. Thus, a total of

84 simulation models were used in the simulation study.

RESULTS OF THE SIMULATION STUDY

The results of the simulation stidy are given in Tables 5-8 and 9-12, with Tables 5-8

summarizing the no test bias simulations and Tables 9-12 summarizing the simulations

having test bias present. The c column indicates whether the model has guessing present

or not. In all nb = 1 cases, the Mantel-Haenszel rejection rate for the hypothesis of no item

bias (based on 100 trials) is reported in the MH column. In all cases the SIB rejection rate

is reported in the SIB column. In all cases where test bias is present (Tables 9-12), the

6' column presents the amount of potential for bias present (recall (33)); the flu column

presents our index of the amount of bias present against the focal group in the model
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(recall (6)); /PL is the average of the estimates /3  of Pu over the 100 trials; the AMH

column presents the amount of bias present against the focal group in the model from the

Mantel-Haenszel perspective.
Tables 5-8 indicate that both the SIB statistic and the MH statistic display reasonable

adherence to the nominal level of significance of 0.05. There appear to be situations of
no bias, which have a target ability difference and which depart from the Rasch model,

where the Mantel-Haenszel procedure displays inflated Type 1 error. (See Zwick (1990),
for a discussion of this problem and an illustrative example.) There is evidence that
in such situations (Shealy (1989)), the SIB statistic adheres closely to the nominal level
of significance. On the other hand there are likely portions of the "parameter space"

of realistic IRT models where our linear regression- correction is stressed and hence the
MH would likely display better Type 1 error performance. More study is required before
it can be claimed that either MH or SIB displays superior Type 1 error performance.
The striking fact is that both procedures seem to be quite robust against the inflating
Type 1 error effect of differing target ability distributions. In this regard, dT = 1 from the

practitioner's perspective is certainly a large amount of target ability difference.
Tables 9 and 11 indicate that both the SIB statistic and the MH statistic are quite

powerful against moderate amounts of bias and fairly powerful against small amounts of
bias in a single biased item. Untabulated simulation studies for larger amounts of bias

produced rejection rates of essentially unity for both the SIB and MH procedures.
Tables 10 and 12 indicate that the SIB procedure is quite powerful against moderate

amounts of bias resulting from several (3 here) items producing bias in the same direction.
The reader should recall that the amount of bias/item was lowered for the n b = 3 case by
reducing the discrimination in the nuisance dimension from aN = 0.8 to a,1i = 0.4 for the
studied items. In both the nb = 1 and nb = 3 cases, the potential for bias as measured

by C# was kept the same (C = 0.2 or 0.3). These two table show, as claimed, that the
SIB procedure can successfully detect simultaneous item bias, even if the amount of bias

present per item is small.
Tables 9 and 11 show, for the particular bias models of the simulation study, that SIB

is somewhat more powerful than MH, averaging 0.07 higher for those models for which
rejection rates are < 0.9. We do not know whether this greater SIB power generalizes to
other models of bias.

Tables 9-12 provide evidence about the ability of / to estimate flu, our measure of
the amount of bias present. For each case flu is an indicator of the amount of statistical

bias one might expect in using IU. Clearly statistical bias of roughly +0.01 is present.

The estimated standard errors for /l are not recorded, but averaged (roughly) about 1/3
of flu. Thus if flu = 0.05 there is likely a bias of 0.01 and a standard error of 0.017. Thus,

crudely, a 95% confidence interval (if asymptotic normality is a good approximation) would
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be given by 0.04 - 0.028. Here 0.04 = 0.05 - 0.01 is the correction for statistical bias. It

would seem that /u provides a useful empirical index of the amount of bias present in a

statistical subtest of items; more work is planned in studying its theoretical and empirical

properties.

SUMMARY AND CONCLUSIONS

The SIB procedure was designed to test for unidirectional test bias residing in one or

more items, using the conception that test bias is incipient within the two groups' ability
distributions (in terms of a difference in conditional nuisance ability distributions). By

means of the regression correction presented here, the inflation of the SIB test statistic

due to target ability difference (one group having a stochastically larger distribution of G)
is extracted. This correction represents a conceptual link between conditional-on-observed-

score methods and IRT-based methods, just as the practice of including the studied item

in the comparable examinee criterion in the Mantel-Haenszel procedure of Holland and

Thayer (19S8) does. The correction adjusts the studied subtest scores for the two groups so
that they are now estimates of the same latent IRT ability in the case of no test bias, even if

group target abilities exist. It is useful to note that the adjustment, although conceptually
based upon multidimensional IRT modeling, is in fact computed using a classical approach

and hence does not depend on IR." ability or item parameter estimation.
A moderate (84 models) simulation study shows that both MH and SIB display good

adherence to the nominal level of significance, even for large (dT = 1) target ability differ-

ences. In the case of a single biased item, both MH and SIB display good power with SIB

displaying slightly higher power. As designed, the SIB statistic displays good power in the

case of several biased items (3 here), even when the amount of bias/item is fairly small.
A large scale simulation study is in progress with the goal of obtaining a better un-

derstanding of the performance characteristics of both the SIB and the MH statistics with

particular emphasis on investigation of statistical power and adherence to the nominal

level of significance. Based upon the completed portion of this simulation study reported

herein, we would recommend that practitioners use the SIB and MH statistics simultane-

ously. Both are extremely easy to compute and for moderate sized data sets run quickly on

a typical PC configuration. Carefully checked code with a user oriented driver is available

from the authors for running both the SIB and MH statistics on real data sets and also
for doing simulation studies cf performance.
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APPENDIX

1. Derivation of f7,(k), the estimated regression of true on observed valid

subtest score, for k = 0, ... , n.

Recall that V(k) = E[P(O) I k,g] needs to be estimated in order for S.(Vk) of (23)

to be estimated. Suppressing g for simplicity, we need to estimate V(k) at k = 0,1,... ,n.

Although V(k) is not necessarily linear in k (see Shealy (1989), p. 87ff for a discussion),

as an approximation we assume nV(k) is linear in k; i.e.,

nV(k) = a + ,3k.

To estimate V(k), we consider the true score model for the valid subtest score X:

X =T+e (Al)

where

E(e) = 0, cov(T, e) = 0 (A2)

is assumed and the true score T has the latent variable representation T = nP(0). Thus

nV(k) = E[T I k].

Standard regression theory for E(T I k) yields

V(k) = I (ET+ PXTaT(k -EX)) (A3)
n ox

But, for the true score model given by (Al) and (A2),

PXTT , 2(e) (A4)
ax a2 (X)'

is well known (see page 61 of Lord and Novick (1968). Using (Al) and (A2), ET = EX

holds. Thus, by (A3) and (A4),

V(k) = n [EX + (n 02 (X) ) (k - a ( ) EX)] (A5)

holds.

Clearly EX - E[X I g] can be estimated by the average valid subtest score X

of all Group g examinees taking the test. Thus it remains to estimate a 2(e)/o 2 (X).
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a 2(X) = a2(X I g) can clearly be estimated by the usual sample variance estimate of all

Group g examinees taking the tcst

&2XIgdef 1( L)=o (-1) Z(xg ... )2, (A)
j=1

where J. denotes the number of Group g examinees taking the test and Xgj is the valid
subtest number correct score of the jth such Group g examinee. It remains to estimate

a 2(e); denote this estimation by &2(e). Then the desired estimation of a 2 (e)/a 2 (X) will be

given by 6 2 (e)/& 2 (X). A standard conditioning formula yields, indexing the valid subtest

items by i = 1, 2,... , n, and setting X. = X [ g, Og = e I g as a reminder that sampling

here is from Group g only,

a2 (X I g) = a2(X,) = a2(E[Xg I0j) + E[a2(X 9 10)]
n

= U2 (nP(Og)) + Z E[Pi(09 )(1 - Pj(Og))], (A7)

using the standard item response theory assumption of local independence of items, given ®.

Also, by (A2) it is trivial that

"2 (X I g) = a 2(nP(®) I g) + a2(e I g).

Thus, by (A7),

" 2(e I g) = E[Pi(eG)(1 - Pipe))].
i=1

This suggests
n

&2(e I g) = C rig(i - Oig), (A8)

where U"i is the proportion correct for Group g examinees for valid subtest item i. Thus,

using (A5), we will estimate V(k) by
f/,(k) = 1 [9,9 + '1 - 6 (X ))( -9) Ma2xl))(k -p9g] "  (A9)

2. The complete procedure to detect test bias, using the proposed regres-

sion correction.

The SIB procedure in its entirety is presented here. First we set some basic notation.

Group g (g = R or F) has J. examinees taking the test of N items. The response to item i

of the jth group g examinee is Ugij. The subtest scores are

n N

Xgj = E Uij (valid subtest score), Yj = E Ugij (studied subtest score).
i=1i=n+l
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The classical group item difficulties are U9i = (1/Jg) Fjll Ugij. Let I j) denote summa-

tion over those group g examinees j with k correct on the valid subtest.

1. Compute J.k, the number of group g examinees with k correct on the valid subtest.

2. Compute
1 (k)

JS k - 1 3..j()(

If Jgk = 0, set Yk = 0; if Jgk 5 1, set S2 =0. is the sample average studied

subtest score of group g examinees attaining X. = k, and Shk is the sample variance.3. Compute/9(k) = Jgk/ J9 , for both groups and all k. .39 (k) is the estimate of the his-

togram of X I G = g. Then compute P;(k), the MLE of the unimodalized histogram

of X I G = g, over the class of all possible unimodal MLE of the histograms with 72 + 1

possible values (X I G = g is assumed to have a unimodal distribution and hence its

estimate {P1,(k), k > 0} should also be unimodal). For details of this procedure, using

the up-and-down-blocks algorithm, see Barlow et al. (1972; pp. 72-73; pp. 223-231).

4. Set 1(k) = 1 for all k unless either

(a) k = 0 or n,

(b) SRk = 0 or Sh = 0,
(c) JRP*(k) < r JF.1(k)< Jmi. where Jm . is set by user, usually around 30,

or

(d) k < ncu, where cu  0 is the user-specified global guessing parameter for the

test. (It is assumed that there is a relatively constant level of guessing across

item, and that there is at least partial knowledge of this guessing value.)

1(k), k = 0,... ,n, is the examinee inclusion indicator; it is 1 if examinees with

X = k are to have their responses included in the test statistic. (a) excludes the two

extreme valid subtest scores because of their poor estimation of target ability. The

(b) exclusion is obvious. The (c) exclusion is done to assure that each valid subtest

score category has enough examinees to make YRk and YFk approximately normal; the

unimodal mass function is used so that only extreme valid subtest score catagories are

excluded. As for (d), all valid scores below that expected by guessing are excluded.

5. Compute the regression of true score on valid subtest score:

(a) C.*i = . If the result is < 0, set it to 0 (adjustment for guessing).
(b) k9  --L F, IXj

(c) 2(X I g) = j -9 .q -

(d) &2(e I g)= E =l U,;i(1 - U;i)

(e) b = P(ei &- )
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(f) f1(k)= -(kg + bg(k -. X,)) for both g and k= 0,.. ,n.
6. Make the regression correction:

(a) k, =min{k : I(k) = 1}, k, = max{k : I(k) =11.
(b) f'k = !(R(k) + F(k)), for k, < k < kr.
(c) For kt < k < kr, compute

figk Kg,k+l - Y~-
,(k + 1)- V(k-i)

Then compute " = g + M9,( 1- - ,(k)).
(d) For k = kt and k = kr, compute Yg'k in.the.following.way.

i. Define

(1 (- C) 9,k+l + Ceyg if Vg (k) <<rg(k+ 1)
AM (') = £ if v < fV(0)

Y n if v >

and

Vg 1-V1 -. (k)

Sg(v) is the linear interpolation of {g,.-. ig}"

ii. Compute

for k = k, and k = k,..

7. Compute the bias statistic.
(a) Compute J,- E"Z I(k)Jgk, the number of included group g examinees
(b) Compute

Bk 7 (Y~k - YA)/(k)

sk=O ( + Fk)I(k))

(c) Reject H : flu = 0 in favor of /u > 0 at level a if B > z., where P[N(0, 1) >
Za] = a defines za.
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Table 1: Means and sds for the ASBAB and ACT item parameters used in the study.

Test a a b ab Z a, N

ASVAB auto/shop 1.22 0.7 0.09 0.72 0.20 0.06 25
ACT math 1.09 0.35 0.5 0.61 0.14 0.04 40

Table 2: Item parameters for 2-dimensional studied in the bias case.

nb Item No. ajD big ar, bi,, ci
1 N 1.0 0.0 0.8 0.0 a3 N-2 0.6 .0.3 0. 4 0.0 a-

-i 0.8 0.0 0.4 0.0 Z
.N1.0 10.3 0. 4 '0. -7+l -

Table 3: Equivalence table for bias potential and actual test bias.

nb CO5 a,, flu
1 0.0 - 0
1 0.2 0.8 0.03
1 0.3 0.8 0.05
3 0.0 - 0
3 0.2 0.4 0.06
3 0.3 0.4 0.09

Table 4: Equivalence of Alf and flu when nb = 1, using item parameters of Table 2.

Q8 c's used Ajfjj 8U
0.0 - 0 0
0.2 0.0 .27 0.034
0.2 actual c's .27 0.026
0.3 0.0 .40 0.051
0.3 actual c's .39 0.039



Table 5: No bias, ACT, nr = 1, a = 0.05.

JF JR c dT MH SIB
1500 1500 0 .0 .03 .07
1000 3000 0 .0 .00 .02
3000 3000 c .0 .09 .06
1500 1500 0 .5 .04 .04
1000 3000 c .5 .10 .10
3000 3000 c .5 .05 .03
1500 1500 c 1.0 .02 .05
1000 3000 c 1.0 .05 .10
3000 3000 0 1.0 .06 .09

Table 6: No bias, ACT, nb = 3, a = 0.05.

JF JR c dT SIB
1500 1500 0 .0 .05
1000 3000 0 .0 .02
3000 3000 c .0 .07
1500 1500 0 .5 .08
1000 3000 c .5 .07
3000 3000 0 .5 .05
1500 1500 c 1.0 .06
1000 3000 c 1.0 .16
3000 3000 0 1.0 .09

Table 7: No bias, ASVAB, nb = 1, a = 0.05.

JF JR c dT MH SIB
1500 1500 0 .0 .08 .07
1000 3000 0 .0 .04 .04
3000 3000 c .0 .06 .06
1500 1500 0 .5 .13 .14
1000 3000 c .5 .04 .03
3000 3000 c .5 .05 .04
1500 1500 c 1.0 .07 .02

1000 3000 c 1.0 .15 .09
3000 3000 0 1.0 .11 .01



Table S: No bias, ASVAB, nb = 3, c = 0.05.

JF JR c d, SIB
1500 1500 0 .0 .07
1000 3000 0 .0 OT0
3000 3000 c .0 .03
1500 1500 0 .5 .07
100,0 3000 c .5 .06
3000 3000 0 .5 .05
1500 1500 c 1.0 .15
1000 3000 c 1.0 .07
33000 000 0 1.0 .04

Table 9: Bias, a, = 0.8, ACT, nb= I, a = 0.05.

JF JR c dT CO gu l A M 1H SIB
1500 1500 c 0 .2 .026 .032 .27 .46 .58
1000 3000 0 0 .2 .032 .042 .27 .64 .70
3000 3000 0 0 .2 .032 .035 .27 .91 .95
1500 1500 c .5 .2 .029 .035 .27 .51 .60
1000 3000 0 .5 .2 .034 .044 .27 .65 .72
3000 3000 0 .5 ..2 .034 .038 .27 .91 .94
1500 1500 0 0 :3 .048 .052 .40 .84 .90
1000 3000 c 0 .3 .042 .053 .40 .7 .91
3000 3000 c 0 .3 .042 .045 .40 .97 1.00
1500 1500 0 .5 .3 .050 .047 .40 .99 .99
1000 3000 c .5 .3 .042 .054 .40 .80 .84
33000 000 c .3 .042 .064 .40 .91 .92

Table 10: Bias, a,, = 0.4, ACT, nb= 3, c = 0.05.

JF JR c dT Co gu K SIB
1500 1500 0 0 .2 .063 .069 .70
1000 3000 c 0 .2 .053 .67 .68

3000 3000 c 0 .2 .053 .053 .80
1500 1500 c .5 .2 .055 .071 .60
1000 3000 0 .5 .2 .065 .083 .72
3000 3000 0 .5 .2 .065 .074 .96
1500 1500 0 0 .3 .093 .095 .91
1000 3000 0 0 .3 .093 .11 .89
3000 3000 c 0 .3 .080 .0S1 .99
1500 1500 0 .5 .3 .097 .12 .97
1000 3000 c .5 .. 08431 .89
3000 3000 c .5 .3 083 19 .0 0



Table 11: Bias, a. = 0.8, ASVAB, nb = 1, a = 0.05.

JF JR c d, Co fu A= Af MH SIB
1500 1500 c 0 .2 .026 .029 .27 .42 .50
1000 3000 0 0 .2 .034 .039 .27 .63 .79
3000 3000 0 0 .2 .034 .034 .27 .90 .95
1500 1500 c .5 .2 .027 .035 .27 .63 .66
1000 3000 0 .5 .2 .034 .038 .27 .63 .70
3000 3000 0 .5 .2 .034 .036 .27 .89 .91
1500 1500 0 0 .3 .051 .052 .40 .85 .92
1000 3000 c 0 .3 .042 .044 .40 .77 .84
3000 3000 c 0 .3 .042 .046 .40 .99 .99
1500 1500 0 .5 .3 .051 .057 .40 .91 .93
1000 3000 c .5 .3 .038 .048 .40 .77.. .82
3000 3000 c .5 .3 .039 .045 .40 .94 .97

Table 12: Bias, a. =0.4, ASVAB, b=3, a = 0.05.

JF JR c dr Pu SIB
1500 1500 0 0 .2 .065 .067 .70
1000 3000 c 0 .2 .052 .056 .53
3000 3000 c 0 .2 .052 .053 .85
1500 1500 c .5 .2 .052 .068 .63
1000 3000 0 .5 .2 .064 .083 .73
3000 3000 0 .5 .2 .064 .072 .92
1500 1500 0 0 .3 .098 .10 .94
1000 3000 0 0 .3 .097 .10 .97
3000 3000 c 0 .3 .079 .079 .98
1500 1500 0 .5 .3 .097 .011 .98
1000 3000 c .5 .3 .076 .098 .87
3000 3000 c .5 3 .078 .090 .99
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