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Backscattering from Rough Interfaces and the Parabolic Approximation

S. T. McDaniel

Abstract:

Iterative solutions of coupled parabolic wave equations are examined to
determine the validity of applying this method to predict low frequency oceanI acoustic reverberation. Solutions for backscattering from a random rough
interface between two media of differing wave number are obtained in the form
of an expansion in powers of the rough interface excursion from its mean
value. This expansion is found to differ significantly from the corresponding
expansion obtained by applying perturbation theory to the full elliptic wave
equation.
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INTRODUCTION

The parabolic approximation has been successfully applied to

electromagnetic propagation i, non-linear acoustic phenomena2, and underwater

acoustic transmission3 . Claerbout4 appears to first have considered iterative

solution of a coupled pair of parabolic equations to obtain the backscattered

field applicable to seismic reflection profiling. Because the parabolic

approximation provides a computationally efficient numerical method for

solving wave propagation and scattering problems, its applicability to

underwater acoustic backscatter is well worth investigating.

In this article, a two-dimensional pair of coupled parabolic equations is

considered. The solution to this pair of equations is obtained for

backscattering from a random rough interface between two media of the same

density but differing indices of refraction. To facilitate comparison with

other scattering theories, results are obtained for a plane wave incident on a

rough surface area in the far field of a receiver, and ensemble averaged.

Perturbation theory, which agrees well with exact Monte-Carlo simulations

of scattering from pressure release5 and fluid-solid6 interfaces of moderate

roughness, is used for comparison. For the lowest order scattering which is

due to Bragg diffraction, the parabolic and perturbation results are found to

differ significantly. Higher order scattering terms are also evaluated with

similar findings.

Section I of this article presents the general formulation of the problem

in which the elliptic wave equation is split to obtain a coupled pair of

parabolic equations. In Section II, this coupled pair of equations is solved

to obtain the backscattered field. Numerical comparisons between perturbation

theory and the results of Section II are presented in Section III. Section IV

summarizes and discusses the results.
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I. GENERAL FORMULATION

The two-dimensional wave equation in a medium having a variable index of

refraction k(x,z) is considered

I- [ +.. -±-. +k 2(X, Z)] V= 0, 1
aX2  aZ2 I

3 where v is the acoustic pressure. For acoustic energy propagating close to

the x direction, it is convenient to rewrite this equation in matrix form as

a 
2v1 

(2)

axI I A2 0 aI f~ax, / a
where A2 - k2(x,z) + 82/aZ2 . Equation (2) may be split by a method due to

Corones 7 to obtain a pair of coupled equations for the transmitted and

3 reflected fields, v+ and v- respectively, where

£v (3)

and T is the splitting matrix. Claerbout's4 result follows from the choice

T = 11A)(4)1 +i/A)

Substitution of Eq. (3) into Eq. (2), then yields the following pair of

equations

a 8v_ 1 A-' aA (v.- v) +iAv. , (5)

3 av= 1 A-' aA (v- v) -iAv (6)

TI + -_X

I3
£

I



I
Equations (5) and (6) are exact; no approximations have been made up to

this point. However, to obtain an efficient numerical solution of this pair

of equations, it is usually assumed that the reflected field is small and may

be neglected in the solution of Eq. (5), or that

a 1 1A v+iA v , (7)

which with a suitable approximation for A, may be solved for the transmitted

field. With the transmitted field known, the reflected field may be found by

solving Eq. (6).

This procedure for numerically solving Eqs. (6) and (7) is illustrated

3 schematically in Figure 1. A parabolic equation is numerically solved for the

transmitted field v+ out to some maximum range of interest. Values of v+ are

I stored at each point where 8A/ax is nonvanishing. Equation (6) is then solved

5 for the reflected field with the initial condition that v- - 0 at the maximum

range of interest. If desired, with v- known, one may return to Eq. (5) to

refine the estimates of v+, and iterate again to better estimate v. This

method is certainly numerically tractable for scattering from rough

interfaces, since only the transmitted and reflected fields on the interfaces

need be stored.

II. BACKSCATTER FROM ROUGH INTERFACES

A. The Transmitted Field

To determine if the method described in Section I does indeed provide a

good estimate of the reverberant field, we consider scattering at an interface

between two media having the same density but differing indices of refraction.

For simplicity, an incident plane wave is assumed as illustrated in Figure 2.

1 4



To obtain an expression for the transmitted field, the operator A is

approximated as

A k(x,z) + - C
2_ (8)

where k0 is a reference wave number. In Appendix A, it is shown that the

first term on the right-hand side of Eq. (7N contributes negligibly to

backscattering. With the neglect of this term, the transmitted field above

the interface v+ then obeys

3_iK 2 vW =0, (9)

and below the interface v 2) obeys

a8 _IK2 i a2 ) ,,(0

3 where K, and K2 are respectiveiy, the (constant) indices of refraction above

and below the interface.

5 For an incident plane wave

3vi, = exp [i(Jkx-kz)] , (11)

v ' ) and v. 2 ) are given by

v.(1) - exp (ikx) [exp(-iklz) + Rexp (ikz) I
--- (12)

+ dkexp[i(k'x+kiz)] 
u1 (k') ,

1- 0

. and
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v.(2) - T exp [I (kx - k2z)

+ f dkexpCi(kx-k
/2 z)] u2 (k i )  (13)

0

where kj = [2k o (KI-k)]1/
2  and

R = (k,-k 2 )/(k , +k 2 )

T = 2k/(k, +k 2) .

The quantities u1(k') and u2(k') may be expanded in a functional series in the

rough surface extension (x) from its mean value. Following Kuperman8 , one

obtains

u (k') = (k2 - k,) T U h (k' - k)

')I+ II .k)k (14)cdk~h(k'-k") h(k"-k) [k('-k ' + k) l  '221 1

+ f dkll h ( -) h k1-k) k- k k + (ki + k2)
22

U (15)

where h(k) is defined by

C(x) = f dkh(k) exp(ikx) . (16)

B. The Backscattered Field

To obtain the backscattered field, A is approximated as in Eq. (8) and

the term v-aA/ax appearing on the right-hand side of Eq. (6) is neglected (see

Appendix B), whence v_') obeys

6



S + -a2 ) V_) = A-' aA V.()
+x 2k -z) ax (17)

in medium 1. The solution to this equation is

VJ ) (X, Z) = dxdzIA ' aA "  (X1# z/) G-'1 t (x - XI) (z - z) 1/2 (18)

£ where the Green's function G_( ) is given by

IG(U = - [k,/2 n(xIx)]1/2 exp_i[ 7/4 +K1 (x-x') +k ° (z-z) 2 /2(x-x)]} , (19)

ffor (x - x') :O and vanishes otherwise. The geometry of Figure 2 will be

considered, with the receiver at x - 0, z - z0 , and the scattering region

located at x' - L + Ax/2, where L >> Ax and Ax >> A, the acoustic wave length.

3 In this case G_( ) may be simplified

i l) i -(ko/21tL) 1/2 exp(i [( + K 1x' - kozoz'/L]J} , (20)

where - /4 + k 0 z 0
2 /2L and k 0z' 2 /2L is neglected, since, as is apparent

3 below, the only values of z' that contribute are on the rough interface

I For an interface between two media,

3 k(x,z) = KH[z-C(X)] +K 2H[C(x) -z] , (21)

where H(x) 1, x<O.

3 With the definition of A, and Eq. (21)

A' A - 1 A-2 k(x,z) (K 2 -K ) 8[z-C(x) IA (22)
2 2xi2 ax (

The scattered field may then be found by substituting Eqs. (12), (20) and

3 (22) into Eq. (19)

17
I



I L Ax/2

V( (O,z 0) = (K2 -K1 ) [ dx' kxl,C (x')] x GX1)A.2v[x/,C(x/)] (23)- L112 2 ax' "('

where the integration over the rough surface has been replaced with an

integration along the x' axis.

By expanding the exponentials that appear in v+ and G- as a power series

in the surface excursion, the corresponding series for v- may be obtained. In

the following, we can approximate k[x', (x')] A-2 as 1/K, since only low

grazing angles are of interest. With these approximations

L.Ax/2
V Z a(x) exp(iK1xI) (a 1 +a 2 +a 3 ... ) (24)

where

a, = (I+R)exp(ikx)

a 2 = -iC(x')exp(ikx) [k 1(1-R) + (koz/L) (1+R)]

+ iT dk'exp (iklx) (k2-k,) h(k'-k) ,
0 (25)

a3 = -( 2 (x) exp(ikx') [(kok Iz/L) (1-R) + (k +k2 z 2 /L2) (1 +R)/2]

+ Tfdk'exp(ik'x) (k2-k) {fdk"h(k'-k") h(k"-k)[-k' (k 2 +k)]
0 "

- C(X') (k 1'-k,) h(k'-k))

-(K2 - K) (__ko I

and 142

C. Backscattering Strength

It is evident from Eq. (24) that v ' ) has the form

38



V 1  + W2+W3+ .... (26)

where the subscript on w denotes its order in the rough surface excursion from

its mean value. The expectation < > of the scattered intensity is then given

by

I (v..(' * > * <ww w > + +(27)<v_ v_ > = < WWI <w> + ....3

The first term on the right-hand side of this expression is the Bragg

scattering term and is the major contributor to backscatter for slightly rough

surfaces. The remaining terms are higher order corrections which become

important for moderately rough surfaces. For very rough surfaces, one expects

the series to diverge as it does in perturbation theory.

Substituting Eq. (16) into Eqs. (24) and (25), yields

<ww> = (Ax/L) [ (K2 -K) (KI + k) ] 2ko TT*W(K + k) / [4 (2) 1/2 2K (28)

where (x) has been assumed Gaussian with

<h (k)h'(k)> = W(k) 6(k-k)

and the rms surface excursion a obeys

a = f dkW(k)

The factor of (2)1/2 appearing in the denominator of Eq. (28) arises from

considering a Gaussian illumination pattern as in Reference 9.

Before continuing, note that some simplifications result if monostatic

backscatter is considered and k0 is selected equal to k so that k0z0/L - k1 .

In this case

£ 9



I

<w2w> - 81rAxk QQ" dkW(k') W(2k + k') (29)

x 4k2 -2k 2
Cf(k) +f-(k)] + [k 2 + (k+k') 2 ] f(k) f*(k1)}/(2)1 2

where f(k') - (k2' k1
9 )/(k2 + kj), and

<w~w > = 8XAxk2QQ*T*W(2k) {2k,2

(30)
+ T dk'W(k +k) ( k2(k2-k) +(k' -k) +k 2 -2k) ])/(2)1/2

where c = [2k 0 (K1 - k - 2k)]1/ 2 .

3I To obtain Eqs. (29) and (30), we have used

<h(k) h (W) h (k11) h (k") > = W(k) W(k") 8 (k + k) 8 ( + k"')

+ W(k) W(k [8(k+k") 8W k  .. ) +8(kk..8Wk" ) ] ,

3 and h(k) = h(-k) . It has also been assumed that Ax>>Lc the rough surface

£ correlation length, and that K ik.

Finally, the scattering strength SPE may be obtained from <v. .).>

S, = (L/Ax) v 'Yv 1 > . (31)

3 It is worthwhile remarking that the dominant contributions to Eqs. (29) and

(30) arise from the first terms in curly brackets on the right-hand sides of

U these expressions. The remaining terms are negligible for the cases

5 considered in the following section. Physically these terms and the

contributions discussed in Appendix A correspond to multiple forward scatter

and shadowing.

I
I
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3 III. COMPARISONS WITH PERTURBATION THEORY

A. Brag Scattering

Analogous to the development of Section II A for the parabolic equation

3 (PE), in perturbation theory (PT), the pressure p in the upper and lower media

due to an incident plane wave

P. = exp i(kx-;z)] , (32)

3 may be expressed as

p, - exp(ikx) [exp(-iKcz) +Roexp(iKiz]

. (33)

+ f dkexp (i (kx+icz) I q (k)

I and

3 p2 = Toexp[i(kx-rz)]
+- (34)

+I kep(i(l ' )I%('
where Ki = (=K -k 2 ) / 2

, and Ro and To are the Rayleigh reflection and

transmission coefficients.

3 Again, following Kuperman, a functional series for the qj may be derived.

The backscattering strength is then found from

Spr = K, sinO<q, (-k) q (-k) > (35)

£ The lowest order contribution to q, is

3 q1 (-k) = -2iK1 R0 h(-2k) , (36)

and the corresponding backscattering strength is

Spr(l, 1) = 4%3RoR o sine W(2k) (37)

3 The analogous Bragg term for the PE case can be written

I



Sp,(1,1) = (k 2- 1  ko (K1 -k) 2 W(k + K1) (8
1k2 +k1 2  4(2) 1/2 +)

On comparing Eqs. (37) and (38), it is evident that the functional dependence

of the two expressions differs at low grazing angles with Eq. (37) varying

with the fourth power of the grazing angle and Eq. (38) with the second power.

To illustrate the differences in the PE and PT Bragg results, we consider

a surface wave number spectrum W(k) obeying

W(k) = c/k 3 , KL<IkI<K, (39)

which yields a result that is independent of frequency at lowest order.

Figure 3 compares the PE and PT predictions for c - 0.001 and K2/K1 - 0.985

corresponding to a critical angle of ten degrees. Although the two curves are

3- similar, differences of approximately 10 dB occur at the critical angle and at

very low grazing angles. Figures 4 and 5 compare the results for a critical

angle of five degrees, and an angle of intromission of five degrees,

K2/K1 - 0.996 and 1.004, respectively. Even for these cases, where the

scattering is weak, significant differences between the two predictions are

3 apparent.

In Figures 3, 4, and 5, k0 - K1 . From the definition of k, and k2 , and

3 Eq. (38), it is clear that k0 is a multiplicative factor, and that adjusting

this factor within reasonable limits will not significantly alter the results.

IThus, the disparity between the PE and PT Bragg scattering predictions does
3 not appear to be a consequence of the angular propagation error inherent in

the parabolic approximation.

3It is evident from the analysis of Section II that each operation by the

operator aA/ax introduces a factor of in the solution of Eqs. (5) and (6)

I for backscattering from rough interfaces. Hence, although a number of

£12



approximations have been made in obtaining Eq. (38), none of these

approximations affects this lowest order, or Bragg scattering result. It is

also clear that repeated iteration of Eqs. (5) and (6), as described in

Section I, can only lead to terms of higher order in the surface excursion.

It thus appears that solution of the full coupled pair of equation is needed

to accurately model Bragg diffraction.

B. Higher Order Scattering

For moderately rough surfaces, higher order terms in PT lead to enhanced

scattering. The second order contribution to q, is

q,(-k) = 2K 1ROf dk'h(-k-k') h(k'-k) (x2 +Y/-i) , (40)

I 21
and the corresponding backscattering strength is

Sp(2,2) = 16xlRoROsin e fdk l (k + k
l ) W(k-kl) Ir.,KcaI2 + (41)

The comparable PE prediction is

m Sp,(2,2) = (L/Ax) <W2W2> , (42)

3 where <w 2w2*> is given by Eq. (29).

To compare the predictions of Eqs. (41) and (42), we select KL - 0.01 K,

I and Km - 2K1 in Eq. (39). This choice provides predictions independent of

3 frequency and corresponds to an rms roughness a - 14 m for a frequency of

200 Hz. Figure 6 compares the (2,2) PE and PT results for a ten degree

5critical angle. As in Figure 3, the PE predictions exceed the PT result at

very low grazing angles and are significantly lower near the critical angle.

I
£- 13



It is also of interest to examine the remaining terms that contribute to

the fourth order scattering strength prediction. The third order contribution

of q, takes the form

q, (-k) - 2i 1xR o f dkldk"h (-k -k') h (k' -k") h k - k)

KX) + K1 2 2  - -k' ) k
22 (K 2 +K 1 ) 2 2

_(K22 .+ 2 + ) + (N, 2 -, .,1' ,1 h2 -k" 1 (k'-k 1") ±!2 - X2 (X 1 X2

6 2 3 2 "

(43)

The scattering strength is then given by

""' W(k - , kR 0 kK +dk K €X/ -, Y11
(,(X2 + O+) (44)

Y -(-) (E - -) + (K K 2  +X + 2x(K X1

where P'- [iJ - (k'-2k)2 1 I2  The corresponding result for the PE case is

S,,(1,3) = (L/Ax) <w1 w3 > , (45)

where <wlw3*> is given by Eq. (30).

Figure 7 compares the full fourtn order scattering strength predictions

for a critical angle of ten degrees for c - 0.001 and the same choice of KL

and KM as in Figure 6. For PT, the sum of Eqs. (37), (41), and (44) plus its

complex conjugate is shown. The PE result is the sum of Eqs. (38), (42), and

(45) plus its complex conjugate. In the PT case, the (1,3) plus (3,1)

contributions are positive below the critical angle, and negative above it.

The corresponding PE contributions are negative at all grazing angles, hence

the increased disparity slightly below the critical angle.

£- 14



IV. DISCUSSION

A coupled pair of parabolic equations has been solved for the intensity

backscattered from a random rough interface. The result has been expressed in

the form of a series in the rough interface excursion for comparison with the

results of perturbation theory. Even the lowest order, or Bragg, term in the

parabolic approximation differs significantly from the perturbation theory

result. Because all terms of the first order have been retained in the

iterative solution of the parabolic equations, this disparity can only be

attributed to the original splitting of the elliptic wave equation and neglect

of the backscattered field in the initial solution for the transmitted field.

Higher order corrections to the scattering strength follow the same trends as

the Bragg terms, with significant differences between the parabolic and

perturbation results.

The parabolic approximation offers several advantages for studying

scattering from rough interfaces: it is computationally efficient, includes a

full diffractive treatment of shadowing effects, and can handle focusing

effects at the scattering surface. For these reasons it is useful in the

study of forward scatter for which its predictions are in good agreement with

perturbation theory. However, due to the disparities noted above, iterative

solutions are of doubtful utility for the study of reverberation.
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APPENDIX A

To estimate the results of including the term -A'3aA/ax v+/2 on the

right-hand side of Eq. (7) consider

3 V. =V+ 9.

where to lowest order, from Eq. (12)

. - Texp(ikx)

and v_ is treated as a small perturbation, obeying

I--i W2 - (K-) 8[z-c(x)] ac(x) (A-1)

x ax 2K,

The appropriate Green's function for the solution of Eq. (A-1) is

G. = [k(x,z)/2(x-xl)]1 12 exPi[/4+k(x,z) (x-x') +k0 (z-z')
2/2 (x-xl)],

(A-2)

for O<x'<x. To proceed, we select k0 - K, and approximate k(x,z) - K1 .

SSolving Eq. (A-l) via Eq. (A-2), then yields

V (x,C) - Q' dx/ --K (xxI)-1/ exp{iK,(xi+ (-C') 2 /2 (x-x')]} (A3)

i where Q' - (L)112Q. Neglecting the second factor in the exponential of

Eq. (A-3) is valid for small surface slopes. Then by using Eq. (16) for (x)

and making the change of variables x' - x-q, Eq. (A-3) takes the form

V3 .(x,C) - Q'TJ ik'dkih(k') exp(ix(W + k') ] f dq exp(-iqkl) . (A-4)

3 Extending the upper limit of the q integral to -, then yields

3
£ 1



IV. (X,) Q'T f ikldk'h(k') exp[ix(K +k') + iSx14] (i/2 kI) 2  (A-5)

where S - 1 for k'< 0 and S - -l for k' >0 .

To lowest order, the resultant backscattered field v (0,z0) is given,

from Section II B, by

L+Ax/2

17 (0 z ) =-L a( (x ) exp (iK1x') V. [x (x') Ix' (A-6)

Substituting Eq. (A-5) into Eq. (A-6), yields

V_ = T LAX2 al e'(x' ) fik'dk'h(k')expCxkl + iS,,14)(n/2 Ik')1/'2I~ ~~_ /2.! '-

(A-7)

On comparing Eq. (A-7) with the a2 term of Eq. (24), it is apparent that an

additional factor of Q' appears in v. Because IK1 - K2 1/K1 <<, in the

examples treated, the contributions arising from the VI_ term are negligible.

One may verify this computationally by evaluating such terms as

< >= IQQ'j2Axfdk'W(Ki -k') W(K1 + k')
0

x [( (K -k,/) 21KJ + k'l + (KI + k,/) 21KJ -k'l + 2(,K, -k'v ) 3/2 (KI -kl)]l(2) 1/2

-- 17
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APPENDIX B

Following the method of Appendix A, the result of retaining the term

-A'8A/Bx v./2 on the right-hand side of Eq. (6) may be estimated by

considering

v_-"__ (B-I)

-- where

7- (fdxdz'A-1 aA v"(x', z') G.(x-x, z-z')/2 (B-2)

I and

3 = . f dx'dzA- A -(xf , z) G.(x-x' , z - zl)/2 (B3)

3 For x'>x, to lowest order

V(x,C) - Q'T (x'-x) 2I ac(x') expiK1 (2x'-x) (B-4)1
1BX5 where ko - K1 and k(x,z) i K1 . Equation (B-4) may be integrated, as in

Appendix A, yielding

7- .(x, ) . i (/2)1/2Q/T khk exp[i(k'x+Kx+Sn/4)] , (B5)

where S - -1 for (k' + 2Kj) < 0, and S - +1 for (k' + 2Kj) > 0. Substituting

Eq. (B-5) into Eq. (B-3), then yields

LiAx/2

17-O~.)- -i(ig/2)'/2 QQIT f dx' (x) f k'dk'h W')Li1)/ _. Jk - K,1/2( -6)

x exp[ix'(2K, +k') + iS /4]

I



As an example, we consider the expectation <iv-> to which only the a2

term of Eq. (24) contributes

<9_v-> _ Q'T4Axg 3'12kK 1 f dk'W(k') W(2KI + k')
-- (B-7)

x Sk'12K +k 1112 exp(iSIl4),

which is smaller by a factor of approximately (1 - K1/K 2 ) than the

contribution of Eq. (29).

1

I
I
I
I
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