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Summary

The goals of the Air Force sponsored University Research Initiative at Cornell were to
examine the nonlinear dynamics and control of flexible structures, some of which might be
used for space applications. This project was a collaborative one involving structural, electrical
and mechanical engineers and resulted in nine doctoral dissertations and two masters theses
wholly or partially supported by this grant. Because of the space application focus of the
research, a major part of the research was on truss/frame type structures and five different truss
structures from three to ten meters in size were constructed, two with active controls.
However, nonlinear dynamics of continuous beam type structures were also investigated.

On the dynamics side, one of the principal themes was to explore what types of
nonlinearities would result in chaotic and unpredictable vibrations. Loose joints in truss
structures, friction, buckling and geometric nonlinearities were all found to lead to chaotic
motions under certain periodic forcing conditions. Several modern tools of nonlinear
mathematics were used in the experimental investigation including Poincaré maps, fractal
dimensions, bifurcation analysis and probability distribution functions. Given the
pervasiveness of the chaotic phenomena, it was concluded that current methods of numerical
structural analysis would not uncover these unpredictable regions.

On the control side optimal placement of actuators and sensors for space truss active
vibration suppression was investigated. A common theme in these investigations was the
concept of self-equilibrating non-local control systems for space structures. In one case a cable
control actuator was developed for a ten-meter long truss. With a single actuator, the control
force was distributed along the truss and was able to suppress the five lowest modes of
vibration. In another experimental-theoretical study, vibrations of a six-meter truss was
achieved with 10-15% critical damping using new magnetic, linear motor actuators with a high
force/weight ratio.

On the theoretical side new methods were developed for structural control using
techniques for simulated annealing for actuator placement, differential dynamic pro-gramming
for optimal control, a method of analysis for nonlinear random vibrations of pin-jointed
trusses, group theoretic methods for vibration analysis and new models to analyze chaotic
dynamics in nonlinear structures with large deformations and friction forces.

Finally, a major numerical effort resulted in new codes to predict large motions of
structures under active control using parallel processing algorithms. A listing of specific
accomplishments is given below. Selected projects are described in more detail. Copies of
reports and papers can be obtained upon request.
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URI Accomplishments
*Nonlinear Dynamics and Chaos in Flexible Structures

The effect of several different types of nonlinearities on the dynamics of flexible
structures has been investigated including,

large elastic deformation

loose joints in Truss-frame structures
friction in structures and machines
buckling in truss structures

The general conclusion from these studies is that strong nonlinearities in structures
can lead to complicated dynamical motions at the least and complex, even chaotic
and unpredictable motions at worse.

+Chaotic vibrations of thin cantilevered beams under bending and torsional motions
(Cusumano & Moon).
The major result of this work was the discovery of unstable out of plane
motions under in-plane bending excitation. Both experimental and
analytical results show that these out of plane bending-torsion motions
become chaotic and unpredictable near all the natural frequencies and sums
and differences of natural frequencies. Experimental tools such as fractal
dimension algorithms were developed in this work which has been
subsequently used in other experiments.

*Chaotic vibrations of truss structures with loose joints( G.-X. Li & Moon).
In this experimental and numerical study a 4-meter truss was constructed
with pin joints. The principal result is that small play in the joints can lead
to chaotic dynamics of the truss even for small excitation. However, a
prestress in the truss using a tension cable was shown to delay the onset of
chaotic vibration.

*Chaotic dynamics due to friction (Feeny &Moon).

Joints in truss structures often have dry friction nonlinearities. Also, dry
friction plays a role in turbine blade vibrations. In this study the qualitative
dynamics of a dry friction oscillator were explored using experiments,
numerical simulation and analysis. This first of its kind study gives a
complete picture of the strange attractors the results from the chaotic
behavior. New techniques using symbol dynamics were developed in the
thesis as well as a new method of measure friction properties of structural
joints.

*Chaotic dynamics of a space truss with a buckled strutt (Davies & Moon).
In this experimental and analytical study, the dynamics of a 4-meter space
truss with one bending-weak longeron strutt was studied under periodic
excitation. The results showed period doubling behavior leading to chaotic
fractal looking Poincaré maps when the weak strutt began to buckle. These
results are the first of its kind for nonlinear structural dynamics.




eActive Vibration Damping using Magnetic Actuators for Truss Structures (Chen & Moon)
In this experimental and analytical study, a six-meter truss was built with
new linear motor magnetic actuators with high force/weight ratio. The
forces were transmitted across several bays of the truss using a new link
mechanism to achieve nonlocal force control. Damping ratios of 10-15%
were obtained using co-located feedback for vibration level up to 1 cm
amplitude.

*Group Theory Methods for Vibration Analysis of Space Structures (Healey & Treacy).
*Buckling Dynamics in Space Structures (Mukherjee & Pratap).

Design and construction of a 10-meter, flexible truss for current and future testing of 2D
and 3D controlled and uncontrolled dynamic behavior.

+Preliminary tests, 2D prototype, open-loop control derived from DDP (Prof. Gergely)
+Design of full system (Professors Gergely, Abel, Thorp, and Shoemaker)
«Calculation of optimal locations and gains for tendon-control system (Prof. Thorp)

«Computer simulation for design of structure and control system, and for analysis of
robustness of control (Prof. Abel)

«Initial testing with closed-loop tendon control system (Prof. Gergely)

sDevelopment and application of computer simulations for nonlinear dynamics of controlled and
uncontrolled space structures (Prof. Abel)

3D nonlinear simulations with interactive computer graphics

Parallel processing (coarse-grained) algorithms and implementation for nonlinear
structural dynamics

-Modclling of open-loop, constant-feedback gain, and collocated velocity feedback
controls.

«Comparison with experiments for verification
Effects of nonlinearities on nominally linear dynamic simulations
sStudies of sensitivity of controls to structural imperfections
*Control Theory and Methods
*Optimal location of controllers by simulated annealing (Professors Chiang and Thorp)
*Optimal location of tendon control system by dynamic programming (Professor Thorp)

*Extension of differential dynamic programming (DDP) to optimal control of nonlinear
structural control behavior (Professor Shoemaker)

*Improvements in the convergence and efficiency of DDP for large-scale nonlinear
dynamic systems (Prof. Shoemaker)




*Effects of nonlinearities on performance and stability of controls derived from linear
theories (Professors Thorp and Chiang)

ePartial eigenstructure assignment for modal control of very large space structures
(Professors Thorp and Chiang)

*Nonlinear random vibration of pin-jointed trusses with imperfections (Prof. Grigoriu)
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Project Summary:

The results of an experimental and theoretical investigation of the dynamics of a thin elastic
rod are presented. Regular, planar motions of the rod are observed to become unstable in
wedge-shaped regions of the forcing frequency- forcing amplitude parameter plane. Inside
of these wedges, motions are nonplanar and generally chaotic. Fractal dimension
calculations from experimental data indicate that the dynamics of the rod may be modelled
by between two and six degrees of freedom. A family of asymmetric bending-torsion
nonlinear modes are discovered experimentally, and their frequency-amplitude
characteristic is obtained. A two degree-of-freedom system is derived by starting with a
geometrically exact linearly elastic rod theory and projecting onto the first bending and
torsional modes. Numerical simulations indicate that this two-mode model exhibits much
of the behavior observed experimentally.

Introduction
In this paper. the results of an experimental and theoretical study of the dynamics of
a thin. cantilevered elastic rod are presented. A more detailed discussion, along with a

complete bibliography, can be found in Cusumano [1], as well as in a forthcoming paper

by the authors.

The study of elastic rods is an old one. In fact, we will often refer to the elastic rod
under consideration as “the elastica™ in reference to the name given the static problem by
Euler. While the study of the dynamics of the elastica has a long history, the majority of
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work done has dealt with small, linear vibrations. Space does not permit a complete re-
view of the literature here, but a bibliography of works involving the nonlinear vibrations
of beams can be found in the survey paper by Sathyamoorthy [2]. Of particular relevance
to this study is the work of Crespo da Silva and Glynn (3.4}, who used perturbation meth-
ods to show that planar motions of a fixed-free beam can lose stability. However. they
neglected torsional inertia and assumed nearly equal bending rigidities, which is not the

case here.

Experimental Observations

The elastica was clamped at the support end and oriented so that its undeformed neutral
axis was vertical (see Fig. 1). The specimen studied was made of carbon steel. with over-
all dimensions of 28.8cm x 1.27cm x .21lmm. The support of the rod was harmonically
displaced by means of an electro-mechanical shaker. The axis of displacement was aligned
with the lateral axis of symmetry of the rod so that one would expect motions to remain
in the x-y plane. Indeed, stable motions are observed in which the response of the rod is
planar and regular (i.e. either periodic or quasiperiodic). However experiments showed
that the planar motions become unstable in certain regions of the forcing frequency, fore-
ing amplitude plane. The stability diagram of Fig. 2 shows a series of wedge-shaped
regimes, each with its apex at a resonance of the system. In the diagram. the f;, with
t = 2,3,4.3, are the second through the 5th in-plane bending natural frequencies. and
f+ is the first torsional natural frequency. Resonances occur at all in-plane natural fre-
quencies. Combination resonances are present at frequencies equal to f; + f3 and f, — f;.

Another resonance at f* = 92Hz is not readily identifiable as a combination resonance.

Inside of the regions of planar instability, motions were. in general. chaotic (the response
was characterized by a broad-band. continuous power spectrum). Chaotic. nonplanar
motions of the thin elastica exhibit dynamic two-well behavior: during excursions out of
the x-y plane, the rod stays trapped away from the x-z plane. It should not be inferred
that chaotic responses exist at all points inside of the nonplanar regions: in one instance.

an asymmetric. period-two response was discovered.

A previously unobserved family of asymmetric bending-torsion nonlinear modes (periodic
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motions in the conservative system which do not pass through the equilibrium configura-
tion of the rod) were found. These solutions pass back and forth through the x-y plane
while the rod stays bent away from the x-z plane. The weak damping in the system
allowed the frequency-amplitude characteristic for the nonlinear modes to be obtained by
estimating the instantaneous frequency of a transient torsional strain signal and plotting
the result against the estimated instantaneous torsional strain amplitude (see Fig. 3).
The result shows that the frequency of vibration of the nonlinear modes is a decreasing
function of their amplitudes. Spectral analysis results taken just after the loss of planar
stability near all resonances are qualitatively similar in shape, and an “energy cascading’
phenomenon is apparent: most of the power in chaotic tip displacement signals (obtained
using an optical edge tracking system) lies well below the driving frequencies, lying in-

stead in low frequency first bending and nonlinear bending-torsion modes.

al Dj si al
The fra.ctﬂ dimensions of attracting sets in different resonant wedges were estimated
directly from experimentally-obtained time series using a numerical code based on the
correlation dimension method of Grassberger and Proccacia [5]. A key element of the
algorithm is the reconstruction of the actual phase-space trajectories from scalar data
by means of the delay-embedding procedure. An introduction to fractal dimensions. and
to other ideas from dynamical systems theory, along with an extensive bibliography, can
be found in [6]. The fractal dimension for a given attractor is estimated by plotting the
correlation dimension d. versus the embedding dimension m used in the delay-embedding
procedure (m can be thought of as a guess at the phase space dimension needed to model
the observed dynamics). For a deterministic signal. d. will level out at some critical value
of m. For random noise. d. will continue to grow: in the limit of an infinite number of
Cata points d.(m) = m for random noise. The resulting dimension estimates for the thin
elastica. with one exception, were below 3, which implies from dimension theory that it
should be possible to model the dynamics of the rod with between two and six degrees of

freedom (see Fig. 4).

Derivation and Analvsis of a Two-mode Model

By starting with the classical three-dimensional rod theory due to Love (7] a geometrically
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exact theory for the experimental system can be developed. Physical scaling arguments
show that an additional curvature constraint is needed: the curvature component cor-
responding to bending in the stiff cross-sectional direction is zero. If in addition it is
assumed that the torsion of the rod varies slowly along its length, it can be shown that
a Lagrangian density in a generalized l?ending variable U and a generalized torsional

variable o is given to second order in U by:

& 4+ df cos 6 = dUsin 06 + 207 + 2+ UNE = 15— (&) + SO (1)

(= 3

o r—

where d = D cos (2t (.) = g;, and () = a_a;' Then, application of Hamilton's principle leads

to the set of partial differential equations:

U+ U™ -Uo® = DQ? cos(Qt) cos & (2)
and
. 2 .
(u+ 0¥~ T;ﬁ"" + 20U ¢ = DQ*U cos(§t) sin o, (3)

with boundary conditions U(0,¢t) = U’(0.t) = U"(l,t) = U™(I,t) = 0 and ¢(0,t) =
#'(I,t) = 0 (in the preceding, [ is the dimensionless rod length). We remark that the
unforced, linearized versions of equations (2) and (3) correspond to the Bernoulli-Euler
beam equation, and the equation for torsional waves on a rod, respectively. Nonlinear
coupling in the system comes from coriolis and centripetal acceleration terms, as well as
a nonlinear inertia term in equation (3). Observe also that the condition ¢ = 0, which

corresponds to planar motions. defines an invariant manifold for the nonlinear svstem.

By means of the assumed-modes method. the above partial differential equations can
be used to obtain a two-mode model system using the first bending and the first torsional
mode of the system. The resulting model system can be put into the following form after

the addition of linear modal damping terms:
G+ g1 + @1 — 7q1g2° = aDN? cos Ot + 3q2g2 DQsin Nt (4)

and

ot
~—

- ; .. d )
(B +701%)¢2 + pA2g2 + pw’qs + 27quqGiga = —%3425(%09 sin Qt), (:

where ¢, and q; are. respectively, the bending and torsional modal amplitudes.
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The dynamics of the two-mode model represented by equations (4) and (5) were studied
numerically. A family of nonlinear modes analogous to those observed experimentally
were found. and the computed frequency-amplitude characteristic of the family is qualita-
tively similar to that found for the rod (Fig. 3). A wedge of planar instability was found

for the model inside of which the motions were chaotic and nonplanar (Fig. 6).

Conclusion

The behavior of a two-mode model captures much of the observed dynamics of the thin
elastica studied experimentally. Thus, it appears that the precise mechanism of the pla-
nar instability observed in the thin elastica can be elucidated by studying a much simpler
system. Future work will focus on the nature of modal coupling in the model system
of pa.rti.a.l differential equations (2) and (3), with the goal of understanding the energy

cascading phenomenon observed in the experiments.
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Figure 1: Geometry of the elastica system.
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fixed and increasing the forcing amplitude until planar motions lost stability.
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Executive Summary:

An autocorrelation function based on symbol dynamics is applied to a chaotic dry-friction
oscillator to estimate the largest Lyapunov exponent. The friction problem is well suited
for symbol dynamics since two distinct states of motion can be identified: sticking and
slipping. In addition, the dynamics of the oscillator can be reduced to a non-invertible one-
dimensional map, which has been studied in terms of binary symbol sequences. The study
is done for an experimental oscillator and for a numerical model. The numerical result is
compared to the Lyapunov exponent estimated from the continuous flow.
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Introduction

Experimentalists often wish to quantitatively characterize chaotic motion by calculat-
ing the Lyapunov spectrum. However, it is computationally difficult to estimate Lyapunov
exponents directly from time series data, especially in the presence of experimental noise.
Singh and Joseph [1] proposed the use of symbol dynamics to obtain an autocorrelation
and an estimate of the largest Lyapunov exponent. Thus, a binary sequence of yes-no in-
formation can be used to quantitively characterize the dynamics. In this paper we report
the successful use of this technique on the chaotic dynamics of a dry-friction oscillator.

The modeling of friction in dynamical systems has a long history which goes back to
the ancient egyptians. In 1931, Den Hartog [2] solved the equations of a harmonic oscillator
with Coulomb friction for periodic motion. Shaw (3] has used modern techniques to extend
those results to include a stability analysis, and found period-two motion and beating
phenomena. Grabec [4] modeled friction in cutting tools, and found self-excited chaos in
a four-dimensional phase space. In diploma theses under K. Popp, of the University of
Hannover, F.R.G., Ahlborn [5] and Jahnke [6] observed quasiperiodicity and chaos in a
self-excited continuum and a harmonically driven self-excited friction oscillator.

In this letter, we present results for a one-degree-of-freedom oscillator with dry friction
dependent on both displacement and velocity. This can occur, for example, if displacement
induces elastic deformation which, in turn, causes changes in the normal load at the friction

surface. The nondimensionalized equation of motion is
Z+2(z + z + n(z)f(£) = acos(Qt), (1)

where f(z) represents the friction coefficient and n(z) represents the normal load. We let
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the normal load vary linearly with displacement, and, for physical consistency, we restrict
the normal load to be nonnegative, so that n(z) = 1 + kz for z > —1/k, and n(z) =0
for z < —1/k. Often, the friction is modeled by a Coulomb law, which includes a static
coeficient of friction p,, and a dynamic coefficient of friction pg. If g, = pa = p, the
friction law may be written as

f(2) = psign(z). | (2)

One might try to approximate a Coulomb law with a continuous function such as
f(2) = (pa + (s — pa) sech(B2)) tanh(az). (3)

The tanh term represents the jump from positive friction to negative friction, and ap-
proaches a discontinuity as a — oo. The sech term represents the transition “>m p, to
Hd-

The numerical solution for the continuous case is performed using a standard fifth
order Runge-Kutta code with stepsize adjuster. The numerical solution for the discontin-
uous case (not studied in this note) requires a special algorithm which follows that of ref.
[3]. A three-dimensional representation of a numerical solution of the continuous equation
of motion is shown in Figure 1. In this plot we can see the stick-slip motion (described
in (2] and [3]). The sticking region is plotted with small dots, and the slipping motion
is plotted with large dots. Also, on the upper right portion of the portrait, we can see
trajectories from the inside of the attractor stretching above the sticking region and folding
back onto the outside of the attractor. This stretching and folding is typical of chaotic
one-dimensional maps and two-dimensional horseshoe maps. A similarly shaped attractor

was found from the experimental dry-friction oscillator described below.
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Description of Experiment

The experiment consisted of a mass attached to the end of a cantilevered elastic
beam. A diagram is shown in Figure 2. The mass had titanium plates on both sides,
providing surfaces for sliding friction. Spring-loaded titanium pads rested against the
titanium plates. The titanium plates were not parallel in the direction of sliding, thus a
displacement of the mass caused a change in the force on the spring-loaded pads. Hence
a change in displacement caused a change in normal load and friction. The elastic beam,
mass and pressure pads were fixed to a common frame which was excited harmonically by
an elecromagnetic shaker. Strain gages attached to the elastic beam were used to sense

the displacement of the mass relative to the oscillating frame.
Discussion of Results

An experimental Poincaré section is shown in Figure 3a. It represents a slice of the
three-dimensional phase portrait of Figure 1 parallel to the z-z axes, perpendicular to the
it axis [7]. The standard autocorrelation of the experimental strain signal is shown in
Figure 4. It consists of a rapid decay into a small oscillation, suggesting that the signal is
uncorrelated, although the influence of the harmonic driver is present. The autocorrelation
of a periodic signal would be periodic, with no component of decay.

Notice that the Poincaré map appears to be confined to a one-dimensional object
embedded in two-dimensional phase space. By defining a coordinate s along the Poincaré
map as shown in Figure 3a, we can obtain a return map as shown in Figure 3b. The return

map (Figure 3b) resembles a tent map. The tent map is well known to be chaotic, and the

23




rfF

dynamics of similar maps have been studied in terms of binary symbol sequences(8).

The Poincaré section in Figure 3a is located near the axes labeled in Figure 1. Note
that it cuts through the sticking region. The sharp, horizontal part of the Poincaré plot is in
the sticking region, and the fuzzy part is in slipping motion. This suggests a natural use of
symbol dynamics for the motion, namely sticking or slipping. By considering whether the
motion is sticking or slipping at each pass through the Poincaré section, we can construct
a binary symbol sequence.

Singh and Joseph [1] have proposed a technique of extracting quantitative information
from a binary symbol sequence. First it is necessary to represent the symbol sequence u(k)
as a string of 1’s and —1's. These values are chosen so that the expected mean of a random
sequence of equally likely symbols is zero. As the trajectory passes through the Poincaré

section for the kth time, if it is not sticking, we set u(k) = 1. If it is sticking, we set

u(k) = —1. An autocorrelation on such a symbol sequence is defined as
1 N
r(n) = j—v—?;_:lu(k+n)u(k), n=0,1,2,..., N>n. (4)

If the sequence is chaotic, the autocorrelation should have the property r(n) — 0 as n — oo.
If the sequence becomes uncorrelated, an estimate of the largest Lyapunov exponent

can be obtained using the binary autocorrelation function. The largest Lyapunov exponent

can be defined as

N
1 d(n)
A= =) log, ——
Ng g2d°(n_1)) (5)
where d,(n — 1) is the starting distance between two trajectories, and d(n) is the distance
between them after one iteration. Since the binary sequence is uncorrelated, we can es-

timate d,(n ~ 1) as the expected value of the distance d,(n — 1) between two randomly
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chosen points in the same symbol region. In our example, we measure the distance using
coordinate s on the Poincaré plot. Two points chosen from the sticking region have an
expeéted distance d,(n — 1) = 1/3. Two points from the nonsticking region also have an
expected distance d,(n—1) = 1/3. If u(n—1) and u(n) are in the same region, their iterates
will either stay in that region, be in different regions, or both be in the other region. One

defines(1]

a = log, Ej%’ (6)

where d(n) is the expected distance of two points, each chosen from separate regions. For
our problem, d(n) = 1 and a = log, 3. Replacing d,(n — 1) and d(n) in (5) with their
expected values defines the macroscopic Lyapunov exponent, A,,, which is rewritten via a
derivation in ref. [1] as

A= 30-r)), ™

Application of equations (4), (6) and (7) to a symbol sequence derived from the tent
map yields a rapidly decaying autocorrelation and a Lyapunov exponent A\, = 0.787516 for
a string of 100000 symbols, and an exponent of A, = 0.787705 for a string of 2048 symbols,
compared to its exact value, calculated using logs, A¢e = 1. Application to the logistic
map yields a rapidly decaying autocorrelation and a Lyapunov exponent of \; = 0.791578
for 100000 symbols, and A; = 0.791116 for 2048 symbols, compared to its exact value of
Ale = 1.

The binary autocorrelation function for an experimental sequence of length 2048 was
obtained using (4) as shown in Figure 5a. Applying equations (6) and (7), the resulting

Lyapunov exponent is A.sp = 0.79055. Using equations (4), (6) and (7) on numerical
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smooth-law data (2048 symbols) yields the autocorrelation in Figure 5b, and a Lyapunov
exponent of ),, = 0.79219. The largest Lyapunov exponent of the flow can be estimated
numerically[7], and can be related to that of the Poincaré map via Afion = #, where T is

the driving period. This calculation of exponent for the Poincaré map from the equations

of motion gave A,, = 0.77.

Conclusions

Binary symbol dynamics were used to describe the stick-slip motion of a dry-friction
oscillator. Sticking and slipping motion were used as the states in the binary sequence. It
was shown that the dynamics of the dry-friction oscillator is reducible to a one-dimensional
map, well suited for symbol dynamics. The proposed method in ref. [1] produced a binary
autocorrelation function which was used to estimate the order of magnitude of the largest
Lyapunov exponent. This estimate was done for experimental and numerical data. The
implication is that for limited information, i.e. a series of 'yes’ and ’'no’ information,

quantitative information of the dynamics can be easily obtained.
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Figure Captions

Figure 1. Three-dimensional phase portrait of the numerical solution using a contin-
uous friction law with parameters u, =1, u¢4 = 0.7, { = 0.015, «a = 50, 8 =5, Q = 1.3,

and a = 1.45.
Figure 2. Schematic of experiment.
Figure 3. (a) Experimental Poincaré section, (b) Return map of Poincaré section.
Figure 4. Standard autocorrelation function for experimental time series.

Figure 5. Binary autocorrelation function for (a) symbol sequence from experimental

data, (b) symbol sequence from numerical simulation.
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Summary:

In this paper the dynamics of a pin-jointed space truss structure is studied.
Experimental results demonstrated that the response of the truss, under sinusoidal
excitation, exhibited broad band chaotic-like vibrations. It is believed that very small gaps
in the joints create nonlinearities that lead to the chaos. When a tension cable was added to
place the structure under compressive loads, the level of chaos was reduced. Numerical
simulation of the truss dynamics including small gaps in the truss joints also showed
similar chaotic behavior.

Introduction

It was our suspicion that small amounts of play in the joints could lead to chaotic
dynamics in the response of the structure under periodic excitation. Chaotic dynamics in
actual space structures might make it difficult to design active control system to damp out
transient dynamics.

A second goal of this study was to see if internal stresses applied through a tension
cable could reduce the pin-related nonlinearities and eliminate the chaotic dynamics.

The results of both studies lead us to believe that pin connected trusses can behave
quite chaotically under periodic forcing and that internal compressive loads may partially
quench this chaotic behavior under low enough forcing. Numerical simulation for trusses
having loose joints was also carried out to verify some of our experimental results.

The Structure

The structure which was tested in our laboratory is a 3.5 meter long 3-D truss with
16 bays, built with aluminum rods. The aluminum rods have a diameter of 0.476 cm (3/16

in), and have yield and ultimate stresses of 324 and 468 x 106 N/m?2, respectively. The
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Young's modulus is 73.0 x 109 N/m?2 (10.6 x 106psi), and the density is 2.77 gram/cm3
(0.1 1bs/in3). The structure is shown in Fig. 1, where the diagonal members on the front
side were not drawn for the purpose of clarity. The cross-section of the structure is
triangular consisting of three equal-length rods of 22.2 cm (8.75 in). The bay length is
also 22.2 cm. All parts of the structure were made of aluminum, and the total mass was
approximately 2.3 kg. Hung with rubber bands, the first six natural frequencies of our
truss had frequencies from 0.3 to 4.0 Hz, which is relatively small compared with the first
experimental bending natural frequency of 44 Hz. Thus we refer to our truss as a free-free
structure.

One effect of the nonlinear joints is that the measured natural frequencies were
rarely the same in different measurements. In most cases, the first bending frequencies
varied in the range of 42 to 45 Hz in experiments.

Chaotic Oscillations of the Structure

The forced dynamic response of the truss was studied by applying a sinusoidal
force and measuring the output signals with the use of the accelerometer. The
accelerometer was mounted close to a joint at one of the two ends. The driving frequency
was in the range of 25 ~ 75 Hz, which was in the neighborhood of the first "natural”
frequency of 43 Hz.

Unlike an ideal linear truss, which has a periodic output when forced by a periodic
input, the response of the truss was often random-like for relatively small forcing. This
strangeness of the response was indicated in the broadband power spectrum of the output
signal as shown in Fig. 3(b). If the forcing amplitude was sufficiently small, the
broadband power spectrum of the response would disappear, and many clear spikes
(peaks) emerged indicating different mode frequencies and their combinations. Fig. 3(a)
shows the power spectrum for the forcing signal (which was directly measured from the
shaker with the use of an accelerometer), which had one principal frequency and several
superharmonic components.

In this study, we define a broad band response of a system under periodic forcing
to be chaotic. This criterion is for experimental convenience. Mathematically one should
show that the largest Lyapunov exponent for the vibration output is positive in order to
label the motion chaotic (see Ref. 3, Chapter 5). However, experimental measurement by
Lyapunov exponents has not been reliably developed. Thus, we rely on the FFT signal to
define chaos. The appearance of chaotic dynamics of the truss once again suggests that the
nonlinearities associated with the pin truss joints complicate the dynamics of the system.

Connections of the Truss with the Shaker

In the dynamical testing, we found that when the structural response became chaotic
(with broadband spectrum), the chaos was also fed back to the shaker. The signal from the

1.For a similar truss structure with welded joints, the first natural frequency from simulation
is approximately 4% higher than the value from experimental testing. This error becomes
bigger for the higher modes.
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armature of the shaker, measured by another accelerometer, was contaminated; the
spectrum of this signal also contained many narrow-banded peaks. In our experiments, the
truss was originally connected to the shaker with a rigid steel rod. Obviously, when the
motion of the truss was chaotic, the motion of the armature became chaotic too.

To study the dynamics of the truss alone, we designed a decoupling device to
isolate the chaos of the truss. The objective of such a device was to supply a force to the
truss at the same time separating the motion of the truss from that of the shaker.

Effects of Cable Tensions

We have seen that the dynamics of the truss was complicated because of the
nonlinear pin joints. To control the dynamical response, a steel cable was added to the
truss in the direction along the longerons, in hopes of bringing back the dynamics of the
truss into the linear regime, at least to reduce the level of chaos.

To this end, two triangular thin aluminum plates (0.3175 cm thick) were attached to
each end of the truss (see Fig. 1,4). Then a tension cable was connected to the two centers
of the two plates. The total length of the cable can be adjusted by some special screw-nuts.
A full wheatstone bridge was designed to measure the tension forces in the cable. A
schematic configuration after the addition of the plates and the cable is also shown in
Fig. 1.

The first natural frequency of the steel cable is given by the formula

where L = 3.556 m is the length of the cable, p = 7.33 X 10-3 kg/m is the mass density,
and T is the tension it carries. The typical load of the cable will be in the range of 0 ~ 25
kg, which corresponds to the fundamental frequencies of the cable in 0 ~ 25 Hz. It is seen
that these frequencies are below the natural frequencies of the truss. In experiments, the
interactions between the truss and the cable were weak, and the cable tension was
considered to be constant in each experiment.

Fig. 5 demonstrates the power spectra for the responses of the truss for different
cable tensions. In Fig. 8, the driving frequency was 45 Hz. When the cable tension was
set to be 13.0 kg, we observed a periodic output of the truss for certain input forcing, the
output signal only contained a few clear peaks in the frequency domain (see Fig. 5(a)). To
see the effects of the cable tension, we gradually reduced the tension to 3.0 kg and waited
for some time to let the vibration settle down, the spectrum became broadbanded as shown
in Fig. 5(b). Generally the more the T was reduced, the more broad the power spectrum
was. In some case, the level of the power spectrum was also increased even for fixed input
forcing level.

Inspired by the results in Fig. 5, we tried to find criteria for chaos, in the frequency
domain, for different cable tensions. In general, the power spectrum of an output signal
contained many peaks, like the one in Fig. 8(a), before the onset of chaos. For each fixed
frequency, we gradually increased the driving amplitude until the spectrum of the response
of the truss became broadbanded, like the one in Fig. 5(b). When this transition occurred,

-
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we recorded the forcing amplitude. Repeating the above procedure for different driving
frequencies and different cable tensions, we obtained chaos criteria for the truss, as shown
in Fig. 6. The horizontal axis represents the driving frequency, and the vertical axis is the
acceleration of the shaker, which is proportional to the driving force applied to the truss. It
is clear in the figure that when the cable tension is increased, the forcing amplitude is also
increased for the onset of chaotic responses.

These results hold out the promise that the nonlinear effects of pin joints or
deployable truss elements may be reduced if initial compression in the truss is applied with
tension cables.

Conclusions and Future Work

The experimental study on the pin-jointed truss has shown that the dynamics of the
structure could be extremely complicated by the nonlinear joints. The modal frequencies of
the truss were considerably lower than the ones for the linear truss. The dynamic response
was clearly chaotic indicated by its broadband spectra. By adding a tension cable along the
longeron direction of the truss, the degree of chaos was lowered.

Numerical simulations for our 16-bay truss were also carried out by including the
small gaps of the joints in our mathematical model. The preliminary simulation results
indeed tell us that the dynamics of the truss is complicated by the looseness of the joints.
More extensive and complete simulations are still needed to fully understand the system
dynamics.

Some theoretical analyses for interpreting the experimental results have been
reported. A bilinear, periodically forced, one-degree-of-freedom oscillator has been shown
to yield chaotic motions via a period-bifurcation sequence8. Another system, which also
yields chaotic motions when the feedback is strong enough, is a trilinear oscillator?. A
preliminary study for a single degree of freedom oscillator having trilinear stiffness, as
shown in Fig. 7, is being carried out, and period-doubling bifurcation sequence and thus
chaos has been observed10. The result can be employed to understand the dynamics of our
laboratory truss.

This study clearly shows that the practical construction of truss type structures in
space may bring in nonlinearities in the properties of the joints. The observation of chaotic
behavior in such structures suggests that linear methods of theoretical and experimental
analysis may not be useful, and that the new tools of nonlinear vibration may be needed to
understand the dynamics of real structures in space.
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Figure Captions

Figure 1. (a) The experimental truss structure; (b) the cable tensioned truss hung
from the ceiling by two soft rubberbands.

Figure 2. Sketch of a typical nonlinear joint.

Figure 3. Typical power spectra for the input and output signals; note that the power
spectrum for the system response under periodic input is broadband.

Figure 4. The experimental setup for the dynamic tests.
Figure 5. Power spectra demonstrating the effects of cable tensions.
Figure 6. Criteria for chaos in the forcing frequency and amplitude plane.

Figure 7. (a) A pin-jointed rod member in the truss; (b) an idealized model; (c) the
force-displacement curve.
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Project Summary:

Recent demands in the aerospace industry have lead to the development of large
flexible structures designed for deployment in space. Since space structures carry
essentially no gravitational load. They can be built much lighter than their ground based
counterparts and due to the high cost of transporting material into space minimizing the
mass of a space structure is a major design criterion. Unfortunately this often tends to
make them quite susceptible to dynamic vibration.

One of the classical ways a structure can fail is through buckling. The most
common form of buckling occurs when a column member loaded axially in compression
becomes unstable and fails in bending, bowing out at the center and collapsing in a rather
dramatic manner. Such failure is often sudden and catastrophic since buckling occurs
immediately upon the attainment of some critical compressive load in the column with little
or no forewarning. In a space structure where dynamic loads become more prominent one
must not overlook the additional possibility of failure due to dynamic buckling.

In this paper we investigate the problem of dynamic buckling in large structures.
We show conclusive evidence from experiments that such behavior is highly non-linear in
nature and cannot be predicted by classical linear structural analysis and modeling
techniques. Period doubling and chaotic vibrations common to many non-linear problems
are observed and discussed. We also discuss possible methods of modelling structural
members which buckle dynamically and present some preliminary results from one
possible model.

Experiment

The main focus of our first dynamic buckling experiment is a three meter aluminum
truss diagrammed in Fig. 1. The truss consists of 23 identical bays. One of the horizontal
members in the center bay was removed and replace by a spring steel member 4.75 inches
long, 1 inch wide and 0.005 inches in thickness. This member, although matching the
stiffness of the other truss members in tension, is quite susceptible to buckling in
compression. Hence, the structure is still quite resistant to loads in one direction while
being relatively unable to resist loads in the other (see Fig. 2). The entire structure,
configured in this manner, was then suspended from the laboratory ceiling using gum
rubber strips in order to simulate a free floating environment. Harmonic excitation was
then applied to the truss using a 100 lb electromagnetic shaker table. The dynamic
response of the truss was recorded and analyzed.

Dynamic response of the truss was measured by strain gages placed directly upon
the spring steel buckling member. The signal from these gages, after sufficient
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amplification and filtering, was differentiated electronically and then both the signal and its
derivative were monitored and recorded using a Nicolet Model 206 Digital Oscilloscope. In
this way we were able to produce phase planes and Poincaré maps of the data in real time.
Also, using an HP3562A Signal Analyzer we were also able to produce power spectra,
autocorrelations, and probability density functions from the strain data.

Experimental Results

Five different types of data were collected during the experiments. These were: (1)
phase planes (strain vs its derivative), (2) Poincaré maps, (3) power spectra, (4) probability
density “inctions and (5) autocorrelations (correlation of the data to itself). A Wavetek
Model 180LF signal generator was used to provide harmonic input to the shaker and thus
to the structure at the desired frequency. As the amplitude of the excitation was varied,
different types of dynamic behavior were observed. Increasing the amplitude of excitation
while keeping the frequency constant caused the initial period one motion to become
unstable and undergo a bifurcation to period two motion. This type of dynamic behavior is
distinguished by the existence of a component of the motion at half the frequency of the
driver. Further increases in amplitude from these levels lead to other period doublings to
period 4 and period 8 type motions. Finally, slight increases in amplitude from the period 8
levels lead to unpredictable or chaotic motions. This type of behavior indicates a typical
progression of period doubling now known to be a trademark of many nonlinear systems.
Such a progression can be best summarized by a bifurcation diagram. A bifurcation
diagram is a plot of sampled values of the system output (in this case strain) versus some
controlled system parameter (in this case driver amplitude), where the sampling rate of the
system output is the period of the driving signal. Using a Masscomp Data Acquisition
System we were able to create an experimental bifurcation diagram of truss behavior. The
bifurcation diagram for varied amplitude at a frequency of 13.87 Hz is shown in figure 3.
The phase plane plots of the different types of motion have been superimposed on the
bifurcation diagram in order to further illustrate the motion.

As can be seen in Fig. 3 chaotic motion ensues after the period doubling sequence.
Figs. 4a-¢ show the character of such motions. In the double plots the upper plot is the
system response while the lower is the driver. Chaotic motion persists for a narrow range
of amplitudes after which a very large period two motion appears. Unfortunately this
motion is so large that its destructive effects on the truss prevent further investigation of its
characteristics. Also shown in Fig. 4f is a Poincaré map of chaotic motion seen at a driving
frequency of 5.8 Hz.

Model for Dynamic Buckling

We model the buckling member in the truss as an elastica. An elastica is a thin strip
of incompressible material whose major mode of deformation is buckling. In the elastica
problem deformations are allowed to be quite large but strains are assumed to remain small.
Consider the elastica shown in Fig. 5. This problem can be solved most easily by
considering it as a combination of two symmetric parts. The equation of deformation for
the elastica can be shown to be

d2e )
EI 42 = -Psin 6 ¢))
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This equation, it will be noted, is the same as the equation of motion for a pendulum. This
similarity was first noted by Kirchoff and is hence known as Kirchoff's analogy.

Equation (1) may be solved analytically resulting in elliptic integral expressions for
the load P and displacement x as functions of the tip angle a. Piotting the end load P
versus motion of the end of the beam x - 1 results in the force displacement curve shown in
Fig. 6. Since the elastica is assumed incompressible no deformation can occur until critical
load is achieved. After critical load buckling occurs and the beam undergoes large
deformations for relatively small increases in load. The load deformation curve does,
however, appear to be linear over a large range of deformation. This suggests that
although the overall behavior of our buckling member is nonlinear the nonlinearity is
concentrated at the instant of buckling and the behavior elsewhere is linear.

The final step in this portion of the analysis is to piece together beam behavior
between the tension-compression and the buckling states. To accomplish this we relax the
inextensibility restriction on our elastica and examine it's behavior. Coupling elastic
extension-compression behavior with the elastica behavior strongly suggests that we are
justified in using the bilinear stiffness curve shown in Fig. 7 to represent our buckling
member where the buckled beam stiffness is assumed to be nearly zero.

Simple Non-linear Oscillator Model

We begin our analysis of the dynamic structural buckling problem by examining a
simple one dimensional oscillator. This system contains a non-linear spring element with
the force-displacement curve shown in Fig. 7. The oscillator is shown in Fig. 8.

In (14) T represents the time, z is the displacement of the mass relative to the cart, z
is the critical displacement at which buckling occurs, z is the sinusoidal displacement of the
cart, m is the mass of the oscillator, k(z) is the non-linear spring (buckling member)
stiffness and c is a linear damping coefficient. A similar system to this was studied by
Holmes and Shaw (J. Sound & Vibra. 90 (1983) 129-155) in which they allowed the
stiffness k7 to become infinite while keeping kj non-zero. Here, as previously noted we
wish to study the case where k; remains finite and k3 = 0.

The equations of motion for this system are simply given by:

2
mg—z+cQ+H(z)=-mAQ2cos(Qt)
diz2 drt
V)
kz z2 2z

H(z) = {
kzg z <2zg

The term H(z) represents the restoring force of the nonlinear spring. For z > zg this
increases linearly with distance from the z = 0 point. Thus, for sufficiently small driving
amplitudes it is possible for the system to oscillate in an entirely linear manner about the
origin. However, if the driving amplitude is increased so that at some time during the
motion z becomes less than z the restoring force abruptly changes. At this point instead of
increasing linearly with distance from the origin it remains constant. This corresponds to
the transition to a buckled state in the nonlinear spring.
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These equations really are quite nice because they are easily solvable in each of the
two regions of linear behavior z > zg and z < zy. The difficulty arises only at the point
z = zg where the two solutions must be matched together. In analyzing these equations we
first solve them explicitly in the two regions and then use a computer program to perform a
matching procedure atz =z .

Numerical Results From the Model

Equation (2) was nondimensionalized and solved numerically. The parameters in

this system are x, the nondimensional position, y, the nondimensional velocity, B, the non-
dimensional driver amplitude, w, the non-dimensional driver frequency, xq, the critical x

value, and 3, the non-dimensional damping ratio. Many simulations were done for various
values of the parameters, and phase plane and Poincaré map data were produced. For

parameter values of w = 1.05, xg = 0.002, and & = 0.02 varying B from 0.002 to 0.0045
gave the results shown in Figs. 9a and b, 10a and b and 11a and b. Fig. 11 shows motion
which appears to be chaotic as indicated by the space filling nature of the phase plane
motion and the fractal Poincaré map.

Conclusion

We have seen from this research that the problem of dynamic buckling in structures
is highly nonlinear. Experimentally, the presence of period doubling sequences and chaotic
motions have been demonstrated. The existence of these motions at different amplitudes
was illustrated by means of an experimentally generated bifurcation diagram. The
experimental results lead to the development of a bilinear model for buckling which was
justified on the basis of a modified elastica analysis. Preliminary results of this model were
presented which showed the presence of period doubling and probably chaotic motions as
well. Further simulations are necessary to verify or disprove the validity of this model.

Clearly, the motions of a structure containing a buckling member can be quite
complex. Thus, it seems that one should exercise caution in the design of large structures
and be aware that such motion can exist if one of the members is made to thin.
Overlooking such a structural anomaly could be detrimental to other structural systems,
active controllers, for example, which rely on the motions of the structure remaining linear.
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Figure 1. Three meter aluminum truss.

BUCRING MeMBER

Figure 2. Buckled truss under load.
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Figure 8. Nonlinear oscillator.
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PROJECT SUMMARY

Project Title:
Computer Simulation of Control of Nonlinear Structural Dynamics

Faculty Leader:
John F. Abel, Civil and Environmental Engineering and Program of
Computer Graphics

Graduate Research Assistant:
Brian H. Aubert, Civil and Environmental Engineering and the Program
of Computer Graphics

Executive Summary:

Research software which can effectively model and numerically analyze
certain nonlinear behaviors of actively controlled space structures has
been implemented. Interactive computer graphics are used to aid the
interpretation of the complex results of the nonlinear dynamic analyses.
Modularity of the application code has been emphasized to facilitate
addition of different types of control strategies, different element types,
or alternative nonlinear analysis models. Computational environment
dependencies of both the analysis and display capabilities of the code have
been minimized, with the result that the software has been successfully
used on several different hardware and operating system configurations.

The current dynamic analysis capabilities include both genmetric
nonlinearity and a bounding surface material nonlinearity model. The
simulations of active control methods which have been implemented can
include such physical realities as observation lag and saturation of the
control signal. Examples illustrate some of the capabilities that have
been implemented in this research software.

Project Description:

An effort has been undertaken at the Program of Computer Graphics at
Cornell University to develop software tools for research on the nonlinear
dynamic analysis of actively-controlled structures. The work builds on an
existing foundation of software developed for evaluating the nonlinear
performance of building structures subject to strong ground motion!. The
motivation for the work has been fueled by a desire to have a numerical
simulation capability to explore issues related to the placement and
performance of both new and existing control strategies for flexible space
structures. One new control strategy which has been examined using these
tools is an open-loop, optimal nonlinear method known as differential
dynamic programming (DDP)2:®. The primary reason for using DDP to obtain
active control solutions is that it includes the possibility of
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nonlinearities in either the response of the controlled structure or in the
controller itself. Many common strategies attempt to control nonlinear
structures by using controls based on linear models of the structure.
Another reason for examining DDP is to determine if the optimal nonlinear
control solutions it produces can be used to find new control laws which
may be applicable to more widely used closed-loop control strategies.

The focus of the research has been on control of very flexible space
structures although many of the software capabilities could be used for
analysis and design of actively controlled terrestrial structures. The
control of space structures poses a significantly more difficult task than
the control of normal building structures. Space structures are designed
for low gravity environments. Because the mass penalty associated with
placing material in orbit limits member weight and since the structures
experience little dead load, structural members are relatively flexible.
Space structures typically exhibit lower levels of passive damping than
terrestrial structures, primarily due to the lack of a connection to a
large energy sink such as the ground. The small amount of passive damping
coupled with the inherent flexibility means that even impulsive dynamic
excitation may result in long duration transient responses. In some
instances the persistent dynamic responses may adversely affect the mission
of the space structure and require the use of damping provided by active
controls.

Use of controls to provide active damping increases the number of
factors which must be considered as parts of the system design. In a large
three-dimensional structure there are a daunting number of possible control
locations for even a single active controller, and the optimum location may
even be non-intuitive. With multiple controls, even relatively small
structures provide a large number combinations of possible control
locations?. Some control strategies (e.g., collocated velocity feedback)
require only limited, local measurements of the dynamic structural
response, while other methods require a more complete set of measurements.
It is unlikely that a sufficient number of sensors will be put in place to
provide a complete set of measurements of the dynamic state of the
structure, so optimal sensor placement of a subset is also an issue which
must be considered. Control systems which are to be implemented must be be
designed to perform robustly in the face of failure of some of the limited
number of controls or sensors. The control system should not be sensitive
to the differences between the actual structure and the analytical model®.
The performance of the control system must also be evaluated in conjunction
with control effects such as observation lag and control saturation which
are known to degrade control performance.

Vith an effective, comprehensive, and accurate software platform to
test and compare proposed structural and control configurations, the time
required to obtain a robust and efficient control can be significantly
reduced. In many cases, such a simulator is used as an adjunct to other
research and design tools, e.g., optimizers for control and sensor
placement*.
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Implementation

The guiding principle of the software development has been to produce
modular code which may be readily expanded in capability and which is
easily portable across a number of hardware configurations. The
application code is primarily written in ANSI standard C with the graphics
display based on the X Window system. A limited number of modules written
in FORTRAN are used to perform the computationally intensive sections of
the analyses. By the choice of relatively common industry standards and by
the avoidance of machine specific calls, the portability of the code has
been enhanced. The modularity of the code should allow developers to
easily insert new methods of control, controller models, element types,
time integration algorithms, or equation solvers. The code has been
successfully run on Digital machines operating under both VMS and ULTRIX
and on Hewlett-Packard machines operating under HPux.

The current implementation consists of two programs, a general purpose
modeller/visualization program named BASYS, and a batch analysis program
named ABREAST for the nonlinear time integration. Future planned
development in BASYS will allow the use of that program to interactively
visualize and track the progress of the analyses rather than waiting for
the results from batch jobs. BASYS uses a radial edge data representation®
to store the structural data in a topology-based hierarchy of structural
models. This topological representation allows rational access to the
structural data while providing a framework in which the model can be
rapidly modified, displayed, and manipulated. Object oriented programming
concepts and data access provided by queries are also used to maximize the
modularity of the code.

BASYS provides two basic means of visualization of the dynamic
response of the models. The first is to provide an animated view of the
dynamic response of the structure. If the desired response is a view of an
interactively selected vibration mode, the eigenvector of the structure is
dynamically displayed so the qualitative aspects of the mode shape can be
evaluated. In the case of a transient analysis, the results from a
selected time interval can be animated with selected force quantities
displayed as color contours on the moving model. The second provision for
visualization is to allow the analyst to create and display x-y plots of
interactively selected response information.

ABREAST is general-purpose transient dynamic analysis tool which
includes a subspace iteration algorithm to calculate the solution of the
open-loop eigenvalue problem, the central difference explicit time
integration algorithm, and the Newmark-f implicit time integration
algorithm. The current version is primarily geared towards frame
structures consisting of either truss or beam-column elements. A nine
noded Lagrangian shell element is also available to model panels.

Structures which undergo large displacements and rotations need to be
analyzed including the effects of geometric nonlinearity. The geometric
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nonlinear capabilities of the analysis are based on an updated Lagrangian
method and a geometric stiffness matrix’. The method assumes large
displacements, large rotations, and small strains. The material
nonlinearity is provided by a bounding surface plasticity model in
three-dimensional force space. The bounding surface approach assumes that
a concentrated plastic hinge can form at the member ends due to the
interaction of the axial thrust with both the major and minor bending
moments of the member. This material model® has been shown to accurately
model such complex nonlinear behavior as kinematic hardening, cyclic
loading, and the Bauschinger effect. Inclusion of both the geometric and
material nonlinear effects allow the analyst to effectively track the
three-dimensional behavior of large structures subject to dynamically
applied loads. In ABREAST dynamic loading can be specified by (a) values
calculated by a specific control method, (b) use of acceleration records,
(¢) load histories of specific design loads, and/or (d) a set of initial
conditions may be used.

The three types of active control methods which have been implemented
are open-loop load history, closed-loop collocated velocity feedback, and
closed-loop constant gains feedback. To increase the realism of the
simulation of controls, control saturation, observation lag, and control
lag have been introduced into the current implementation. Control
saturation occurs when the demanded control is larger than what the control
element is capable of delivering. In this case only the maximum control
force can be delivered. Observation lag is a consequence of the finite
time needed to collect the state measurements of the structure. Control
forces which are based on the measured observations are in error by the
amount of difference between the most recent observation state and the
actual current state of the structure. Control lag results from the fact
that control elements typically cannot instantaneously respond to changes
in force level demanded by the the control signal.

In addition, closed-loop controls may exhibit unexpected behavior in
the nonlinear regime in that controls which are based on linear models may
develop both observation and control spillover problems when applied to a
more realistic nonlinear structural model. The analyst must use judgment
both in the selection of an active control type and in interpretation of
the results from an actively damped, nonlinear dynamic analysis due to the
presence of these types of control-structure interaction (CSI). While the
lags and the control saturation which are available are a first step toward
modelling CSI, there is significantly more work which can be done. As a
start, accurate prediction of the effects of CSI may require a more
sophisticated model of the inner control loop dynamics of the control
system itself.

The batch analysis currently runs on a single fast processor and the
performance is acceptable for small to medium size problems. However there
is always a desire to be able to expand the size and complexity of the
analyses which can be undertaken. One option to reduce the clock time
needed for a large analysis is parallel processing. Work is underway to
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implement a parallel version of the explicit central difference algorithm
of ABREAST. The central difference algorithm is amenable to
parallelization since the solution proceeds on a degree-of-freedom level
and does not require assembly of the global stiffness matrix. With a
substructure on each processor, the central difference method can provide
solutions which require a minimum amount of information to be exchanged
between adjacent processors, thereby reducing the interprocess
communication. The parallel version is being implemented as a multiple
instruction, multiple data (MIMD) method using distributed memory.
Synchronization needed between steps is provided by ISIS, a parallel
application management tool under development at Cornell University. Care
is being taken to provide a layer between the actual message passing
routines and the application code to ensure that alternative methods can be
easily substituted.

The interactive tools necessary for.- the analyst to manually partition
the model into substructures have been implemented in BASYS. An automatic
substructuring algorithm which attempts to minimize the amount of
interprocess communication while providing load balancing between the
processors has been tentatively selected for implementation®.

Numerical Examples

As part of experimental research on active control of large flexible
space structures!®, a three-dimensional frame has been built in the George
Vinter Structural Laboratory. This so-called "Cornell 10-meter frame,"
shown in Figure 1, consists of eleven bays with dimensions of 83.8 cm x
83.8 cm x 45.7 cm. The structure is suspended from four upper (fixed)
nodes. The frame has been carefully fabricated from aluminum. The lateral
tip displacement in the weak-axis direction for a statically applied tip
load corresponds to a flexibility of 0.3 cm/N. The frame is designed to be
representative of proposed space structures which are planned for use in a
zero-gravity environment. In the model of the idealized structure, the
members are aluminum tube stock with a modulus of elasticity of 68.9 GPa.
The members are prismatic and have an outside diameter of 1.37 cm and a
vall thickness of 0.22 cm. The structural members are modeled with linear
beam-column finite elements, connected at moment-resisting joints. The
masses have been lumped at the nodes. The translational mass at each node
averages 2.15 kg. The rotational mass at the interior nodes is 33.4
kg-cm‘/radian and is 19.6 kg-cm?/radian at the four bottom nodes. Table 1
shows a comparison between some of the experimentally measured natural
frequencies of the structure and those calculated from a calibrated
simulation model.

A set of initial conditions corresponding to a lateral tip
displacement of 10 cm in the weak-axis direction has been used as a
starting point for an actively controlled analysis. The initial
conditions, obtained from a static analysis, produce a primarily
two-dimensional excitation in the weak axis direction of the actual frame.
However, due to the small differences between the front and back Vierendeel
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trusses, there is a small torsional component of the structural response.

The frame uses a single linear motor placed above the structure as a
controller of weak-axis motion. Two tendons, symmetrically placed with one
on each side of the weak-axis frame, run between the linear motor and the
bottom of the structure. The lines of action of the tendons lie in a plane
midwvay between the two Vierendeel trusses. The tendons are offset from the
structure by stiff standoffs, and a small roller is used at the end of each
standoff to reduce frictional losses in the control tendons. Figure 2 is
an elevation view of the structure with the tendons shown as dashed lines
and standoffs shown as bold lines. Since the tendons can only provide
tensile forces, the saturation limit for compressive forces has been set to
zero. The controlled analysis included a 0.01 s observation lag. The
control law is constant feedback gains based on a limited set of velocity
observations. In the model, the four weak-axis velocities at each level of
the structure are averaged and used with the appropriate entry of the
constant feedback gain matrix to obtain the control forces.

The inherent passive damping of the structure has been assumed to be
zero. The analysis has been done using a Newmark-8 implicit time
integration method. The lateral tip displacement results from a
geometrically nonlinear analysis are plotted versus the uncontrolled
response in Figure 3. Since the displacements and rotations resulting from
this analysis are relatively small, the primary difference between a linear
and geometrically nonlinear analysis is a small increase in the high
frequency responses of the controlled nonlinear structure.

Additional numerical examples of the capabilities of the software are
availabled-5-11

Closure

A research platform for numerical evaluation of the performance of
actively controlled structures subject to dynamic ’oading has been put in
place. The software has been used as a numerical testbed by an
interdisciplinary research group with interests in active control of
flexible space structures and in CSI. The current capabilities of the
softwvare have allowed exploration of a new optimal nonlinear control
strategy and have provided a means with which to investigate relevant
active control issues in the design and laboratory testing of the Cornell
10-meter frame. Work is ongoing to implement a parallel version of some of
the analysis capabilities. Extensions of the research into the subject of
control of manuverable and deployable structures has also been begun.
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Table 1. Experimental frequencies (Hz) vs. theoretical frequencies, l
Cornell 10 m frame. I
Mode | Mode Type | Exp. Frequency | Theo. Freqency | % Error '
1 WB 0.6641 0.6614 -0.40
2 WB 1.9920 2.0040 +0.60 '
3 T 2.2270 2.3906 +7.34
4 WB 3.5160 3.4573 -1.67
5 SB 3.7096 3.9690 +6.99 l
6 WB 5.3130 4.9697 -6.46
7 WB 6.4450 6.3172 -1.98
8 T 7.1480 7.0756 .01 l
9 WB 7.7730 7.8245 +0.66
10 T 8.7890 8.5854 -2.31
11 -WB 9.1020 9.1617 +0.65 '
12 T 9.6880 9.5274 -1.66
13 T 10.6200 10.1415 -4.50 .
64 '
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Experimental 10 m frame built at Cornell.
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PROJECT SUMMARY

Project Title:
Effects of Structural Imperfections on Constant-Feedback-Gain Control of
a Spatial Structure

Faculty Leader:
John F. Abel, Civil and Environmental Engineering and Program of
Computer Graphics

Graduate Research Assistant:
Brian H. Aubert, Civil and Environmental Engineering and the Program
of Computer Graphics

Other Participants:
Professor James S. Thorp, Electrical Engineering
Jin Lu, Graduate Research Assistant, Electrical Engineering

Executive Summary:

The numerical sensitivity of a constant-feedback-gains controller to
random structural imperfections is examined using the results of a series
of finite element analyses. The basic finite element model, which uses
linear beam-column elements, is a 2-D simplification of a large (10 meter
long) 3-D frame currently undergoing testing at Cornell University. The
cross-sectional properties, nodal coordinates, and masses of the models

were randomly varied within four different ranges of maximum imperfection.

Twenty transient dynamic analyses were run for each range of structural
perturbation. Each analysis used a different random distribution of
imperfections. The results of the finite element analyses show that the
optimal control configuration, found by dynamic programming, exhibited
unacceptable sensitivity to small perturbations of the structural model.
second, nearly optimal, control configuration was found to be more robust
with respect to structural imperfections.

Project Description:

A tendon based active control system for a large 3-D structure is
being implemented at Cornell University. The tendon forces in the system
are calculated by using constant feedback gains in conjunction with a
limited set of the state observations of the structure. Tendon based
control systems have been previously explored!~*. The choice of a tendon
based active control system was motivated by the fact that an effective
amount of active damping could be provided for several natural modes of a
large multi-degree-of-freedom system by using a limited set of actuators

68




- S O O o b A o M N G G N A R G BN G .

and sensors. In addition, the particular experimental structure undergoing
testing allowved the selection of an optimal control configuration by a
dynamic programming method®>. However, by basing the non-collocated,
constant-feedback-gains controller on an incomplete set of state
observations of the structure, the stability of the closed-loop system in
the face of unmodeled structural perturbations cannot be implicitly
guaranteed.

Variations between the responses of the modeled and actual structure
can be caused by such things as neglecting small geometric or material
nonlinearities, not modelling actual joint flexibility, or not accounting
for the differences between the finite element model and the real structure
due to the presence of fabrication imperfections. While it is possible to
develop a sufficiently sophisticated finite element model to represent the
system behavior accurately, the increase in the computational cost of the
control optimization becomes prohibitive. It is preferable to develop a
robust control strategy that performs adequately in the presence of the
unmodeled perturbations of the actual structure. In an effort to determine
vhether the initial optimal control configuration is sufficiently robust, a
set of four ranges of fabrication imperfections has been selected. Results
from transient dynamic analyses with random distributions of imperfections
in the selected ranges have been examined to determine the effects on the
closed-loop control performance. The primary goal of the analyses is to
expose any weaknesses of the control strategy prior to the first physical
control test of the experimental structure.

Structural Model Description

As part of ongoing research on active control of large flexible space
structures, a 3-D frame has been built in the George Winter Structural
Laboratory. The 3-D frame, shown in Figure 1, consists of eleven bays with
dimensions of 83.8 cm x 83.8 cm x 45.7 cm. The structure is suspended from
four upper (fixed) nodes. The frame has been carefully fabricated from
aluminum. The lateral tip displacement in the weak-axis direction for a
statically applied tip load corresponds to a flexibility of 0.3 cm/N. The
frame is designed to be representative of proposed space structures which
are planned for use in a zero-gravity environment. The flexibility of the
frame may require use of geometrically nonlinear analyses for later testing
in which the second order effects will be more significant. Masses have
been added at the nodes of the frame in order to bring more of the flexural
periods of the structure within the frequency response limits of the active
control actuator. The joints of the experimental structure are fabricated
to provide moment resistance at the member ends. In a finite element
simulation, where each beam-column is modeled with a single finite element,
the frame has a state vector dimension of 528, consisting of 264 nodal
displacements and 264 nodal velocities. The initial experimental testing
of the behavior of the controlled 3-D structure includes excitation solely
in the weak axis direction. For the initial analysis of the structure, to
reduce the computational expense associated with both the control and
finite element calculations, a 2-D simplification of the actual 3-D frame
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has been used. A 2-D model of the frame using a single element between
nodes has a state vector dimension of 132. The 2-D model used is shown in
Figure 2. Later experimental testing of the structure which may include
torsional and strong axis excitation will require the use of a 3-D analysis
model.

The 2-D model is a Vierendeel truss consisting of eleven 83.8 cm x
45.7 cm bays suspended from two fixed upper nodes. In the model of the
idealized structure, the members are aluminum tube stock with a modulus of
elasticity of 68.9 GPa. The members are prismatic and have an outside
diameter of 1.37 cm and a wall thickness of 0.22 cm. The structural
members are modeled with linear beam-column finite elements, connected at
moment-resisting joints. The model mass matrix includes contributions from
the members, the connections, and the nodal masses added to the structure
to lengthen the structural periods. The masses have been lumped at the
nodes®. The translational mass at each node is 1.81 kg. The rotational
mass at the interior nodes is 33.4 kg-cm?/radian and is 19.6 kg-cm?/radian
at the two bottom nodes.

To ensure a broad excitation of the natural structural frequencies, a
step function has been selected as the load input. The loading is a
lateral impact load, applied at a lower tip node with a 22.2 N magnitude.
The load is constant for 1.1 seconds after which it is suddenly removed.
Any inherent passive damping in the structural model is neglected, allowing
the broad spectrum of excited modes to persist in the case of the
uncontrolled simulations. The intent of using a step load function and
neglecting any inherent passive damping is to bound from above the
sensitivity of the model to small imperfections.

Active Control Description

Figure 3 shows the two control configurations used with the 2-D model
of the structure. The control force is applied to the structure by rollers
at the ends of stiff standoffs (shown as bold lines in Figure 3) at the
nodes. The standoffs are much stiffer than the other members and do not
significantly contribute to the structural response. Therefore, the
standr ffs are not explicitly modeled as structural elements. The control
force is found by multiplying a set of constant feedback gains by a limited
set of system state observations. The fifteen selected observations are
the average horizontal velocities, one at each level, and the rotational
velocities of the four lowest nodes. The control force is assumed to be
uniform along the tendon. The tendon is represented by the dashed lines
showvn in Figure 3. The assumption of a constant control force means
frictional losses along the length of the tendon are neglected. Applying
the control force at a distance away from the controlled nodes allows both
translational and rotational control forces to be applied to the nodes.

For the model used in the control calculations, the control tendon is
assumed to be capable of applying both tensile and compressive forces. In
a real structure, compressive forces in a tendon are not possible.
Instead, tvo tendons are used with the second tendon using a symmetric
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configuration on the opposite side of the structure, as shown in Figure 4.
The use of a single tension/compression control to model two tension-only
controls is not exact. However, if a robust active control system is
obtained, any small errors in the analytical model will not seriously
degrade the controlled performance of the structure.

The control configurations used for the tendon based control system
are obtained using a dynamic programming method®. The dynamic programming
uses the standoff lengths as parameters. For fabrication reasons, the
actual standoffs come in length increments of 7.6 cm with a maximum length
of 22.8 cm. The standoffs can be chosen to extend to either side of either
columr line. The dynamic programming algorithm has a choice of fourteen
different standoff lengths at each level of the 2-D model. The performance
index of the dynamic programming algorithm is the amount of damping in the
first mode as measured by the size of the corresponding entry in the modal
control influence matrix. Initially, optimality of the control
configuration is solely based on this performance index. For a structural
model in which the mass and stiffness matrices are represented by [M] and
[K], the modal control influence vector is the product of the matrix which
diagonalizes [M] ![K] and the control influence matrix. The non-zero
entries in the control influence matrix, or vector in the case of one
active controller, reflect the proportion of the control force which is
applied to the individual degrees of freedom at the controlled nodes. The
ratios between the entries of a column of the modal control influence
matrix represent the ratios between the amount of active damping provided
in those modes for a given set of constant feedback gains. The selection
of the control configuration and the sensor locations allows the
calculation of the constant feedback gains. The gains are calculated to
provide effective active damping in the first ten natural vibration modes
of the structure. One important point is that although the 2-D model of
the structure appears to be like a cantilever beam, the control
configurations imply that the actual first mode behavior of the structure
is not that of a cantilever beam. Both of the control configurations are
more complex than what would be expected to be necessary to control the
first mode of a simple cantilever beam.

The second control configuration was tried after the first, optimal
controller exhibited a lack of robustness in simulations with structural
imperfections. The first control configuration is sensitive to structural
imperfections because the second entry in the modal control influence
vector is close to zero. The imperfections can cause the second entry,
wvhich corresponds to the second natural mode of the structure, to change
sign. When this occurs, the first controller, rather than providing active
damping, destabilizes the second mode of the structure. The second
controller is selected from a group of nearly optimal (with respect to the
first mode) controls which have been found by the dynamic programming
algorithm. The second controller is nearly as effective at providing
damping in the first mode and is anticipated to be less sensitive to
structural imperfections since none of the first ten entries of control
influence vector are close to zero and are essentially the same size.
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Analysis Results

The finite element computations have been done with software developed
for nonlinear, transient dynamic analysis of framed structures using one of
a variety of direct time integration techniques. These analyses have been
run linearly, using Newmark-g implicit time integration with the
integration parameters chosen for unconditional stability. The time step
is set to 0.005 seconds to ensure reasonable accuracy and to minimize the
effects of numerical damping inherent in the solution algorithm. Trials
have been run with a time step of 0.001 seconds and no perceptible
difference is apparent in the responses of the model. The total time
duration simulated by the analyses is 8.0 seconds, corresponding to
approximately four fundamental periods of the structure. Beam-column
elements are used to model the structural members. One finite element is
used for each structural element.

Analyses have been run to examine the performance of the two control
configurations and the associated constant feedback gains applied to the
ideal structural model. A plot of lateral tip displacement of the
idealized structure is shown in Figure 5. The response of the ideal
structure with the two different control configurations is compared to the
response of the uncontrolled structure. Both controls provide acceptable
active damping of the excitation. The control forces for the two different
configurations are shown in Figure 6. Although the first controller is
optimal with respect to the first mode, the overall control force demand of
the second controller is significantly less, indicating that it is more
eflicient in providing damping in the other controlled modes.

Specifically, the second mode periodicity is clearly seen in Figure 6 in
the trace of the control force of configuration 1. It is reasonable to
expect that the near zero second entry in the modal control influence
vector of the first control configuration will result in relatively large
constant feedback gains and control forces associated with the second mode.

Four series of analyses with random distributions of structural
imperfections have been run for each control configuration. Each series
consists of twenty transient dynamic analyses for each control
configuration. Three types of structural perturbations have been
introduced in the model. The perturbed quantities are selected to attempt
to simulate the model uncertainty caused by using nominal structure
properties without first taking into account fabrication tolerances and
variations in mass and stiffness properties of the actual structure. 1In
order to simulate the variation between the nominal and real stiffness of
the structural members, the cross-sectional area and moment of inertia
values of the members are randomly varied in the range of +10% in all four
series of analyses. The mass variations between the model and the actual
frame are expected to be less than the variations in stiffnesses, so a
range of +5% is used in all four series of analyses. To simulate the
differences between the model and the real structure due to fabrication
tolerances, four ranges of random nodal perturbations have been selected.
The nodal coordinates are randomly varied in the ranges of +0.0 cm, +1.3
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cm, +2.5 cm, and +5.1 cm. The random variation of the structural
properties for each analysis is taken from a uniformly distributed sample
within the range for the appropriate series. A uniform distribution is
selected rather than a normal distribution to provide a more rigorous test
of the numerical sensitivity of the control configurations. The ranges of
imperfections are selected to encompass imperfections which might
realistically be expected to occur in a physical model or prototype.

The results of transient dynamic analyses of the randomly perturbed
structures are shown in Table 1. The percentage values listed represent
the fraction of the simulations which exhibit a stable response.
Instability was found to occur in the modes in which active damping is not
provided and in a mode in which active damping is supposed to be present.
The instability in a "controlled" mode occurs only in the case of the first
control configuration. The majority of the unstable responses of the first
controller are caused by the change of sign of the second entry of the
modal control influence vector. A plot of a lateral tip displacement for
this type of controller instability is shown in Figure 7. The remainder of
the unstable responses of the first controller and all of the unstable
responses of the second controller occur when a high mode, which is not
initially supposed to be actively damped, becomes excited by the control
forces. In the absence of small amounts of passive damping in the
structure, the high frequency response continues to increase. A plot of
lateral tip displacement for this type of controller instability is shown
in Figure 8. From the values in Table 1, it is obvious that the first
control configuration is unsatisfactory for even small perturbations while
the second control configuration performs well in the first three ranges of
perturbations. It should be noted that the stability results for the
linear analyses of the perturbed models can also be obtained by examination
of the closed-loop eigenvalues of the controlled system. The use of
transient analyses to determine stability of the controlled structures is
dictated by the desire to extend this research into geometrically nonlinear
response which would not allow solution for the closed-loop eigenvalues.

The effects of the random imperfections on the open-loop eigenvalues
of the models can be seen in Table 2. The results of eigenvalue analyses
are shown for the first five natural vibration modes of the models. The
tabulated values are the mean periods of the models in a given series and
the values in parentheses are the standard deviations from the mean. The
maximum difference between the ideal and imperfect simulations is 1.8% for
the +0.0 cm case, 3.5% for the :1.3 cm case, 4.8% for the :+2.5 cm case, and
11.3% for the 5.1 cm case. For the first three series of analyses, the
small differences between the ideal and imperfect open-loop eigenvalues
imply that a well formulated active control will be effective in providing
damping. The performance of the second control configuration, indicated in
Table 1, supports this.

The performance of the first control configuration is clearly

inadequate in all four ranges of imperfections. The fact that the control,
when acting on a system with unexpected structural imperfections,
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destabilizes a low mode is not acceptable. The second control
configuration performs as expected in the first two ranges of
imperfections. The fact that the second control destabilizes high modes in
the third and fourth ranges of imperfections is clearly not desirable.
However, it performs more robustly than the first control and is more
suitable for implementation on the actual experimental structure. The
third and fourth ranges of imperfections also represent extreme levels of
fabrication tolerances vhich may not be acceptable for well built
structures.

Conclusions

Discrepancies between the idealized numerical models used to establish
control configurations and the actual structure can degrade the performance
of active controls. Numerical testing of a control strategy with perturbed
numerical simulations can reveal some shortcomings of the active control
prior to physical testing. By revealing the unexpected poor performance of
the first control configuration, we were able to avoid some serious
experimental difficulties. If the first control configuration had been
experimentally implemented, valuable time would have been lost as the
source of the problem may have been obscured by other possible experimental
errors. It should be noted that while sensitivity analysis will not
guarantee good experimental performance, it is a means by which some
control weaknesses can be exposed. It is found that use of a performance
index based solely on the damping provided to a single mode does not result
in the most robust control. It has been demonstrated that optimality of
the active control configuration must be based on both performance in
providing active damping and on some measure of control robustness in the
dynamic programming algorithm®.
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Table 1.

structures.

Results of transient dynamic analyses with
the active controls applied to the perturbed

% of Stable Control Trials

Series | Range of Imperfection | Configuration 1 | Configuration 2
1 + 0.0 cm 85 100
2 T 1.3 cm 55 100
3 + 2.5 cm 15 95
4 + 5.1 cm 5 55

Table 2. Results of open-loop eigenvalue analyses, mean
periods (seconds) and standard deviations
(seconds).

Imperfect Analysis Series

Mode [ Ideal T 1 2 3 4
1 2.0303 2.0093 2.0097 2.0189 2.0578
(0.0067) | (0.0230) | (0.0459) | (0.0952)
2 0.6699 0.6627 0.6631 0.6656 0.6756
(0.0023) | (0.0060) | (0.0111) | (0.0211)
3 0.3916 0.3877 0.3874 0.3875 0.3871
(0.0014) | (0.0027) | (0.0051) | (0.0101)
. 4 0.2753 0.2723 0.2723 0.2723 0.2721
(0.0011) | (0.0020) | 0.0034) | (0.0063)
5 0.2106 0.2082 0.2084 0.2084 0.2081
(0.0006) | (0.0011) | (0.0021) | (0.0042)
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Figure 1. 3-D experimental structure.
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Figure 2, 2-D model of the experimental structure.
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Figure 3.
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Figure 4.
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Summary:

A 6.5-meter long experimental space truss was built to implement the concept of co-located
velocity feedback control with multiple channels using new magnetic actuators to damp out large
motions. Non-local self-equilibrated internal control forces are applied to suppress the bending
vibration of this experimental truss. The control forces are generated through new voice-coil type
magnetic actuators with a high force-to-mass ratio manufactured to Cornell specifications by the
MOOG Corporation, Aurora, New York. A moving magnet inside a solenoid is employed to pick
up the corresponding velocity signal. This magnetic velocity sensor was designed as an integral
pat of the actuator to achieve co-location of sensor and actuator force. In order to transmit the
nonlocal torque-free control forces, an actuator mechanism was also invented. Unlike the
conventional tendon control system, this actuator mechanism is not pre-stressed so that the truss
members are not weakened. It is shown that there exist optimal damping ratios for the feedback
gains. The experimentally measured damping ratios for the fundamental and second modes using
this new actuator/control system were effectively increased up to 9.0% and 16.9%, respectively.
Vibration amplitudes of several centimeters can be suppressed with this device.

Project Description:

In the vibration control of large flexible structures for space applications, the choice of
actuators plays a key role. Theoreticians often place forces at different locations on the structure
without a discussion as to how these forces can be realized. Two actuator concepts widely
discussed in the literature are proof-mass [1,2} and gas-jet [3]. Both are what one could call local
actuators. The gas-jet idea, however, does not guarantee the conservation of linear and angular
momenta of the structure without the addition of other constraints, such as pair-wise control. In
contrast to employing a ground-based actuator [4] or a gas-jet, a self-equilibrated internal force is
an ideal candidate for the vibration control of a free structure. A number of actuator designs using

1Proceedings of the Joint U.S./Japan Conference on Adaptive Space Structures, Maui, Hawaii, 13-15 November
1990.
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this concept are also discussed in the literature. They include piezoelectric implanted strutts [5,6],
shape-memory alloy [7] and active strutts with hydraulic [8] or electro-magnetic [9] forces. When
applied to truss-type structures, these designs can also be thought of as local actuators.

For low frequency vibration, structural deformation is usually not localized at one point,
and the potential energy is distributed over the structure. Therefore, a nonlocal control force can
perform in this situation more efficiently than a local force actuator. In order to create a nonlocal
self-equilibrated internal control force, an actuator mechanism is required to transmit the control
force. A tendon control system [10,12] is a typical example. Since a cable is quite flexible and
cannot offer a compressive force, the identification and modelling of its dynamics is not
straightforward and should receive further study.

A research program was conducted at Cornell to assess the potential for using non-local
magnetic actuators in a co-located control system for active vibration suppression of a space truss.
Extensive theoretical, numerical and experimental results are reported in the Ph.D. dissertation of
the first author [13]. Only some of the experimental results are reported in this paper.

In this research, new magnetic actuators were developed to possess a fast response speed
and a high force-to-mass ratio. A new actuator mechanism was also invented to transmit nonlocal
torque-free control forces. The required velocity signal is directly measured from a moving magnet
inside a solenoid. This velocity sensor was designed as an integral part of the actuators.

The design philosophy of the experimental space truss built in the laboratory was mainly
based on two considerations: fundamental natural frequency and linearity. In order to make sure
that the response time of the conirc! system (actuators, sensors and feedback circuits) was short
enough to control the structural vibration, the fundamental natural frequency of the experimental
truss was designed to be around 10 Hz. Another design issue is the linearity of the structural
characteristics. One important nonlinear effect that the design sought to prevent was buckling.
This linear truss has been designed so that buckling would not occur, as long as the vibration
amplitudes at both ends were less than 10 mm.

At this time, a systematic way to decide the optimal placement of actuators and sensors is
still under research. However, based on engineering judgment, it seems that an actuator placed
across a region with higher strain-energy density will have better performance characteristics. By a
process of trial and error, in which the controllers spanned various numbers of bays along the
edges or across the faces of the truss, the effective locations of actuators were investigated.

Experimental Set-up

A six-and-half-meter long experimental space truss with rigid joints, (Figure 1), was
designed to evaluate the idea of a generalized co-located velocity feedback control using nonlocal
actuators. Its cross section is an equilateral triangle measuring 180 mm along each edge, and the
slenderness ratio is about 36. Due to the size limitation of the experimental truss in the laboratory,
a lumped mass was added at each joint in order to meet the fundamental natural frequency
requirement. The frequency thus attained was 10.4 Hz. It turns out that the total mass of this
designed truss is about 9.0 Kg: one third is due to truss members, and the remainder is consisted
of rigid joints. The truss members, made of A1-2024-T3, are circular rods with 4.8 mm diameter,
while the rigid joints, made of Al-6061-T6, are cubic blocks with 31.8 mm edges. They were
assembled together with a two-part epoxy to form a truss. In order to prevent each truss member
from buckling, the number of bays in this truss was increased up to 24. Finally, in order to
simulate a space environment, this truss was suspended by two soft rubber strips.
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Based on this simple truss model, the first twenty-two lowest natural frequencies of the
suspended truss are calculated and listed in Table I. A refined frame model, which includes the
bending effect of truss members, was also adopted for comparison.

Actuators

A custom-ordered magnetic actuator was developed by the Moog Corporation in East
Aurora, New York. It is a voice-coil type magnetic actuator, in which the magnetic field is about
8 K Gauss (Figure 2). Its coil was made of a 28 AWG wire. In the vibration control with one
actuator, a prototype actuator, whose time constant, defined as the ratio of inductance to resistance,

is about 0.6 x 10-3 sec, was used. While, in the second experiment, two new-version actuators,

whose time constant is about 1.4 x 10-3 sec, were employed. These new-version actuators have
larger output force per unit current and can produce 10.0 Kg force with 0.6 Kg mas. Some basic
specifications of the second type of actuators is listed in Table II. All of these actuators were
driven by TECHRON 5530 power supply amplifiers. These amplifiers, made by Crown
International Inc. in Elkhart, Indiana, have 300 watt output power over a bandwidth of 20 KHz.

Sensors

In order to pick up the required velocity signal which was fed back into the actuators, two
types of velocity sensors were considered. One was a commercial linear variable differential
transformer (LVDT) [11] with a differentiator. This LVDT, made by the R.D.P. Electronics Ltd.
in Wolverhampton, United Kingdom, has a useful bandwidth of 200 Hz. The displacement signal
measured by it was fed into the differentiator to obtain the velocity signal indirectly. In this case,
the actuator and sensor were arranged in a parallel configuration. The other is a home-made
velocity sensor, in which the velocity signal was measured directly from a moving magnet inside a
solenoid (Figure 2). The solenoid was made of a 40 AWG wire, and the moving magnet was a
somarium-cobalt type magnet. The sensitivity of the velocity sensor used is listed in Table II. In
this case, the actuator and the sensor were combined in a serial configuration, as shown in Figure
2.

Actuator Mechanism

Theoretically, the control force determined by the feedback law must be exerted between
two remote joints. Because the torsional rigidity of each joint is very soft, a small moment at a
joint can greatly degrade the control effort. In the vibration control with one actuator, the
numerical simulations for control forces offset by 0 mm and 25 mm are compared. In this
analysis, the refined frame model must be used to analyze the bending effect due to the moment
created by the offset control force. In the case of 25 mm offset, the offset control force does damp
out the relative motion of both ends of controller, but not the relative motion between two remote
joints. Therefore, the soft torsional rigidity at each joint can make the offset control force useless.
Therefore, as shown in Figure 3, an actuator mechanism was invented to create a torque-free
control force. In this mechanism, the force applied betwcen two joints is twice the force generated
by the actuator, and the measured velocity at the sensor is also twice the relative velocity between
two joints. Therefore, this mechanism also amplifies the feedback gain by a factor of four.

Control with Two Actuators
In this experiment, the actuator mechanisms spanned across five bays, as shown in Figure

1,3. The general bending vibration of the experimen:al truss was excited by an impact force at one
end of the truss, and the acceleration response was measured at the other end. The transient

87




responses were recorded both for the structure without controller and for various feedback gain
combinations in the two actuators. Their time histories and gains (G = 0, 2650, 5300, 10600,
15900 and 21200 Kg/sec) in both actuators are plotted in Figure 4. Many vibration modes are
involved in these time histories. In order to focus on the fundamental and second modes, a band-
pass digital filter with 20-30 Hz passing bandwidth was used to capture the symmetric and anti-
symmetric bending vibration of the lowest mode, respectively. The filtered responses are plotted
in Figure S. For the structure without controller, the lightly damped response gives a 0.4%
damping ratio. After the placement of the controller, the damping ratio of the truss increased to
1.5% and 3.6% for the first and second mode, respectively, due to the friction force between
moving parts. The contour plots of the damping ratios for the fundamental and second modes
versus the feedback gains g; and g2 in two actuators are also plotted in Figure 6. For the
fundamental mode, the damping ratio can be increased up to 9.0% for an optimal gain 15900
Kg/sec, in which the output voltage from the velocity sensors is amplified by a factor of 1500
before being fed back into the actuators. For the second mode, the damping ratio can be increased
up to 15.9% for an optimal gain 5300 Kg/sec. In this experiment, when the output voltage from
the velocity sensors was amplified by a factor of 3000, the controllers started to become unstable,
and the oscillating frequency was above 2000 Hz. In this situation, the vibration amplitude of the
truss is almost zero, but the output of the power supplies oscillates between two saturation levels.
It indicates that the shielding problem of the electromagnetic interference between actuator and
sensor is not completely solved yet. Fortunately, the optimal feedback gain had been passed,
before the feedback loop began to oscillate.

Under the optimal feedback gain, the damping ratios of the fundamental and second modes
for different input levels are plotted in Figure 7. Their performances are quite consistent for
different input levels.

Finally, another test was conducted to suppress the single-frequency vibration of the
experimental truss, which was excited by a 10 Hz sinusoidal force. (In this case, initially, two
actuators are connected to a signal generator to excite the truss at 10 Hz frequency. Then, by
switching back to the feedback loop, they are also used to suppress the 10 Hz vibration of the
truss. By adjusting the magnitude of the output voltage of the signal generator, the displacement
amplitudes of the truss vibration at both ends were driven up to 10 mm. By using the optimal
feedback gain, the damping ratios of the free and controlled decays for different displacement
amplitude are shown in Figure 8. The damping ratios of free and controlled decays are around
0.5% and 7.2%, respectively.

Numerical Simulation with Two Actuators

For the numerical simulation, the effect of the actuator mass was included as discussed in the
Ph.D. dissertation of the first author [13]. The total mass of two controllers is 3.5 Kg, which
includes two pair of actuators and actuator mechanisms. For the symmetric disturbance, the
displacement responses within ten fundamental periods at one end are found for various feedback
gains (gs = 0, 1700, 9500, 19000 and 38000 Kg/sec), and the damping ratio versus gg is shown in
Figure 9. For the anti-symmetric disturbance, the applied loading is equivalent to two impulse-
type anti-symmetric bending couples. The displacement responses within ten fundamental periods
at one end are calculated for various feedback gains (gz = 0, 1100, 5000, 10000 and 20000
Kg/sec) [13]. The damping ratio versus g, is shown in Figure 10. Both cases demonstrate the
existence of the optimal feedback gains. The optimal damping ratios for symmetric and anti-
symmetric bending vibrations are around 13% and 17%, respectively. Because of the spill-over
effect from the participation of the high-frequency modes, they are smaller than those predicted
from numerical simulation. Nevertheless, in both analyses, it is shown that the anti-symmetric
bending vibration can be damped out more efficiently than the symmetric one. The reason is that
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the two controllers used only cover the regions which have the highest strain energy density for the
second mode, but not for the first mode.

Due to the slenderness of the designed truss, it is very difficult to control the torsional
vibration by using two-point self-equilibrated control forces. Even worse, the direction of the
cross member in each bay is alternating from bay to bay on the experimental truss. The relative
axial deflection between two adjacent bays caused by a torsional vibration will cancel out each
other. Therefore, the sensors used in the experiment hardly detect the torsional motion, which also
makes the control of the torsional vibration impossible. However, if the direction of the cross
member in each bay were the same, the actuators used would have some ability to suppress the
torsional vibration. In order to increase the effectiveness of the structural control, nonlocal self-
equilibrated internal control couples are required. The search for an actuator mechanism to
generate this type of control couple is under research.

Finally, extensive numerical experiments were conducted to look at the robustness of this vibration
control system to control saturation and mechanical buckling nonlinearities. The results show that
the control system should behave well in this nonlinear regime [13].
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Sketch of experimental space truss and locations of suspension rubber strips.
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Schematic diagrams of actuator mechanisms for one and two controllers in the
vibration control experiments.

Free vibration time histories of vertical acceleration at one end of truss with two
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Filtered responses of the experimental results in Figure 4 by a band-pass digital filter
with frequency bandwidth 20-30 Hz.

Contour plot of the damping ratio of first-mode vibration versus g; and g3 for
feedback control with two actuators from experimental test.

Optimal damping ratios versus inpat level for vibration control with two coupled
actuators.

Damping ratios versus vibration amplitude at one end of truss with and without
feedback control.

Damping ratios versus gs from numerical simulation and experimental test with two
actuators.

Damping ratios versus g, from numerical simulation and experimental test with two
actuators.
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TABLE I - COMPARISON OF NATURAL FREQUENCIES BETWEEN ANALYTICAL
TRUSS AND FRAME MODELS; AND MODAL TESTING

Natural frequencies of experimental space truss (Hz)

Experiment | Truss Model | Frame Model

- SB1 10.37 10.50 10.49
SB1 10.37 10.50 10.49
AB1 21.75 28.44 28.39
AB1 27.87 28.44 28.40
ATl 28.00 28.67 28.54
SB2 52.75 54.32 54.05
SB2 53.37 54.32 54.06
ST1 55.62 57.16 56.89
AT2 82.50 85.41 84.97
AB2 84.12 86.94 86.01
AB2 84.75 86.94 86.01
ST2 109.50 113.10 112.42
SB3 119.75 124.75 121.98
SB3 119.75 124.76 121.98
SL1 127.50 132.88 130.66
ST3 136.00 140.45 139.36

SBn: Symmetric Bending Mode n
ABn: Anti-symmetric Bending Mode a
STn: Symmetric Torsional Mode n

ATn: Anti-symmetric Torsional Mode n

SLn: Symmetric Longitudinal Mode n
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TABLE II - SPECIFICATIONS ON ACTUATORS AND SENSORS

Experiment with two controllers

Velocity sensor Induced voltage ,
velocty per unit velocity |1-95 V sec 'm
Resistance 14.7Q
Inductance 20 mH
Actuator Output force
per unit current | 138 Kef /A
Induced voltage |  ,
per unit velocity o
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Sketch of experimental space truss and locations of suspension rubber strips.
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Figure 4.

Free vibration time histories of vertical acceleration at one end of truss with two

actuators for different feedback gains from experimental test.
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Figure 5. Filtered responses of the experimental results in Figure 4 by a band-pass digital
filter with frequency bandwidth 20-30 Hz.
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PROJECT SUMMARY

Project Title:
Experimental Truss: Closed-loop Active Control

Faculty Leader:
Professor Peter Gergely
Structural Engineering

Graduate Research Assistant:
Lauran B. Larson

Other Participants:
Professor John F. Abel
Brian Aubert, GRA
Li-Zhi Liao, GRA

Executive Summary:

The first phase of the experimental program, the testing of a 10 meter
truss, has been completed. Non-collocated closed-loop active control was
achieved using eccentric tendons. A detailed system characterization was
first established as input for the control parameter optimization. Active
control increased effective damping to about 5% in the first mode from about
0.5% in the uncontrolled case.

Project Description:

The geometric configuration of the 10 meter test specimen is shown in
Figure 1. The test setup consists of the specimen itself, the eccentric
tendons, linear motor actuator, accelerometers providing the required
feedback state variables, signal conditioning, digital motor controller, and
the 286 PC with integral A/D conversion board.

Closed loop active control has been implemented by execution of the
following sequence during each 15 millisecond timestep of the test:

- Acquisition of 13 state variables (accelerations) hardware
integrated and amplified to yield velocities.

- Analog to digital conversion of the velocities.

- Execution of the control algorithm yielding a single acceleration
control variable from the 13 velocity feedback variables.

- Writing both the feedback state variables and the resulting
acceleration control variable to file for later analysis.

- Transmission of the acceleration control variable to the motor
controller and implementation of the commanded acceleration.
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Figure 2 shows a block diagram representation of the above live control
sequence.

The 10 meter specimen geometry has a high aspect ratio in the direction
of primary motion to model the flexibility of satellite structures. The
effecting of control by delivery of rotations to joints was investigated in
several static simulations wherein the deformed geometry resulting from
pure rotations was compared to the expected mode shapes. Diagonals are
absent in the primary direction of motion so that the implementation of
control through the eccentric tendon can deliver small rotations to the
joints as well as translations.

The eccentric tendon control scheme was selected for its efficient
delivery of accelerations in the primary direction of motion at each node
throughout the length of the specimen. This contrasts previously
investigated single or dual actuator location schemes which attempt to
counteract vibrations throughout the length of the specimen with forces
directed to only a few nodes.

Preliminary tests completed on a small scale specimen resulted in the
selection of electromagnetic linear actuators rather than servohydraulic
actuators in an effort to eliminate the dynamic non-linearities inherent in
servohydraulic systems. The DC linear motors are controlled by a digital
controller board in the 286 PC.

The presence of gravity field-induced accelerations in the feedback
signals has been investigated by laboratory tests and simulations. We have
concluded that, due to the geometry and expected mode shapes of the
specimen, the state variables of interest will be read from joints which
undergo rotations sufficiently small to make the presence of the gravity
field negligible in the feedback signals. These accelerations are then
llgegdware integrated to provide velocities to the control algorithm in the 286

Since the placement and length of the eccentric tendon offsets were
based on an optimization algorithm which targeted the first and second
modes, the excitation source for the first series of tests has been an initial
displacement and release of the free end of the cantilevered specimen.

A detailed program of static and dynamic characterization of the truss
specimen was performed to provide a reference of uncontrolled specimen
behavior for comparison with active control results and to provide data used
in adjustment of the finite element used in optimizing the control
parameters. This characterization process consisted of static stiffness tests
of individual specimen components and dynamic tests for identification of
system natural frequencies, mode shapes, and damping values. Dynamic
characterization tests included experimental model testing for verification
of mode shapes, frequency domain testing for accurate identification of
model frequencies, and free vibration testing for determination of
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uncontrolled damping values.

Feedback data consisted of accelerations recorded at each of the 11
vertical bays of the truss which were digitally integrated to provide velocity
feedback. The active control tests consisted of introducing a relatively small
lateral disturbance to the free end of the truss specimen immediately after
activation of the control system hardware and software. The test data
recorded and available for post-processing and analysis included the
velocity data at the sensor locations, tendon force data measured at the
connection to the tensioning device, and the control force output signal
resulting from the control algorithm. Analysis of this data combined with
visual observations made during the control tests provided a basis for
determining the effectiveness of the active control system and the crnditions
and causes of control instability.

Results:

The eccentric tendon active control scheme considered in this work
provided stable and effective active damping in the range of 5% of critical for
random lateral disturbance below a threshold excitation velocity level of
approximately 16 cm/sec applied symmetrically at the free end of the truss.
The effect of active control is illustrated in Figures 3 and 4. The magnitude
of this excitation velocity threshold level appeared to be related to the
relationship between the dynamic capability of the control system
mechanics and the frequency content of the disturbance.

For disturbances below the threshold, the system mechanics (the linear
motor and amplifier) were able to deliver the small tendon force demanded
by the control algorithm to the truss specimen sufficiently fast enough to
avoid significant phase lags in the achieved control force waveform. When
the disturbance was in excess of the threshold level, the system mechanics
could not accurately deliver the control force profile demanded by the
control algorithm. The result of this phenomena was a significant phase
and/or time lag in the achieved control which would at some frequency
represent 180 degrees of phase shift which would then drive, rather than
damp, the system.

The magnitude of control force effort demanded during stable test runs
near the excitation threshold of stability was approximately 40 Newtons.
However, repeated tests indicated that this quantity did not, itself, appear to
be a criteria for stability since its magnitude varied within both stable and
unstable test runs. What appeared to be more important to control success
was the frequency content of the excitation source.

Another source of control system instability was observed during the
control tests performed prior to installation of the acceleration signal anti-
aliasing filters. The aliasing of signals above the sampling frequency into
the acceleration data record would, when digitally integrated, result in

103




corruption of the feedback velocity data used in the control algorithm.
Although it was found that the introduction of these filters caused a small
reduction in the amount of active damping achieved, control tests
conducted subsequent to their installation no longer showed evidence of
aliasing-related control instability.

In an effort to identify the individual components of phase and/or tim lag
in the control loop, swept-sine input vs. response tests were run for the
controller-feedback circuit alone and for the controller with linear motor
activated and connected to the truss specimen. In the case of complete
control loop, recording accurate phase-lag test data was very difficult as the
drive signal passed through a region of resonance with a truss natural
frequency. Since the rpecimen had very little damping, the truss motion
would quickly become violent at system resonances.

For the controller-feedback circuit alone, an achieved control signal
phase lag of approximately 60 degrees was observed near 6 Hz. The
primary reason for this phase las was the need to insert a single stage R/C
filter in the load cell conditioning circuit to attenuate a problematic high
frequency signal resident in this circuitry. For the complete control
system, the control signal phase lag at 6 Hz was closer to 180 degrees,
depending on the demanded amplitude of force drive signal.

At the time they were installed on the truss, the control tendons were
pretensioned to 50 Newtons. This relatively small degree of tension
appeared to be sufficient to prevent slackening and the associated impulse
behavior during active control tests. )

The data sampling rate of 73 Hz in the outer loop, although not fast by
signal processing standards, appeared to be sufficient for acquiring
acceleration data used in generating feedback velocities. Although a faster
sampling rate would likely improve the resolution of velocity feedback
states, the low frequency nature of this test made improvement of the
sampling rate a low priority with respect to active control success.

Publicati 1 Repart

"Experimental Program for Active Control of Flexible Space Structures",
L.B. Larson, M.S. Thesis, Cornell University, August 1990.
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Executive Summary:

Problems related to the decentralized active control of large flexible structures to
suppress structural vibration are investigated. Attention is focused on the following
two problems: (1) optimal locations of actuators and sensors for active control of large
flexible structures, in particular, the optimal actuator placement for a 3-D 11-bay
truss; (2) characterization of the decentralized controllers which achieve the desired
pole placement of large flexible structures, in particular, characterization of velocity
feedback control using collocated actuators and sensors. Theories and algorithms are
developed for these problems.

Project Description:

The design process of a control system for a large 3-D flexible structure built
at Cornell University involves two steps: (1) selection of actuator and sensor loca-
tions; (2) design of control law so that the structural damping is enhanced. Theories
and algorithms are developed for the two design steps. The theories and algorithms
developed are applicable to general large flexible structures.

Selection of actuator locations:

A fundamental problem towards the control of a large flexible structures (LFS)
is the determination of optimal actuator locations. Since the choices of actuator
locations for an LFS are numerous, the problem of determining optimal actuator
locations is by no means a trivial one.

A common approach towards the problem of optimal actuator locations is to
optimize actuator locations in the context of LQ regulator (or LQG regulator), i.e.,
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to minimize a quadratic performance index over a parameter vector p representing
actuator locations and control command u(l]. To solve this problem, one needs to
compute matrix Riccati equations for every value of the parameter vector p over
its domain (p is a vector of discrete numbers in many cases). This is numerically
complicated.

Another approach towards this problem is to assess the sensitivities of critical
modes with respect to actuator locations through system eigenstructure analysis,
e.g., modal participation factors method. If only one critical mode is considered, the
optimal actuator locations can be chosen as the ones with respect to which the mode
is most sensitive. However, if more than one critical modes are considered and the
sensitivities of modes with respect to actuator locations are inconsistent with each
other, this approach does not give a systematic way to make trade-off among actuator
locations.

Recently, the problem of optimal actuator locations is studied from the stand-
point of controllability [4]. Criteria measuring system controllability are maximized
as functions of actuator locations to determine the actuator locations from which
the system is strongly controllable. This optimization is generally a combinatorial
optimization and there is no efficient way to solve it.

We approached the problem of determining a given number of optimal actuator
locations for damping enhancement of critical modes from the standpoint of control-
lability. First, a new criterion measuring the controllability of critical modes from
actuator locations is introduced. Optimization of this criterion leads to a given num-
ber of actuator locations from which the critical modes are strongly controllable.
These actuator locations are defined as optimal actuator locations. Second, an ef-
ficient method is presented for determining the optimal actuator locations. With
this method, the optimal actuator locations are easily found by solving a constrained
optimization (nonlinear programming) problem.

Optimal tendon placement of a tendon control system for a 2-D 11-bay
truss structure

Control systems using different types of actuators for active vibration suppression
of large flexible structures (LFS) have been studied intensively in recent years, for
example, proof-mass actuator control systems, piezoelectric actuator control systems
and tendon control systems. For such flexible structures as beamlike structures and
trusslike structures, tendon control systems have been shown to be easy to implement
and effective in suppressing vibration[5]. This fact makes tendon control systems an
attractive candidate for control systems to be used in a real LFS in the future. Despite
its importance, however, there are many unsolved problems related to the design of
tendon control systems.

We considered the optimal tendon placement of a tendon control system for the
2-D version of the 11-bay truss built in the Geoge Winter Structural Laboratory,
Cornell University (Fig.1). The 2-D 11-bay truss is modeled as a lumped-parameter
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linear time-invariant system via finite element method. The control objective is to
enhance the damping of critical modes using output feedback control.

Although we may use the method described in the previous section to determine
the optimal tendon placement, we found that with the criterion of optimality for
the tendon placement being the effectiveness and robustness of the tendon control
system, the optimal tendon placement problem can be formulated as a constrained
optimization problem which can be solved using dynamic programming; therefore the
globely optimal solution to the tendon placement problem can be obtained efficiently.

Eigenstructure(eigenvalues/eigenvectors) assignment using decentral-
ized control

The problem of eigenstructure assignment (simultaneous assignment of eigenval-
ues and eigenvectors) is of great importance in control theory and applications due
to the fact that the stability and dynamic behavior of a linear multivariable system
is governed by the eigenstructure of the system. In general, the speed of the dynamic
response of the system depends on the eigenvalues whereas the “relative shape” of the
dynamic response depends on the associated eigenvectors and generalized eigenvec-
tors. Eigenstructure assignment by state feedback control and output feedback control
has received considerable attention over the last decade. Eigenstructure assignment
has been used successfully in incorporating highly desirable control requirements,
such as robustness of eigenvalue assignment and least gain controller, into eigenvalue
assignment by state feedback control and output feedback control[9-12].

Due to the large size of a large flexible structure and the high dimension of its
system model, full state feedback control and output feedback control are impractical.
This is the reason that decentralized feedback control (an actuator uses only local
measurements) is widely used for large space structures. We investigated the problem
of eigenstructure assignment of large flexible structure using decentralized control.

Over the past decade, many methods have been proposed for eigenvalue (pole)
assignment by decentralized control[13-14]. The philosophy of these methods is to
obtain a set of nonlinear equations of the decentralized feedback gain by equating the
closed-loop characteristic polynomial of the system with a desired polynomial; then
solve this nonlinear equations for the decentralized feedback gain. Since no connection
between the closed-loop eigenvectors and the feedback gain is given, these methods do
not accommodate eigenvector assignment. We introduce a parametric expression for
decentralized feedback gain which achieves the desired eigenvalue assignment. The
expression is parameterized by parameters satisfying a set of nonlinear equations. The
closed-loop eigenvectors are also expressed as functions of these parameters. With
the parametric expression, the parameters can be chosen to assign the eigenvalues
and eigenvectors simultaneously. This method is a significant extension of those for
eigenstructure assignment by state feedback control and output feedback control.

Modal control of large flexible space structures using collocated actua-
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tors and sensors

Direct velocity feedback control(DVFC) using collocated actuators and sensors
has been commonly employed in active vibration suppression on large flexible space
structures(LFS) due to its inherent property of being energy dissipative and thus
robustly stable with respect to the uncertainties in the modeling of LFS [6]. However,
it is known that DVFC using collocated actuators and sensors does not achieve as good
closed-loop performance as do some control schemes using non-collocated actuators
and sensors. For example, a DVFC using collocated actuators and sensors cannot
assign the eigenvalues associated with critical modes (low frequency modes) of a LF'S
arbitrarily. Furthermore, there exists no systematic method for designing the DVFC
that achieves the desired eigenvalue assignment when it is possible; it is more often
than not that the control is designed on a trial and error basis.

We considered the problem of assigning the eigenvalues associated with critical
modes of a LFS into a specified region in the left half plane (LHP) via DVFC using
collocated actuators and sensors. The specified region in LHP is chosen so that
the critical modes have desired damping. Conditions for the existence of a DVFC
using collocated actuators and sensors that can achieve the eigenvalue assignment are
derived. When there exist nonunique feasible DVFCs, the one with least Frobenius
norm feedback gain is determined. An experimental four-bay truss is used to illustrate
the results.

Conclusion

We considered a number of problems related to the active control of large flexible
structures. New theories and algorithms are developed to find the optimal actuator
locations and design decentralized controllers. These theories and algorithms are
applicable to general control systems.
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Executive Summary:

There is an extensive literature on the application of optimal control
techniques to flexible structures but the majority of this research deals
with LQ (Linear system dynamics, Quadratic Performance Function) techniques
that assume the system dynamics are linear. There is little literature on
nonlinear control of structures and, to the authors’ knowledge no previous
research on the coupling of nonlinear optimization and nonlinear finite ele-
ment structural models. The major advantage of LQ is that feedback control
can be rapidly computed. It has been hoped that LQ control policies computed
on the basis of a linear approxiﬁation of nonlinear dyanmics will work rea-
sonably well on nonlinear systems.

The optimization algorithm used in this analysis is Differential Dynamic
Programming (DDP) which was originally introduced by Jacobson and Mayme
(1971). Computational advances and a DDP algorithm for constrained optimi-
zation have been reported recently (Yakowitz, 1986).

This paper reports preliminary development of computational algorithms
to compute the optimal control of systems described by geometrically non-

linear finite element equations and the application of these methods to the

1Published in Computational Mechanics, A.N. Atluri and G. Yagawa (eds.), Springer-
Verlag, 1988.
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active control of flexible structures. The initial results indicate that
nonlinear DDP optimal control policies based on the nonlinear dynamics of a
structure perform significantly better for nonlinear structures than do the
conventional linear control policies.

The dynamics of the structure are described by:

M d + C dy + R(dg) de = pr + B(dp) ue (1)
where:

de = the vector of nodal displacements at time t

K(d) = Ky + Kq(d) + Kp(d?) = the stiffness matrix

M = diagonal mass matrix

Cc = mass proportional viscous damping matrix

B(dg) = control influence matrix

Pt = external load history vector

Ue = control forces vector
The criterion used to select the optimal policy is the objective function sug-
gested by Miller et al. (1985):

o SR T T
Ci"mtdtudt*"ktdtxodt*’bc“TtnolG'Bu“t (2)
where the §#‘s are weighting functions and:

&E M d. = a measure of kinetic energy

dz Ky dp = a measure of strain energy

ul, BE K' By u. = a measure of potential energy
The terms K and B introduce geometric nonlinearities into the system because
they are functions of d. The control force is assumed to act on a diagonal
between two nodes; hence the nonlinear terms in B depend upon trigonometric
functions of the nodal displacements. The system in eq. (1) is integrated
with an explicit time-marching scheme because such an approach permits
closed-form expressions for the partial derivatives of the transition-
function matrices needed in the DDP equations.

The difference between linear and nonlinear controllers is demonstrated
by the dynamics of controlled and uncontrolled systems described in Figures 1
and 2. Figure 1 depicts the two-bay truss analyzed, and compares the uncon-
trolled behavior of a linear system and a nonlinear system due to a trans-
verse impact load on a'tip node. Figure 1 demonstrates that the two uncon-
trolled responses are quite similar, enough so that one could be led to pre-
dict that a linear control policy would work quite well on the nonlinear as
well as the linear structure.
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Figure 2 compares linear control policies on the nonlinear structure to
the DDP policy derived for the nonlinear structure. In one case the linear
policy is applied open loop, i.e., the control law is not based on an obser-
rvation of the state vector (d, at). The results indicate that much better
control is achieved by using the DDP nonlinear control than by using the open
loop linear control. The third curve in Figure 2 is the result of the appli-
cation of the the linear control law with feedback. In this case the control
law is based on the displacements and velocities one time step (.025 sec)
before the implementation of the control law. Both simulations and actual

practice would require some delay between the measurement of the state and

the implementation of the control. Although the concept of a feedback con-
trol is attractive, it is also difficult and probably infeasible in practice
to be able to measure accurately all displacements and velocities. Figure 2
indicates that even if perfect measurements could be made at each time step,
the linear control with feedback does not perform as well as the nonlinear
DDP control that is obtained from the true nonlinear dynamics of the system.
The computational requirements of DDP are of the order of

N3 . T - Number of Iterations
if N > M where

N = dimension of the state vector (which includes nodal displacements

and nodal velocities)

M = dimension of the control forces vector

T = the number of time steps
For the problem described in Figures 1 and 2, N = 16, M = 1, and T = 200.
DDP applied to explicit structural dynamic simulation requires a large number
of time steps. DDP, which depends only linearly on the numer of time steps,
is more efficient for these problems since other noninear optimal control
methods have computational requirements that grow in a polynomial or exponen-
tial fashion with the number of time steps. However, any nonlinear method,
DDP included, is much more demanding comuationally than are the linear proce-
dures. We are exploring ways to increase the efficiency of DDP and to reduce
the number of time steps required for the analysis.

Acknowledgements. This research was sponsored by the Air Force Office
of Scientific Research under Contract No. F49620-87-C-0011l. Portions of this
work were conducted at the Cormell National Supercomputing Facility and
Cornell’s Program of Computer Graphics.
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Executive Summary:

Analytical models for lightly damped systems are close to being unstable over a range of
operating conditions. If finite-precision measurements are employed by a feedback controller
designed to stabilize or place the closed loop poles of the linearization of such a system, then
complicated dynamical behavior often results. We have discovered that the design of stabiliz-
ing controllers for such systems must pay close attention to finite-precision constraints on
measurements and on arithmetic in potential digital implementations. Moreover, we have
discovered ways in which long records of finite-precision measurements can be employed in
designing feedback controllers for lightly damped systems that are more effective than standard
schemes based on instantaneous feedback laws. We have also recently begun investigating the
question of whether some of the techniques we have employed in analyzing spatial quantization
in control systems will eventually contribute to our understanding of the behavior of finite-
element-based control strategies for lightly-damped distributed systems.

Project Description:

We have subjected to a careful analysis the dynamical behavior that arises in control sys-
tems that employ feedback based on quantized measurements of real-valued time functions.
The models we have considered are all discrete-time, but have important continuous-time
analogues. Of particular interest to us have been two general questions. First, how does the
finite-precision constraint on measurements affect one’s ability to stabilize unstable systems or
place the poles of lightly damped systems by means of feedback? Second, how can one make
intelligent use of long records of finite-precision measurements in more general control prob-
lems involving trajectory following or trajectory optimization? Many established techniques
from the ergodic theory of dynamical systems and from information theory have proven
extremely useful to us in our research.

With regard to the stabilization problem, we have established under some mild assump-
tions the existence of a bounded invariant region in the state space of a closed loop system
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whose controller is based on the instantaneous feedback of a finite-precision measurement of
the system'’s state that would stabilize the system if perfect measurements were available. In
this invariant region, almost all trajectories are chaotic, and under additional assumptions there
exists on the region an invariant measure that is absolutely continuous with respect to Lebes-
gue measure and with respect to which the closed-loop dynamics are ergodic. The ergodicity
would seem to make such systems amenable to computer simulation. The invariant measure
differs significantly from the measure that one would obtain by modeling the quantization
errors as uniform white noise. For details, see [1-2] and [5-6].

Furthermore, we have discovered ways of using feedback to make a long record of
finite-precision measurements of a system’s state reveal asymptotically perfect knowledge of
the current state if the system is stable or just barely unstable. If the system is too unstable for
such strategies to work, there exist other schemes that give a current state estimate which is
asymptotically quite a bit better than that which may be calculated from instantaneous finite-
precision measurements. We have obtained an upper bound on the amount of information
about the state that can be rendered available by such strategies; this bound might be construed
as an upper bound on the useful arithmetic precision in a digital controller for the system. See
(3] for a complete discussion.
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Executive Summary:

The problem of controller placements in large scale linear systems is investigated. Specifically,
given a large scale linear system, it is desired to find the optimal number of linear controllers, ‘the
optimal locations in the system to place these controllers and the optimal feedback gain of each con-
troller so that an objective function is optimized, and also so that other desirable properties of the con-
trolled system, such as eigenstructure assignment, occur. A new formulation of the controller place-
ment problem is presented. A general solution algorithm based on simulated annealing is developed for
the controller placement problem. The solution algorithm can arrive at the global optimal solution. The
solution algorithm has been implemented into a computer package an applied to an eleven bays struc-
ture of 132-dimension linear system with very promising results.

Description of Project and Results
A. Introduction
Consider a large-scale, linear time-invariant system
X =Ax N
where x € R“l is a state vector and A is a matrix of large dimension. Suppose one attempts to improve

the dynamical behavior of (1) by applying linear state-feedback controllers to modify its eigenstructure.
One of the first questions facing the designer for such a large-scale system is

(1) how many controllers to specify,

(2) where to place these controllers, and

(3) what is the associated feedback gain

such that an objective function is optimized and certain constraints are satisfied. This problem is termed
the controller placement problem, which is especially important from the point of view of economy and
effectiveness. For instance, poorly chosen locations for controllers may cause large feedback gain (this

induces high control efforts). Since the choices of controller locations for a large-scale system are
enormous, this problem is by no means a trivial one.

Despite its importance, very little has been done on the controller placement problem. A great
majority of control schemes developed thus far are based on the assumption that locations to place con-
trollers are given. Indeed, the controller placement problem is difficuit to solve analyticaily.

B. Problem Formulation
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Let u(t) be a m dimensional vector of control input. Since the type of controllers we consider is
linear state-feedback, the control input vector u(t) is expressed as

u(t) =-~Fx )

where the feedback gain matrix F = (f;;] is a m x n matrix. Applying the linear state-feedback con-
trollers (2) into (1) we have the following closed-loop system

x=(A-BF)x €)]

(A, B) is assumed to be completely controilable. Let the open-loop eigenvalues of (1) be A(4) = { A;, i
=12..n}, where { A;,i=12,..k )} (k <n) is a symmetric set. The controller placement problem is
to seek a control matrix B (which determines the optimal number of controllers and the optimal loca-
tions to place these controllers) and a feedback gain matrix F (which determines the optimal feedback
gain of each controller) so that a desired objective function is optimized and the following conditions
are satisfied :
(i) (partial eigenvalue assignment)

the closed-loop eigenvalues are

AA =BF)= (N, i =12, k) U (4 i =k+1,)

where (A;,i = 12...k]} are also the open-loop eigenvalues, (4; € Q,i =k+l,..n) is a sym-

metric set of distinct complex numbers, where £ represents a desired region in the compiex

plane. And A; = u;.
(ii) (partial eigenvector assignment)

the closed-loop eigenvectors associated with (A, i = 12,..k] are &;, i = 1,2....k, & need not

be the corresponding eigenvector of (1-1).
(iii) (constraints on feedback gain matrix)

The feedback gain of each controller satisfies certain required constraints

gF)s<0

Let the number of all the interested locations to place controllers be m and B be the correspond-
ing control matrix of dimension n x m; i.e. B = [ by, b,, ..., b,]. Each column of B represents a con-
trol location. Let the number of controllers to be exerted on the system be n., n. £ m. The controller
placement problem is formulated as follows:

minimize C (F*) )
iy
subject to
AA -B;F')=(N,i =12k} U (4, i =k+1,..n)

where (A;,i = 12....k]} are also the open-loop eigenvalues, (4; € Q.i =k+1....a} is a sym-
metic set of distinct complex numbers, where Q represents a desired region in the complex

plane.
(A -B,F)h =Nk, i=12..k
B; = by, biay .n by ) JSn,
ba € (by, by ...b,,) 1sksj
Fim{fifonfiT jsn
fisUfla fiar i fia)
fio€R 1€r<m and 1S5 <n
g§F')<0
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where the adjustable "variables™ B;, F* are the control matrix and the feedback gain matrix. (A, B;) is
assumed 0 be completely conwollable. Note that the feedback gain matrix F depends on the conuoller
matrix B and the eigenstructure of the closed-loop system (4). C(F ‘), a desired objective function
which depends only on feedback gain matrix F*, could be a non-differentiable function. g(F‘) S 0
represents further constraints on the feedback gain matrix, where g : R? — RY, p, q are appropriate
integers. The above formulation is a combinatorial optimization problem. The matrix B; determines the
number of controllers to be placed and the locations to place controllers while the matrix F* gives the
corresponding feedback gain of each controller.

C. Simulated Annealing

There are two possible approaches to solve combinatorial optimization problems: one is via exact
optimization algorithms and the other is through approximation algorithms. The former yields a globally
optimal solution in a possibly prohibitive amount of computation time while the latter yields an approx-
imate solution in an acceptable amount of computation time. Among the approximation algorithms, the
most common one is the greedy search technique which accepts only changes that produce immediate
improvement, with the disadvantage that it often gets stuck at local optima rather than at global optima.
This problem becomes particularly severe as the problem size becomes large, because the number of
local optima usually increases with the problem size. One technique to circumvent this problem is the
technique based on simulated annealing. '

Simulated annealing is a powerful general-purpose technique for solving combinatorial optimiza-
tion problems. This technique is based on the analogy between the simulation and the annealing process
used for crystallization in physical systems. Annealing is the physical process of heating up a solid to a
melting point, followed by cooling it down until it crystalizes into a state with a perfect lattice. In this
technique, a parameter called temperature is defined, which is of the same dimension as the cost Just
as in a physical system, the temperature is closely related to the freedom with which the entities of the
system can move around. The system to be optimized starts at a high temperature, and all the entities
of the system move about freely. The temperature is then gradually lowered until the system
‘‘freezes’’, at which point all the entities of the system are virtually fixed. This frozen configuration will
be close to the lowest energy (or cost) configuration. It has been shown that this technique converges
asymptotically to the global optimum solution with probability one, provided that certain conditions are
satisfied.

The design of an algorithm based on simulated annealing consists of four important elements: (1)
a set of allowed system configurations (configuration space), (2) a set of feasible moves (move set), (3)
a cost function and (4) a cooling schedule. The system to be optimized starts at a high "temperature”
and is slowly cooled down, until the system "freezes" and reaches the global optimum in a manner
similar to annealing of a crystal during growth to reach a perfect structure. At each "temperature”, the
simulated annealing algorithm is represented in the following pseudo-code

repeat (
1. perturb
2. check feasibility/discard
3. evaluate cost function
4. accept/update

} until stop criterion = true

Step 1. perturb the current system configuration to a new configuration by choosing either at random
an element (in the configuration space) from the neighborhood of current configuration or according to
a certain rule. Step 2. check the equality and irequality constraints. If these constraints are satisfied,
then proceed to step 3. Otherwise, the move is discarded and the configuration before this move is used
and go to step 1. Step 3. evaluate the change of the cost function dc := é - ¢, where ¢ and ¢ are
the value of the cost function before and after the move has been executed. Step 4. accept/update: if
the move decreases the value of the cost function, i.e. dc < 0, the move is accepted and the new
configuration is retained. On the other hand, when dc > 0 (i.e. the move is up-hill) acceptance is treated
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probabilistically in the following way: the Boltzman factor e * is first calculated, where the parameter
T is the "temperature” and k is a constant whose dimension depends onec and T. Then, a random

number r uniformly disu'ibutg‘c‘i in the interval [0,1) is chosen. If r S e-ﬁ. the new configuration is

retained: otherwise, if r < ¢ 7, the move is discarded and the configuration before this move is used
for next step. The algorithm stops when no significant improvement in the cost function has been
found for a number of consecutive iterations. It is due to the probabilistic selection rule, the process
can always get out of a local minimum in which it could get trapped and proceed to the desired global
optimum. This feature distincts approaches based on the simulated annealing technique from the greedy
search approach.

Although the simulated annealing framework is conceptually straightforward, design of a success-
ful algorithm based on simulated annealing requires considerable engineering judgement in the design
of the four elements described above. Deuails regarding the design of an algorithm based on the simu-
lated annealing for solving the controller placement problem is contained in [1,2].

D. Application to Modal Control of Large Flexible Scale Systems

We have developed a solution algorithm based on the simulated annealing technique and applied
the solution algorithm to an experimental 11-bay truss system. The three dimensional structure used in
the experimental portion of the research is shown in Fig. 1. The structure consists of eleven 33 inch by
33 inch by 18 inch bays, suspended vertically. The upper four nodes are fixed against translation and
rotation, while the other nodes are free to transiate and rotate in all three directions. Because of the
desire o reduce the size of the state vector, a two dimensional mode! of the structure, shown in Fig. 2,
was selected for use in the numerical simulations. The structure consists of eleven 33 inch by 18 inch
bays, suspended vertically. The top two nodes are fixed against translation and rotation, while the other
nodes are free to transiate in the x and y directions and rotate about the z axis. The loading of the
structure precludes both out-of-plane and torsional excitation of the structure, thus allowing the reduc-
tion in dimensionality without affecting the accuracy.

The elements used are standard 2-D beam-column elements with two translational and one rota-
tional degree of freedom at each end. The members are modelled as aluminum tubular sections with an
inside diameter of 0.54 inches and a wall thickness of 0.088 inches. The members have a cross-
sectional area of 0.125 in? and a moment of inertia of 0.0033 in*. The Young's modulus of the tubes is
10,000,000 psi. The angles between members framing in at a node are assumed to remain constant.

The structural stiffness matrix, K, is assembled using linear assumptions of small displacements,
rotations and strains. The mass matrix, M, is lumped at the nodes. The translational mass contributions
come from both the nodal masses and the tributary mass of the members. The translational mass at
each node is 0.01035 pound-second?/inch. The rotational mass is based on the rotational inertia of the
members framing in at a node. The rotational mass at the tip nodes in 0.0173 pound-second */radian.
The damping matrix, if required, is proportional to the mass and stiffness matrices. The mass propor-
tional damping is primarily effective in the low modes while the stiffness proportional damping is pri-
marily effective in the high modes.

The undamped system is described by the following oscillatory system '

My +Ky =0 ] (5)

where y is a 66-vector of displacement at 22 nodes shown in Fig. 1. M and K are 66x66 mass and
stiffness matrices, respectively. In state space, system (5) can be written as

% =Ax (6)

I
-ix 0 is a 132x132 matrix. The eigenvalues of the open-loop

system (6) are listed in Table 1. System (6) is a unconmolled system. Applying linear controllers to (5)
we have the following system

0
where x=(y y']r is a 132 vector, A= M
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My + Ky =Du ()

where u is an m (>1) vector of control input, and D is an 66xm control matrix. The matrix D =
(dy, d3 ... d73s), is formed in the following way: ith column of D corresponds to ith controller. For
instance, d, is a 66-dimension column vector with

d, = [ cosa, sina, 0,0,...0]1 T

where all the components but the first two are zero, a is the angle between the controller and the hor-
izontal axis (see Fig. 3). d,xn is a 66-dimension column vector with

dyz3 = [ cos, sinB, 0....,0, - cosB, - sinB, 0,...0] T

where all the components but the 1th, 2nd, 22th and 23th are zero, B is the angle between the controller
and the horizontal axis (see Fig. 4).

In state space, system (7) can be written as
% =Ax +Bu ®

0
where B= -M-\D is a 132xm matrix. There are 275 prospective controller locations. It is easy to

show that the system (8) is completely controllable provided any one controller is placed in the system.
Now, we seek two optimal locations to place these two controllers and the optimal feedback gain

R a
of each controller such that the objective function C(F‘) = 3 3 w;;f%,2 is minimized with the follow-
relss]
ing constraints: the two lowest frequency self-conjugate pairs of open-loop system (6) are to be moved
to another distinct and self-conjugate pairs lying in the region of Q = { -10.0 < Re{u;2, 413} < -3.75,
50< Iﬂ‘(ul”o - um] <170, -100< Re{um. um] <-375,25< Im(um. - uuz] < 3.5} while keep-
ing the other open-loop eigenvalues and their associated eigenvectors unchanged (Fig. 5). For the pur-
pose of illustration, we let the open-loop eigenvectors associated with unchanged open-loop eigenvalues
be the corresponding closed-loop eigenvectors. Other choices of preassigned eigenvectors associated
with unchanged eigenvalues are allowed. Since it is desired to use only the velacity y as feedback sig-
nal, we let w;=10% j = 1, .66, w; = 1, j = 67,..., 132, so that the feedback gain from displacement can
be forced to become so small during the optimization process as to be neglected.

The optimal locations to place two controllers are the locations connecting nodes 19, 24 and 7, 24
(see Fig. 6). The optimal feedback gains of these two controllers are tabulated in Table 2 (we only
display the feedback gain matrix F., from which the feedback gain matrix F can be obtained ). The
corresponding eigenvalues are uyy9 = 4.051094 + j 5.1855471, uys9 = 4.051094 - j 5.1855471, u 3 =
-3.999249 + j 2.7875621, u 3y = -3.999249 - j 2.7875621. The other closed-loop eigenvalues remain
unchanged.

Papers:

(1] H.D. Chiang, J.S. Thorp, J.C. Wang and J. Lu, "Optimal Linear Controller Placements for Large
Scale Systems” 1989 American Control Conference, June 1989, pp. 1615-1620.

[2] H.D. Chiang, I.S. Thorp, J.C. Wang and J. Lu, "Optimal Controller Placements for Large Scale
Linear Systems” submitted to /EEE Trans. on Automatic Control for publication.

(31 J.Lu, H.D. Chiang and J.S. Thorp, "Partial Eigenstructure Assignment and its Application to Model
Control of Large Space Structures”, submitted to /EEE Trans. on Automatic Control for publication.
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Fig. 1.  The three dimensional structure of an experimental 11-bay truss system.
The structure consists of eleven 33 inch by 33 inch by 18 inch bays,
suspended vertically.
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Fig. 2.
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A two dimensional model of the structure in Fig. 1 was selected for use in
the numerical simulations.
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Fig. 3. A controller is placed between nodes 1 and 24 with a being the angle
between the controller and the horizontal axis.

Fig. 4. A controller is placed between nodes 1 and 12 with B being the angle
between the controller and the horizontal axis.
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The two lowest frequency self-conjugate pairs of open-loop system (7-2) are
to be moved to another distinct and self-conjugate pairs lying in the region
of Q = { -10.0 < Re{uyq9, uy3g} < -3.75, 5.0 < Im{uy4, ~ w30} < 7.0, -10.0

< Re(u;3q, up3p) < -3.75, 2.5 < Im{uy3q, — uj32} < 3.5}. The others remain
unchanged. '
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The optimal locations to place two controllers are the locations connecting
nodes 19, 24 and 7, 24.
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Table 1: The open loop eigenvalues:

nonzero # mult. by 10°.

0.000000 + 3.791884 i
0.000000 + 3.790111 i
0.000000 + 3.685702 i
0.000000 + 3.683875 i
0.000000 + 3.663998 i
0.000000 + 3.663443 i
0.000000 + 3.663412 i
0.000000 + 3.663364 i
0.000000 + 3.663300 i
0.000000 + 3.663226 i
0.000000 + 3.663147 i
0.000000 + 3.663069 i
0.000000 + 3.662998 i
0.000000 + 3.662939 |
0.000000 * 3.662897 i
0.000000 + 3.662875 i
0.000000 + 3.510940 i
0.000000 + 3.509016 i
0.000000 * 2.967673 i
0.000000 + 2.969979 i
0.000000 * 2.613933 i
0.000000 £ 2.611274 i
0.000000 + 2.206231 i
0.000000 + 1.764405 i
0.000000 + 1.760091 i
0.000000 + 1.288449 i
0.000000 * 2.969974 |
0.000000 * 2.613933 i

nozero # mult. by 102

0.000000 £ 9.477749 i
0.000000 + 8.555062 i
0.000000 * 8.346887 i
0.000000 + 8.168735 i
0.000000 £ 7.982516 i
0.000000 % 7.766917 i
0.000000 £ 7.641387 i
0.000000 £ 7.531739 i
0.000000 % 7.310173 i
0.000000 £ 7.122772 i
0.000000 £ 7.111580 i
0.000000 £ 6.954832 i
0.000000 £ 6.924232 i
0.000000 £ 6.854425 i
0.000000 £ 6.793822 i
0.000000 £ 6.598525 i
0.000000 £ 6.352853 i
0.000000 £ 6.072997 i
0.000000 £ 5.238789 i
0.000000 £ 5.041897 i
0.000000 +4.918793 i
0.000000 £ 5.492153 i
0.000000 £ 5.778485 i
0.000000 £ 7.783706 i
0.000000 £ 2.718264 i
0.000000 £ 2.610780 i

. e e = o . emmm—— - TT0 T -

0.000000 £ 2.209467 i

. e oo —— o
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nozero # mult. by 10,

0.000000 £ 6.421722 i
0.000000 £6.122129 i
0.000000 £ 5.656770 i
0.000000 % 5.067614 i
0.000000 % 4.400687 i
0.000000 £ 3.695159 i
0.000000 * 2.983468 i
0.00000C + 2281989 i
0.000000 £ 1.604270 1
0.000000 £ 0.937866 i
0.000000 % 0.309464 i




Table 2
F.(1,k) F.(2,%)
k=1 0.0010965 -0.0008940
k=2 0.0009768 0.0001474
k=3 -0.0001997 -0.0003619
k=4 -0.0014071 -0.0023362
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PROJECT SUMMARY

Project Title:
i v o - W

Faculty Leader:
Professor Mircea Grigoriu
Structural Engineering

Executive Summary:

The equivalent linearization and harmonic balance methods are applied to
develop approximations of the response of pin- jointed trusses with imperfections
that are subject to narrow-band stationary Gaussian excitations. The imperfec-
tions consist of gaps in joints and can cause dynamic responses that differ sig-
nificantly from responses of ideal pin- jointed trusses, referred to as auxiliary
trusses. Joint imperfections are modeled by trilinear restoring forces as shown
in Fig. 1.

Results for single-degree-of-freedom systems indicate that the assumption
of ideal joints is only satisfactory when joint gaps are small and/or excitation
magnitude is large. It is found that joint imperfections may generally cause
significant changes in response intensity and frequency relative to the response
of corresponding auxiliary systems. On the other hand, Monte Carlo simulation
studies show that the equivalent linearization method has a much broader range
of validity. The method gives satisfactory estimates of response variances pro-
vided nonlinearities are not excessive, e.g., large joint gaps and small excita-
tions. Figure 2 illustrates the dependence of normalized response standard
deviation o, obtained by the equivalent linearization method on ratio of joint
gap § to a parameter oy related to excitation intensity for several damping
coefficients 8. Estimates of o, compare satisfactorily with simulation results
for values of §/0y < 2.0. The equivalent linearization method is unsatisfactory
when 6/00 > 2.0, i.e., the case of large nonlinearities that may result in cha-
otic vibrations.

Studies of a three bay pin- jointed truss with imperfection by the equivalent
linearization method lead to similar conclusions. As for simple oscillators,
the equivalent linearization method can be applied for combinations of joint gaps
and excitation intensities that do not result in excessive nonlinearities.

Cornell Reports:

Islam, S., and Grigoriu, M., "Nonlinear Random Vibration of Pin-Jointed Trusses
with Imperfections.”

ort a o b

Grigoriu, M., "A New Closure Technique for Solution of Nonlinear Random Vibration
Problems."

Conference Presentations:

Grigoriu, M., "Probabilistic Analysis of Response of Duffing Oscillators to
Narrow Band Stationary Gaussian Excitations,"” Proceedings. I Pan American
(PACAM), Rio de Janeiro, Brazil, January, 1989,

pPP. 652-655.
Grigoriu, M., "Reliability of Degrading Dynamic Systems," Proceedings. Euromech
220: Nonlinear Systems Under Random Conditions, Como, Italy, June, 1989.
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Figure 2. Standard Deviation of Approximate Response
by Equivalent Linearizaction Mechod.
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Project Title: )
Vibration of a Shallow Arch Under Axial Loading

Faculty Leader:
Professor S. Mukherjee
Theoretical and Applied Mechanics

Graduate Research Assistant:

Rudra Pratap
Theoretical and Applied Mechanics

EXECUTIVE SUMMARY

The present work is an analytical study of the vibration of a shallow arch under periodically
varying axial load, using theory of linear elasticity. The dynamic analysis under dead load
is carried out first. In the second section, the mﬂysis incorporates the dynamic load. Using
Galerkin's projection the assumed solution of the equation of motion is then reduced to a
non-homogeneous Mathieu equation for the time dependent amplitudes. A particular
solution, based on the variation of parameters, is used to derive a system of equations for
the amplitudes. The resonance conditions for the amplitudes are derived and the
corresponding subspace of the parameters is separated. The subspace is presentsd in the
form of parametric plots. Any point in the interior of the stable region of the Strutt chart
can thus be conveniently tested whether it can cause resonance or not by simply checking

its location in the separated subspace.
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1. DYNAMIC ANALYSIS UNDER DEAD LOAD
Governing equation of motion is:

El wm+Po(-&+ w.,,)=-p Wy
where

w = transverse displacement

EI = modulus of rigidity

R = radius of curvature

Py = dead load

p = mass/unit length.
Assumed solution is

w=e 0(x) + y(x)
where y(x) satisfies the corresponding static equation

Assuming ¢(x)=sinnT1f-x gives
2
=V (T

) ) )
where =g and b=ﬁ

|3

2_2
b o . . .
i) If Py > 217 EL then it gives rise to unbounded solution and hence is unstable.

n’n?
ii) if Py < ?— EI, A has complex roots and

. nmx . 1( L2 2)
w = sin~p- (a,,cosm,,t+bnsm(o,,t)+ﬁ(msmax—x

2.2 2.2
where m,,=”2(m"’: -po)
pL L

Thus, in this case, the arch exhibits harmonic oscillation with amplitude determined by

initial conditions. Initial curvature of the arch does not play any significant role in vibraton.
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2. DYNAMIC ANALYSIS UNDER PULSATING LOAD
Governing equation of motion is:
EL Woqezs + (PG#P(0] W s+ pW = =2 (Pg#P]

where Py =dead load
P(t) = dynamically varying load
Assume solution as:

N
= in I
w(x,t) = Z aj(t) sin -
=1
then using Galerkin's projection the equation of motior becomes

i(ig)‘a,.j‘;mf b g, za povpa( I o 2

+2Bajj sin I sin = dx + £ [Pe#P) j sin = dx = 0.

This gives the following equation for a,(t):

2
a(t) +-°“3— P [PE - {Py+P,}] 2,() =0, V evenkand

2 {Pe#Pi}
RL e

V odd k

n’n?

where Pi="—-EL
L?

Introducing parameters,

and =t
2(Pg-Py)

with loading P(t) = P, cos wt,
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the final equation is obtained as,

. P P
a.k(t)+§22[1—2ucos ot ] a(t)=- i‘;‘ P—S[HP‘: cos mt], V odd k
k k

=0 Vevenk .
We will only consider the amplitudes corresponding to odd k. With this understanding we can drop the

subscript k and cosider the following equation:
a(t) + Q%[ 1-2u cos @t ] a(t) = C; + Cycos wt (1)

P
where C = -21.% i)ﬂ,
[

2n P,
and C ——-L-ﬁFc'.

Equation (1) is the famous non-homogeneous Mathieu equation.

The homogeneous part of the solution of equation (1) is well known and the resulting
stabil-ity diagram is given by the Strutt chart, figure 2. The homogeneous solution
corresponds to the forced vibration of a straight beam under dynamic axial load. As is clear
from the equation, the initial curvature of the beam results into the non-homogeneity of the
equation. Hence, it is the particular solution which is of interest here. A suitable method to
find the particular solution is outlined in [1]. Based on this method Kotowski [2] has
derived the form of the particular solution which is valid everywhere except on the limiting
curves of the Strutt chart. Using that form of the solution, the resonance conditions for the

arch vibration have been obtained in the following section.

3. RESONANCE CONDITIONS

This is of interest to us only for those points in the parameter space which lie in the stable
region. On the limiting curves the solution is known to be unstable anyway. In the stable

region, the form of the particular solution is:

Apardt) = i A cos nwt
0
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A substitution of this in eqation (1) gives the infinite system of algebraic equations for the

resulting amplitudes Ap.
r Q -uQ’ 0 0 o1 (A1) (G
—pQ? Q- -pQ’ 0 e | | A C
0 -u@ Q- -pQ' .. [{As =000 @
0 0 pQ' Q' -(w)? -uQ’| | A 0

Now we define the width of resonance as that frequency range for which the amplitudes in
apart(t) ensuing from the unit amplitudes of the purturbing function are greater than |11.

The infinite system (2) is a very fast converging system and for all practical purposes it is
sufficient to consider the first 5 by 5 submatrix. It has also been observed that only the first
three amplitudes are significant enough to be considered. As is clear from the system of
equations (2), one needs to look into only that subspace spanned by the first two columns
of the inverse of the co-efficient matrix, because the non-homogenous vector is normal to
the complementary subspace. Normalizing the system by using ®/Q as the frequency ratio
r, we get explicit expressions for Al, A2 and A3 in terms of parametrs r and p. Figures 3,
4 and 5 show the parametric plot for these amplitudes. All those points in the stable region
of the parametric space which fall into the contour plots for Al, A2 and A3 > 1 give us
resonance conditions. There are infinite number of such points because for each pair of

(i, r) there are many pairs of (@, £2) which give us the same value of r.

4. REFERENCES

(1] McLachlan, N.W., Theory and Applications of Mathieu Functions. Dover Publication
Inc., New York (1964), pp 132-134.

(2] Kotowski, G., Lsungen der inhomogenen Mathieuschen Differentialgleichung mit
periodischer Stdrfunktion beliebiger Frequenz. Z. Angew. Math Mech. Bd.23, Nr.4,

(1943).
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Numerical Simulation of the Transient Nonlinear Dynamics of Actively

Controlled Space Structures

Brian H. Aubert, Ph.D.
Cornell University 1991

Advisor: Professor John Abel
Civil and Environmental Engineering

Abstract

The dynamic behavior of large, flexible space structures is typically characterized
by a significant number of low frequency modes of vibration which exhibit limited
amounts of passive damping. The lew frequency modes and the lack of inherent
damping can result in long duration transient responses for even limited duration
dynamic excitations. To avoid extended periods of motion which may conflict with
mission requirements, it is necessary to provide an additional source of energy
dissipation. The use of an active control system which has the capability to provide
a set of forces to counteract the effects of the structural vibrations is one possible
solution.

A research software package which has the capability of modelling the behavior
of the actively-controlled response of nonlinear structures subject to dynamic ex-

citation has been developed. The numerical simulation of the dynamic behavior of
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an actively-controlled space structure requires an accurate idealization of the phys-
ical system. Finite elements have been used to represent the structural members.
The analysis software allows for the inclusion of both geometric and material non-
linear behaviors. Implicit and explicit direct integration methods are available for
analysis of the dynamic response in the time domain. Modal analysis capabilities
are available for evaluation of the characteristic properties of the structural modes
of vibration.

Two basic classes of active control algorithms exist, open-loop methods and
closed-loop methods. Open-loop methods assume knowledge of the structure and
the external forcing functions throughout a specified interval of time. Based on the
assumed knowledge of the response of the structure, open-loop methods seek a set of
control forces which rapidly damp out the undesired motion. Closed-loop methods
assume knowledge of the system but not of the future forcing functions. The control
forces necessary to provide rapid energy dissipation in a closed-loop method are
calculated based on periodic sets of measurements of the actual dynamic response
of the structural system.

Three basic methods of active control have been included in the software. An
optimal, nonlinear open-loop method known as differential dynamic programming
(DDP) has been implemented. Two closed-loop methods, collocated-velocity feed-
back and constant-feedback-gains, are also available for use. Active control meth-
ods introduce a new class of possible nonlinear responses into the structural dy-
namics problem. Modelling features such as control saturation, observation and
actuation lags have been implemented in the software as a first step towards more

accurate representation of the response of physical control systems.
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The results of transient, dynamic analyses for large three-dimensional structures
generate a large amount of response data which must be effectively interpreted.
Interactive computer graphics have provided a convenient means of performing
modelling operations and response visualization. In order to reduce the amount
of clock time required to perform a given analysis, a parallel multiple-instruction,
multiple-data (MIMD) version of the explicit central difference integration method
has been implemented. The parallel version of the analysis software is designed
using distributed memory in a message passing environment on groups of high
performance workstations. The parallel communication is provided by ISIS, a

parallel application management package developed at Cornell.
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VIBRATION SUPPRESSION OF FLEXIBLE STRUCTURES
USING COLOCATED VELOCITY FEEDBACK AND NONLOCAL ACTUATOR CONTROL

Chen, Pei-Yen, Ph. D.
Cornell University, 1990

Advisor: Professor Francis C. Moon
Theoretical and Applied Mechanics

In this dissertation, a generalized colocated velocity feedback
control system is proposed as an active damper which never pumps energy
into the structure, and is applied to suppress the vibration in large
flexible structures. Some fundamental characteristics of this system
are exploited, as well as locations of poles and zeros for the open loop,
and root loci for the closed loop. Due to the colocation between
actuators and sensors, these properties are unique, and reveal the
necessity of introducing optimization to design the controller. By
minimizing a quadratic objective function defined by structura!l states
and control forces, a suitable optimization procedure is presented to
determine the optimal feedback gains in the form of general, symmetric,
diagonal and proportional matrices, where the robustness property is
preserved.

A six-and-half-meter long experimental space truss with rigid joints
was manufactured to implement the concept of generalized colocated
velocity feedback control. The self-equilibrated internal control
forces are generated through new magnetic actuators with a high force-to-
mass ratio. The corresponding velocity signals are picked up by magnetic
sensors which were designed as an integral part of the actuators. In

order to transmit these nonlocal torque-free control forces, an actuator
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mechanism was also invented. All of the results from theoretical
analysis, numerical simulation and experimental testing demonstrate
that the transient vibration of the lowest modes in the experimental
truss can be suppressed efficiently by using this control strategy with
an optimal feedback gain.

Although a conventional optimal feedback control may achieve a
better performance in an ideal situation, the main attractive feature of
the generalized colocated velocity feedback control is its reliable
robustness property. A comparison of the performance between colocated
and noncolocated controls is examined. In addition, the effects on the
robustness of this system due to non-ideal conditions are investigated,
such as dynamic characteristics of control elements, unmodelled masses,
nonlinear buckling behavior of structural members, and saturation limits
on control forces.

Therefore, by using a few special actuators and sensors, the
generalized colocated velocity feedback control is a feasible and robust
control scheme for increasing the damping capability of large flexible

structures in practical applications.
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LOW-DIMENSIONAL BEHAVIOR IN CHAOTIC
NONPLANAR MOTIONS OF A FORCED LINEARLY
ELASTIC ROD: EXPERIMENT AND THEORY

Joseph Paul Cusumano, Ph. D.
Cornell University, 1989

Advisor: Professor Francis C. Moon
Theoretical and Applied Mechanics

New analytical and experimental techniques from dynamical systems
theory are combined with a geometrically exact rod theory to yield
insight into the source of complex dynamical phenomena observed in a
thin prismatic steel rod. Because of the system's geometry, one would
expect motions to remain planar. However, experiments show that planar
motions become unstable in wedged-shaped regions of the forcing
frequency, forcing amplitude parameter plane, with each wedge centered
on a resonant frequency of the system. The motions inside of these
wedges are observed to be nonplanar and chaotic. A family of asymmetric
bending-torsion nonlinear modes are found experimentally, and the
frequency/amplitude characteristic of the family is obtained.

Other phenomena discovered include dynamic two-well behavior and
energy cascading from high to low frequencies. The fractal dimension
of the attracting sets in different resonant wedges are estimated from
experimental scalar time series using a numerical code. The dimension
estimates, with one exception, are below 5, implying from dimension
theory that it may be possible to model the dynamics of the rod with as
few as two degrees of freedom.

Starting with a geometrically exact, linearly elastic rod theory, a
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model system of two nonlinearly coupled partial differential equations
is derived. The dynamics of a two-mode model incorporating a single
bending and a single torsional mode are explored, and a simple
mechanical analogue is described. Nonlinear modes analagous to those
found experimentally in the rod are discovered numerically in the two-
mode model. A wedge of planar instability is found for the model inside
of which the motions are chaotic and nonplanar. The nonplanar motions
also exhibit the dynamic two-well behavior observed in the rod
experiments.

Numerically obtained Poincare sections for a related Hamiltonian
system reveal that the nonlinear modes are born by a pitchfork
bifurcation in the energy. It is conjectured that the homoclinic
structure which results from the pitchfork bifurcation is responsible
for the dynamic two-well behavior observed in the damped-driven system.

A similar pitchfork bifurcation is observed experimentally in the rod.
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CHAOS AND FRICTION

Brian Feeny, Ph.D.
Cornell University 1990
Advisor: Professor Francis C. Moon
Theoretical and Applied Mechanics

We study the dynamics of a forced oscillator with dry friction. The magnitude
of the friction in the oscillator varies with displacement. The primary concern is in
the chaotic response to a harmonic excitation. Experimental data is compared with
numerical simulations. In both the experiments and the simulations, the dynamics
are reducible to one-dimensional maps. The motion is characterized using symbol
dynamics. Bifurcations in a simulation with a Coulomb friction law are compared
with universal bifurcation properties of standard one-dimensional maps. Theo-
retical analysis is performed qualitatively for the Coulomb model. The Coulomb
model exhibits unlikely dynamical properties, stemming from noninvertibility in
the flow which results from the multivalued discontinuity in Coulomb friction.

The friction is measured experimentally during oscillations. There is evidence
of the presence of unseen state variables in the friction mechanism. A friction
law is constructed based on observations in the measurements, and applied to
simulations of the chaotic oscillator.

High frequency excitation is used experimentally to reduce friction and regulate

chaos.
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PARALLEL PROCESSING FOR TRANSIENT NONLINEAR

STRUCTURAL DYNAMICS OF THREE-DIMENSIONAL FRAMED STRUCTURES

Jerome Frederick Hajjar, Ph.D.
Cornell University 1988

Advisor: Professor John Abel
Civil and Environmental Engineering

A variety of strategies are developed for the practical solution of
the fully nonlinear transient structural dynamics problem in a coarse-
grained parallel processing environment. Emphasis is placed on the
analysis of three-dimensional framed structures subjected to arbitrary
dynamic loading and, in particular, steel building frames subject to
earthquake loading. The parallel algorithms developed and investigated
are intended to be appropriate for finite element models which use
structural elements (e.g., beam-columns). Concerns include long-
duration dynamic loading, geometric and material nonlinearity, and the

vide distribution of vibrational frequencies found in frame models.

Explicit algorithms require no simultaneous solution of equations,
employ simple communication, and are thus efficient for parallelz
processing. Parallel analysis using the central difference algorithm is
examined and implemented. The strict stability limit on time step makes

this method best suited for short-duration loadings.

Implicit techniques require the solution of simultaneous equations,
and several strategies are discussed to implement these algorithms in

parallel. The domain decomposition method is described in detail,
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implemented, and tested. This method employs substructuring techniques
and then a preconditioned conjugate gradient algorithm for the iterative
solution of the reduced set of unknowns along the substructure
interfaces. Substructuring is shown to provide a natural preconditioner

for effective parallel iterative solution.

In addition, several partitioned time integration algorithms are
investigated vhich attempt to include the advantageous aspects of both
explicit and implicit analysis. Two algorithms, the alternating group
explicit method and the group implicit method, are developed and
described in detail. The group implicit algorithm is implemented and
tested in parallel for frame dynamic analysis. For practical time step

sizes, current forms of both algorithms are shown to be inaccurate.

The parallel algorithms studied are amenable to several common
parallel hardvare architectures but are implemented on a bus
architecture, ;ith the number of processors in this work varying from
one to four. Database considerations and message passing constructs are
investigated. Also, a flexible interactive computer graphics
environment is described for the preparation of the input data fé, and

for the playback of, the parallel analysis simulation.
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Transient Stress Waves in Trusses and Frames

Samuel Moss Howard, Ph.D.

Cornell University 1990

Advisor: Y.-H. Pao
Theoretical and Applied- Mechanics

The dynamics of lattice-type structures in the form of planar trusses and frames
are invesfiga.ted in terms of axial (longitudinal) and flexural (transverse) waves which
propagate along members and scatter at structural joints. Theoretical and experi-
mental results are presented for pin-jointed trusses and frames with rigid joints.

The first part of the analysis considers only the axial waves, whose reflection and
transmission at joints are related by analytical scattering coefficients. The complex
reverberations of waves within a structure are calculated in the frequency domain
with a new technique called the reverberation method, which is implemented on a
digital computer. Transient waves are then computed by Fourier synthesis. This
technique has been successfully applied to calculate hundreds of reverberations, re-
vealing the growth of early wave transients into modal vibration of the entire struc-
ture.

Results of extensive laboratory experiments are also presented. New techniques

were developed for the generation and measurement of broadband stress waves in

truss structures, using foil strain gages and an elaborate digital data processing
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system. The results of these experiments are compared to theoretical simulations
based on the axial wave theory. Good agreement was found only for the very early
response to about eight reverberations between two joints. Also, bending waves,
which are neglected by the axial wave theory, appear to dominate the later portions
of the experimental data.

In order to correct this later discrepancy, a general theory including both axial
and flexural waves is developed, where the latter are predicted with either the Euler-
Bernoulli or Timoshenko theories of bending, which introduce two modes of flexural
waves in each member. First, general scattering coefficients for all three modes of
waves at a joint are derived, and are shown to agree closely with experiments done
on a single joint. The reverberation method is then generalized to include these
general scattering coefficients, with the simplification that the mode conversion from
flexural waves to axial waves at each joint is negligible. Simulated axial waves based
on this assumption are found to be in much better agreement with the aforementioned

experimental data over a longer duration (over 15 reverberations) of observation.
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EXPERIMENTAL PROGRAM FOR ACTIVE CONTROL OF FLEXIBLE SPACE STRUCTURES
Lauran B. Larson, M.S., 1990

Advisor: Professor Peter Gergely
Civil and Environmental Engineering

ABSTRACT

The purpose of this work was the development and experimental
testing of a constant velocity feedback gain, eccentric tendon active
vibraction control scheme for applications to flexible space
structures. A large-scale lO-meter truss specimen, designed to behave
dynamically similar to space structures, was built in the laboratory.
A control tendon, draped eccentrically to the truss neutral axis,
delivered control forces lateral to truss motions throughout the
specimen length. The single control force was based on a vector
multiplication of 11 feedback gains with 11 velocity feedback states
recorded at locations throughout the length of the truss at each
interval of data sampling. Both the feedback gain vector entries and
the tendon eccentricity dimensions were derived by application of
optimization theory to the control solu:ioﬁ.

A detailed program of static and dynamic system
characterization was applied to the truss specimen to establish a
reference of uncontrolled behavior and to provide modal data used in
adjustment of the finite element model upon which the control
parameter optimizations were based.

The results of active control tests indicated that the control
schame vas effective }n providing approximately 5% of critical
damping in the first mode as compared to 0.5% in the uncontrolled
case. Two sources of system instsbility were observed. The first was
found to be related to aliasing of the feedback data and was resolved
by installing anti-aliasing analog filters in the faedback signal

conditioning circuit. The second and more difficult {nstability was
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caused by phase/time lag in the response of the electromagnetic
linear motor used to tension the control tendon. When the time lag in
linear motor response represented a 180 degree phase difference
between demanded and achieved control, the control system would begin

to drive, rather than damp the truss motions.
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NUMERICALLY EFFICIENT ALGORITHMS FOR UNCONSTRAINED
AND CONSTRAINED DIFFERENTIAL DYNAMIC PROGRAMMING
IN DISCRETE-TIME, NONLINEAR SYSTEMS

Li-zhi Liao, Ph.D.

Cornell University, 1990

Advisor: Professor Christine Shoemaker
Civil and Environmental Engineering

The research reported in this dissertation focuses on the development of more
efficient differential dynamic programming algorithms for solving general nonlinear
discrete-time optimal control problems. The thesis reports both theoretical results
on algorithm behavior and numerical applications of these algorithms to difficult

large scale nonconvex problems.

The first part of this dissertation studies the detailed structure of uncon-
strained discrete-time optimal control problems and differential dynamic program-
ming. This analysis makes it possible 1) to provide a new proof for quadratic
convergenc: of differential dynamic programming; 2) to obtain sufficient condi-
tions on the characteristics of the objective and transition functions required for
quadratic convergence of differential dynamic programming; and 3) to introduce
an adaptive shift procedure to guarantee good convergence of differential dynamic
programming in nonconvex situations. Results are provided to demonstrate the

numerical performance of this adaptive shift procedure.

The second part of the dissertation focuses on the development of an efficient
algorithm called Constrained Differential Dynamic Programming to solve general
nonlinear constrained discrete-time optimal control problems. In the process of
developing this algorithm, matrix partition and QR factorization techniques are
introduced in the traditional penalty function method to avoid the loss of in-
formation and an ill-conditioned Hessian matrix. After the completion of the
improved penalty function method, the constrained differential dynamic program-

ming method is developed by combining this improved penalty function method

160




with the unconstrained differential dynamic programming algorithm and the adap-
tive shift procedure. The convergence and numerical stability of this method are
also examined. A very difficult, noncouvex, large dimensional test problem is cre-
ated to test the numerical performance of this algorithm. Following the discussion
of unconstrained and constrained differential dynamic programming algorithms,

we compute the computational complexities and storage requirements of these two
algorithms.

At the end of this dissertation, both unconstrained and constrained differen-
tial dynamic programming algorithms are applied to solve a four-bay nonlinear
structural control problem. The dynamics of the structure are described by a
nonlinear finite element model with 10,000 time steps. The results for this four-
bay truss and other large scale numerical applications have shown that constra_ined
differential dynamic programming is a very efficient algorithm for solving general

nonlinear constrained discrete-time optimal control problems.
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A PSEUDO EXPONENT FOR THE CHARACTERIZATION OF PERIODIC
AND CHAOTIC DATA SETS FROM FORCED SYSTEMS

by
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M.S. Thesis, Cornell University, 1988

Advisor: Francis C. Moon
Theoretical and Applied Mechanics
ABSTRACT

A pseudo maximal Lyapunov Exponent is developed which classifies a time series
of data from a system as chaotic or periodic. This exponent is based on the maximal
Lyapunov Characteristic Exponent (L.C.E.). As is not the case with the maximal L.C.E.,
knowledge of the equation of motion of the system in terms of a set of ordinary different
equations is not necessary.

The development of this exponent is due to Wolf (1985), however the number of
independent variables involved in determining the exponent is reduced, resulting in a more
efficient method to differentiate periodic and chaotic motions. The primary interest lies in
characterizing the parameter space of experimental systems, in particular the forced buckled
beam in a two well potential (Moon, 1980)). In order to verify the exponent's ability to
differentiate periodic and chaotic motions efficiently, the exponent's behavior is verified
initially using single degree of freedom systems with external forcing. The results of these
calculations demonstrate the ability of the exponent to differentiate between periodic and
chaotic motions.

The parameter space of the magneto-elastic system consisting of a forced buckled
beam in a two well potential is then characterized, and the results correlated to those of
spectrum analysis and Poincaré sections. Finally, noise is added to the numerical
integrated equations of motion for a Duffing equation (Holmes, 1979)). The addition of
noise, especially for periodic motions highlight the difficulties involved in using the
exponent; the exponent correctly characterizes chaotic motions, but has considerable
difficulty with "noisy” periodic motions.
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The pseudo exponent is a new method in investigating experimental data and
infinite dimensional systems, and compliments the currently used techniques of spectrum

analysis and Poincaré sections.
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THE CHAOTIC VIBRATION OF 4 STRING

0liver Mary 0’Reilly, Ph.D.
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A pretensioned string that is fixed at one end and forced
harmonically in a plane transverse to its longitudinal axis at the
other end, is found to exhibit chaotic motions. These chaotic motions
involve vibrations in both transverse directions and occur when the
forcing frequency is close to the fundamental transverse harmonic of
the string. A three mode model, which assumes a linearly elastic
string, is developed for the experimental system. Two of these modes
correspond » to the <fundamental transverse modes and the third
corresponds to the fundamental longitudinal mode.

The equations of motion for the aforementioned model are averaged,
whereupon the longitudinal mode terms are eliminated. This reduces the
system to four coupled, autonomous ordinary differential equations. 4
local bifurcation analysis of these equations is performed and chaotic
motions are found numerically, both in the presence and absence of
linear viscous damping. The mechanisms of chaos for these equations
are discussed and shown to involve homoclinic orbits to fixed points of
saddle-focus and saddle-center type. Finally a comparison of the
analytical and experimental results is performed. Good qualitative
agreement is obtained, however poor quantitative agreement is found

and some reasons for this are discussed.
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Symmetry and Bifurcation in Frame Structures with Bending Degrees
Of Freedom

James A. Treacy
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There has been a great deal of effort in the last fifteen years to create finite ele-
ment formulations of rods which will deal with large displacements. Most of these
formulations are limited to small curvatures and only approximately deal with the
change in geometry. It is also common to treat incremental rotations as if they are
additive. This leads to increased error as the total rotation becomes large.

While there has been a proliferation of theoretical work done in bifurcation
theory there is still a large amount of work to be done in the area of computational
bifurcation theory. In industry, most ‘bifurcation’ analysis is little more than the
analysis of the structure with the introduction of an imperfection into the structure
to avoid numerical difficulties.

The main goal of my thesis is to use a geometrically exact rod model to study
the bifurcation of structures with symmetry. A one-director Cosserat rod model
is used. This essentially models a rod with shear but no deformation of the cross
sections. To deal with the large rotations essential for such a model, the configu-
ration space of a rod is taken to be a nonlinear manifold. The linearization of the
equilibrium equations at each configuration is the tangent space to the manifold.
The linearized equations are then solved and projected onto the manifold so that
we always remain in configuration space. This is crucial for dealing with large

motions.
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The most common way of dealing with symmetry is the use of ‘symmetry
and anti-symmetry’. This is simply not practical in dealing with more complex
symmetries because one can not use intuition in breaking up the problem. A
group-theoretic approach is used which relies on a single a priori analysis of the
structure. This analysis gives a set of symmetry basis vectors which are used to
separate the problem into a number of invariant subspaces. When iterating along
a solution branch all computations can be done in the subspace corresponding to
the symmetry of that branch. The use of these subspaces avoids many numerical
difficulties in the accurate detection of bifurcation points and branch switching. I
have already used this technique in the study of truss structures. The study of
rods is a natural next step in the generalization of this technique since bending

degrees of freedom must be accounted for.

166




