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Moments of the Percus-Yevick
Hard-Sphere Correlation Function

N. E. Berger® and V. Twersky®

Recewed April 9, 1990; final July 20, 1990

A simple tecutsive relation is denved for the moments M,, nw 1, 2., of the
Percus=Yevick correlation function A(r) for identical hard spheres, The M, are
rational functions of the volume fraction occupxcd by the sphexes, the first ten
are given explicitly, and a single-t p form is obtained to suffice fot
the test. Applxmuons of the M,,(u) mclude testing dufferent approximations for
h by numencal integration of h(r) r". We compare cxact moments with shell

MK r § to fon from rw0 to s+1 for
:-3-8 and with hybrid approxlmauons M, [h‘+lr‘] which supplement the
shell apg with integrals of an asymptotic tail from g+ 1 to 0. For

a given $, the hybnd approximation is better for w mcreasing than the shell
approximation, and M,{A*+A?] is evan better than M, (A*),

KEY WORDS: Percus=Yevick correlation function, moments, shell expans
sions; asymptote forms, zesidue series; hybrid approximations,

1. INTRODUCTION

The solution of the Percus-Yevick (PY) equation®®? for the radial distribu-
tion function g(r) of a classical ftuid of identical hard spheres was obta wd
by Wertheim® and by Thiele® in terms of the Laplace transturm
P{rg(r)} = G(1). Here r is the distance {rom the center of one sphere
divided by the sphere diameter d, so that g(r)=0 for r<! and
g(r)=g(w;r) depends on only one paramecter; the volume frav 1on
occupied by the spheres, = prd?/6, with p the number density. Piecewrse
analytic expressions for g(r) at given r in the shells s<r<s+41 for
s=1,2,.., can be obtained™ by expanding the inverse transform
£ ~"{G(1)} n a geometrical progression and summing the residues of ¢
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1188 Berger and Twersky

terms (g,,) from m=1 to 5. The exact results in the range 0 <r<s+ 1 will
be indicated by g°

Wertheim gave the closed from for g4, and analogs through g5 and
tabulated values are available™® for r<6. Such shell expansions have
relatively broad applicability, but we found them unsuitable except for
small w for numerical investigations of integral equations'” for multiple
scattering by correlated random distributions of spherical resonators, We
extended the shell development to gg, considered the residue series for the
complete'® #~¥{G} (which exhibits a Gibbs-like effect near r=1, but
whose lcading term g? for moderately large r approximates g°), as well as
a hybrid approximation (g®) based on g* for r<s+ 1t and g*for r>s++ 1,
Although these cxtensions suffice for larger w than g%, the most stable com-
putational routines we developed for cven moderately large w were based
on the moments M, of the total correlation function =g =~ 1. The present
paper deals primarily with the moments and their applications to test shell
(") and hybrid (4*) forms of & by numerical integration,

The moments

M,,mjl: drhwinyr'= M, (w), hmge~I 1))

are simple rational functions of w. The first three are available in the
literature,**” and we may reconstruct these and obtain additional
moments by symbolic computer differentiation of £ {ri(r)} = H(1).
However, it is much more convenient to work with a recursive relatton for
the M, based o Baxter's equation™® for the PY A

Section 2 provides a form of H(r) suitable for symbolic differentiation,
and then derives the recursive relation for the Af,. The first ten raoments
M, (w) are displayed in Fig. | and listed in the Appendix. Section 3 derives
an asymptotic series M, ~ X, M}, for large n based on the residues at the
roots 1,(w) of the denominator'® of H(r). Figure 2 graphs the first five
roots, and Table I provides numerical values for the dominant root 7,(w)
(and for basic magnitude U, and phase «; functions); a one-term
approximation A} suffices for 1> 6 and w>>0.01. Section 4 considers shell
expansions g*=h'4 1 and comparcs exact M,(w) with shell approxima-
tions Af,{/*) based on numerical integration of & from r=0 to s+ 1 for
s=3-8. Figure 3 displays g(w;r) to r=9 and w=06, and Fig, 4 compares
M,[*] and M[/r'] with the exact moments. Section § considers the con-
vergent residue for 2(r) =3, 1™, Figure 5 compares exact shall results with
residue sequences for w=02 and 06 to show the Gibbs-hke effect near the
discontinuity at r = 1. Figure 6 shows that the leading residue texm ;= h*
(which follows directly from Table I} suffices for #>35 even for w=0.6.
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Figure 4 also shows that the hybrid Ms[h'-i«h“]=M6[h’]+j',.,dr hert
approximation is much better than the shell approximation for a given s,
and that M‘[h’—& h*] is even better than M{4]; the hybrid curves for M,
included in Fig. 4 practically overlay the exact results.

2. MOMENTS OF THE CORRELATION FUNCTION

The exact leading terms of £ for small w equal ™
RN 0<sr<t

s N )
Ti= (8 = 6r 4 r2) 4 O(w?), 1€r<2

which also follow from the PY equation.*? Substituting in (1), we obtain

%433 (5% 4 390 4 82)

! 5
o R Ty s T ) ®

M=
The cxact w? contribution to 4 is also known™ in terms of clementary
functions, and the PY approximation can be identified directly by com-
parison of forms in refs. 12 and 1. Although such expansions of / suffice for
small w, (3) indicates that corresponding expansions of M, are restricted to
smaller w as » increases. In the following we consider closed forms of

M, (w) for the PY & without restrictions on w or n.
The generating function of the moments is Z{rh(r)} = H(1):

H({)= J‘x drrh(r) e” io S—E:l J‘: drh(ryr!

ity

(= '

El T } @
{ }
% '
oz (=1)"=" — , H

M =(=1) llmd,l_ H(1) N (5)
From Wertheim,® we write #{rg} =G in the form |
GUy=tL()D(),  D(t)=12wL{r) + S(7) ', © & {
where 8 4
SO = (1 =) 124 61 (1 = w) 22+ [8w3r = 120(1 — 1) :
LU= (1 +w/2) i+ 142w %

Thus
H(@O)=G(t)~ 1" =1L()/D(1)~17? (M “Godes
d/or
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1190 Berjer and Twersky

and (5) may be performed by machine™™ operations on the equivalent
form

L(OLE (1) =~ 12wE ()] = (1 4 w/2)?

B = (T 2B L0 = {1 201 # w7

®)

where
LIt
E{t)= 1‘"[e“-— ¥ (—l)'/v!]
ym0

The Fourier transform representation of the structure factor
F(K)= 1+ (6w/x) | de h(r) exp(iK )

=1+ (24u/K) j: dr rit(r) sin(Kr) )

gencrates the even moments

XL (K= <
RK)al+24w %%’-—— My
aml A&T=

K
T Myl -{»-24wM,-24w-—-3! e (10)
Since F(K)s= F(w; K) must vanish for the unrealizable bound we= 1 (corre-
sponding to zcro fluctuation scattering for a uniform medium), we require
Ms(ly= =1/24 and M,,(1)=0 for n =2, The PY Fis also known in closed
form™; in particular,

(t=w)*

Fon 0=y

= 1 28w () an

vanishes at w =1, Equation (11), which also follows"*® dircctly from the

scaled particle®® equation of state, gives M,(w) in closed form™ by

inspection. The remaining PY M,, are found to have F(w;0) as a factor.
A simpler representation of the A, follows from Baxter’s equationt®

rh(r)= =g'(r)+ 12w L‘ dt (r =) h(lr =) q(1) (12)

where
)1 =w)= (L4 2w)(r* = 1) = Bu2)(r— 1)
with g(r)=0 for r> 1, and ¢'(r) = dq/dr. Operatmng on ri with |3 drr**,
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changing the order of  and ¢ integrations, and using A(}r— )= —1 for
r<t, yields

f
M= -—I drg'(ryr=?
o

+ 12w j: dqt) [;(L’:%-ﬁj’” dr P (e 1) B(r ~ z)] (13)

Integrating over s=r=1 to obtain
el g
Z (n l)t"‘M,,..,,.
=\ om

we define

»

_J.ol drg(r)rta {21+ (n=3)w}

2n(n+1)

t - B = {4424 (m~=1)w]
.‘.o gy = (I=w)?' Bu= 20 ) {m 4 2)(m 4 3)

Bur (4 9+ 26)[ 3w = n(2 + W)Y = 1202+ w)?
nin+ 1) 2n+ D+ 2)(n 4 3)(n+4)

Thus (13) reduces to

A

(14)

Cors Ayt 12w

LLR} —
Myl =)= Cot 120 3 ("m‘) BuMa_r (15)

m=0
and shifting the m =0 term 12wB,M, = —nw(4 =) M, to the left side gives
A=l N1
M +2)=C,+ 12w ¥ m BrMyim (16)

me0

such that My = Cy /(14 2w), My = (Co+ 12wB M)/ +2w), ete.
It is clear from (16) and (3) that all moments have the form

= a3 N)
(4 1)(1+2w)""

where the polynomial g, of order N is given by

"dn=1\ ntd
Ha= o ; ( m )mbm”n—m (18)

N
M (W)= G N)=1+Y a(-w)  (17)
i
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with ¢, = =(n+ 1) C,(142w)*~), and &,= ~12wB,(1 +2w)*~ . All ¢,,
and b, except b, (which is proportional to w), are of order n+ 1 in w; the
order of g, (in general that of byp,. 5) is N=(3n+1)/2 for n odd, and
N=3n/2 for n even,

The Appendix lists the first ten moments (generated by machine®?),
and Fig. | provides a three-dimensional display to delmeate trends. For
0<w< 1, the number of extrema (and zeros) is given by N=n~2>0, so
that successive pairs from My, Mg, t0 Mg, My, start with one extremum
and end with eight extrema, ete.

3. ASYMPTOT!C FORM OF M,

Since the recursive relation for M, involves sequential determination
of preceding moments, we derive an asymptotic series for large n by
working with the residucs at the complex roots (1, 1) of D(t) in (6).

“ o3 o4

o2

Fig 1 Threed 1 display to dell trends of the first ten moments A, (w) of the
hard-sphere PV & vs. sotume fraction u, The values of «3(,(0) are (1 +n)" ! The values of
= (M) for n=1,2,3 are 3/20, 1723, 3/350, the remainung even moments vamish, and the odd
are small and alternate in sign
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As indicated by Wertheim,? 1, = —u, +if, = —|«,}+]f,| such that as
w1, =0, and B/2=tan(f/2). Backtracking the branches numencally
yields curves versus w in Fig, 2 that show |4, ;) > |1,} for the corresponding
simple poles for all w.

Thus, for large n, from

M,,=(-l)"£-'%'ﬂ—:-£§dtll(t)t"' (19)

for a contour around O of radius greater than any |z,(w)] of interest, we
obtain*?

M,,~(—l)"(n—-l)!2ReZt;"‘”l.,/D’EZM}, (20)
where
D)= lim {_1[_)_(_Il= 125L, 4 (S, 4+ Sty e*
teer, dl

%0 02 04 06 08 10

Fig. 2. First five ro0ts 1,5 —2, 418, vs. w 20001, Top panel shows %,, and bottom panel
shows B, (solid curvesy and |r,| (dashed curves), the lowest curves correspond to v=1 and
the highest to v = 5. The values at u = 107* are. 2, = 17109, 17.396, 12,777, 18 149, 18.483,
B, 3537, 10483, 17.218, 23,803, 30.296,

PRIV PR,

e+
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with $, = 5(¢,), ete. We write
M= (=1) (=1 {77 U, cos(u, +nt,) (#2))]

with U, e =21,L,/D} and t,=tan"'(,/%,). For n>6, the curves of
M}(v) and M,(w) arc indistinguishable for 001 <w<1 on the scale of
Fig. I; we may use M} for n>10 and w3107 and for n>15 and
w3 10~% Except for n=1, we can obtain better accord for small w by

Table I. Data’ versus w for Dominant Root t;w ~a+ifm|t]a=’r
and for 2t,4,/DywUe’v

w o B {1 T U u
00001 1284249 37291 1241449 030474 242530 ~025294
00010 9.00273 390013 990661 040563 20016 -031918
00100 624834 42817 756085 059808 15803 ~0433333

00200 S$35885 442760 694878 069083 7 =0.48600

00300 482227 45513 663083 075649 46,067 ~0.52383 .
00400 443754 465288 642063 080908 33261 =0.55317

00500 413460 474131 629092 085363 288N =0.58078

00600 388386 982086 61073 Q89263 20968 ~060474 .

00700 366906 489396 611660 092748 17.581 ~062681

00800 348070 496214 606120 095910 15088 ~064047

0.0900 33259 502646 601985 098810 1318t 066706

01000 316050 508765 595931 101493 11678 ~068519
01250 28323 523028 594794 107448 90321 ~072988
01500 285122 536226 594081  LI2581 73201 =077130
01750 231893 543696 $95685 117094 61290  ~081100
02000 210781 560652 598966  12H19 $2513 ~0.84561
02500 174828 583581 609091 1.28036 40170 ~092497 )
03000 143679 605802 622607 133793 33263 ~099929
03500 LI7010 627791 638602 138653 28I =107338
04000 093590 649868 656570 142778 24586 =114738
04500 072980 672232 676182 146266 22010 =1.22080 .
0.5000 054986  6.95002 697174 149183 20159 ~1.29248
05500 0395717 748180 709270 151578 18852 -136043
06000 026817 741634 74219 133368 17961  =142218
06500 016787 765017 765261 1.54886 17403 =1A47463
07000 000470 7.88068 788125 155818 17062 ~1.5153%
07500 004656 810097 810111 156508 16848 154326
0.8000 001898 830727 830729 156851 16673 -~ 155959
08500 000585 849741 849241 L5701 16479 —~136738
05000 0001y 867203 867203 157067 16247 ~ 157016
09500 000007 838339 883300 157079 15987 -1.571076
10000 000000 8.98682 898682 157080 L5720 ~1.57080

* The values speafy the moments for targe » and the correlation function for large 7.
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retaining additional terms in v; however, since the exact A, (w) are known,
we consider only M1. Supressing the subscript v= I, we have

My~ MY m M (= 1) (1= 1)} 1"} U cos(u + nt) (22)

Table I lists w and values for 1, =t= —a-+if=|t} e™*, and for the corre-
sponding U(w) and u(w). This table is also appropriate for a following
development of i,

4. SHELL EXPANSIONS OF g

As discussed by Wertheim,® g(r) can be obtained in closed form
for given r from £=*{G} by expanding G of (6) in powers of S~ and
cvaluating the residues at the roots (to=ltoh, £y, fy=1¥) of S(1). Thus,
forrz1,

8(’1=§.gm(f); 3’(r)=ig,,.(r) for r<s+ 1 (23)
1 1

such that g,.(r) =0 for r <m, and for r>m,

(=121 12 dn-! o [LOT m
()= (m S & im {(:—:,) ;[m] o n} 4)

where g.(m)=0 for m> 1. The results may be expressed as
2 [l
18a(r)= Y Cplm, 0) ™ =™ ¥ Cy(m, KY{r—m)*t~! (25)
<0 k=1

Wertheim® gives forms of the coeflicients for m= 1, and forms for m<$
are given by Smith and Henderson,* who include numerical comparisons
of shell integrations and A, for several values of w; numerical tables for
g0w; r) are given in ref, 6,

Corresponding forms for the C; for m< 8 (obtained by machine com-
putations®¥) are ianplicu in Fig.3, which displays g(w;r) to r=9 and
w=06, The first minimum of g equals zero at w=x0.61257=w, (for
r= 1.3094), and g is negative® and physically unrealistic at slightly larger
w. [The measured™® values of i for loose and dense random close packing
of ball bearings (060 £ 002 and 063 +001) bracket w, ]

The correlation function for r 1 one of the first s sheils 15 given by

FE)= -l4g)=—1+ % g0 1<r<stl  (26)

m )
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Fig. 3 Plot of PY g(wsr) for 0<n 506 and 17 €9. At 7= ], the curve of g{wi 1) is the
PY closed form (£ +n/2)/(1=w)

We obtain s-shell approximations for the moments by numerical integra-
tion,

M= jo”' dr i) 1 en

and compare with the exact M, to obtain ranges of validity 0 < w < w{s, n).
For given n, w(s, n) increases moderately with increasing s; for given s,
w(s, n) decreases markedly with increasing n, The essentials are indicated
by the dashed curves s=23-8 in Fig. 4 for M,[#*] and M #*]. (The dotted
curves will be discussed subsequently.)

5. RESIDUE SERIES FOR g

Wertheim also considered the poles of £ ~*{G} at the roots of D(z)
and indicated that the behavior of A(r) for large r would be determined by

e
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Fig. 4 The dashed curves lha\ depart from the cxact solid curves My(w) and My(n) at
g values of w d o g the number of shell terms (from s« 3 to 8) in

the approxnmate M, (A" of (27} The dotted cuncs that depart at farger values of w are based
on the hybrid approximation M{A*+A*] as 1n (31), The hybnd M(h* +4*] is even better
than M{A*} The hybrid M {A*+A*] cutves practically overlay the exact M,

the pair of complex roots closest to the imaginary axis, For r>1, and
symbols as for (20) and (21),

x
rh(ry=2Re ¥ t,L.e™D,=Y Ue " cos(rf, +u)=r ¥ h (28)
Yw] v v

with roots #,= =~x, 4 iff, as in Fig. 2. This residue series is rapidly con-
vergent except in the neighborhood of r=1 (the single discontinuity of )
where successive sequences exhibit a Gibbs-like effect. For any fimte num-
ber (') of terms, the peak of g occurs for r> 1; as v increases (a larger v
is required for larger w), the peak approaches r=1 and s magnitude over-
shoots the PY g(1) = (1 +1/2)/(1 - w)*. Figure 5 for w=0.2 and 0.6 shows
the essentials for v* = (1, 5, 10, 100); the overshoot at r 2 1.005 for v = 100
is about 9% for the smaller w and 9.4% for the larger.

For large r and w < 1, we nced retain only the least damped ¢xponen-
tial term

rhir)~ 2 Re(t, Lye™/ DY) = Ue ™ cos(fr+ wy=rhM =rhé(r)  (29)
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00 108 1% A% 120 928

w=06

100 rob 10 LS M0

Fig. 8, Compatison of the exact g(r) (soltd cunes) for w= (2 and w =06 with ¥term
residue sequence approximativas (dashed or dotted curves) of (28) for v* = (1, 5,10, 100) to
show the Gibbs-ike effect; with i ing v\ the app improve except for ra 1.
The peal of the dotted curses (v = 100) at 7% | 005 overshoots the PY g values of 1.708 and
7805 for wa 0.2 and 0.6 by about 8.985% and 9.395%, respectively.

The subscript 1 is suppressed, and Table 1 applies for U, v, «, and . As
shown in Fig.6, 2* suflices for r>3 at w=0.2, and for r>5 at w=06.
Thus, A° supplements the shell expansion by an asymptotic tail, and
provides a hybrid approximation iz A* for all r. For simplicity, we use

r)=lr) for 1<r<s+1

30
Br)y=hr) for r>s+1 G0
The corresponding hybrid approximation of the moments equals
MJLH kY = M)+ j' * drin G
1+

where we may integrate h* directly. Figure4 compares dashed curves
M[#*] and dotted curves M[h*+A*%) for 5=3-8 with the exact sohd

—— ——— —— -
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g 6. Companson of the exact g (sohid curve) and keading tesdue term g = ¢ (dashed
cunc) based on (29) for w=02 and w =06, The onc-term approximation g* suflices at
w02 for r>3 and at w=Q6 for 7> 3.

curve Mq; for given s, the hybrid approximation holds for larger w, and
Mgl +4%] is even better than M{4*]. The hybnd dotted cuives
My[A*+h°] in Fig.4 practically overlay the exact solid curve 3M,. The
hybrid is better than the shell approximation because 4 reduces the effects
of the discontinuity of 4* at r=s+ I; an improved version may follow from
a different match-up point than s+ 1, but this has not been investigated.

APPENDIX. MOMENTS OF THE PY TOTAL CORRELATION
FUNCTION A

Mo 10~ 210 4 w?
T T 0.2 4 2w)

4=~w)(2+n?) 8 =24 At —?
AI;=

TR0 8314 2w)
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_ (175 260w + 4217 ~ 2201% 4 62 = Tiv?)
175 .4(1 4 2w)?

(1=w)* (16 = 11w+ 4n?)
16-5(1 4 2w)*
M= = (10500 — 117500 + 34693012
= 557372w* 4 S188401* = 2977001*
4 10125518 = 1713017 4 756°)/10500 < 6(1 + 21)*
_u-= )" (20 = 386w 4 627102 = 494w o 1731 = 21w%)
20.7(1 + 2w)*
My =(404250 — 18203500w -+ 14847920012
~ 507844540m* 4+ 996920822m¢
= 1246675192* + 10406399781 — 582685390i7
+ 2123799651% = 46396616w° + 5053356w*°
= 116424w11)7404250 - 8(1 ++ 2w)’

Mg= =(1 =1)* (800 = 63540 ++ 6201 123
~ 1497976w + 1841640w* ~ 12711451%
+ 4959801 — 976567 + 604812 )/800 - (1 + 2w)®
Mg ez =(500500 = 75540500 15602773752
= 11161907350 4 41072677500
=~ 933890339161 4 1429844644621
= 1539295532041 + 118569194898n*
= 652268524061° + 250749841 88w 1°
-~ 64082782661 4 983239972w12
~ T1735664w"* 4 10090C.8w$)/500500 - 10(1 + 2w)°
Myo= (1= w)* (2800~ 743900u -+ 20841976w?
~ 1549639701w* + 456008728
— 745392368w* + 7537893161 & — 48960008317 + 20191582013
— 49540524w” -+ 6150144 '° — 232848w4)/2800 - 1 11+ 2w)t®

A[’=

Miz= -

M=
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. Coherent propagation of sound in correlated distributions
of resonant spherical scatterers
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Expressions for underwater propagation tn bubble regions based on the index of refraction (7)
m uncorrelated random distributions of monopole resonators are restricted to sparse bubble
packing (very small volume fraction w). As w increases, correlations arise, and coupling with
higher-order multipoles is not necessarily negligible, To provide prototypes for data inversion,
integral equattons are analyzed for 77 in correlated distributions of spheres (including up to
quadrupole coeflicients) in terms of shell and moment expansions of the Percus-Yevick
correlation function, Graphical results for w up to 20% indicate the decrease in magnitudes at
resonance, the increase in 1esonance frequency, and the broadening of the resonance region
relative to the uncorrelated case. A simple eaplicit three-moment approximation is derived for
distributions of monopoles plus dipoles that provides good accord with machine computations
(based on ten-moment or on eight-shell expansions) to about w = 7.5%, and also holds at least
qualitauvely for larger w. The explicit form may also be used with the first three moments of
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other correlation functions.
PACS numbers: 43.30.Bp, 43.30.Ft

INTRODUCTION

The mdex of refraction 5 i uncorrelated random distrie
butions of menopole resonators dernved by Foldy™ specifics
coherent propagation of sound i bubbly hquids at sparse
packing (very small volume fraction w). Theexpression' for
7* imvolves wonly to the fiest order, and provides an expheit
form for 57 1n terms of a Jossy monopole coeflicient averaged
overadistribution in bubble size, say 1( @, . More complete
models of @, are developed by Commander and Prosper-
ett,* who also review recent theoretical work for the single
bubble, and provide detailed comparisons of [, | with ex-
isting data sets for w< 1%, The present article uses the sim«
plest model for a resonator, and analyzes integral equa-
tions* for 1 1 correlated distributions to w = 20%, and
obtams an explicit closed-form approximation that suffices
toat least w = 7.5%.

To provide prototypes for the developntent of data m-
verston routines, we conswder tdentical spheres (specified by
the relative compressibtlity and mass density appropriate for
anair bubblen the sea® ), and work with the Percus=Yevich
(PY) correlation funcuion™* F, For sphere radis (a)
small compared to wavelength (27/k), and normalized fre-
quency x = Ka up to 0.2, we retain not only the dominant
monopole coeflicient a, (with leading resonance®
X5 220.0140), but also the dipole a; and the quadrupole a,.
Numencal investigations of the inicgral equations invotving
only monopoles () show that the uncorrelated form
n]a, ] suffices to wabout 0.1%; in turn, computations with
71(MD), which includes dipoles, show that 57(f) suffices to
about 4%, and numencal results for ;(MD@), which n-
cludes quadrupoles, substantiate 7(MD) to about 10%, the
results in the remaming range to w = 20% are based primar-
1ly on p(MDQ).
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Uptow = 12.5%, Figs. 1-6 on lincar scales show Re »?
and Im 7%, as well as Re 77 and Im 7. Figures 1 and 2 for
w = 0.1% and 1%, tespectively, alsoinclude the uncorrelat-
ed versions. The symmetrical curves for the elementary os-
cillator represented by 3*[a, ] provide explicit reference
curves and, although off scale and not included m Figs. 3-6
(at w = 4%, 1.5%, 10%, and 12.5%), they serve imphcitly
to delineate the distortion of the curves arising from the in
crease in correlations with mcreasing w. Figures 7-10 on
Jog-log scales compare uncorrelated and correlated results
for Im yand 1/Re 5.

The decrease in magnitudes at resonance and the shiftin
resonance frequency relative to the uncorrelated case, as
well as a hey difference between the correlated and uncorre-
lated processes, are indicated by two illustrations for the
imaginary components, Wnting Im =1 and Im y==7),,
such that for uncorrelated distributions the peak values /,
and 1, increase monotoncally: with w, the correlated ver-
sions (I, and 7,, ) increase to a maximum and then de-
crease, For w=4.6%, I, =55001s maximal at x,, x0.0156
(as compared to /,=50200 at x,=00140), for w
= 2.96%, 1,, =61.4 is maximal at x=00162 (as com-
pared with 17, = 144 at X0 0141).

The primary curves displayed to w = 10% were ob-
tammed by two different methods (shell or moment expan
stons) of solving the (MD) integral equation in terms of the
complete g, and a,. One raethod used the exact first eight
shells* * of Fand truncated the integrals to obtain % (and
then constructed %), the other used the first ten mo-
ments™ " of F to obtain 7° (and then constructed 1) The
values for both sets of 7 and 7” are very close, and differ Little
from values obtained with the (MDQ) equation (which in
cludesa, ) and the first 10.0r20 moments of . Forw > 12%,
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FIG. 2 Analog of Tig. 1 for a tenfold increase 1n volume fraction. At
w = 162, the effects of correlations tthe decrease in the magnitude of the
extrema and their displacement to farger x, as well as the distortion of the
symmgiry of the stmple oscillator curves) are evident. Thedifferencesinthe

several) includes correlations as well as dipoles, The effects of correl.

are practically negligible, and the oveddayed ¢ t curves [10(M),
10(MD)). cightshetleurves [S(M), S(MD) ). and the curves of the explice
wfintapproximations [ (3 1) and (D 1) Jaresndistinguishabicat volume
fractions wr = 0.3%.

we used primarily the moment cxpansiuns. Buth symboli™
and numeiical proceduies wete used fur machine wumputa
tions.

Tu delineate the essential physivs, we denve a simple
caphuitapproximation for pure monupoles (M 1) in terms of
the first thres muments of F, and then gencralize il to ubtain
a first approximativn {MD 1} that alsu includes the dipoles.
The appruximation (MD 1 1s 1n good accurd with the ten
moment and eight-shell (MD) computations to about
w = 7.5%, and suflices at least qualitatively for larger w.
Cumputatiuns based un (MD |} involve unly pochet caliu
lawt suutines, aind fut many practical puipuses we would vse
(MD 1) instead of the ten-moment (MD) or (MDQ) to at
least w = 10%. Figures 1-3 include (M 1), Figs 1-10 in-
Jude (MD 1), and Figs, 11 14 display three dimensional
pluts based un (MD 1. The exphut form (MD 1) may be
used with the first three muments of other vorrelation fune-
tions,

The functional equation® 77 = p{F}, on which our de-
velupmient s based, was ubtained by replaving the average
scattering amplitude with two obstacles fixed by that with
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ovcrlayedvunesot these pp thatinclude lavonsare
neghgible.

one fixed, analogous to Lax’s procedure™ for the effective
caubing ficld, Larlicr exphuat results® for urrelated 1esu
hant (U1 pressure delease) spheies weie sestinted to spaise
enough concentrations for the leading terms* of Fin powers
of w tu suffive. Fur vther sphencal scatterers and all realiza-
ble w, the wrrelatiun favtor (% ) for the low-frequency
sattering luss teim (denved onginally'® from cither she
svaled particle’ or identical® PY equauion uf state) can be
eapressed in teims of the secund mument of F, the coticla-
it term of the assovtated phase'™ depends on the corre-
sponding first moment. Numeral procedures for y{F}
based un either™ three-shellur™ fow shell approsimauvns
wuld be applied (o the physival patametars® of presentanies
est, but we fuund that even the available® fiv,-shell apptoxi-
mation was inadequate for w » 7%. For larger w, additiona
shells were required (v reduce discuntinutties ansing frum
truncating infinite range integrals, vur eighv-shell computa
tonal procedure was stable fur x 10 0.1 and w to 12%. The
atoment expansions obviate numerical integration, and no
particular difficulties arose even when the first three multi-
pules and the first 20 muments were setained fui 4 10 0.2 and
wto 20%.
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FIG. 3. Compar'son of the effects of the correlations for distnbutions of
purs monupoles sid of monupoles plus dipoles, 1 Note the condensed seake
{01 &) The chanedot curves correspond to oserkays of M results | LM,
SiMie WM Ly} and the solid curves 1o vveslays of MO results I AMD;,
SMD), \MD k) Thedilferences withind given act of spproximations are
practically negligible, Ingeneral, M0 curves are displaved tosmaller x than
the M curves, and differences between them become more mathed as i ine
creases past 4%, The peak values of the correlated Re i7" and Im " cunves
are approximately equal at this valuc of us for wsmaller/Lirger than 4%,
the peak of Re 9 ss the smaller/larger of the pair.

We start with brief sketches of results for a resonant
sphere (Sec. 1), and of the explicit form of 7)* for uncorrelat-
eddistributions'* of monopoles (Sec. I1). Then, welist inte-
gral equation approximations® * fozcorrelated distributions
andd X tSec. 111y, and denve sim-
phiied explicit approximations for 3% (Sec. IV}, Section V
describes the numencal procedures used to evaluate the shell
and moment expansions for 77 and 7%, Appendix A provides
a simple program for computing the first 20 ts of F
symbolically, and Appendix Blists the coefficients for gener-
ating the first eight shells of F,

1. PRELIMINARY CONSIDERATIONS

The forward scattering amphtude of a sphere, g = Za,,,

is the sum of multipole coeffictents of the form
o fni b, 2yl
" 1 ~ib, L4y, '
For spheres with relative compressibility C*, mass density
p' = 1/B',andindex of refraction 7}’ == (C*/B")"? wehave

r=(012,.). (D
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imaginary n
2000 4000 6000

0
3

Real and

«4000 ~2000

000 oot 002 0,03 004

80
]

60
5.

Real and imaginary 7
20 40

° 1

000 00t 0.02 0.03 004
X
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wuives fou LOWMD) and SLMD), the dashed curves coiespond to ,MBD ,
and the basely visible dotted vuives 100D, indluds yuadiopoies The
figure indicates that the explivat hist approimaiion (MD ) is satistactoty
tou - 7 8%, and that quadiopoles have pracuically o effect up o this
valucof

bw o Reha0) = 80

Yo Ran,(x)=an,(x)’
PRCET
where, and n,, are the sphenical Bessel and Neumann func-
tions, and dindicates differentiation with respect to che argu-
ment.x = kaor'x, Wetake® C* = 15 288and &* = 825 for
all numerical computations and use the complete forms of a,,
in general,

To delineate physical aspects for x<0.1, we need retain
only

R, =B )

__3-xiC —3(B*+2)
T -1’ X(B* = 1)
o= Qa4 D~ DWYAB’ 4 114 1)
tax (B~ 1)
where (214 D= (214 1)(2n —1)...). These expres-
sions provide the correct leading terms except if either
B’ =1orC’ = 1, Forthe large values of C’ and B’ at hand,

X} —-xt
Yomm——iY,
X

Yo V=

)

’
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FIG S Analog of Fig 4 at 1= 10% Discrepancies tetween the solid
H0(3DY and S(MD)) and dashed (LMD 1) cunves are mere pronounced,
and the dotted 10(MDQ) curves indicate the increasing effects of quadru.
poles.

-3 " —(2n+l)"(2n—l)

h= o = Ty )

wherex, = [3/(C* ~ 1D]"* = 0.0140. (We use C* ~ 1 in.
steadof C*toobtainchecksatx=0.) Theform ¥, = ycorre.
sponds to a resonance form of a,, and the remaining ¥, and
a, are pressure release approximations.

11, UNCORRELATED DISTRIBUTIONS OF MONOPOLES

Foldy's systematic procedure! for multiple scattering
by uncorrelated monopoles leads to
is
14+iy’
Nérad'
S—-k,=x,.w— 3 (5
where & is the number density and w1s the volume fraction,
The corresponding bulk index of refraction % specifies the
propagation of sound in sparse (very small w) random dis-
tributions of nonabsorbing resonators. In the neighborhood
of the resonance frequency X,, the behavior of

P=1+S/(0+)+1S/Q+P)=R+1d  (6)
is that of an elementary oscillator. The left-most curves of

7=l = iSay = | e
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FIG * Loganthmi plots of Im 5 (such that 2A Tm 5 equabs the atteny.
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1%, correspondng to values in Figs. 1 and 2. Uncorrelated monopole re-
sults are indicated by chaia-dot curves, 10{37D) results by solid curves,
(MD 1) results by dashed cutves, and 10(3£DQ) results by dotted curves.
The effects of correlation are negligible on such scales,
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FIG 8 Analog of Fig. 7 for values in Figs 3 and 4 at wr = $9% and 7.5%
shows that the explicit fisst approuimation (MD 1) suffices eventox =0 2.

each pairin the top panels of Figs, 1 and 2 (atw = 0.1% and
1%, respectively) correspond to R to 7 of (6) in terms of o
: of (2). The shape of the curves and the location of the ex-
trema are unchanged as tw increases and the magnitudes in-
creasc linearly with t.
Atresonance,
y=0, x=x,=004, R=l, I=S§ (&)

where §'is the maximum value. For 7 at half-strength,
2

r= A1, x=x, :xu;f:'leo
N S
R=lfe~, Ix=, 8
= 2}.2 3 (3)
;‘ w128%
.
/t
/
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FIG 9 Analogof Fiz 7for values in Figs $and 6at w = 10% and 12 5%
shows the increastng role of corcelations. Note that { MD 1) suffices at least
for I 57
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FIG. 10 Analog of Fig. 7 for values of 1 at which the 10(MDQ) results
should be cheched by including octupoles The cloreness of (MD1) curves
to the other correlated curves, particularly to the 10(MDQ) at relatnvely
farge x, is fortuitous.

and the peak width of [ correspondmng tox, —x  zXg is
very narrow. Outside of the resonance region, as jy| and
}X = X} increase, the magnitude of I decreases more rapidly
than that of R.

On the other hand, for x=0,

R=1 +-‘;-=l #10(C' =1,

* 3.3
.§.=i‘i(_c_._;_”_'f_, Co=R+il, )

I= 7
where C, is the complex bulk compressibility, with R as the
elementary mixture approximation. and 7 as the first approx-
imation for the scattering loss term (as discussed earlier* ).

Forx=0.1, the forms Rz 1 = Ju/x" and J=23w/x cor-
respond® to the leading verms of 9 for pressure release
spheres.

Interms of R and /, the real and imaginary parts of y are
given by

P 2] "2

n=, 4 i ["'] = (M) .

. 2

(10)

Swice the peak width (x3) of Zis narrow, the influence of Zin
(10) is restricted to the neighborhood of x,, and since
R = 1= 4|R = 1} forx$x,, wesee that ), increases rela-
tively gradually toits peak and then falls steeply. From the
valuesof R ~ 1 =R andof Iatx, andX,, it follows that 7,
increases to approximately [S(V2 4+ D J"¥/2 atx , and
then dicreases to about (S/2)"? at x,, and to about
{SG2 = 1D]¥*/2atx , . Theconverse applies fory,, which
nises steeply to1ts peak at x , , etc. The left-most curves of
each pair in the bottom panels of Figs. 1 and 2 correspond to
1, and 7, in terms of ¥, o (2), and Figs. 7-10 on fogarithmic
scales shows 7, and /7, to w = 20%. For uncorrelated dis-
trbutions, the shape of the curves and the location of the
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FIG. 11 Three-dimenstonal plot (showng 20 silhoucttes) of Im 1 based
ontMD 1), The solid curve onthe feft wall, a projection of all peak values to
w 10%, has & maximum of approximately 330 for x=00157 at
tw=$ 26%: the value hased on 10(MD) approximates $500 for 20,0156t
wad 6%

extrema are unchanged as w increases, and the magnitudes
increase as i,

Theright-most curvesin Figs, 1 and 2 show the effects of
correlations, Figs, 3-6, which are also on lincar scales, dis-
play orly curves that include correlations (the uncorrelated
versions are far off scale); their top panels for 5 show the

FIG. 12. Three-dimensional sith and p plot of Re 5* based
on (MD1). The solid cunve on the nght wall of the base, a projection of all
oummum values of Re 77, has a minimum of approxumately — 3550 for
x=200163 at w03 2.9%; the value based on 10(MD) approximates ~ 3480
for x=x 00167 at 1w 3.3%.
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2

FIG. 13. Three-dimensional sithouette plot of Im ybased on (MD1) The
sohd curve on the left wall, a projection of all peak valuestow = 10%, hasa
maximum of approximately 62 2 for x00160 at w=2 6%, the value
based on 10(AD) approumates 614 for x 00162 st w=296%

distortion of the symmetrical oscillator curves in Figs. 1 and
2 that arises with increasing w, so that the uncorrelated cascs
provide implicit reference curves.

To first order in w, we may generalize (5) directly to
include higher-order multipoles, i.e.,

~{F=D
s

but in the ranges of x and w where (5) is valid, we see from
(4) that the higher-order cocfficients are negligible. How-

=Y a,=aba + o n

FIG. 14. Three-dimensional sithouette and projection plot of Re g based on
(MD1).
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ever, for denser packing, the maxumal fluctuations implicit
in (5) and (11) are decreased by the correlations in the sepa-
rations of neighbors that arise from the decrease'in elbow
room per particle. Higher-order terms in w must be includ-
ed, and the dominant a, is coupled with all a,, by the re-
quired functions of 7 and w.

11l. CORRELATED DISTRIBUTIONS

The earlier® development of integral equation approxi-
mations for correlated random distributions of obstacles w~s
summarized* and applied to various cases involving only a,
and a,. These articles®* indicate limitations, provide full
details, and cite related approximations, Now we merely list
the required generalization of (11), and discuss only the
forms for our numerical computations and graphical results,

As shown earlier,® the index is specified by

:_
ERR )

’]non

By =

. (12)

where %, = ¥, is expressed in terms of S, 7, and the
correlation integrals (continuum versions of lattice sums)

¥, = 24w.r FOj, (p2xe) i 9 Qxryr " dr
o

= ki, (3
Here, Fis the correlations function,™ " and 5. =, + in,
with corresponding 2 °( j) and. I '( jn). For brevity, we in-
troduce self-coupling coeflicients and work with

2a
a,n v,

= s, 55 Y]
P=TT a, ", W
o a,

I= a, x 0 )
Retaimng a specified number of 1solated scattertng coeffi
clentsa, i ¢ 123, we solve the truncated algebrate system for
P,, and construct 2P, to obtain tntegral equation approxis
mations for 3.

Thus, if we retain only the monopale a,, then

o X on= X o (14)

lf-:—l-:.p == % = ~1 .
—~s TNy ¥y V4hive+ Zo

15
The self-coupling coefficient +/, includes all orders of mon-
opote-monopole couphing, If we heep both a, and the dipole
ay,
i =1 _ po kPt 20000
-5 V= popihl,
_ ol A2
h 1~ loil X3
a, -3

Tl a Fy LAi v1S+ X420,
(16)

where we used® %y = (1S + ¥ o + 2 7 ;)/3. The coeffi-

)y
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vlent .« 4 includes all orders of dipole~dipole coupling, and
o gty includes the cross couphng terms If the quadrupole
a, isalso retained in (12),
- (= DDNS
= Po b Py Py 2PoPr Aoy + PoPr oy
+P1Pokty) + popip: Qo hoy + 2hg
2kl =hd —hd —hh), an
D =1 =pop\hdy = poprhly — i
= 2popiP1hor ya Pz
where® 7y, = (iS22 4 27, +37,)/5, and Hy
= [1S(7 4 1T 7%  + 107 , + 18% (}/35. The p,
mclude coupling of similar multipoles, and product terms
correspond to cross coupling. Since 7 , = 7 ,(7), these
representations constitute integral equations for 7. We refer
to (15)=(17), as well as to the corresponding numerical and
graphical results they Iead to by M, MD, and MDQ.

The integration variable r in (13) represents distance
from the center of one sphere divided by sphere diameter
(2a). For impenctrable identical spheres, F(r) = f{r) = |
(with fas the radial distnbution function™"" ) depends only
on the normahized distance »and the volume fraction w. The
exact leading terms of F for small w are given by**

Flry= =1, 0<rel, 18)

() =w(8 = 6rbr’/2) 4 ¢ (), 1<r<2, (19)

which also follow” from the PY approximation. The regton
0xr < 1 1s the excluston region contaming the center of only
onesphere; if werctunonly (18) m(13),then # , = ¢ (w)
corresponds to the hole approxsmation, The region Inra21s
the first shell (s = 1), and the successive shells correspond
10 s<r<s - 1 for mteger values of s, If we retain (18) and
(19),i e., the first two terms of the virial expansion of F, then
% , incorrect 10 7 (w?).

Exact expressions for the PY-F(r) in the first five shells
(corresponding to r<6) are available®” for numerical inves-
tigations, and we generated analogous expressions for the
next three shells to obtamn exact forms for r<9, sce Appendix
B, Tr ing the infinite range integralsin 7, atr=9and
solving for 77 numerically lead to the eight-shell results for *
and 7 that we cite subsequently as S(M) and S(MD); these
are plotted n Figs. 1-35 (as wellasin Fig. 6 tox = 0.025) but
are overlayed by other curves. However, our most stable
computing routines are based on using the moments of the
PY-F,

Expanding the integrand of %, in powers of ¢ isolates
the moments

J: F(ryr~dr= M, (w). (20)
These are simple rational functions of w. The first four*"!
equal

My = = (10— 2w+ w')/10X2(1 % 2w),

M, = — (4— w2 +w)/8X3(1 4 2w)’,

M, = w (175 - 260w + 4210} — 229w

+ 62w — Tw*) /175X 4(1 + 2w)’, (¥3))]
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M= ~ (1—w)*(16 — 1w + 4w*)/16 X 5(1 + 2w)*,
All PY moments are given by the recursive relation™
12wE, .4

M, (42w =L
(14 2w) "+n(n+l)

LR

£lw'S ("; I)E,,.M,,__,,,

-k
- (214 (n=3)w]
2nn+1)
_ =4+ 2m+ (m=w)
" T Aqmk DmE2)m+
Appendix A provides a simple program for generating the
first 20 moments by machine. [Note that the hole approxi-
mation (18) in (20) gives the leading term = 1/(n 4 1),
and (19) gives the 2 (w) terms of M,,.}

Substituting the standard series expaunsions of j, and n,,
into %, = -+ L4, asin (13), we identify simple inte-
grals of the form (20) to construct

. 24w

Fom i

[Q2n+ Y]

L, =

(22)

by o
My = 2 (0" + DM, ),
X( i 2n+3(" DM

=0
"ox(2n4 1)

X[M‘ —2x’(—i’:—-{._L_)M\ + ]
43 1=2n
(23)

Using these expansions for 77 ,, i (15)=(17) leads to alge-
braicequations for the corresponding 7% that can besolved™
by machine. Computations with the correlated monopole
(M) form (15) determine the range of w where the uncorre-
lated form (5) is valid, and similarly the MD form (16)
restricts (15), and the MDQ form (17) restricis (16). We
us2 (17) to w = 20%, where the differences with (16) are
relatively marked (except onlog-log plots, i.e., Fig. 10), but
an upper bound for its range of validity is not available, Fig.
ures 1-10 display ten-moment results for 3 (the first six in-
cluden?) cited as 10(A), 10(MD), and 10(MDQ); wecom-
puted corresponding 20-moment values for substantiation,
and found the differences to be minor.

V. EXPLICIT APPROXIMATIONS

To delineate the essential physics, we denive a simple
approximation for pure monopole resonators, and then gen-
eralize the expression to include leading dipole contribu-
tions.

From (15),

P b= —iSly=iS/[14 fo iy 41 4)]

24)
and we may substitute the leading three or four terms of (23)
for n = 0 to obtain a quadratic equation for 7 that can be
solved explicitly. However, we retain only the first three and
work with

Som2duM, = (1 —w)V(1 +2w) - 1=V ~1,
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s e g 4+ e

Ao = 12wM, [/x — x| M, [[ (9 = 1) + 4] (25)

aQ~-T{(=1) +4],
where %" is the low-frequency imit of the structure factor.
{We rewrote 77° + 3 to make 5* — 1 explicit, but will drop
the 4 (and could drop the — 1), which contributes negligi-
bly.}

In terms of (25), &/, of (24) reduces to

L=~ [V #iC=iT(p~1D] Y,

P=y4Q=4T=y+Q

s fad = 131 = 120}, ] /x, (26)
and, consequently,
W =1 =iS/Y +iT —iT(y3* = D]. 27y

The relevant root of the quadratic for i — 1 equals
=tz {¥ 4L = [(¥ +i0)? +4ST)?}2T
S US4 T o [V 4 I0Y 45T 7}, (28)

where the finr” form of ° = R -+ il is moresuggestive of the

osgillatsr structwve. To inctude the 3, trm of #y, we res

Plaws 7 by ¥ "4 2Fand Thy T 4 iV with ¥ = 1630 s

however, the effects of ¥ are minor in the range of x and w

where (28) suffices, We cite (28) as (M 1) m the following,
For x220, we now have®

R=l4w(C = 1), Izw¥(C'~1)%Y3,
C =R+l 29

which differs from (9) in that 7 (w) = (1 =w)V/
(1 + 2w)? shows the decrease of scattering losses arising
from increasing o and increasmg corrclations (decreasing
fluctuations). Instead of increasing linearly with increasing
w at fixed x, the present [ ncreases to a maximum at
w=0.129 (where w” =0.0469), and then decreases. For
the physically unrealizable bound w=1, we have
#°(1) = O and C reduces to C"* as required for a umform
medium,

Similarly the value of / of (28) corresponding to the
resonance condition I' = 0, i ¢.,

Ly =28/17" 4 (¥ 2 45TV,
4ST = 961 1M, )/x?,

X=X, =X/ (1= Rl DV > x,, (30)

is smaller than the uncorrelated value [, = S(x,) = 3w/x;.
Even at w = 1%, where x,, = 0014 43 is about 3% larger
than x, =004, I, =4520 is only about 41% of I,
=10933. At w =004, x,, =0.015 86 15 about 13% larger
than x,, and I, 224718 is about 119 of I =43 732.

To help clanfy the relation of (28) to the uncorrelated
form, we write (¥ "+ 11)? 4 4ST = U* $ 2"/ " and ex-
pand the square root for 2I' 7 "¢ U to obtain

P 28 _ P
T SR OO+ 1+
U= (X 2 44ST~TH'V2, 3n

This form reproduces (30) for I' = 0; it suffices in the neigh-
borhood of x = x , forsmall 8 = I'/U, and indicates trends
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at =1 Thus, from T*=U? we have
Iz o QST+ P Y2 = 4 U,

Xy mxy kX (25, Ty + PY2)Y2(1 — 120]M,)),
7=1 =%*—-<:F L4+0)

_ S, (F14D)
h Vg (25,‘ Tz +- 7/”3/2)'”

=R, +i,,
(32)

where S, =S5(x,), S, =8(x, ), etc. For we= 1%, we
bave R, =~3057 at x _ =004 16 and R, = 2833 at
x, =00147; the extrema obtained from (28) are
R, =3290atx = 00141 and Ry = — 2933 atx =0 0148,
The corresponding values [, = R, are larger than
15 /2=2260.

For very small w, (28) reduces to (§), but with mcreas-
ing wthe asymmetry of the oscillator at hand becomes more
pronounced; see curvesin Figs, =3, In Fig. Jatw = 4%, the
chain-dot curves for the correlated cases based on 10() of
(15) practically overlay (M 1) of (28); in Figs. L and 2, the
correlated curves correspond to both 10(M) and (3 1), but
the cases are indistinguishable.

For w> 4%, the curves in Fig, 3 based on 10(MD) of
(16) indicatc that the dipoles (a, ) should be included. The
decrease in bulk density (the real part of p= B 1y with
increasing w ariscs from the effects of dipoles, and other ef
fects arise from cross coupling with moaopoles.

Were the monopole-dipole coupling terms in (16) in-
volving % , negligible, then, as shown before,*

3is
Vo floti(r +85)
Jwt
Vot it X3
1z (1=p/(1 + 20" 33)
[where (33) retains only the leading real and imaginary
parts of the denominator of </, ] gives the correct leading
real and imaginary parts of
p(l = w14 20t + ilw? 13 (1 4 2w} =p,.
34)
For the physically unrealizable bound =1, we have
py=p' as requred. Smlardy, from (29) and (34),
C,p, =}, mwhich weretam only termsto / (x'), reduces
10 C'p’ = 5’ at w == 1. Since C* domnates, we may use

7 =C, Rep,, Repy=(1--wn)/(1+2wt) (35)

—‘-=l+is.t/|:::l—
P

to obtain the corresponding 7, and ), for very low-frequen-
cy applications. Discounting large values of w for the case
p' = 1/825 at hand, we have 11 and

pr=p w20 4 20, p= (1~ wh/ (1 2w).
(36)
We retam only 5 in the following
More generally, however, the monopole~dipole cou-
pling terms 1n %, cannot be neglected. To generalize (28)
to mclude leading dipole effects, we rewnite (16) as*
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7= (1= iSe0)/D,

D21 +iSel {1 4 o[ 20y = (= DAL /IS ]
Using the x-independent  approximation 1S&/,
3w/(1 — w), and replacing /oy = 2"y /7 by its leading
term 14wy §/x = i /3, yields

2 3N
D=l+_§w_.[1+&/o(zl_g_i(nz,l)xQ )]
l—w 3 —

(&)

27w
l-.-2w[ , o ( N x’Q‘)]
=2 e | ] 2wQ - -1 ==]!.
1= w +ll+2iv we- =0 9
(38)
Thus (37) reduces to
7 U1 =15</0) . (39

1R 1200 = (F = Dx'Q/91 /(1 4 20)

Substituting ./, of (26) into (39), and subtracting p
from each side of the equation, we approximate the numera-
torby itsx " term and write the result as

. S,
R T i =i =)
IV - E— “0)
Y il = iT (= p)
where
8\ = Sp=3w(} — w)/x(1 4 2w),
2wQ Q lZw)M,'
=l - = »
! 142w T+‘+2w=7+ x(1 4 2w)

and
Ty = T=x'Q¥9() + 2w)
= 8xw[ M) = 2wl B/ (1 4 20) )
Since (40) is the same form as (27), it follows that
== US AN 4T, 4+ [V +i0) 445,117,
(41)

which suffices for a much larger range of 10 than (28). This
first approximation (3D 1) is used to construct the three-
dimensional plots in Figs. 1114,

Had we dropped the term **1” in the parentheses of the
numerator of (39) and replaced 3> — 1 by #” in the denomi-
nator, then we would have obtained (41) with * = re.
placed by % (which suffices for our primary purpose).
However, (41) asit stands reduces to 5* =5C, forx =0, and
provides a check. To delineate the dipole effects more expli-
citly, we would start with IS/ 23wt /(1 = we) based on
(33), which leads to (39) with g replaced by Re p, of (35),
and (1 +2w) ‘replaced by 1(} 4 2wr) ‘. Then (40) and
(41) would involve Rep, instead of 5, the final form of I,
would contain (1 + 2wt) instead of (14 2w) %, and 7}
would contain 2wr( ! + 2wr) Vinstead of 2w() + 2un ',

Although we could obtain more complete approxima-
tions than (41) by using it inaniteration procedure for (37),
this explicit first approximation (MD 1) is in good accord
with 10(MD) to w = 7.5%, and suffices at least qualitative-
Iy for larger w. See dashed curves (where perceptible) 12
Figs. 3~10,1n which 10(31D) and 10(MDQ) arerepresented
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by sohid and ootted curves, respectively. Computations
based on (MD 1) mvolve only pocket-calculator routines,
and for vartous practical purposes we would use (MD 1) -
stead of 10(MD) or even 10{MDQ) to at least w = 10%
The figures show that in some ranges (MD 1) s fortustously
closer to 10(MDQ) than to 10(MD).
At resonance, Iy =0 and Im(3}> — p) reduces to
I = e
N R A TV
- x5
T = 120, 1/(1 +2w)
where the present 1, is larger and x, is smaller, than the
corresponding (M 1) results based on (30) for the pure mon-
opole case. The present analog of (31),
N 25, iy
TN AN AT
U, = (7 2448,y = THY, (43)
suffices for a telatvely smaller range in the neighborhood of
X =X, for refatively small values of 8, = ', /U,

A > X 42)

Yl

V. NUMERICAL AND SYMBOLIC PROCEDURES

Both symbolic and nunerical procedures were used to
solve the integral equations (15)~(17) in terms of the inte-
grals (13) for % ., (5)) based on the PY corrclation func-
uon * K, Thecoeificients for the eight shells (which provide
the exact F for r<9) and the first 20 moments M, (w) were
obtained symbolically, and stored in the machine.

The shell approsimaitons SLM; of (15) and S(MD) of
(16) were computed by truncating the integrals (13) at
r=9, and using a 48-point Gauss integration formula in
¢ach of the shells. We solved the numerical integral equa-
tions for 77 at fixed values of w<0 20 using Miller's method
(IMSL 9.2 routine ZANLYT) by starting at x = 0.001 and
progressing to x = 0.1 in 1000 steps. The numerical proce-
dure was robust for t00.075. The solutions were not depen-
dent on perturbations of the initial value of 57 at x = 0001;
i e, we could start with the uncorrelated value or with the
value of an explicit approximation (M 1) or (MD 1), stayon
the same solution branch, and get identical results through
x = 0.1, For w>0.075, after starting with an initial value
(M1 or MD ), weused a polynomial extrapolation of Re 3
and Im # based on values of 5 at four successive steps in x, as
the initial guess to compute 7 at the next step in x. This
procedure was stable and insensitive to small perturbations
inthe starting values at x = 0 001 forwup toabout 0.12, and
sufficed for computations to x=0.1. However, for
0.125 Sw<0 2, it sufliced for computations only for xS x,,,,
with x,,, as the value of x where Im 7 reached its maximum;
for larger x, the corresponding curves behaved erratically.
{Initrally we sought to compute with only the available five-
shell approximation,” but instabilities were present for
w>0.07,)

Muiller's method was also used for computations of (15)
10 (17) based on the moment expansions*® of F, but numeri-
cal integration was not involved. Using symbolic methods,
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the spherical functions in the integrand of %, were expand-
ed and regrouped as polynomials in r, the mtegrals in r " were
identified as momenis M, , and the result was regrouped as a
polynormal in 5°. The order of the highest moment and the
ughest multipole retained determined a polynorual equa-
tion for 7%, and the algebraic equation was then solved nu-
merrcally over thedomain 0.001<x<0.1 (at 1000steps) and
0<w<020. If more than the first ten moments were re-
tained, extended precision was used. The computation was
robust for w<0.20; perturbations in the starting values did
not change the branch of the solution to the polynomial in
7%, and 1t was not necessary to use extrapolation techniques
to stay on the stable branch. The solution 1s the only one in
the netghborhood of the corresponding shell solution for
w<0.12 to x = 0.1, and for larger w to x:x,,. Our most
claborate computations, involving the first 20 moments and
the first three multipole coeffictents of the sphere, posed no
special problems (but required more tie), For the con-
struction of the log-log plots in Figs, 710, we extended the
domain to x = 0.20,

Bothof the above computational procedures were based
on the complete multipole coefficients as in (1) and (2) On
the other hand, for the explicit approximations M 1 as in
(28) and MD 1 as in (41), we used only the leading terms
based on (4), Computations for M 1 and MD 1 can be done
on a pocket calculator.
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APPENDIX A; SYMBOLIC'2 PROGRAM TO COMPUTE
THE PY MOMENTS

FOR ALL m, w LET
E{w,m) = = (44 2sm+ (m— Daw)/
Qe(m-+ D*(m +2)s(m + 3)),
L{w,m} = = (2¢m o (m = 3)sw)/(2¢ms{m + 1)),

Procedure Fact(N);
Begin
Scalar M;
M:=1;

LJIfN = O then Return M;
Mi=MsN;N:i=N~1
GotoL;

End;

Procedure CC(LJ);
Begin
Return Fact(1)/(Fact(I - J)sFact(J)),
End;
Nmax. = 20, Linelength 60, Off Exp, on Ged,
For I: = 1 Step 1 Until Nmax do
Begin
A:=For):=1Step 1 Untill -1
Sum < <CC(I — LI)*E(w,J)sM(w,1 ~J)> >,
M(w,1): = (1/(1 4 2sw) )+ (L{wW,I)
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4 12¢wsE(w,] 4 1)/(I+(1 4 1))

3 120weA);

On Factor;

ans: = M(w,I); Write “M(*, I7;”) =;

Write ans; Off Factor;

End;
Quit;

APPENDIX B: COEFFICIENTS OF THE FIRST EIGHT PY
SHELLS '

Asdiscussed by Wertheim,* F(r) = f(r) — | canbe ob-
tained in closed form for given 7 from the inverse Laplace
transform

of(ry = & L)/ 12wL(t) + S(0)e' 1},
S() = (1= w)t? 4 6w(l — w)t?

+ 18wt = 12w(1 = w),
L(t) = (1 w/2) 4 | 4 1200,

by expanding the operand in powers of S ~ ' and evaluating
the residues at the roots (1, = [t,].1,.1; = £7) of S(2). The
roots may be written as®

h=[=2wt QupVNr,J'
+Y J Hl/(1=w),
=34 3w—1et, Jmexp(27i/3),

A= L/S,,
Sy = 301 =127 o 120(] = 1wt 1805,

Sy = 6(1 = w)r 4 120(1 =w), Sy =6(1=w)?,

Ly = (1 4 w/2),
Lo =1, €L =1,

Y, =[1 T2 )

Thus, for I<r<s 4 1,
=3 f. (0,
]

such that £, (r} = 0 for r <m, and for r>m,
(—IZw)'"“’ 2 . dmw-!
Hm(r) =
I e T A i
X{(t = )" (LS ) ™Y,
where £, (m) = 0}for m > 1. The results may be expressed as

2
)y = 3 Cim0)e™
I»0
X i Cy(mk)(r—m)* -1,
=0

Forms of the coeflicients for 1<m<S are given by Smith and
Henderson,” whose notation we follow in essentials,

The coefficients C(m,k) are listed sequentially for the
first exght shells (1 = 1-8); these serve to construct /(r) for
1<r<9. The entrics through C(5,5) are equivalent to those
of Ref. 9. The symbols needed to construct the sets of C's for
particular shells are defined in advance. The C's are to be
evaluated at the three roots ¢ = ¢, of S, but the /is suppressed
in the following:

C(20) = = 12wd/S,, C,1)= ~i1Sd 2Ly +L, C(2,2) =1L,

CRO =120/S], CRD) =AMGBST = 5,8\) = 34Sy (L + MLy ) 4+ 6L, (L 1Ly ),
C(3.2) = [61Ly + LQ2 = }S:/S) )L, €(3,3) =1L?,
D, =155} 48,8, Dy =L44dtL,, D, =4S,
Dy =L 4L, '
C(4,0) = — 288w'A /S},
C41) = 5145325,y ~ 35}) 4 AD, Dy = 24L, D, D, + 12LE 3L + 2L,),
C(4.2) = [14°D, ~ 12(D,D; ~ L, D) )L, i
C(4.3) = 3D, - 6:D,)LY, C4)y =L, ! '
E. =181~ 48,,
Ey = 3E\5\85,8) — 28383t = 2184 4 215 ]S,
E\=381~5;, E,=4ES,S, =218}t 1851S,,
E, =288t~ 9814 65,8, E, =585,1~25,,
C(5,0) = — 8644w*/S},
C(5,1) = 5(EByd* = SE A 'Ly +20E, ALY 4 28E, L} —24LY),
C(52) = = S(E,A° ~ 10E, AL, = 24E AL} +48:L})L,
C(5,3) = 5(E, A% 4 6E AL, — 241L?)L*,

c e e e
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C(54) = 2E, A= 10iL)YLY, C(5,5) = ~L*Y,
F, = 27831 27518, = 36515,8,1 +:24518,5% 4 85,8183 - 25181,
Fy =218 §1 - 24535, ~24538,8,1 + 125,8,5% -+ 25318%s, 1
Fy = 28831 = 21518, ~ 145,5,8, 1+ 45,51,
Fy = 21831 = 125,8; = 48,8yt Fo = 35,1=S;,
C(6,0) = 103684w*/(55}),
C(6,1) = S(TR A = 42F, ALy = 120F,APL} 4 90F, AL} 4 360F, AL — 144L 31,
C(6,2) = = 5(TFsd * = 3654 'Ly 4 90F, A*L} —~480F, AL} 4+ 360L 0L, . 1
C(6,3) = I5(Fod * = 6F, A 'Ly + 60F AL} ~ SOL {1 L2,
C(6,4) = = 5(Fyd = 24F AL, +60L3nL",
C(6,5) = S(F. A = 6L, OLY, C(6,6) = = L%,
G, =85}S} = 180553182 + 4955, 8,53 ~ 29758,
Gy = Gyt 4 7251518, ~ 3605385,8} + 2975, 51,
Gy = 8518} ~ 1085,5,5% + 1355,
G, = 45,5, =95}, Gy =G\t 4 12G,S,S,,
G, =8,5) = 653, G, =Gi1S; ~ G, Sy»
Gy = Gyt + 38,51,
Gy = TUSISIS, = 36065, 8.5} + 2978} ~ 168153 + 216515,5% = 2708, 54,
Gy = Sy =~ 25,,
C(7.0) = ~ 20736A0'/(5S%),
CLL) = 35(God * 4 TGyt 'Ly = 826G ALY ~ 840G, A 'L}
+ 840G, AL 4 216G, AL = 1441LY),
C(12) = = 35( ~ Gyl * 4 WG ALy + SHG AL} = 830G, AL} ~ 360G 0 AL} + 432LL,
C(13) = = 35(G i +84G, 4 'Ly = 252G 2L} =~ 180G, AL } -+ 360tL LY,
C(Td) = = 10(Gydd ‘= TG, Ay = 9G,oALE 4 UL ILY,
C(1,5) = 35(GoAd 2 4 3G o ALy + 18L LY,
C(1.6) = 3(Gdd = WL)LS C(L) = - LY,
Uy =98, 4 US,, H, =35, +28,,
U, =8, + 28\,
H, = 2201, 515,83 = 19801, 51818, 4 386111,5,85 ~ 80518} — 3861524,
H, =98, 413, H, =38, 45\,
U, =28, +18,,
H, =30H,S!S% + 118811, 5,53 ~ 19804, 83518, — 3861854,
H, =68, 418y, Hy,=S; +15,,
Hy =8H,818, = 12011,,5,53 + 1658 34,
Hyy =38, + 418\, U, =35, +1S,,
H,, = 5511,,8\ 8} = 40H,,81S, S, + 85157 — 198531,
Hys = 9H,5,S; ~4S3S, ~ 4581, v
Hy, =4H,,S, ~218%t, H, =S, - 45,1,
C(8,0) = 248832407/(355)),
CB 1) = ~35(H A" = SH ALy + S04, A°L} & 1008H,, A*L} -+ 3360H A 'L}
~ 2688H,,4 L} + 4032H,, ALY + 115LT),
C(8,2) = 3S(HA® = 144 H A *Ly ~ SO$H, AL}
~ 2688H,.4 'L} + 3360H, AL S ~ 8064H,, AL} ~ 4032L$)L,
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B

C(8,3) = — 105(3Hy A ® + 24H, ALy 4 224H, AL}

- 448H, AL } 4 1680H,, 4L} + 1344L )L 2,
H 7

C(8,4) = ~35(3H, A"+ 64H s ALy = 224H) AL}
3 1344H,,AL } 4 1680iL )L Y,

O T RS

C(8,5) = =~ TO(HygA = 8H oA *L, +84H,, ALY 3 168tL LY,
$ 1 t

C(8,6) = 14(HyoA? = 24H,, AL, —84L 1)L,
C(8,7) = = T(HyA +8tL LY C(88)= =Lt
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Polydisperse scattering theory and comparisons with data for red
blood cells

N E. Berger,R J. Lucas,? andV, Twersky
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Recent results for low-frequency scattering by polydisperse distributions of correlatéd row-
refracting particles averaged over orientation are analyzed numenically. The roles of shape and
correlations (parameterized by ¢) and polydispersity (specified by the normalized varance d
in size governed by the gamma probability density) are investigated. The key vartable is the net

volume fraction w occupied by the particles. The incoherent scattering is determined by

A = PS(c,d;w) with Pas a particle population factor that is independent of w, and S'as the
fluctuation-correlation function of w. Earlier applications of monodisperse (d = 0 theory
emphasized the influence of ¢ on the peak A = A, and its location w = w, in order to invert
ultrasonic scattering data of Shung and his associates for red blood cell suspensions under
different flow conditions. For d'> 0, comparable curves for A(w) decrease more gradually with
wincreasing past w, (because of additional scattering arising from polydispersity) and
thereby provide better fits to data for the more controlled flows over broader ranges of

hematocrit.
PACS numbers: 43.80.Ev, 43.35.Bf

INTRODUCTION moﬁvat'ed the present heuristic applications of polydisperse |

The low-frequency incoherent scattering (proportional 2‘“’(?’ ; :’or d’? 0 comp: ‘:;ab]lf ;.: urvlcls ‘A(w) based on J
tod = PS) forcorrelated distributions of randomly onented (edu) ¢ ecrease more gradually for w increasing past w,, »
Jow-reflecting particles depends on a population factor (P) a'nd’!hc systematic dlscrc?anues fo‘r umfoim flow nuted et~ . ;
and on a fluctuabion-correlation function (S) of the volume tier” are :;duced by t‘:'ikmg IPOIy dlspemli/ ?f “‘;" "";e""lf’ 1
fraction (e ) ovcupted by the particles, A recentaruicle' gen- accgunt ¢ lyxsc f‘m" '““‘f‘l', c:‘xst-sqt‘mms ] 'l“‘ or data re- i
eralized earlier results” for dentical particles (with shape  SOFUS versus & to isolate eflective values of the parameters, ]
and worselattons parametrized by ¢ ) (o mixtures of different- anddc%mpam the resulting curves with the unigital daia io- ]
ty sized particles by applying scaled particle statistical me- cards. . N . ! i
chanies theory'* for the corresponding 1sotropic ftuids of Inthe Tollowx‘ng. f(‘)r brevity, we wnte Fig. 6.4 for Fig. 4 }
hard convex urtscles. For a continuous (polydisperse) dise of Ref 6, cte Section I includes hey forms fun three, two, and :
tribution in the size vanable R ; with normahzed vananceq  ©1¢ dimensional scattering problems with 4 view 10 biva- :
(based un the gamma probabibity density » the resulting & 15 coustical applications to distuibutions uf ells, ahigned fibers,

spevified by a simple explicst form Ste,diwi, a rational fune.
tion uf the net volume fraction w, The population factor P,
based un Rayleigh's results” for a low-refracting partice, 1s
independent of w,

Our earhier heunistic applications of monodisperse
(d = 0) theory to invert data records of Shung® and tus as-
sociates for scattering of altrasound by red blood cells
(RBC) versus hematocrit (w) under different flow condi-
tions, emphasized the mfluence of conthe peak A = A, and
its location to = w . We obtained” good accord with major
data trends of the more controlled flow processes for
O<wSwa + 0.1, but in general the curves were below the
data points at larger w. The increase of the discrepancy with
inreasing w for umiform fluw could anse from an additional
fluctuation mechanism leading to add I scattering, and

’ Vistting from the Department of Mathemati sl Sesences, Loyola Univer-
sity, Chicago. IL.

1394 J Acoust Soc Am 89 {3), March 1991

(001-4966/91/031394-08300 80

and paralict tissues To emphasize essential features and in-
dicate restrictions, we sketch the evolution of the present §
by comparing the origmal result for correlated tdentieal
spheres,” the extension to identical nonsphenscal particles’
averaged over orientation, and the recent generalization' 1
mixtures of similarly shaped but differently sized pasticles,
Section 11 specializes the mixture results to polydisperse
(continuous) distributions in si.¢ governed by the gamma
probability density function'®"* with shewness determined
by the normalized vanance d (as illustrated in Fig. 1). Key
features of S(c,du) are displayed in Tigs. 2 tu 7 for three and
two dimensional problems. Figure 8 iNustrates that the same
valuesof & | andw | cav arise for different curves generated
by different sets of values {P,e,d] Sectiun IH applies least-
squarcs procedures to obtam efective values of [Pre,d) from
the RBC data records.® Figures 9 to 12 overlay the resulting
PS curves (shown solid), and the earlier monodisperse
curves’ (showndashed) obtamed by emphasizing data near
w, , as well as monodisperse least-squares curves (shuwn
dotted), on all data record given in Ref. 6.
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I. KEY FORMS

The low-frequency differentiai scattering cross section
of a particle with acoustic parameters close to those of the
embedding medium may be written in {1,2,3} dimensions
as*?

o(6) =pv*,

={C = 1= (B = k2 kL _k__}

p=iC’ m L= (B’ 1)cos 0} T e «{1)
Here @ is measured fromthe direction of incidence, and
v = {width, area, volume}. The relative parameters C* and
B’ (compressibility and inverse mass density for the simplest
cases) are complex in general, For radially symmetric parti-
cles with R as the half-width or radius small compared to
wavelength (72/k), we have v == {2R, 7R 4R */3}. More
generally, we ase R as a size measure® for arbitrary convex
particles. In two dumensions, v = ¢ (R ?) represents anarea
with perimeter s = # (R) and average radius of curvature
F = /2, such that s7/v == ¢3¢, == 2. In three dimensions,
v=7 (R ') is a volume with surface areas = # (R ), and
F=r (R} as the average over all angles of the mean of the
particle’s principal radn of curvature, for such cases,
S0 = €6, = 3. For ¢ = ¢, a particle is radially symmet-
ric.

The tncoherent single scattening from unit volume of 4
central regron ( § ) containing an average number ({n)) of
wdentical randomily distributed cotrelated paiticles is pro-
portional to ¢ and to the variance (fluctuation) m particle
number. The corresponding differenisal suattering vioss see-
tion® equals

_oUnd) =Y _ el

A V‘ V( = (7[)"'. (2)
where p = {n)/V, is the number density, and
W=1 +pJ‘h(r)dl’ (3

is the correlation (or packing) factor with /(r) as the total
correlation function. To first order in p it follows that

Azl = op=ppvt = pow = P, w=py, P=pu
[€)]
where A, is uncorrelated, and increases linearly with the
volume fraction w occupied by particles (convex or not)
The population factor P= pvis independent of w. In terms
of Pwerewrite (2) as

A=PS, S=uW, (3)

where S is the fluctuation-correlation function (or fluctu-
ation factor).

To emphasize essential features and indicate restric-
tions, we start with S for a distnbution modeled as a statisti-
cal mechanics fluid of id | hard spheres, Using the
scaled particle equation of state'” (1dentical to and derved
carlier than the Percus-Yevick equation of state'*), it was
shown”? that

(1 = w)? LA
st —w)? wﬁz.)l:’__lzo.]zq.

U200 12 )
S, =00469
1395 J. Acoust. Soc Am., Voi. 89, No 3, March 1991

(whuch, by geometry, also applies for aligned similar ellip-
so1ds). As w mncreases from zero, Sincreases relatively steep-
IytoS, atw,, and then decreases more gradually to zero
(no fluctuations) at the unrealizable bound w =1 corre-
sponding to full packing.

More generally, for an isotropic fiuid of hard convex
particles (represented by ¢3¢, = 3) averaged over orienta-
tion, it was shown? from the corresponding scaled particle
equation of state* that

_w(l—w)*

T e=Dw’
—
Tdgcd (1200 HV
Forgiven w,,

(N

wa

I =5w,
wa (F3wn) (8)

Samwy (L=wa 214 3w, )4,

For ¢ increasing above 3, the values of S, and w, at the
peak decrease below the values in Eq. (6). However, we also
constdered 3 > ¢ 0 formally, in which range S, increases to
4/2Tand w, to 1/3. Such larger values could be interpreted
physically as arising from additional neighbors at small sep-
arations of particles, by comparison of leading terms of S
with the first two vinal coeflivients for moie attractive weak
ly sepulsive mudels than the had model (unattiactive at all
separations and repulsive on contact).

Fui an N-component isotropie Tuid of sumilatly shaped
(same ¢) but differently sized (R, for: = 1 1o V) hard con-
vex particles, the analog of Eq. (2) involves the covariance
of the numbers of i-type and j-type particles, Thus'

A=p S oy, [{nn) = () n) /¥,
"

c=1+4

=p 3 vopfp W, )

where p, = {n,)/V, 15 the partial number density (1 e.,
3p, =p)yand

W, =5, +\pp f hydv

1n terms of the Kronecher delta and the partial correlation
tunctions, The hey vanable 1s the net volume fraction

10)

w:Zp‘v' -_-..pz%‘-v‘ap(v), p:-..Zp,. [41))

Henceforth, we use the angular brackets only to indicate an
AVErage over size.
To lowest order in p, the analog of Eq. (4) 1s given by

A, =p zp‘uf ;pp(vz) =p({*)/(v))w = Pw, (12)

and the analog of Eq. (5) may be written as

A=PS, P=pv, va=()/{)>0), (13)
where Prepresents a population factor that is mdependent of
w.

Allayerages oversize, ¢ g, asin Egs. (11) and (12), can
be expressed in terms of the moments of the size distribution,
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(R”):ZE-'-R:‘:JW F(R)R"dR. (14)
P o

Here F(R) 15 a set of weighted delta functions for a discrete
N-component mixture, or a probability density function for
a continuous (polydisperse) distribution.

From the scaled particle chemical potentials for mix-
tures 6f convex particles'* (potentials which for spheres are
identical to those obtained from the earlier Percus-Yevick
equation for mixtures' ), it was shown! that

o wl=w)?
{14 (e~ Dw}?
4 (1 = whwe2d + w'é*B |}, (15)
~ARRY
(RHRS
_2RHRY | (RY

(RYRY ~ (RHHR®
In Eq. (45), S equals the one-component form as in Eq. (7)
plus two additional terms that depend on the size distribu-
tionand decrease more slowly as wincreases: the first term in
brackets reduces rapidly to zero with increasing w, the scce
ond term s parabolic around w = 172, and the third term
ncreases as w, The value ¢ = 3 corresponds to mixtures of
spheres (or aligned smlar clipsoids ). For the one-compo-
nent case, the ratios involving the moments equal unity, and
A=B=0,

The corresponding two dimensional result (based on
the scaled particle potentials for convex disks' ™ ) is given
by

__w(l—w)?

Tl (e=Duw

(RY (16)

(RRY "
In Eq, (16), S equals the one-component form discussed
earhier,® plus an additional term that depends on the size
distribution and decreases more gradually withincreasing .
The value ¢ = 2 corresponds to mixtures of parallel circutar
cylinders (or simuilar ethiptic cylinders with aligned principai
i ). Forthe oue t case, the ratioinvolving
three moments reduces to unity, and A = 0; then®

wy =1/[24 (143, e=14 (1 =dw, )/,
Sy =3t (1=,
Fortheone dimensional' case (based on exact hard-rod

statistical mechanics results, which esther the scaled particle
or Percus-Yevick theory reproduces),

S=w(l—w)k w, =1/3, S, =4/27. an
This form of S for parallel »labs is independent of the size
distribution, and is also the special result obtained from ei-
ther Eq. (15} or Eq. (16) for ¢ = 0. Except for Eq. (17),
whichis valid for i = 1, no upper realizable buund 1s knuwn
analytically for any of the cases considered. Fou identical
spheres, measurements show that the upper bound approxi-
mates 0,63, and for circular cylinders, the analog 0.84 15 also
an approsimation based vn measuiements, sec vilativns in

Ref. 9.

(1 =w)?

A=}

4+

{1 =) 4 weed 1,

A==
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Results for the single scattered differential scattering
cross section A(8) = p(@)vS, provide analogs for the total
scattering cross section, A, by mtegrating over all appropri-
ate values of 0. Thus m {1,2,3} dimenstons,

A =pvS=PS,

p= [!C’ -1 (18)
k‘ k‘

O e

and the corresponding absorption coefficient equals®
7=p2%a,=(lm€’+{lm8'i)wk. (19)

The sum y 4 A, = 2Im K is the attenuation coefficient per
unit length for the coherent intensity, and ReX =k
+ Re(C* — B*Ywk /2 specifies the associated phase.” The
multiple scattered version of A(8) is proportional 1o expo-
nential translational factors in j and A, and such factors as
wellas transducer factors are required to determine A(8) by
measurements, ¢ g., by the Sigelmann-Reid substitution
method.' The region ¥,, mtroduced for Egs. (2) and (95,
correspouds to a homogencous region in which the same
value of w is appropriate not only for A(6) but also for the
translational factors that account for attenuation of the inui-
dent and radiated fields in passage through the distribution.

11. POLYDISPERSE DISTRIBUTIONS

The forms (13)=(17) can be apphied to diserete Necome
ponent (binary, ternary, etc.) mixtures, or to polydisperse
cases (parabolic, Gaussian, ctc.). Essentially as before, we
consider the gamma probablity density function'®

F(R)'-:-—E—(BR)" Yexp( = fBR); R>08>0ax0,
M) P

where I'(a) = (@ - I}I"(a - 1) is the gamma function, if
@ - 1lisaninteger, then Fis also known as the Schulz den
sity function,"" but the restriction is not appropriate for data
inversion purposes. Using Eq. (20) in £q. (14) yiclds the
corresponding moments

(R =8 fall +OQ2+a){(n-1) +a}h
D
Equivalently, in terms of the mean value () and normal.
ized variance (d),

(R)=a/B=R, (R -RWR’=d>0, (22
we obtain*

R =R+ (1 +2D)fl + (1= Dd] (2}
which indivates caplivitly kow all muments invicase with
increasing R and d.

For d+1, the maximum value of F 15 attamned for
R =R, =Rl - dj..R, v that the distributivn is shewed
positively. Fou small d, F is Gaussian around R, it d -0,
then R -R and F~3(R — R} v repruduce une-wompy-
nentresults, Fuid = 1, Freduvesiv [expt — R/ R} /R tor
the simplest Putssun case. Represemative pluts of F are given
inFig. L
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FIG. 1. Plots of the gamma probability density functson F{R) normalized
sothat (R ) = | withd asthe parameter. The higher curves at R # tapply
for the smaller values of d = 0025, 005, 0.1, 0.25, 05 and 1. /\s d ap

hes z¢ro, Fapproaches SIR = 1) ponding tothe

T
case,

Interms of R and d, the averages of v in {1,2,3} dimen-
sions are given by
v =, (R =2R, (1) =0, (R)(1 +d),
@) =n B (L1 +2d),
and we write the corresponding forms of v = (v)/{v) as
y (1+2d)(d +3d)
(+d)
) (143 U+ 4d)() 4 5d)
U +d)(1+2d)
Data for wand for p determine () = w/p.
For distributions of particles with size governed by Fof
Eq. (20), we obtain two-parameter forms of Eqgs. (15) and
(16) in terms of ¢ and d, and display their coupling interac-
tions graphically in Figs. 2 to 8. To delineats curve shapes,

(24)

o= U (Ed), vy=(y

28)
v (0

0w

FIG 2. Plots uf ihe threedtmensional fluctugtion-currelation funtion
S(¢,duc ) of Eq 1265 versus solume fraction w for & = 0.2 wath ¢ ranging
from 1 0 (the highest curve) to 50 (the lowest) 1n steps of 1 0
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0102 o004 0.06 O,IB’ .10

0,00

FIG. 3. The three-dimenstonal S(<.d.w) of Eq. (26) for¢ = I Owithdiang-
ng from d = 0.0 for the Jowest curve to d = 1.0 for the highest in steps of
02, For hard particles the value ¢ = 3 corresponds to spheres

we plot for the complete range of w from O to 1.
For the three dimensional case Eq. (15) in terms of Eq.
(23), we have!

S(rduw __uisl:_li‘____l 1 =)t
(e = [l+(c—-l)wl’( V)
weld
+ (1 lU)lt’l+5d4Tm- (26)
é
2
ée"/,_—————-———‘——‘
&
I sm—
wE-W

00

0.1

0.4
3

0.3

L%
2

W AT PORK

0.0

FIG.4.Peak S anditstocatonie for SofEq (26) versusd. The param-
eten + sunge> from 0.0 1the highest curve ineach pane b 105 0 (ihe lowest
i steps of 10 For ¢ =0, the slab reselts § = 4/27and @ = Jr3 are
wdependent of f
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0w

FIG. 5 The twod ional 1 function S(ad.w) of
Eq.(27) for d = 02 with ¢ ranging from 1 0 ¢for the highestcurve) to S 6
(the lowest) In steps of 1.0, The value ¢ = 2 corresponds to hard circular
c)lmdcrs.

It is clear by inspection of Eqs. (26) and (7) that the addi-
tional terms ind reduce the falloffof S withincreasing w, and
perturbation expansions for small 4 indicate that for given ¢
the peak andits location have values larger than S', and w,
of Eq. (7). Figure 2 plots $(¢,0.2;w) with ¢ as a parameter;
ascincreasesfrom I to 5, thepeak S5 decreases from 019 to
0.044, and w,, decreases from 0.22 to 0,14, Figure 3 plots
S(3,d:0) withd as the parameter; as d increases from 0 to 1,
thepeak S, increases from 0.047100.067, and 1, increases
from 0.13 t0 0.2, The value ¢ == 3 was chosen to stress that a
polydisperse distribution of spheres gives rise to a higher
peak at alarger volume fraction than predicted by the mono-
disperse results Eq, (6). Figure 4 plots S, andw, vsd with
casthe parameter, the horizontal hnes fo1 ¢ = Oare the same
as for the one dimensional case Ey, (17). Foim (26} and the
related curves are appropriate for suspensions of cells, at
least for cases where the ells correspond tv randumly oni
ented hard convex particles.

oo

\

~/\

¢ 06 G 08

&

3.

o4
A

002

0.00

Y T d Y "

02 8.4 06 0.8

FIG 6 The tao-dimensional Sof Eq (27) for ¢ = 2 Owith d ranging from
0.0for the lowastcunve to d = 1 0 for the highest sn steps of 0 2
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FIG 7 Peak S andutsocationte  for SofEq (27) vvd The parameter¢
ranges from 0 0 (the highestcueve) 1o $ 0 tthe fowest) mstepnof 1 0 The
tesults for ¢ = QO are as diveussed for Frg. 4

Analogous results for the two dimensional case (16) m
terms of Eq. (23),

-w)t d
) = w(l = w) 1~ e 27
S(edw) Tre-Dw (1= w) + T+3d 27)

are displayed in Figs. 5 (0 7. Form (27) and the related
curves are appropriate for patallel fibers, at least for hard
COnvex cases,

Figure 8 showscuivesfor A(w) = PSbasedon B (20)

0.06

804
X

0,02

0.00

¥ 13 3 3

0.2 0.4 0.8 0.8 ]
A

F1G.8. Plots of PSbased on the three-dimensional Ste.d.w) of Eq (20) for
several sets of {Ped} whch yield the same & atue  From the fughest
curve to the lowest, the values wsed are {Pcd) - {14270.018},
{i 32600 15} {123,500 1}, {4 1540006}, and {102,3000} The
Hast set corresponds to identrcal spheres.
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that indicate the same values of A, and w, can arise for
different curves generated by different sets of values {P,c,d}.
The curves are practically indistinguishable for
O<w<w, -+ 005 andonly theshape of the Jowest curve at
relatively large values of w enables us to identify the original
curve for monodisperse spheres (as in Fig. 21, Ref. 9, 1967),
No simple inversion procedure emphasizing data near the
peak suffices, and scattering data at large wis essentialif the
parameters Pand d that specify cell population (cell volume
and size distribution for given C*and B ) cannot be obtained
by more direct methods

1. COMPARISON WITH DATA

Shung and his associates®'** obtained extensive re-

duced'® data records for ultrasonic backscattering (&) vs
hematoerit (equated to w) for bovine and human RBC sus-
pensions under different flow conditions. Each data record
for 0SwS0.5 shows a marked peak (A,) at a value
w=w, »0.03,1 e, Malargerw, thanexhibited by Sof (6)
tor sdentical haid spheres.” Weapplied” Ey, (8) heuristical-
ly to all avatlable data records” '™ ' and obtamed initial esti-
matesciiw, Jand P = & 4 /S, that were sharpened by con-
swdening il data points with explicit bras (EB) on those near
ihe peak, and then iefind (o determune a common value of P
it cavh cell pupuilation subjected (o thice vt two different
fuw processes. The present aiticl iestiacts consideration o
Rele 6 which provides the most comprehensive data under
condiuons which mmimize formation of usters

The dashed curves in Figs. 9 to 12 show EB fits” to all
the datascuvids of Ref. 6 for RBCs inssotonte saline foi fou
different processes. wnilorm (4 o1 furbulent (1) flowing
SUSPRITSURS 1A buidUil systcity, wiid stabiunaty (o) urstiited
O 3 onbined suspensivis, Figuies 9 L conespond o tvu
dilfeient bovine el pupulations with nonunal value®
Po=25TA10 " unum ‘st ') Fig. 9 for the smaller
wedls shuws the thiee data fecords (i) of Tig. 0.5 and the

1 ﬂ’gm.q‘-'\b\
424 .‘;,," odo ,\;\‘\i N

§ ~%\\:\\

FIG 2 Backattenngdataof F1g. 6 $ €0 ¢ .of Ref 6, Fig $) forbovne red
blood selisin saling under tucbulent flow (squares), stationary (trangles),
and uraform flow torrcles) conditions compared aith PS curves vensus vole
ume fraction i (The flow rate 0 ml/s apphes i *bath flow processes, and
the Bguency 7 ° MHe, and temperatine L3 4 abvo apply for subsequent
fgusasy The EB wunves of Fig 74 hown doheds ate bawd on
PoATA10 7 060P.d  D.andc - (h ki 5.2 1) for the hughest, cens
sk wnd fowost, tespectively The dosted monodisperse LS curves are based
on P 163-10  d O.and ¢ — t10L1 351 77) The <ohd polydn-
pere LS cunves are bawd on P- 179110 4 4 - 0088, and
¢ - 1302082 74y The trends of the ¢ et are wonstera tor all sets of
wurves § kb dotted LS cunvesuse a4 parameter Irastsquares ht ot all data
pontsto Eq (7). and the «obid use 1 S-parameter fitta (26) )
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"

FIG 10 Compansonof PScurves withumform flow seattenng dataof Fig.

64 for Jarges bovine cells than 1n Fig. 9, the carcled points are e averages of
five measurements, and the vertical are the d:

The EB cunveof Fig 7.3 {showndashed) iy basedon P = 2 10 Y d 0.

and ¢= 2 |, the dotted LS curve isbasedon P= 1 M X 10 . d <0, and
« = 1763, the solid polydispesse LS cuive s based on P: 2400 Y
d=007.and ¢=<243,

EB curves (dashed) of Fig. 7.1, Figs. 10 and 11 for the larger
ells show the u data of an 6.4 and the EB curve (dashed)
of Fig. 7.3, and s and 5" data of Fig. 6.8 and EB curves
(dashed) of Fig. 7.4. Figure 12, corresponding to human
RBC with nominal® P, = 5.17x10 ¥ shows s and ' data
of Fig. 6.9 and EB curves (dashed) o1 Fig, 7.10. Except for
the sticred suspensiuns (for whivh the anomalous range of
low data puints suggested a vortex mhum\)genclly" and wei
discounted in the fitung), the EB monodisperse (d = 0)
curves are in accord with the major data trends to at least
waw, -+ 0.1,

The consistenny of the uniform flow process, and the
discrepancy of the EB curves (too low) at lage w, were
highlighted by Nig. 7.5 which comipares « records of Figs, 6.4
and 6.5 with corresponding EB cuives, The systemaiiv in-
viease of the discrepanyy with inuieasing w would anise from
an addstronal fluctuation mechanism leading to more scat-
tering than indicated by the monodisperse S of Eq. (7). The
effects of polydispersity shown by S(e.dsw) of Eq. (26)
would reduce the falloff with increasing tw, and motivated
the present heuristic applications, Preliminary computa-

S X 10£6

(23 0.4 ve LX) o4 EX) o

FIU 14 Dataot Fig, 6 8 rox stationary thighes points; and suued bovne
welbs i saline ponding to Fig. 10 compared aath PScurves For the
EB cunes of Fig 74 (shown dashed), P=2x10 % d=0, and
¢ = 4895, 55 for the highes and Jower vespectively, fou the doited LS
curves, P = 19k <10 ' d - B.and ¢ = (08181 520), for the solid polr-
dispersecunves P = 210 ', d = 007, and< = (1085,2023) The trends
ot the ¢ sets 08 Figs. 10.nd |1 ase consistent for all three setvof vurves (The
LS curves for the three datarewords in Pig 0 plus Fig. 11, wete obtamed as
forkig 9)
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FIG 12 Dataof Fig 69 for stationary (higher points) and stirred human
red blood ¢¢lls 1n saline The EB curves of Fig. 7:10 ¢shown dashed) are
basedon Pea 3 6XH0 * = 070P,. d =0, and ¢ = ¢ 1,4 28) for the higher
and lower curve, tespectively, The dotted LS cuives wie based on
P=3T4x10 *d=0.and« = (1.101,1 523) obtained from a 3 paam-
eter LS fit to all data pomnts. The solid curve for the stationary process s
based on a 3-parameter LS fit for P=375%X10 % d=0107, and
¢ = 1455 these same vatues of Pand d were tned tor the <olid curve tor the
stirred process in a L-parameter LS fit for ¢ = 2 077

tions for d > 0, and the curves in Fig. 8, demonstrated that
any mversion procedure emphastzing data near the peak
would yield ambiguous results for {P,c,d}, data pomts at
large w were essential, We obtaned representative values for
the effective parameters by fitting to ail data ponts of the
records using multiparameter nonlear least-squares (m-
LS) procedures.” The yohd LS curves i Figs. 9=12 resubted
by fitting to Eq. (20); the dotted LS curves obtained by fit-
ting to Eq. {7) ave ncluded to disttnguish the effects of poly-
dispersity from artifacts of the fiting procedures.,

Although there are only three parameters {P,c.d} i the
polydisperse PS based on Eq. (26), and each data record of
Ref. 6 can be better fitted by a 3-LS routing, the set of three
solid curves in Fig. 9 for one cell poputation, and the set of
three in Figs. 10 and 11 for the other, were obtaned by a
generahized (2 -+ 3)-LS routine. Thus ail data points in Fig,
0.5 for the smaller ceils were fitted to tsolate common vaiues
of Pand a4, and three distinct values of ¢ representauve of the
three different (u,s,0) process. The (2 + 3)-LS routine pumi-
mzed the total sum of the squares of the errors between data
pomnts of all three records and three corresponding curves
based on PS of Eq. 126); see the Appendix. The same
(2« 3)-LS procedure was followed for the larger cells of
Figs. 0:4 and 6.8 to 1solate common values of P and d, and
three values of ¢ representing the different t11,5,5') processes.
Simularly, for the dotted LS curves based on the two param-
eter monodisperse form for d = 0, we used a (14 3)-LS
routine to isolate a common P and different values of ¢.
These values provide checks on the consistency of trerds in
¢, as well as more appropriate curves than the EB curves for
assessing the role of the polydispersity parameter d.

Better fitting curves were obtained for each of the six
bovine data records by an independent 3-LS rouiing, but
some of the values of d were unrealistically high (e.g., as
large as 0.35) for distributions of individual RBCs, and the
trends in P and ¢ were erratic as compared with trends
shown by corresponding 2-LS values obtamned tor d =0,
Sinve the (2 + 3)-LS values uf P and d are based on all data
putitts uf three data recutds, they wirespund o a populaion
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sample essentially three-fold larger than for a single record,
and we may expect them to be more representative. For the
(2 + 3)-LS effective parameters, the values of d are Jess than
009, and the trends of ¢ for the different processes are consis-
tent with the trends of the (1 -4 3)-LS and EB monodisperse
values,

Figure 9 shows that the differences between the sohd
and dotted curves for turbulent and stationary processes are
munor, but the solid curves are somewhat better for w < w,
and for large w. For the uniform process, the solid curve1s by
far the better. Comparnison of the two LS curves for uniform
flow delineates the marked improvement of the overall fit
ansing from the mnclusion of polydispersity in the theory,
and the effects of an additional parameter in an LS fit of data
to a more suitable curve, The same apphies in Fag, 10 for the
larger bovine cells in umform flow. In Fig. 11 the differences
of the solid and dotted curves for the stationary process are
minor, for the stirred process, none of the curves is suitable
for fitting the anomalous sigmoidal set of data points.

Figure 12, the human cell analog of Fig. 11, also indi-
cates that the stirred process is anomalous, The (2 + 2)-LS
routine for common values of P and d, and two distinet val-
ues of ¢, gave an unrealizable negative value of d, as did an
independent 3-LS routine for the stiered data pownts. Conse
quently, although the dotted curves for d = 0 vorrespond to
a (1 + 2)-LS fit for both data records i Fig. 6 9, the sohd
curves do not correspond to a simultancous fit for both data
records. The solid polydisperse curve for the s data, based on
an independent 3-LS routme, 15 better than the others at
large w. The solid curve for the s' data, based on the s values
of Pand & i 4 1-LS fit for ¢, serves primarily to display the
anomaly more symmetrically.

Thus polydispense scattering theory ' provides marked
ly better avcord fou all w than monodisperse theory” for the
uniform flow process, and somewhat better accord for the
turbulent and stationary processes, However, we maintain
vur estlier detuiled reseivations’ on the heunstic applica
tions of theory developed for homogeneous distributions of
similar hard convex particles to the different processes® n
volving flexible deformable biconcave discoids, In addition,
although the present unweighted LS iversion routines are
more systematic than the earlier EB procedure,’ more suit
able weighted LS routines could be evolved by experimenta
Iists working wath statistivians, The effective values of the
parameters we solated by the present procedure aie suffi
tently representative 10 help delineate major data trends of
the more Lontrolled processes for the fult ranges® of w that
were considered.
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APPENDIX: NONLINEAR LEAST-SQUARES ROUTINES

All least-syuares wurve fitng® was done with IMSL
{0 U subroutine BCLSE whih sulves a nunhineai least
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squares problem subject ta bounds on the variables using a
modified Levenberg-Marquardt algorithm and a finite-dif-
ference Jacobian.

In order to fit-a data record (a set of data pomts for a
particular cell population involved in a specific flow pro-
cess) of Ref. 6 by a curve based on Eq. (26), this iterative
routine required upper and lower bounds on the values of the
parameters { P,c,d} as wellas mitial guesses. It was sufficient
to take P and ¢ as nonnegative and 4 in the range — 0.1 to
0.7 Practically any such values of Pand ¢ could be used as
tutial guesses for d = 0, and the resulting values of Pand ¢
were then used as 1mtial guesses to determme {P,e,d} for
d #0.

For ni sets of data (1<3) on the same population of cells
we fitted to # curves based on Eq. (26) for 2 - n parameters,
1., we assumed that all # curves had common values of P
and d, but that each curve had a different ¢. The routine
muinuzed the total sum of the squares of the errors between
the data points of all 1 sets and their 22 corresponding curves.

The routines for cither d = 0 or d #0 were extremely
stableand insensitive to initial guesses, and converged rapid-
ly (in 10 iterations or less) to unique output values of P, ¢,
and d.

A dparameter fit (o all stationary and stirred data
points for human cells, and a 3-parameter fit (o just the
stirred data points, gave unrealizable negative values of d as
outputs. We settled for a 3-parameter fit to the stationary
points, and used the resulting values of Pand dina 1-param-
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eter fit to the stirred data to determine the corresponding c.
See caption for Fig. 12.
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High-frequency reflection and scattering by multicomponent rough
surface distributions

{ R.J. Lucas® andV. Twersky
Mathematics Department, Uni

of lllinois, Chicago, Winois 60680
(Received 23 July 1989; accepted for publication 4 January 1990)

Earlier forms for the coherent reflection and incoherent scattering by multicomponent
mixtures of bosses on rigid or free base planes [V, Twersky, J. Acoust, Soc. Am. 29, 209-225
(1957)) are applied to recent high-frequency results for aligned hemicllipsordal bosses [R. J.
‘Lucas and V., Twersky, J. Acoust. Soc. Am. 83, 2005-2011 (1988)] to investigate continuous
distributions in boss size. Approximations for the coherent reflected intensity and incoherent
differential scattering cross sections are obtained in terms of integrals of simple functions and a
general probability density. To provide illustrations, numerical computations and graphical
results are based on truncating the two-parameter gamma probability density function
P(t;m,v) with £ as a dimensionless variable that scales one or more boss dimensions, m as the
mean value of 1, and v as the normalized variance (ranging from zero to unity). For v small, P
is Gaussian and reduces to a delta function as v approaches zero (to reproduce one-component
results). More generally, the curve of Pis skewed, and as v approaches unity P reduces to the

exponential for the simplest Poisson case. Graphs are shown for cases where one (e.g., keel
depth), two {e.g., base axes), or all three dimensions of the protuberances are randomized.
The essentials are indicated by plots versus angle of incidence, with v as the parameter. The
coherent intensity and the associated forward and backscattered incoherent differential

scattering cross sections per unit area are emphasized.

PACS numbers: 43.20.Fn

INTRODUCTION

In a previous article,’ results®* for the coherent reflec-
tion and incoherent scattering by random distributions of
relatively arbitrary bosses on rigid or free (pressure release)
basc planes were specialized to 1d 1 aligned hemielhp-
soidal bosses with semidiameters large compared to wave-
length. The present paper applics the earlier® energy con-
serving forms for reflection and scattering by mixtures of
different type bosses to investigate continuous multicom-
ponent distributions in boss size. As before,™* we emphasize
the coherent reflected intensity (R) and the forward-scat-
tered (specular) and backscattered incoherent differential
cross sections per unit areas {o( /) and (&) ). Approxima-
tions for R and o are obtained in terms of integrals of simple
functions and a general distribution function that specifies
the statistical aspects.

Graphucal illustrations of R, o( /), and o(b) are based
on a truncated version of the Schulz® form for the two-pa-
rameter gamma probability density function® P(z; i, v).
Here, ¢ is a dimensionless parameter that scales one or more
boss axtal dimensions (e g., bosses with base semidiameters
a, b and height 1¢), m is the mean value of ¢, and v is the
normalized varance ranging from zero to unity. For vsmall,
Pisapproximately Gaussian, and reduces toa delta function
as v approaches zero to reproduce one-component results,
More generally, v determines the skewness of P, As v ap-
proaches unity, Preduces to the exponential for the simplest

Visiung fiom the Departmen of Matbematieal Scrences, Loyola buver-
sity, Chicago, 1L 60626,

1885 J.Acoust. Soc A 87 (5), May 1990

0001-4966/90/051885-09800 80

Poisson density. The resulting plots of R, o( f), and o(b)
versus angle (@) ofincidence, with v as the parameter, exhib-
it the essential aspects of the statistical distribution in boss
size.

In the following, for brevity, we use (1.3) for Eq. (3) of
Refl 1, etc.

|. NOTATION AND KEY FORMS

We take the incident wave forarigid ( ++ ) orfree ( ~)
base plane as o e =, where

¢' == exp(ik’r) = cxp(ikri’-f').

F(O,p) = (Recos @ 4§ sm@)sin @ -2 cos 6, [4))]

K =#(r ~aB),
with K’ as the direction of incidence and A = 2n/k as the
wavelength, The corresponding wave reflected from a
smooth plane at z = 0 is the image

$=exp(ikr), k=kk, k=iap) )
with k as the direction of specular reflection. For @ incident
on an 1solated ngid or free ellipsoud at the phase ongin, we
use g (F.k) for the scattering amphtude. The scattering
arapltude for the corresponding boss on a nigid or free base
plane excited by 4 ¢’ follows by superposition:*

fe @Ry =g, BR) £g, @BR). )
A mulucomponent mixture of 1 = 1 to ¥ distinct types of
bosses is specified if each type is characterized by a param-
eter £,, partial number density a,, and net number densiiy
n == Zn,. Theaverage of a boss attribute (say F, ) 1s given by
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LY N
(Fy=3 —=F, a=3n, “4)
it 1 i=1

where F, is weighted by #,/n 1n the average (F ) for the mix-
ture. The fraction of the plane covered by bosses of base area
A, is w; = n,4,, and the net packing fraction equals

w=2w,=n2';—'A,=n(A), (%)

with {4 ) as the average.
For a corresponding continuous distribution in boss
types, the average is given by

(Fy= fo ) P(1)F(1) dI, (6)

with P(z) as a probability density function. The results (4)
and (5) for N distinct types correspond to
N
Py= 3 B~ %)
iy R

a weighted sum of delta functions,

The coherent reflected field for the base plane plus
bosses is given by?

S+ 231 - 2Z), Z=mn(fkK))/K? cos a.
(8)
As before, we suppress subscripts = where feasible, The
coherent power reflection coeflicient equals

R={(1+2Zy/(1=2)] 9

and the net incoherent differential scattering cross section
per unit area is given by

ot k) = nERPDEY = Z R, (10)
We use the same symbols Z, R, and o as before,! but here
they involve (/) and ([/]*), as indicated after (1.12) these
forms neglect pair correlations,

The forms given above account for all orders of coherent
multiplescattering and are mutually consistent in exhibiting
energy conservation for lossless bosses. See Ref. 2 for a come
plete discussion.

Il LARGE ELLIPSOIDAL BOSSES

For ellipsoids with principal semidiameters a,0,¢ (along
x»2) large compared to wavelength,) we have
8, =gk g, where g, represents geometrical reflec-
tion, and g, diffraction (shadow formation). From (3) and
(1:13)~(1:18) evaluated in the specular (f = k) direction,
the forward-scattered amphitude for an isolated boss is given
by

£y BR) =gk ) £ g:0(RR) + gy (BR)

o —kab (cl‘ & cA? sin® aJ,(2ku cos a)
2 Tkucosa
i - 08
“';{;e ke a),
I = (Asina)? + (cosa)¥/3,
A= (sin B)%/ b2 + (cos )/ a%, (1)
@ = (Lp2)? + (Lp2)%

the L, (the directed semidiameters of the ellipti. disk de-
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fined by the shadow boundary) are obtained from (1:19)~
(1:21), and J, denotes the Bessel function. For near-grazing
incidence, @ = 7/2 ~ 7,70, we replace g, (k,i) by the al-
ternate form given i (1:16) fork'=k.

In the backscattered direction (f = — k'), we have

fx (= f(')i&‘)
=g (=KK) kg (= KK 44~ KK

_—k?ab (2J.(U) cos® @ "'F‘ii‘ - 2ksna
2 v k&*
- ic e-z:w);
kD?

D?= (Ssina)?+ (ccosa)?,
5= (acos B)* + (bsinB)3,
U= (Lys)? 4 (Lyps)?,
s==2sina(% cos B + ¥sin B).

For near-normal incidence (= ﬁ':ﬁ), we  replace
gi{ =K' \k) by the alternate form (1:15).

For a continuous distribution in size, the coherent re-
flected intensity R and the forward =4 backscattered cross
sections per unit area, o( f) and o(b), tollow from (8)-(10)
interms of (11) and (12). In particular, the present Z based
on the average of (11) may be written as

12)

— 1y
Zy= 2(ab) cosa

in?
x((abcl‘) + Sin
k co

a <abcA’J.(2ku cos a))

S & Tu
__1‘ _ﬂ -:z:knosa)) 1
k < 4 ¢ ‘ 3

To facilitate companisons, we may fix w and average over
one or more boss semidiameters.

Up to moderately large values of @, we heep only the
first term of Z to obtain

R~(l = wlabel')/2(ab ) cos a)’_ (14

TN\ wlabel)/2{ab) cosa)’

if the numerator is small, then we retain additional terms.
For @ =0, ncar-normal incidence, (14) approximates

~(l — w{ab(1 + €))/2{ab ))’
"\ wlab(l +€))/2(ab)/’
€= (cAtana)¥/2.

(15)

This simple form reduces to the one-component result for
a = 0, but the complete expression based on (13) does not.

If R based on ( 14) 1s very small, we restore the exponen-
tial term of Z of (13); as « increases towards grazing, we
retain all terms, For az /2 (near grazing), we replace the
third term of Z of (13) by that obtained from g, (kk') of
(1:16). For small-grazing angle r = #/2 - a, it follows that

R, ~1 4 4(ab)r/wlabecd), a6
R.~1=k*wlabc*A)r/{ab).
Asbefore,? the difference from unity is O(r) for either case.
The corresponding differential scattering cross sections
for arbitrary  are based on (1.30). In particular, in the for-
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ward direction for & not near grazing, we base s on | £, |* of
(11). The dommant term 1s

. w{le(kE)P)
7 D=~ 2, F

N wk*{{abel)?y

“an{ab ) (1 + wiabel)/2{ab) cos ax)*
-In the backscattered direction for @ not near 0 or 7/2, we
base o' on | f,, |* of (12). The dominant terms are
wile, (= k)P -+ [g,( = kRO

ket -2, P
w{(abe)* (=4 + D))

“4r{ab ) (1 + wlabel}/2{ab) cos @)*’

an

‘7: (b)z

(18)

where the rapidly oscillating terms were dropped to provide
a simple common baseline for both cases.
At normal incidence both ¢ f) and () correspond to
backscattering
7, (N
=0, (8
wk*((ab)*J1 = (i/ke)e™ ")
4 {ab M1 4 w/2 — iw{(ab/c)e= )/ 2k {ab )|}
wk *({ab)?)
TRV NTY 20
T (@b )1+ w2 @0
For a near grazing, the forward-scattering cross sec-
tions approximate

k>r*((abeA)?) {ab)
N~ mwlabcd)® ' @b
ot /)~wk b74(cS(abA)?) ] (22)

16m(ab)
The near-grazing approximations for the backscattering are
given by

_T{abe)'/8%) (ab)

a..(b) mwtabedy? (23)
LW o) & s J(DD |
7.0 m{ab) (ab 26’e AcU )
Wk o[ e () ’]
“xlab) (ab 46°+( AcU) )'

U= k([(a®*—b3) sin28)/(abA). (24)
As before,'? both the forward and backscattering cross sec-
tions are O(7%) for the rigid surface and O(+*) for the free.

Ul PROBABILITY DENSITY FUNCTION

Many essential features of R, o( f), and o(b) fora con-
tinuous distribution in boss size can be illustrated by numeri-
cal computations based on the Schulz* version of the two-
parameter gamma probability density function®” P(z). The
variable ¢ serves as a dimensionless parameter multiplying
one or more semidiameters of a boss; thus, for example, we
consider bosses of fixed base area (fixed a and b) and rando-
mized height (or depth tc), or fixed height ¢ and randomized
bases specified by 1a and 1b (a family of simular ellipses), as
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The two-parameter gamma probability density function
P(t) = (1/ED (L4 1)/m) e aim,

¢=0,12,., (25)

with m as the mean, is general enough to cover many of the

cases of practical interest. The numbers £and m specify all
moments of the distribution,

{tYy=m, ") =)L+ (4 1)EL
In terms of the normalized vanance

) =N/ Y =1/ 0+ Dy, 0], (27)
we may rewrite the moments in ths product form

D =m (14 o)1+ 20 [14 (n = 1) (28)
all moments increase with increasing m and v. The magni-

tude of v = 1/(£+ 1) also determunes the skewness of P.
The maximum value of P, attained for

(26)

ta =mé/ (€4 1) = m(l—v)<m, 29)
is given by
Py = (Y, e (30)
For ¢ large (v=0), Pis Gaussian around 1= ¢, ,
1 —(t—rA)’)
P. . 31
NG ( VG 6D

If {=s 0 (v=+0), then f, —m and P reduces to §(1 — ) to
reproduce onc-component results, More generally, the curve
of Pis skewed positively (¢, <m),andfor £=0(v=1), P
reduces to (1/m)e™ /" for the Poisson case. In Fig. 1, we
plot Pvs ¢ for several values of vand m == 1.

For computational purposes, we take m == 1 (so that ¢
servesasasimplescaling factor) and restrict therange of £ to
150.5, We work with

Pty = (tYPp)e= "+, 1505,

“
&:fr&““mm. (32)
s

¢

FIG 1 Plot of the gamma probability density function Pof Eq (25) with
mean m = 1and normalized variance v = 1/(+ + 1} asthe parameter The
tugher curves at + = | apply for the smaller values of » = 0.025,005,0 1,
025,05,and 1 0 As papproaches zero, P, hes 5(t 1)

PP
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To provide benchmark curves, we consider a one-compo-
nent (v = 0) distribution of aligned ellipsoidal bosses having
semidiameters (a,b,¢) = (1,4,2) with ka = 20and w == 0.2.
For the conttnuous multicomponent cases, one or more se-
midiameters are miltiplied by the dimensionless parameter
;the requxred averages arebased on (32). The restriction on
the range of ¢ insures that kd> 10 for all bosses in the distri-
bution, withd denoting any semidiameter; thus integration
is restricted to ranges where the present high-frequency ap-
proxitnations suffice, and spurious contributions for small
kd cannot arise. Physical considerations also require that
boss size be bounded away from infinity; such truncation is
implicit in the Gaussian quadrature routine used in the nu-
merical integrations.

In the illustrations for R and the forward and back-
scattered cross sections, ¢( /) and o(b), [wnltcn as S(F)
and S(B) on the graphs to facilitate comparisons with car-
lier' one-component versions}, we plot versus angle (a)
from the normal for rigid 4 ) and free ( - ) surfaces with
vas the parameter. Curves for the rigid and free surfaces are
overlaid; the rigid are shown solid and the free are dotted.
Four valucs of v == 1/( ¢4 1) are considered:

v=200, 025, 0.5, L0, (33)

corresponding to ¢= e, 3, 1, 0. The one-component case is
represented by v =0,

Although large numerical values are indicated for some
of the o( /) curves, experimental design factors must be con-
sidered in determining the relative importance of coherent
reflection and incoherent scattering contributions. For
plaznc-\\‘ave incidence the net normalized energy flux ts given
by

Rk+ff 0(“) srlx. dy.,

where § s a unit vcctox from a point r, on the surface to the
observation point r [see (2:75) ff]. Practical transducer
beam factors are required for comparison with measure-
ments.*

IV. NUMERICAL ILLUSTRATIONS

Allgraphsfor R, a( /), and o(b) are based on computa-
tions with the complete forms of (11)-(13) supplemented
by (1:15).

Figures 2~7 correspond to aligned bosses with fixed base
semidiameters (a,b) = (1,4) and height (or depth) rcasa
random variable. Figures 2-4 apply for the azimuthal angle
B =0° (broadside incidence ¢1 grazing). The essentials for
the R curves of Fig. 2 are indici ted by the simple approxima-
tions (14)-(16). For this case, (15) reduces to

R z[l -%(1 +-2%(l’)tan’a)]z
x[l +%(1 +-2-°:; (t¥tan? a)]-z. (34)

Although (34) is independent of statistics for @ = 0, the
more complete form of R used for computations is not,

1886 J. Acoust, Soc. Am, Vol. 87, No. 5, May 1990

R

1 T J

bl ) [} ®
OEGREES FROM NORMAL

FIG 2 Graphs of the reflection coefficient R of Eq 194 for a continuous
distnbution of bosses having semidiameters (a, b, 1¢) = (1, 4, 12}, with
probability density for sasin Eq. ¢32) Theupper panclshows the full range
of angle of invidence {«), while the lower shows the near-grazing region
The szimuthal angle i 8 = 0, vouresponding to broadside inuidence at
grazing. The solid and dotted curves represent rigid (4 ) and free (=)
surfaces, respectively. For a not near 0° or 90% the hugher curves apply for
thesmaller values of v = 00,0.25,0.5,and 1,0; near grazing the higher sohid
cunvesaswellas the higher peaked dotted cunves apply for the farger values
ofv.

StF)

T T T T Y )

5 0 6 &8 % 0w
OEGREES FROM NCRMAL

FIG. 3, The forward-scattertng curves from Eq. (10) associated with R of
Fig. 2. In general, the higher curves correspond to the larger values of v

R J.Lucas and V Twersky: Scattenng by rough surface 1888

[P




0.9

Stgy
06
<
v
o
<o

.

_ V0.5
g

Gu

(=2 3% ¥ 8 VA

% % 5 & 7% s

4.,

N 1.0
3
‘7‘\‘». bl B

bl

5 % 45 H 5% 0w
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FIG.4 Thebackseattenngeurves from £q. (10) and dashed bases rom Eq,
(17) associated with R of Fig. 2. At normalingidence S(8) = S(F) of Fig,
3.

DEGREES FROM ACRMAL

F1G. 5. Graphsof R for a distnbution of bosses as in Fig 2, but with azt
muthal angle B = 90%, ding to nose-on ek atgrazing The
hugher curves for a not near grazing apply for the smaller values of v 2 00,
025,0.5, and 10, Near grazing the higher solid curves and higher peaked
dotted curves apply for the larger values of .
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StFy

%5 % 45 6 75 w0
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FIG. 6, The fornard-scattenng curves assocated with Fig. 5. In general the
higher cutves correspond to the Jarger values of v.
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FIG 7.The backscattenng curves associated with Fig 5.
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which accounts for the slight difference in the curves at nor- 21
mal incidence. For a£0, R of (34) decreases with increas-
ingv; from (32), éorresponding tothesequence forvin (33),
we have (t2) = (1.0, 1.43, 20, 3.25). Near grazing, R... of

(16) increases with v increasing -
Ry ~1=dar/we(t); 35 .
1N
from (32); {t) = (1.0, 1.1}, 1.25, 1.5).Forgnottoocloseto b

grazing, R ., alsoincreases with vbut the trend reverses very
close to grazing where
R_~1=kwe*(t*)r/a; (36)
from (32), {t*) = (1.0,2.18,4.06,9.88). Theassociated for-
ward and backscattering are shown in Figs. 3 and 4. Except . . . . . ‘
near normal incidence for the forward scattering, both (/) 15 % 45 8 TS W
and the base curves for the oscillations of #(b) increase with OEGREES FROM NORMAL
v. Analogous plots of R, o f),and o (b) for B=90" (nose-
on incidence at grazing) are shown in Figs 5-7 FIG.9. Theforward st .1 L
Figures 8-10 apply for a base semidiameter taasaran-  p her cumes aml v withFig 8. Ingeneral, the
. . v for the I 1 4
dom variable and the remaining two semidiameters fixed, sghee curves apply forthe latger values o ’
Fora not near 90°, R of Fig. § increases with v, reversing the
trend shown in the previous plots. For larger @, R, de-
creases with increasing v; for & near grazing,
R~1=4a{t)s/we. 371
For the free surface, R . decreases withincreasing vfor a not
too close to grazing and then increases for larger a. For @
close to grazing,

Ro~1=k*uc*t/alt). (38)

N
®

[ &
DEGREES FROM NORMBL

FIG. 8. Graphs of R for (g, b, ¢) == (£1, 4, 2) with B 0", The higher

cutves for anotnear 90*apply for the larger values of v =20 0,0.25,0.5, and DEGRECS FROM AORUAL

1.0. In the lower pane), the higher solid curves near grazing and the hugher

peaked dotted curves correspond to the smaller values of v. FIG. 10. The backscattening curves associated with Fig 8
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DEGREES FROM NORMAL

FIG. 11.Plotsof R for (a.th, tc) = (1,£4,£2) with B = (. Foranotnear ('
or 90, the higher curves apply for the smaller values of b= 00,025, 0.5,
and 1.0, Inthe lower pancl, the higher solid cutves and the higher peaked
dotted curves apply for the Jasger values of v

The associated forward and backscattering are shown in
Figs. 9 and 10. At normal incidence,

oy mwkab (¢3)/an(0) (1 +w/2)3 39
with {¢2)/{t ) increasing from 1.0t0 2.17asvincreases from
z¢ro to unity. The trend of increased scattering for the larger
valuesof ycontinues foro( /) until @is close to grazing (Fig.
9). The base curves for o(b) of Fig. 10 differslightly, but the
pattern of oscillations is altered as v changes.

8-
84 A
s-/\
N

l
DEGREES fROﬁ I»ORHRL

SIF)

FIG. 12. The forward-scattenng curves associated with Fig. i L. The hugher
curves apply for the farger values of v
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FIG. 13. The backscattenng curves associated with Fig. 11,
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DEGR&_S FROM NURHRL

FIG. 14. Graphs of R for a distnbutton of bosses (1a, 1h, ¢) = (£ 1,14,2)
with 8 = 0'. For a not near 90%, the higher curves apply for the larger values
of y=200,0.25,05,a0d 1.0.

R.J Lucas and V. Twersky: Scattering by rough surface 1891

B U




-~

‘———-/—’

Y

1$

.8

I
OEGREES FROM NORMAL

FIG. 15, The forward-scattening curves associated with R of Fig, 14. The
higher curves apply for the larger values of v. -

& o
DEGREES FROM NORMAL

V=00 FIG.17.Graphsof R for adistibution 0fbosses (1a, 15, 16} = (21, 14,12)
with =0, The curves dutfer atle for e not near 90°, The gher solid
cusves for a near 90" apply for the smaller values of 1=00,025,08, 1.0;
2 /\Mf the higher peaked dotted cupves apply for the Jarger values of v, '

Si81
06

InFigs. 1116, we fix one of the boss semidiameters and
scale the remaining two by ¢, Figures 11-13 apply for base
semidiamcter a fixed and the remaining two specified by 5
and zc (a family of similar ellipses in the pz plane). In Figs.
14-16, the boss height ¢ is fixed and the base semidameters
are specified by 1a and 1. In all cases, the essentials are indi- '
cated by the approximations (14)-(24), -

The generalization (ra,1b,t¢) for o family of similar el

3483
o€ 0.9

.3
2

&
o (23
on
© V=10 & .
- )
]
Hn ;
) s
) ) x : b 3 15 3 15 63 7% 90
B0 & 6 o ;
DEGREES FROM NCRMAL OEGRECS FROM MERMAL ;
FIG 18 The forward-scattenng curves assoctated with R of Fig. 17. The R
FIG. 16. The backscattenng curves associated with RofFig. 14, Bugher curves apply for the farger values of o,

1892 J. Acoust. Soc. Am,, Vol, 87, No. 5,May 1990 R.J.Lucas and V. Ywersky: Seattering, vy raugh surface 1892




lipsoids 1s 1llustrated in Figs. 17-19. For moderate values of

a, (14) shows that R is independent of 7, i.e , T cancels in

{abeT)/{ab ); in this range, the R curves of Fig. 17 differ ‘
little, but additional structure appears for a close to grazing. !
The corresponding incoherent scattering, shown in Figs. 18

and 19, involves no such cancellation.

o
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Regular polygonal arrays of resonant scatterers

Victor Twersky

Math Department, Universityof Hlinois, Chicago, Hllinols 60680
(Received 20 May 1990; revised 21 October 1990; accepted 11 November 1990)

Numerical results for the scattering cross section (S) of N'= 3-26 equally spaced monopole
resonators on a circle (of radius b) indicate regularities in the values of the normalized
diameter (2kb = 47b /A = p with A as the wavelength) corresponding to maximal scattering
for symmetrical excitation. The peaks S, (V) occur for p = p , (N) between N and 2N, re., for
circle crrcumference between NA /2 and NA. With increasing &, the values of p, (V) in
successive alternating sets (shells) of three or four values of ¥ are close to p,,, = 2mm = 7/4;
shell-1 consists of N'= 3-5, shell-2 of N = 6-9, shell-3 of ¥ = 10-12, etc. The basis for the
shell structure is delineated by a simple asymptotic approximation {for large p and ¥ in the
range p <2V) of a cylindrical wave representation for a sum of spherical waves. A simple
approximation is also derived for the shift in resonance frequency that occurs for p small
enough for the array to respond as a collective monopole.

PACS numbers: 43.20.Fn, 43.30.Hw, 43.20.Bi

INTRODUCTION

A recentpaper’ on multiple scattering by regular atrays
of N identical monopole resonators (of radius @ and mini
mum separation d » 2a) analyzed seven cases including the
first four polygonal arrays (V = 3-6) for asbitrary direction
of incidence k. It was shown that the scattering cross section
S of each array” is less than twive its maximal single scat-
tered value, and that the peak value S for polygonal arrays
occurs l'or broadside incidence (k ). An ntroductory
section' (1L A}, based on an earlier’ wutonal illustration,
indicated that similar results had been obtained numericaily
to N = 24 (and asymptotically for larger N), but reserved
discussion of symmetrically excited polygonal arrays for this
sequel Initially, we consider numerical and graphical results
for N = 3-26 resonators (on a circle of radius b) based on
the original spherical wave form of the propagator set!
¥ = 4 4 i1 Then \\cdmveucylmdncal wave represen-
tation of #” and an asymptotic’ approxi (/) for
large .V that delineates the basts for the regulanties indicated
by computations for increasing Y. The regulanties suggested
by data to N = 12 were substantiated to N = 26, and pre-
served in the asymptotic results,

The key variable is the normalized diameter
p=2kb=4xb/A with 1 as the wavelength. The peak
S (V) oceurs for p = p (N) between N and 24, re., for
circle circumference between NA /2and NA. Withincreasing
N, successive alternating sets of three or four values of N are
grouped into shells in the sense that the corresponding
pa(N)areclose to

P =2 = w/d = (8m -~ 1)/ m =123,
[$)]
Shell-1 consists of N = 3-5, shell-2 of N = 6-9, shell-3 of

N=10-12, etc A peak S, (N) in shell-m corresponds to
the mth local minimum of the associated 7

991 J Acoust. Soc Am. 89 (3), March 1991

We start with a brief sketch of the sphencal wave form
development,’ and then derive j . The normalized frequen-
¢y X = ka at the peak 1s determined by ats stngle scattered
value x, andby 1 (p). The location g, of the lowest minte
mum of #'(p) and the value / (p, ) = / o determimne
XA (pn)and S, . Figures {7 correspond to shells 1-7 ¢and
the captions provide the essential data at the peaks), they
display /" as solid curves for Ospx50, and # as dashed
curves for 45p < 2N. The 7 (p) show the essentrals to
p3p,, atleast for the Jarger values of A in a gven shell,

The peaks S, occur for x, =x, and relatvely large
values of Ad=ppx, ie, Ty <27 corresponding to
A 72 d <A Forallcases S, < 2No,, where o, 15 the maxi-
mum scattering «ross sevtion of an ssolated resonator.

On the other hand, a large shift from x, yielding
§ = 0(0, ) occursforsmallp = x/pwithp = a/d < 1/2.For
small y, the array acts as a collective monepole with reso-
nance frequency X, <.X,. Explicit results are given for
X (Nx,p), and a simple approximation for large A 1s n-
cluded and compared with analogs.** (The label resonance
is used as in the acoustics scattering literature.” )

I.REGULAR POLYGONAL ARRAYS

A regular polygon with s = 1 to N vertices at b, = bf),,
respectively, is specified by
IA)s =Reosp, +§ smy,. == D2, p=x/N,

Z b _0 E e’l‘ E e«M(Zi/V)__O (2)

The smallest separation of vertices |b,,, —=b,]
= 2bsin g = d (an edge) subtends the angle 2¢ at the cen-
ter (r= 0) of the circle of radius b, For N = 2v or 2v - 1
(even or odd), v 1s the member of different separations of
vertices that arise. All separations are expressed in terms of
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FIG. 1. Shellad; the lowest mmmumof # vspfor N = ¢3.3,5) 15 the fis
4z = (04345, 04320, 0407T1) at p=(5.189, 5,666, 5 851) for which
3 2000967, 01799, 0 2856). From these values, B = (1.768, 1931,
1687), = (3.493,4006, 3.339), and 10'x = (13749, 137 §2, 137 67)

the smallest by |b, = b,{ = 2b sin mye = (d /sin ge)sin myp,
wheram=1toy

For a plane wave ¢(r) = & incident on an isolated
monopole at one of the vertices b,, we write the scattered
field for ir = b, {>aas

w(r = b,)$(b,) = ashkjr=b,e™

(@) = hiP (@) = efia, 8, =kb,. )
For a lossless resonator, and x = ka 0.1,

1 x=-x 3
Gy o,y des,
¢ 7 o ‘:C “)

where € is the relative compressibility. At resonance,
X=X, %0 that y=0and a, = — L. The scattening cross
section (o) and its resonance value (o, ) are given by

o= - Reaydn/k? = {a,iP4n/k3,

o, = 4x/k? = dmat/xl, (€)]
where g reduces to o, atx = x,. As before,! for ilustrations
we take C= 1,589 10* and x, =<0 01374 (appropriate for
an air bubble in the sea®” ) 5o that 0, 2.12 X 10*za’, The
peak width at half-power (jao = 1/2) is w, =Ix, |%

For ¢incident ona polygonal array of Videntical mono-
poles, we write the scattered field as

992 J Acoust. Soc. A, Vol 89, No 3, March 1991
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FIG 2 Shell-2: the Jowest mmmum of # v p for N = (6.7,8,9) 15 the
socond  f oz - (03697, 04691, 04666, 04171y at p=(11.30, 1) 67,
11 96,12 06) forwhich # z{ = 0073}, ~ 00070,01136,0.2138). From
these, B « (1 586,1 884, 1 875, 1 716), » = ($ $51, 5 065, 4 578,4.123),
and 10% = (137.33, 137 39, J3T.51, 132.60).

A M ~
(k) = 3 D, (KAkir—bpe”, (6)
v

D,y :au(l + 3 DAkyR(k b, ~be ""),

(&)
The N coefficients D, (k) can be obtamed by elementary al-
gebra, and expressed in terms of v -+ 1 collective k-indepen-
dent oscillator mode coefficients B, times k-dependent ex-
ponentials.! R
For normal incidence (k = z,2b, = 0), D, == D and

a,
D= =B, Yo=Y Mk, b= 7,
1~ ay Vs Y ? lzla ? ‘1
(8)
Victor Twersky Acrays of 992
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FIG. 3. $hell-d; the fowest minmum of v pfor ¥ = (10, 1L ) s the
thied. # = - (04469,0 3773, 0 4670}, o2 (17.74,18 11,18 26) for which
1 2(=01000, ~00012, 00983y From thew. Bx = (1808, 1913,
1.842), = (5483, 5102, 4 726), and 10'x = (137 3,137.4, 132.49)

where B = B, is also the coeflicient of mode 0, Althoughan
individual D (k) is not observable by measurements of #
for r»b, D = B is observable since the corresponding scats
tered field is directly proportioned to B:

2452 =B Y h(kir~b,{) 9
The ficld along the center line (r = z), and at the geometri-
cal center (r = 0) are given by

(2.2 = BN+ BN,  #(0,2) = Bh(kBIN,

10)
For arbitrary k, we sum D¢ over s and solve (7) directly
for the sum to obtain

S o (ke =BY
Thus the corresponding field along the center hine equals'

#(zk) = Bh(k V2 + b*) 5 &'y 8,=kb, (I
so that Balso suffices for this special case of nonsymmetrical
excitation,

In the far field, r/6 and kr large, (9) reduces to
% ~h(kr). where the scattering amphitude satisfies
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FIG 4. Shell-4, the lowest memmumof / v pfor N = (13 14 15, 16) s
the fourth. 7 = ~ (04237, 04747, 04735, 04488), p== (23 84, 24 26,
24 47,24 S forwhich 1 =( — 0 [785, — 00869,00096,00945). From
these, Baz ~ (1.135,1.904,1 899, 1 813), v = (5 705, 5 399, 5 083, 4 788),
and 10 — (137 23, 137 32, 137 4L 137 49)

GED=I(=5=D=BYe 4, A =Abb,
(12

The forward scattered (f=2) and back scattered
(f = ~Z) values are cquak:

S (52) =4 (=~ @3) = BN. (13)
The scattering cross section for the array is given by
S= Ran/k* = Ro,(x /x),
R= ‘Ree‘/(z,i)=fiiﬁ£—)ﬁ(ﬂt-)—, (i4)
A

The final form of $'1s normalized with respect to isofated
monopole resonance values to provide benchmarks for com-
parisons.
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FIG. §. Shellss: the lowest minimumoof # v pfor &= (17,18, 19) icthe
tfth, 7 - - (04663, 04797, 64659), p= (304 1068, 3079 for
which § = (= 0.1856, —00624,00228), From these, B~ — (1874,
1922, 1372) y=(5859, s 5061, and
10% . (13725, 137 34, 13740,

1. MAXIMAL SCATTERING

For N = 2vor2v+ 1 (evenorodd) in terms of €, = 1
or 2, respectively, we write

N-1) -k
Hpy= S hp)=2 3 hip)+ehlp)
PR EN |
p.=psinsy, p=2kb, (15}
The real and imaginary parts are given by
¥ =S e 13 np) = f ey +i1p). (16)

with  jl@) =jo(@) = (sna)a and ma@)=n{a)
= - (€0 @)/, Substituting (4} and (16) into (8) yields

- l = o l
Ytiy+ X (At H+iN’
Yoo f’
= = R 17
r 7 Fxp) an

which represents a more general resonator than g,
We have

—NReB=N[(1+ H(1+TH] !
<N(L+ /) “'=R(p), a7)
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e N-22

- N=23

L) L3 + 1

10 20 30 40 $0
FIG. 6 Shells, the lowest mummumeof # vs pfor ¥'= (20,24, 22,23 15
the axthy 7 = ~ (03552, 04803, 04757, 044813, p= (36.58, 3688,
3703, 3708) for which 4 = (=02131, ~0.1233, ~0.383, 00330
Fromthese, B= = t1 836, 1925, 1907,1845), p = 15 723, 5 497, 5269,
5049), and 10% = (1372, 13728, 137.36, 137 43)

as well as ¥ |B {<R(p). Thus peak scattering requires mimi-
malt 14 7 and

r=0, y+.1 = -x/x 4.1 =0 (18)
Then, for any value of N,
~Re 4 (2,2) = & (23]

=N/(1+ / (p)]=Rip) = N1B(p)]
19

at the associated frequency
x=x/{1=x1 ()" 20)
The peak magnitude R o = N 1B | 1sdetermned by the val-
ue p=p, that minimizes J (p): the resulting value
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o~ N-26

~1

T T

L) L) i
0 20 30 40 50

FIG 7. Shell.?; the Towest minimumof f vy pfor &' = (24, 25, 26) wsthe
seventh, 7 = — (0.4772, 04811, 04690}, p = (4309, 43 26, 43 34) for
which . f = =(0.J762, 00920, 00183). From thee values,
B o= (1915, 1927, 1883), y= (8624, $423, $223), and
10% = (137 23, 137.31, 132.38),

« 4 {p, ) thenspecifies the corresponding frequency x , , and
from p, /x, =2b, /a=d, /e smpu we obtain the appro-
priate circle drameter 25, as well as the separation @', of
neighbors,

The function # that determunes R of (19), 1.6,

LR | AR H ¥
(oY = = smfp sin(sz/Ny |

Jip) SZI Hp) ‘ZI -——ﬁ-———-——p R 2
has maximum value ¥ = 1 for p20 (for which case R= 1),
and vanishes as p~ oo (t0 yield R~ N, the single scattered
value).* The solid curves in Figs. 1-7 for A= 3-26 (in
successive alternating sets of three or four successive values
of Ny show # vspforp = 0-50. Aspincreases, / decreases
to its first local minimum, and then oscillates around an N-
dependent base curve that also oscillates around zero. The
zeros of the base curve are near p equal to integer multiples of
N, and the lowest mimmum # , occurs for N<p, <28
{between the first two zeros). The values of # , rangefrom
about — 0482 to about - 0.37 (and of {8, { from about
1,93 to about 1.59) with smallest and largest /7, for¥ =4
and 6, respectively, The values of p , /24 range from about
0.585 (for N=15) to about 0.925 (for N=6); the
y =20d /A satisfy 3439<y, <5723 with the smallest
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value of d /4 about 0 547 (for ¥ = 5), and the largest about
0.911 (for N =20).

Each figure m corresponds to shell-m containing those
values of ¥ for which /", 15 the mth local mimmum. The
values of p, in shell-mm are near p,,, of (1), and the mean of
pa forshell-mis even closer top,,, the mean s within 1.3%
of py = #7/4 for shell-1, and withmn 1% of p,, for the re-
maining shells. The captions list #” 4, p 5 s €tc., but suppress
the subscript. (The dashed curves for 4<p < 2N are dis-
cussed subsequently.)

The resonance frequencies determned by (20) 1 terms
of

oy = ! coslpsin(sa/N) |

o .Zr psin{sz/N)
differ little from x, = 0.01374. The largest valueof. / (p, )
1s about 0.286 for N = 5, and the smallest 1s about —0.213
for N = 20. The associated resonance frequencies obtamed
from xp zx (14x.372) are about 0013767 and
0.01372; the departures fion x, are within 0.2% for N = 3~
26. Thus S, = R, (x./x, ) approximates Ry = ¥[8, |
to within 0.4%. The peak width at half-power
(BE={B, /2T = %),

w2 (ke g )/ (hmxp S )

=w, (14 /D =x 1205 (23
approximates 0, (1 4 f A )1 4 2% 4 1), thus wy 15 of
order w, /2,

From the values in the figure captions for N = 3-26
(and for larger .V based on the asymptotic form in the next
seetion),

Ja> =05 ~ReB, ={Brl<2

Rn = =Ret o =1o,1 <2V, S,<2Vo.. (29
The values of ¢ | and S are in accord with elementary con.
siderations of interferance processes, The central valve (or
values) of |8, | in a given shell are the highest, and only the
mean of shell values for m odd or even show consistent
trends; the sequence of means for m odd (1795, 1.854,
1.889, 1.908) and for m even (1,765, 1,848, 1.878) appearto
increase slowly toward 2. A sumilar trend apphes for the
mean of shell values for y » : the sequence of means for m odd
(3.979, 5.104, 5,328, 5.429) and for m even (4.829, 5,245,
5.384) appear to incicase toward 277.

. p=par QD)

til. ASYMPTOTIC FORM
We start with (21) plusy{p, ) — 1 =0,1¢.,

M

FP =14 T sps po=pomp =pm,
DL

(25)

and denve an alternative exact representation m terms of
cylindrical functions.

Expressing j(p,) as
—— y
)p) = sintpsing,) -1 cos(ustnp )dy, 126)

psng, p Jo
and expanding the integrand i terms of Bessel functions
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2n:7

cos(using,) =Jo () 42 Z 30 (V)08 7 27)
enables us to sum overs
h
S cos T = NS, 1, 120,12, @8)
] N
to obtamn

, i
= _1+—1‘1f du[Jo(v)+2 5 J,,v(u)]
p (] I=3

EEN EX T D)0 A (29)

This eapression is exact for all p and A, but the range
N<p<2N forlarge Vis of primary terest.
To approaimate 1, for large p, we write

f Ja(v)rlu—‘f Jo (Iv-f Jodv=1 -f JoC)de,
30

and use the leading term of the Poisson asymptotic form* for
lamge v,

Jo (1) ~ (2/m0) V3008 (V = 7/4). an
Thus
I~ (NP 3 Q/zp)Sintp ~ 2/ ) =1, (o).
32)

The remaining terms /, with v = 2I¥ for 0«p <, can be
expressed in terms of the Carlini asymptotic form* for large
¥
Erexp(in1~ &9
Q) =~ EHM A+ T= 8

=7, §=%<l‘ 33)

For p=0, J, =(p/2)[¢'/v'\2av] which differs from
J. = (p/2)* /v in that W has been replaced (appropriately)
by Sterling’s approximation. The asymptotic form of 7, fol-
lows from Watson,’

n=x f J, v~

-

(34)
\l — ..:

Forp< 21\'. we need retain only lhe =} term correspond-
mngto v =2y,

The essentials are shown by the leading terms for
4. p<2N:

Fm ey lys i,

el 3 w3

" 1 [t expyl = L2 ]“
2(”1\?)!/2“ _;:)Vi 1 3 ‘[l—**“*—- ;3 4

(35)

where § = p/2N < 1. As pncreases, the oscillatory decreas-
g term 1, ts posittve with nunima for sin(p — 7/4) = ~ 1
at p = p,, of (1). The positive monotomcally mcreasing
term I,, increases slowly as p increases through A and is
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practically negligible until p nears the vicimty of p , Whereit
rises rapidly to truncate the oscillations and defineate the
smallest valuc of #”. The lowest local mintmum of /* (the
dashed curves in Figs. 1-7) corresponds to the largest or
next to the largest value of p,, before p gets close enough to
2N for / to rise more sleeply than #” toward zero. The
figures indicate that T a> =12, and computations
with 7 for much larger values of Nalsoyreld 7'5 > ~ 1/2.

For very large N, we have {=p/2N=y/2N
Xsin(z/N)~y/2m. Since (35) requires & < 1, it follows that
#/y> 1/2. Thus with increasing N and p,

Jmm Ve N pms = Vb 7/y> ~ 172 (36)

and {B { <2 For theinfimte periodic line of monopoles* and

the case of one propagating mode, the results y = kd <27
and

} =2 E Jp)y = = Va/p> =1/2 Q7
Dl
are rigorous. See Appendix A.

IV. LARGE SHIFTS OF RESONANCE FREQUENCY

For small g, corresponding to very small p = x/p> 2x,
the array amplitude 7 (8,2) reduces to that of a collective
monopole (4,) withS = 0(0, ) ataresonance frequency X,
relatively far from the isolated resonance value x, . Expand-
ing 7 andp: 1 10 O(p*) and evaluating the clementary sums
yiekds

F A1=N1=p /12 + 0p) =N, o8
C
= ";'[C\ *p’c"‘!',il"*o“")]: -5
(39)
Com sin(a/N) 2, N=3d 4
N le sin(sz/N) g o

where the leading terms suffice for suflictently smalf p and
moderately large C\.
For such cases,

IR =NB=d,, do= =11 +iT),
r=C/y xi = 231 4 pC,y

)
. 4
N Nx * “h

[o==

with resonance frequency
=X, /(14 pC M <X, 42)

At resonance, [y =0and ~ Rel.”/ = {7} = L The corre-
sponding scattering cross section of the array satisfies

Sz=g (X /X)) =0 (14pC) >0, (43)
Athalf-power, [, (x , ) = it 1; the first approximation for
the peak widthw, =x, -x ,ie,

u&,:l\x}/(lv}'pc\)‘“h w, /(1 +pCy Y, (44)
suffices to indicate the trend with increasing &, but more
complete results follow from (41). Discounting theimmedi-
ate neighborhoou of the contact value p = 1/2 (for which
higher-order multipole coupling terms are required) we use

2= /4 forillustrations Inclusion of the Jeading monopole-
dipole coupling effects leads to
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- m = wm e wame— o m— = = e

p=p(L=Fp"), (45)
where =1 5;1.3536, 1.1180, 0.9137 for N = 3,4,5,6. How-
ever, the larger values of N and coupling with higher-order
multipoles have not been investigated.

For N = 3-9, Cy (rounded off in general) 1s given by

Cy=2, 2.707, 3.236, 3.665, 4, 4.293, 4.549. (46)
For p = 1/4, S /0, mcreases from 1.5 to 2.137, xo/x, de-

creases from 0.816 to 0.684, and w,/w, ncreases from 1.33
to 1.97. For N = 10~16,

Cy 4774, 4976, 5.16, 5.327, 5482, 5.625, 5.758.
(G2

For p=1/4, 8 /o, increases from 2:194 to 2.44, x,/x, de-
creases from 0.675 to 0.642, and w,/w, increases from 2 08
10 2.69. For N = 17-23,

C, =35.583, 6.001, 6.111, 6.216, 6.316, 6411, 6.501,
(48)

Forp = 1/4, S /0, wcreases from 2.471 to 2.647, x,/x, de-
creases from 0.636 t0 0.617, and w, /w0, increases from 2.78
to 3.34. All values of w, /w, are based on (44),

Theincrease of C, with increasing Nis essentially loga-
rithmic, as shown eaplicitly by a simple approximation
based on the leading terms of Euler’s formula:

]
Ss)ds.
(49)

W 1 ! .
Zﬂs>~-5-ﬂn+-2-m-n+f
[ 1

Thus

.7 1 Mg
e~ f) a2 )
UM sin(#/N) + i sin(se/N)

= (i Ehnler35)-
£ X — i l-—- 50)
+ sin nf co 3N (

and using sin{#/N) = 7/ yields
C\~142m(28/m)=C\. (5D
For N'=6-8, €, 1s within 1% for Cy, and for ¥ >8 the

differences are less than or about 2%. For A > 12, we obtamn
better accord by using

Cy~Cy .y = L+ 2I[QN + 1)/7), (52)

where Gy « 1 18 within 1% of the values of C, givenin (47)
and (48) for N = 13-23. For N = 24, we have Cy, = 6.588
and Cyy /Gy = 1,008,

The final form of (39) requires that p%/C,, be small for
the form of the resonance frequency X, in (42) toapply, We
obtainabound for N for an assigned accuracy (e.z , 2%) by
using p~Ny/m = Nx/pw 10 construct

po/\Cy = Nx,. pmC, = Nxpr[C, (1 »}-pC\]":'
53)

mtermsof C ~C\ .1 Thusfor ¥ 1037atp = 1/4, \vehave
p‘,/C\x <002 corresponding to p, =0 383 and C., = 1.372,
ie, for these values i = —~C\/py to withm 2%, and
/12N to within 1.23%; for this case, xo/x, =0.59,
S /o, =2.84, and w,/w, ~4.58 based on (44).
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APPENDIX A: PERIODIC LINE OF MONOPOLES

For ¢ incident normally to an infinite number of mono-
poles with spacing d along the z axis, we obtain the forms (8)

and (9} in terms of different sums. As discussed before,*
5

B == e |
l—ay 7

¥ =2 3 Mokd, SLm v, = (123,00,
] 2
(AD
#=B z h(kir —sdi)=BE. (A2)

Fortheexcludcd m(cger valuesof kd /27 (which correspond
toanalogs® of the Wood anomalies), # reduces to the hare
monie series and diverges Joganthmially. However, since
{r—sdijz|sd| £z for sufficiently large |sj, we have
4= (e pe ") /2, where 7 s findte for v = a1,
Thus

@, 07 + 7 coshz]
hm % = llm e
o lw—a, 7
corresponding toa standing wave along the axis of the array,
Therearenosingulanticsin # forany such multiple scatter-
ing problems, (See analogous development® for the doubly
periodic infinite planar array.)
We transformed* 4 to an infimite set of conical-cyln-
drical waves

= ~coshz (A})

/ “ K2l
“ ;'IEZ'" S TP GR s 0,),
sing, =2na/kd, n= 0, 11,4 2., (A4)

where R = r¥ =2 1s the distance perpendicular to the
axis,andm <Ad /2w < mt + 1, withm = Ooraninteger. The
values Jsin8,} <1 and cos @, = T <sm*@, for {nj<m
specify 2m + 1 propagating modes, the values jsm 6,| » 1
andcos 0, = ijeos 0, ] for i} > m specrfy an infinite number
of evanescent modes; grazing modes correspond to the limat
of # for Isin ,{ =1, the equivalent of (A3).
The 7 sum is elementary:

=2 -‘i:-d--» ——--ln(l -y =g o4k,
ikd = s ikd
(AS)
T ‘
¥4 R-k—d-(Zm-(»« 1) -1,
o ‘=—2—ln|2 sin-l-(lxdu—2m:r){. (A6)
kd 2

For closure with the development of (A3), we note that
kd —2mm = kd(} - sin 0,,), s0 that if 0,, = 7/2 — € with

¢ small (near grazing), then smd, =1—€/2 and
€os 0,,;.:5 The dominant term of ¥ is
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Siumilarly, the dominant terms of «, B of (A4) involve

HEPR cos 6,) = Eln €,

k4

so that

U/Br e (% 4 ¢ h0) 2 e

kd -

The limit of # for 6, /2, ¢—0, is identically (A3)

Since Ad /2w <m + 1, 1t follows that

L amA 1 1 . i
-1 -, -, A7)

ATl A ¢
The smallest value of #” arises for m = 0 corresponding to
hd <27, the case of only one propagating mode * To facili«
tate comparison with (37) and other forms mn the text, we

revert toy = kd.
For 2x <y < 2m, we have

/’z£_1>,..1., N =-2-In‘25in-'—v-l (A8)
y 2 y 2

and
- _ 1 I
G+ DU+ (1 +i0)’
e L
M= = e (Y ), (A9
™ =y 1) )

The corresponding propagating part of « s a sumple two-
dimensional cylindsical wave

178
B OR) vt GR),

(A10)

with monopole coeficient -/, equal to — 1 at the reso-
nanves deterniied by T — 0, The evanescent modes degend
on

;-1-11115"(AR); -

kR cos 0, = iR /d) Ry = (Rd)

and decay exponentially as exp( « R 2nz/d) with increas-
wg n Forlarge R /d and large kR,

4 ~ct AU TARY R T (All)

o dhe appropuiaie Tas ficdd foui for g eylundinal monvpole,

From (A9) with 3 as tn (4), the resonance frequencies
correspond fo

N x!

N EITRT ST ampeny s AP
Thusfor p = 5.723, the largest value that arose for the poly-
gons (the case N =20), we obtam 7 = -—0.451,

) = - 0207, andx=x (1 + ¢, | /2)=001372 (ascom-
pared to the polygonal values # = - 0455, 1'5 - 0213,
and x , <001372) For 4 =6, we have /' = — 04764,
4 = = 04217, and x = 001370, The corresponding peak
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widths at half-power are of oxder w,., 2 as discussed for (23,
te, w/w,~0.546 and 0 518.

Forsmall y = x/p,

xXzx/(1=2piny) =x2/(1+2pInp/x). (Al3)
For p = 1/4, we have x/x,20.6087; this 1s practically the
same as the value at NV = 27 based on (42) in terms of (52).

To delineate the relation of «/, == = (1 +') = for
small y = x/p to the analogous result for the circular cylm-
der,® we write

=130~ X314 2p ln(p/t)]

x*np
At resonance, I'=0 reproduces x ¢f (Al3) with
x, = (3/C)"2. The corresponding scatltering coefficient
P =~ (14 P) 7 of a two-dimensional monopole
resonator for small x is given by*
(2/C) = xIn(2/cyx)
xi7/2

(Al4)

A o
}/ =

s G =178107...

(AI1S)

At resonance, 7% = 0 for X = x, 20,0048 20.3496x; the
value x, ts smaller than any physically realizable value based
on (A13), ie, for p < 1/2 we require x > 0428, =0.0059.

For ./, based eitheron (A14) oron (A15), the scatter-
ing cross section per unit length 15 given by
lso™h =] v (4a/x) with | . 4|’ = 1 at the resonance
value of x.

'V Twershy, “Muluple scattenngby finite regutar arrays of resonators,” J
Acoust So¢, Am. 87, 25-41 (1990).

- V. Twensky, “Muluph 3 by arbitrary in three di-
menstons, §, Math, Phys.J SK-N 119623 Seciutonabiitustiationyin v
Twershy, J. Opt. Soc, Am, 52, 145-171 (1962)

3. N Watson, Treatise on the Theory of Bessel Functions (Cambndge, U
P.New York, 1944). The Poisson (1823 ) form s discussed on p. 10, The
cagtier Cachini (1817) formus considered on p. 7andatsintegralis gvenon
p-288

*V Twershy, "Multiple scattering of sound by a periodic fine of obstacles,”
3. Acoust. Soc. Am 83, 96+112 ¢1973). The analogous development for
the doubly pertodic planar array mentioned after (A3) and other related
results are given i V, Twersky, J, Math, Phys. 16, 633-666 (1975)

Vo iwcishy, Asoustis bulk parameicis vl sandom voluns distitbuuons vl
smallscatterers, *J Acoust, Soc Am 36, 1314-1329 (1964) See develop-
ment of the two-ditaenstonal case in (46)=(51) for by, = 1y,

SR.Wildt, Ed , “Acoustic theoty of bubbles, i Physics of Soundin the Sea,
NDRC Summary Tech. Rep. Div o, Chap. 23, Vol 8 (Washington, DC,
1946).

"G. Gaunaurd, K. P. Schamhorst, and H, Uberall, “Giant monopole reso-
nances,” L Acount, Soc. Am, 68, 573-594 (1979).

*The denvative of # {p) vamshes at an infinite number of poiats
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Comments on resonant systems of scatterers

Victor Twersky

Mathematics Department, University of Blinois, Chicaga, Hlinols 60680
(Received 10 April 1990; accepted for publication 10 April 1990)
Details are provided for aspects of scattering by resonant systems,

PACS number: 43.20.Fn

This letter provides contexts and details for remarks
quoted' froma recent article? on multiple scattering by finite
regular arrays of resonators. Some of the remarks apply for
alldistances of observation, and the rest hold for the far field.

The article? analyzes scattering of an excess pressure

ficld § = exp(iker) by arrays of monopoles (of radius a)
with centers at b, = bb, around the origin r= 0, for arbi-
trary directions of incidence (k) and observation (F). Ap-
plying earlier results,® e scattered field % Isgivenin terms
of the appropriate expitcit coefficients D, (k) for seven duf-
ferent regular arrays (with minimum separation d of neigh-
bors) for all values of 730 external to the obstacles. As kd
increases, D, reduces to the isolated monopole scattering
coefficient ¢, For r<b, ‘« consists of standing waves
J.(Ar); for r>b, % consists of radiating waves kP (kr).
The internal field of an individual obstacle(s) follows from
continuity of the total ficld W(r) = ¢ + % evaluated at
r=b, +a.

1f ka -0 ferany value of 7, then % ~0and W —¢. There
are no singularities in % . Discussions® of “real poles” and

of the “removal of infinities™ by theintroduction of radiation
damping and nonzero radii are vacuous.

Discussions® and plots of Figs. 3~11for anindividual D,
are misleading, Key features are distorted because “peaks
narrower than 2ka... have been truncated at width 2ka™ to
display | D, /ao| =M. Thus, for axial incicence on the doub-
let (Fig. 3), at coordinate values (ka,kd) = (0.01389,
0.55), the “maximum effective” peak 1s given as M7 in-
stead of the actual 3= 10; this value is not the largest in the
range shown for ka, r¢., M =224 at (0.0140, 03553), (The
range could be extended to pick up an additional order of
magnitude and still mantain the restriction that d be suffi-
ciently larger than 24 for the simple monopole development
toapply™*.) The discussions* obscure the ial physics.
The physical interpretation of D, (k) for an array with #
different separations |b, — b,}>d follows directly from its
decomposition? in terms of # + 1 k-independent oscillator
mode coefficients: All characteristics of D, (k) are deter-
mined by coupling of the n+ I collective oscillators that
represent the array. For example, the doublet is represented
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by coupled mode-0 and mode-1 oscillators, at axial inci-
dence, the peaks correspond to mode-1 resonances detuned
slightly by coupling with mode 0.

The discussion of an “obstacle/barner” half-plane® for
Fig. 12 1s musleading, the half-plane perpendicular to the
triangular array (with edge at its geometrical center) gives
rise to a more complicated four-obstacle problem than indi-
cated. At a simplified (and incomplete) level, the incident
wave and the three resonators excite cylindrical waves radi-
ated by the edge of the half-plane, and the tWwo flanking reso-
nators excite reflected as well as transmutted waves.

If measurements of % are feasible in the near field
razb, 2 of obstacle(s) under conditions for which the
fields of all neighbors are negligible, then a coefficient D, (k)
could constitute an observable. However, such measure-
ments are not possnblc in the far field of thearray (r>b), the
context? for the remaining quotations.’ In the far field, 7/6
and krlarge, % factors® to h §""(kr) 9 (£,k) where the scat-
tering amplitude & is basic to apphications. The scattering
crosssection S(k) obtained from & determines thc net ener-
gy outflow from the system. All values of |¥ (k, k)] and

S(f() are less” than twice the maximal values of the single
scattering approximations.

The only observable scattering amplitude for the system
of resonators m a medium free of other obstacles 1s & (&, k)
Anindividual D; isnot observable viaa scattering amplitude
unless D, = D, the spectal cases of symmetrically excited
planar arrays for which & 1s proportional to D. Numerical
computations’ for an indwvidual D, do not represent physi-
cally observable far-field data, and their peaks and locations
(ka,kd) are not representative of the values for maximal
scattering by the system as a whole. In particular, for poly-
gonal arrays, the maximum values of |#| and S occur for

roadside incidence.?

'L, Tolstoy, J. Acoust. Soc. Am, 88, 1178-1179 (1990)

3V, Twershy, . Acoust. Soc. Am 87, 25 (1990).

>V Twersky,J. Math, Phys. 3,85 (1962); J. Opt. Soc. Am 52, 145 (1962)
*L Tolstoy, 3. Acoust. Soc. Am. 80, 282 (1986); 81, 1987 (1987)
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Multiple scattering by finite regular arrays of resonators
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Earlier results for multiple scattering by arbitrary configurations of N obstacles are applied to
seven regular arrays of two to six monopole resonators (with radius @, maximum scattering
cross section o, and normalized resonance frequency x, = k.a). The arraysinvolve m =1, 2,
or 3 different values of the separations of monopole centers, with d as the smallest. For each
array, the corresponding scattering amplitude reduces to a sum of m - 1 collective oscillator
modes F, (orthogonal in the same sense as the spherical harmonics). The doublet, triangular,

and tetrahedral arrays are specified by two modes, F, and Fy; the square, pentagonai, and
octahedral arrays require a third, Fy; and the hexagonal array also requires a fourth, Fy. The
scattering cross section S of each array is less than 2N, with maximum at a frequency ka = x
near x, for relatively large kd = y = x/p» x. If y> 2x is small, the F,, reduce to simple
multipoles in terms of spherical harmonics and elementary functicns of x, p, and x. Then $
has narrow resonance peaks S, = O{o, ) at frequencies x, relatively far from x, (with x, <x.,
and the other x,, > x,); the averages over orientation S, add up to No, (an average oscillator-

strength sum rule). The separations of the resonance freq

x, and the fi of the

peaks.S, (nonoverlapping at half-power) provide distinctive signatures for diagnostic and

related applications.
PACS numbers: 43.20.Fn

INTRODUCTION

An carlier paper® derived representations for the multi-
ple scattered field of an arbitrary configuration of s = 1 to ¥
obstacles specified by their isolated scattering amplitudes g,
and locations b, The field was expressed in terms of auxil-
iary amplitudes G, determined by functional equations in-
volving g, and radiative functions of the separations
(|b, = b,] = b,,»d) of obstacle centers. Expanding g, and
G, asserics of multipole coeflicients times spherical harmon-
ics led to a system of self-consistent algebraic equations re-
lating the two sets of coefficients. Solutions for arbitrary
propagation parameter k and directions of incident (k) and
observation (#) were obtained for two obstacles,’ periodic
arrays,? and other distributions.® Arrays of monopoles were
included as Hustrations,' * and symmetrically excited cases
(the doublet and regular arrays on a circle normal to k)
served in a tutorial introduction® to multiple scattenng, For
monopole resonators (g, = a,), with radius ¢ and normal-
ized resonance frequency (x, = k_a), the frequency shifts
and magnitude changes arising from multipole coupling in
periodic arrays® were obtained for small kd = y > 2ka = 2x.

Now we consider seven regulararrays of two to six mon-
opole resonators (with maximum scattering cross section o,
at x, corresponding to laof = 1) Each array has m<N /2
different values of b,,; the resulting G, = D, (k) are highly
symmetrical, and the multiple scattered amplitude' 7 (k)
for the array reduces to a set of m + 1 collective modes
F, (£k) The doublet, triangular, and tetrahedral arrays
have two modes; the square, pentagonal, and octahedral ar-
rays have three; and the hexagonal array has four. The oscil-
fator modes F, are orthogonal in the same sense as the
spherical harmonics, and satisfy the same constraints (the
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reciprocity and energy theorems) as & and g. The collective
array amplitude & constitutes the only observable scatter-
ing amplitude in a medium free of other obstacles, but an
individual F, may constitute an observable ma subsection of
space defined by an appropriate sct of infinite image planes.
(An individual D, is not observable unless all D, = D, the
special cases of symmetrical excitation” for which % 1s pro-
portional to D.) .

Complete expressions for & (f,k) and for the multiple
scattered cross section S(k) of each array are mcluded, but
weemph only key aspects that help delineate the essen-
tial physics. For each array, S1s less than 2No,, with maxi-
muam at X, near X, all values of S are compatible with ele-
mentary physical considerations of mterference processes.
(Discussions* of extraordinarily large scattening magni-
tudes and of poles for such arrays are vacuous; discussions®
of the plots in Figs. 3-11 for an indvidual D, and of the
“obstacle/barner” in Fig. 12 are misleading.) We also show
that the average of |4 (f(,ﬁ)] over all onentations of the ar-
ray is not larger than the single scatered maximum value
(i.e, [Z[<N), and consider other physically signtficant
aspects,

If p=x/p is small (with p = a/d < 1/2 as the packing
factor), the F, reduce to simple collective multipoles n
terms of spherical harmontcs times elementary functions of
x, p, and x,.. (Neither poles nor other singularities anse for
x=0.) For py small, § has narrow resonance peaks
S, = O(0,) at frequencies x,, relatively far from x, (with
Xo <X, and the other x, >x,). The averages over orienta-
tion S, add up to No,, an average oscillator-strength sum
rule. The separations of the resonance frequencies x,, and the
fineness of the peaks S, (nonoverlapping at half-power)
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provide distinctive signatures for diagnostic and related ap-
plications.

In the following, for brevity, we use (1:8) for Eq. (8) of
Ref. 1 and Fig. 3.5 for Fig. 5 of Ref. 3, etc. Section I intro~
duces notation and summarizes aspects of scattering theory
for one or more obstacles. The mode decomposition of g for a
nonspherical obstacle and the small-x behavior of the scat-
tering coefficients a, of a sphere (for various special cases of
its relative compressibility and mass density) are considered
to provide prototypes for subsequent sections, Section II
givesan overview of common features of thesolutions for the
regular arrays, and Sec. II deals with explicit itlustrations.

Sections IT and 11 retain only the isolated monopole
coefficient a,, but Appendix A includes the dipole a, to ob-
tain monopole-dipole coupling corrections to the resonance
frequencies of the doublet at close packing. Section I serves
as a summary and reference for general relations that apply
for all illustrations; the summary obviates repetition of simi-
lar details, and thesequence of topics forarbitrary k provides
aformat to display the essential physics of the specific arrays
considered in Sec. II. For each regular array, the simple
algebraic system for the N auxiliary cocflicients can be
solved by elementary algebra to express the D, (k) in terms
of m 4 I coefficients B,, and the array amplitudc G asa
sum of corresponding modes F, (£k). The F, in terms of
the k-independent B, are basic: Appendix B consldcxs D,
and D, for the doublet, and shows that D, (K) need notindi-
cate even the correct order of magnitude of 9.

The mode development emphasizes that each regular
array constitutes a single collective obstacle, and clarifies the
physical basis for the similarities and differences of the ar-
rays we consider sequentially in Sec. I1L The mode decom-
position delincates that & = XF, represents a set of oscilla.
tors; the resonance characteristics of a component oscillator
aresimple, but for arbitrary k the oscrllators are coupled. To
mdlcatc thesignificance of couplmgcﬂ'ccls on peaks of S(k),
we include examples of the ed values for component
modes, and show that particular peaks correspond to detun-
ing of a single-mode or double-mode resonance, etc. To pro-
vide physical interpretations of mode structures, we consid-
er related problems based on image methods (results
obtained by superposing array solutions for two or four inci-
dent waves): individual modes constitute observables for a
single monopole over a free or rigid image plane, or for a
monopole centered within a corner reflector of intersecting
image planes, The m + 1 modes of'a given array correspond
to the fields of m - 1 sets of in-phase and out-of-phase
weighted monopoles, and the F, are essentially large-scale
macrapole analogs that generalize the multipoles they re-
duce to for small y = x/p.

The characteristic radiation patterns and sequences of
peaks §, at resonance frequencies x, provide distinctive
scatterers for guidance purposes, for designing composite
attenuators and filters, for identifying clusters in propaga-
tion through random distributions, etc,

1. SCATTERING FORMALISM
‘The incident wave ge
S=e, kor=krked,

“is given by
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f=F(6,p) =2cos @ +p(p)sn b, 1)
ﬁ(:f) Xcosg + §sing,
where k

= f(@,). When convenient, we use
k=%s macosfB + §sinasmpB + Zcosa
=Ray + Ja, + Ay, (¢!

with «, as direction cosines. The phase ongin (where
¢ = 1) is fixed at » = 0 for all cases considered.

A. One obstacle

For a single obstacle with center at r = 0, the center of
its smallest circumscribing sphere (of radius @), we write the
external field (the excess pressure) as ¢ = ¢ + u, where u1s
a radiative function; the internal field 1s nonsingular. For kr
and r/a large, the scattered wave u has the form

u~h(Argk), gik) =g(~k —f),

HY)y=ev/iy, @
with g as the dimensionless scattering amplitude and
]g(r,k)!’/ls 2 as the differential scattering cross section, Re-
smctmg discussion to lossless scatterers, the energy transs
fcrred via interference of ¢ and u in the forward direction

(& = &) is specified by

~Reg(kk) = 21gBRE,
1 1, ("
— ] dQUE) =2 —
V//::hf (i) 4”'[; dgz:J; dfsin 6, 3

where.# is the mean value over all directions of observation
f The total reradiation, the scattering cross section 0, 1s then
o(R) = (4a/k ) Alg (R P = = (dn/kDRe gk k).
%)
Allseattering amplitudes we deal with satisfy the reciprocity
theorem g(f,k) = g( —k, — £) and the forward scattermg
theorem (3), as well as other relations discussed' earler,

If the obstacle’s center is displaced tor = b, then u(r) is
replaced by u(r — b)e* with u(r — b) ~gh(A |r - b}) for
large & [r — b]. For r» b, we have [r — bj<r — b, and for
kryl,

u(r = b)er* ~h(kr)ge*E =P = fkr)ge s, (29
with 6 = k kb and A = Afb as the incident and radiated
phase shifts introduced by the displ. t. When conven-
jent we dec k (the propagator) as

h=j4in j=sinY/Y, n= =~cos¥/Y, 4)

where (h, jn} = (hEP, jouno) are the standard spherical
(Hankel, Bessel, and Neumann) functions of order zero.

For the sphere,® in terms of Legendre polynomials
P, = PS, Rayleigh obtained

A

gER = 3 0P (k)
A=Q

_i@en+ b, _ntt 2
T 1=ib, Leiy,

The scattering coefficients a,, are well known,*” and general
results for b, = 1/y, and special cases were discussed be-
fore.® For lossless spheres, the ¥, are real,® and
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—Req, more =l (5a)
Taking k as the polar axis, we have’
. n 1
B @R R =1 [ PORO%
.

6»;:’ By e —
_-Z-n_—}«l.' P (kk) =P, (1)=1
(5b)

It follows from (5a) that g of (5) satisfies (3). The scatter-
ing cross section (3) is

4r « laf 4z
‘,:.I:?z.z_;"rl_: --k-?ZRea,. (5¢)

Equwvalently, we may write (5) as a set of modes
Ja (BK) =4a,P, (%),

gk =S LGk, fER ===, (6)

satisfying the orthogonality relation for spherical harmonics

AR fEER) =0, for nzw. (62)
Substituting g of (6) into (3) and using (6a) yields
AT VSRR = =Re 3 £, (k). (6b)

Forms (6)~(6b) also follow for more general shaped obsta-
cles by expanding g in terms of Yy (#) == P (cos 0)¢™* and
Y (k) with P as the associated Legendre function; for
general harmonics

1
AV ED) =0+ PHOPLCIE

- snn"sw‘ (14 )} v —
Tmdl (new Pa(l) =8
(6¢)

A special (but not unique) aspect of the completely symmet-
rical case of the sphere, is that from (5a) and (5b),

AR = = Ref, (RK), (6)

i.c,, each mode £, satisfies the same relation (3) as g. From
(6a) and (6b),

AR 2 ER) = = 8, Ref, (kK) )
with scattering cross section equal to

o= —%2 Re/f, (k,k). (7a)

To display less symmetrical cases for which (7) applies,
we wntetb=expansion theorem? for the Legendre polynom-
alas

s 5 {(n—v)
P, (k) = PPl 42 ¥ ———=P:P} cos v(gp—f)
! 2w ®=8
=3 zr@h, )
v O

PPy =Py (cos0)Pr(cosa), Zy=2Z% +2ZY,
where e and o indicate cos ¢ cos 3 and sin vp sin v85.
From (6¢), we have
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AZGERIZ Y (ER) = 8,,8,08, Q-+ 1122,k k),
(7¢)
wherei=¢ or 0, 5o that the result also holds for Z ;, and for

any set Z, (,k) of one or more of the Z;, components of
P, (k). Thus (7) applies for any term of

2n 41
14,
where I, is real, and (7a) applies for the sum, This form
provides a prototype for subsequent decomposttions of mul-
tiple scattering amplitudes for regular arrays of monopoles
in terms of more general functions subject to the same con-
straint (7).

For asphere with relative compressibility Cand relative
mass density B ™", exclusive of either B=1or C=1, the
correct leading terms® for smalt ka = x follow from

S4Z,ER), 4,=~

d)

o= do®C 3B 42)
TREC-n" T TRAB-" @)

Yo = O(x=1=2),

For the excluded cases, if only B=1, then, in general,
Yo = O0(x=*=), and y,=0(x~*) dominates; if only
C=1, then, in general, ¥,=0(x"%), and 7, =0(x~?)
dominates. { Analogs of the first with T, = O(x™*~*) arise
subsequently. ] If both B~« 1 and C~+ 1, orif a0 (and con-
sequently x—0), then ¥, ~ w0, @, -0, and g vanishes for the
trivial case of no obstacle: there are no singularities in the
problem,

The ngid sphere corresponds to B = C=0in (8); then
Yo= = 3x73, y, = 6x™, and all , except ¥, are positive.
The free surface (pressure release) case corresponds to infi-
nite Cand Bin (8), with 7o = —x~'and y; = =~ 3x~% s0
that ¥, dominates; all y, are negative. { The difference insign
of O(x~'~?") terms of T",, that arise subsequently facilitates
interpretation of multipoles as either rigid or free.)

If Cand B are finite but very large, then

3-xC_xi—=¥

3
fmssm=s—m—=y n=-5 (%)

with resonance (y=0) at x=x, = (3/C)'3, where
ag = - L. For x/x, = X increasing from zero, the normat-
ized function yx, = (1=X?)/X> decreases initially as
X 3, vanishes at X' = 1, has its minimum value — 2/3v3at
X =3, and then approaches zero as = X =1, The bench-
mark values

y=x¥/x} 0, =1/x (8b)

(with corresponding |a,} = x*/x%, 1, x) highlight the behav-
10r at very low frequency, the resonance frequency, and the
higher frequency pressure release range. From ja,| zx* we
have |a,/ag| =x2,x},x% the smallness of x? provides a crite-
rion for neglecting the dipole as well as the higher-order
terms of the monopole. (We include a; only in Appendix A
to illustrate the simplest monopole-dipole coupling effects
in multiple scattering.)
The primary development is based on

i X x? (3)1/2
= ——— y= , x.={=) .
% 14y Y x* *e C/ ®
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The corresponding [a,)* = = Re g, = (1 4 #*) " isa max-
imum at resonance:

x=Xx, G=a,= -1, lo =1 (9a)
The half-power values (Ja|* =}) are at x, =x, £x5/2,
and the half-power peak width w, = x,, -~ X.. = x? 1s nar-
row. In the pressure release range, the scattering cross sec-
tion ¢ =4mja,{*/k*? approximates 4ma® = o°, the surface
area of the sphere (fwice the asymptotic high-frequency val-
ue of o based on the complete g, and four times the geometri-
cal cross section); the scattering cross section at resonance

0, = 4n/k? = 4na*/x} = 0°/x} =0°C/3 (9b)
1s orders of magnitude larger.
For numencal purposes we use C == 1.589%10* and

B~'=13x10"? (appropnate for an air bubble 1 thé
sea)™'® to obtain

X, = 0013740, 0,=53000°= 212X 10°7a%.  (9¢)

Form a, of (9) suffices for x<0.1, but with increasing x
additional coefficients 4, and more complete forms of a, are
required. The values in (9¢c) correspond to the leading reso-
nance, the largest peak of ¢ and the lowest resonance fre-
quency (the first for the monopole); the next peak is

22 14.20%at x2:0.46 (the first resonance of he dipole). For
X increasing, a double infinite set of values x,,, lead to
¥» =0 and a, = — (21 4+ 1) with associated radiation
0°(2n + 1)/ (X,m )? corresponding to the mth resonance of
the oscillator represented by a,. The significance of subse-
quent peaks depends on the background radiation of the oth.
ermodes; detailed numerical resulis are available,'* Thus, in
general, the form a,, (¥, ) represents an oscillator and g rep-
resents a sum of coupled oscillators.

B. Many obstacles

A bounded array of s = 1 to ¥ obstacles is specified by
the 1solated scattening amplitudes g,, and the locations b, of
the centers with respect to r = 0, such that V and b, <6 are
finite. For r3 b, the scattered part of the solution external to
all obstacles (¥ = § - %) satisfies*

2R ~RENI GR), FER) = I (—k D),

(10)
with & as the scattenng amplitude of the array. For lossless

obstacles the scattening cross section Sth) of the array ful-
fills

Stk) = (dask?) 4|9 (BRIP = ~ (4n7kHRe ¥ (Rk).
(10"
These are the same forms as (2) and (3'): the array consti-
tutesasingle collective obstacle with scattering cross section
S(k).
As discussed before in detail,' we can decompose # as

Py N a a

2k = 3 Ur—b)e% &, =kb, = kkb, =5,(k)
sl

an

where U',, a radiative field everywhere outside of obstacle 5,
depends on the locations and properties uf all obstaules in the
array, For r/b, and kr large,
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U,(r —b,) ~h(k [t ~b,]) G, (B:k)

~h(kr)e™ ™G, (t.k),
A, = kivb, = 8,(P), (12)
where G, (the multiple scattering amplitude of obstacle-s

within the array) reduces to g, with increasing separation
kb, —b,| = kb,, of1ts neighbors. In terms of G,

N i N PN aa
@k = Y 6@k, Fkk =3 G (kk.
EES |
(13)
Various functional representations [integral equations
(1:34), algebaric systems (1:42), etc.] for the auxiliary am-
plitudes G, in terms of g, and b, — b, =b,, = b,;b,,, were
derived and applied' to construct & or % for determining
the observable scattering characteristics of bounded and un-
bounded arrays.
The simplest problems involve only monopoles g, = a5

and G, = D, (k). Then the self-consistent algebraic system
(1:44) reduces to

D, =d} (1 +3 D,h(y,,)e““’"),
et} (14
Yu=kbpkd=y, 8,=6,=86 =kb,=yb,

as follows directly from elementary physteal consider-
ations." For increasing , all propagators h{y,, ) tend to zero,
D, ~ag, and J reduces to the single scattering approximas
tion,

Form {14) 1s based on the 1solated monopole wave

uP(b,) =u,c"s‘=a(',h(k{r-—b,$)c"s' (14)
and the corresponding auxiliary wave

U,(k=b)e* = D,k ¢ = b,|3¢™, D, = D, (k).

(15)
We expect (14) to apply for b,, large enough compared to
the sum of the respective radii of scatterers sand ¢, but analy-
tical criteria for validity require more complete forms of 4,
and U, that include higher-order multipoles. In particular,
the closed form solution (1:72)~(1:75) for the doublet of
two different spheres, each characterized in isolation by a
different monopole plus dipole, provides criteria for the
simpler cases of two different monopoles (1,63) as well as
for two different dipules (1,69 ). See discussion after ( 1,75,
In Appendix A, we apply (1:75) to consider the effects of
monopole-dipole coupling on the resonance frequencies of
the doublet of identical monopoles.

Il. REGULAR ARRAYS

The simplest finite arrays correspond to obstacle centers
at the vertices b, = bb, of regular polygons or polyhedra on
a sphere of radius r= b; for these b, =0 with constant
b, b, between nearest neighbors. Each array has m<N /2
different values of b, »d known explicitly in terms of the
smallest (an edge of one of the regular figures ). A regular
array of identical munupules is paruivlarly simple. The D,
obtained from
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D, (k) =a0(l +3 D,(l‘i)h(y“)e"‘s"),
t

=3, v (16)

t Iy
are highly symmetrical, and the array amplitude

S ~ Y
G@k) = Z{ D, (k)e'®-22 an

reduces to a set of m -4 1 collective orthogonal modes F,
that satisfy (6) and (7). Thus

A ” o ~ A
@k = 3T F (1K), F ik =F(~k=f),
LY

(18)
LE,(RROFEER) = =8, ReF (k) (18
where m - 1 is the number of distinct eigenvalues of the
matrix for the system (16). .
We analyze seven arrays for N = 2 to 6, and arbitrary k
and #: the doublet, triangular, and tetrahedral arrays
(m = 1) are specificd completely by two modes F and Fy;
the square, pentagonal, and octahedral arrays (m = 2) re-
quire a third Fy; and the hexagonal array (m = 3) also re-

quires a fourth F,. We obtain & (,k) as well as the array
scattering cross section

S(K) = R 4u/k? = Ro (x./%),
R= =Re (k) = — T Re Fo (kk) = T R,.

(19)
The fina! form of S is normalized with respect to isolated
monopole resonance values to facilitate comparisons, For y
increasing, R tends to N Jag}* and S tends to No. The maxi-
mal value of § (and the associated values of y = kd and
x = ka), and the maximal shifts of x from x, that yield
§'=0(0, ), are included for all cases,

The collective array amplitude  constitutes the only
observable scattering amplitude in a medium free of other
obstacles. An individual F, may constitute an observable in
a subsection of space defined by an appropriate set of image
planes through r = 0; several examples are included. An in-
dwidual D, is not observable unless D, = D, the special
cases of symmetrically excited planararrays® for which & is
proportional to D, (Numerical computations® for an indi-
vidual D, do not represent physically observable data.) The
D, contain additional terms that cancel in the sum &; a
simple example is given in Appendix B.

Inorder tointroduce notation and terminology, we start
withnormalincidence on planararrays,’ and then sketch the
commpon features of the general mode development for arbi-
trary k for all arrays analyzed in Sec. 111,

A. Symmetrical excitation

The closed form solution of (16) for symmetrical distri-
gutions on a circle normal to the direction of incidence (say
k == ) was given before.® For such cases (Z+b, = 0), the net
excitation of each obstacle is identical, and consequently, by
inspection,
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228 ’
D,=D= : a,,;?’"'_B' =3 h,) =)
Q0

as discussed after (3:14). The sum 1s independent of one of
the two interchangable dummies, and we may take, e g,
s= 1and sum over ¢ = 2 to NN, or the converse, etc. The y,,
for regular polygons are known constants times y so that 77
is a known function of y. For y increasing, 57 tends to zero
and B reduces to a,.

The corresponding array amplitude equals

N s
Y@ =By =BT e G(22) =NB.
-1
' (20)
Since - A, =8,(—1), it folicws that
G (£,3) = (=12, —~ 1), as may also be obtamned by direct
summation of D, ( — ) = D, [e™"] of (16).
Decomposing the weighted sum of propagators into real

and imaginary parts, 7°(y) = 7 + LV, we generalize the
isolated scatterer formag = — {1 4 fy(x)) " by

B = = {1 iy 47!

= = 1 f ot iy AN

= — (W1 4iD)],
Wel4F, T=(y4+0VW @n
ReB= — [W(1 4]~ = = W|B],

W=l +z'j(y,,). (21a)

where W= W(y) and T = I'(x,y).
The corresponding scattering cross section is propor-
tional to

MG G = B !

Ee-m,

=BE(V+ S Te),

where &, =y, i+b,,. Toevaluate.e™, we take b, as polar
axis and obtain

1
V//exp(’yuf“bn) ='%‘J. cos(ysl;)d;
-1

s
=2 iy, e2)
Ya
(which also suffices for all averages in subsequent sections ).
Using (22) in (21b), and then (21a) and (20a),
ANG GFDP = B'NW = ~NReD
= ~Re Z(2,2)=R(x))
23)

shows that & (#,2) satisfies the required forward scattering
theorem (3).
We have

R(xy) = N[(1+ ) (1 +TH}
<N+ F)'=R(), (232)
as well as |7 (2,2)|< R(p). We regard x = ka (the normal-
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ized frequency) as the variable, and x/y = a/d = p (the
packing factor, p<1/2) as the parameter; however, when
convertient we take both x and y as variables, All resonances
correspond t0 I' = 0, ~ F(2,2) = R(p),

x2

—-—-L ,):2 = -—-—-—c___... s
1¢,7(n° 1= x 473y
A =S nr), v =-§-, (23b)

where R(x/p) vs x is the envelope of the magnitudes for a
given value of p. The peak magnitude R = R  isdetermined
by thevaluey =y, that minimizes 1 - & (); theresulting
value (v, ) then specifies the associated frequency
X=X5. To N=24 we find y, >34, FWa)s ~05
(which also holds asymptotically for all N}, and XX, to
within 0.2%; consequently —Re & == |91 <28, and
§<2Na,. The maximal shifts in resonance frequency from
X, thatyield § = O{0, ) arise for small y = x/p. We reserve
furtherdiscussion ofsymmetrically excited periodicring dis-
tributions.

Ry =

B. Arbitrary direction of incldence
From (16) for arbitrary k,

- )
D (k)%= 3 .EL’L(_‘?_)_, 24)
awe N

where 77 (6) isa weighted set of exponentials exp(i5, ). The
B, have the form in (21 »

B, =B,(J,) =a,/(1 ‘aozpn)

= = [N
Wo=l+/, I.= (A0 W,,
ReB, = — W,|B,)%, (24a)

With 7, = /" 4 L1, as a weighted set of propagators
h(p,); in particular, How= Z'h(y,,) generalizes ¥ of 20)
to include polyhedra. From (16), E,D.e"" = BOE,c“"
= Bl

X, ~
13 = ¥ "=, (8), ¥ 15 =0, for n#0;
=1 =1

$ 16 = e, (4b)
LT

The 7§ are independent of s, and the other 77, consist of
differences of exponentials whose sum over s vanishes; the
last equality follows from (24) because D, and B, —a, as
Yoo Substituting (24) into (17) yields (18) with

F k)= B,L, k)N,

LRy =L, (=& )

=R LB =TI (=0, (25

In the forward direction, L (kk) = L~k k)
= L ¥(k,K) is real. Since D, and B, —a, for pos oo, the two
forms (17) and (18) of & yield

< L’l(il"z) — 4 K8, - &) Ln(ﬁﬁﬁ)
xgo N —,2| ¢ ’ ZT-—N. (253)

[
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We write Lo(f,ﬁ) as

Ly () € — A) =l d iy, =11, (25b)
and express the other L, in terms of

=T =T, T-d)=Ts, (250
as weighted sets of the product form T, T, (butalternative

groupings may be used). Applying (22), 1t can be shown for
all cases considered subsequently that

AL BROLE R = 6,, NW,L (k). 254)
Consequently, the F, (£,k) are orthogonal in the same sense
as the spherical harmonics, and the modes satisfy (18),
Each coefficient B, represents an oscillator essentially as
discussed for (21)ff, and & represents a set of oscillators
(coupled in general). We could expand all L’s as infinste
subsets of spherical harmonics, but the expansions 1n terms
of exponentials are simpler and phasize the tial sym-
metries of the arrays.

In the forward direction, I* = I ¢ and 7" = T* and

BnLA (f‘(\,ﬁ) - Vn
Y Wolyir,)

Fy (ki) = 2B,V (k) =

Vo, $vdo=n, (26)

Al
where the ¥, involve weighted sums of appropriate subsets
(€) oFcos 8, == cos(y, kb, ). The forward scattered array
amplitude veduces to
V

W,(14i0,)"
~Re I (k) =R=T R,

FER =3BV, = =3

R, = = Re £, (LK) = ¥, (ky/w, (1.4 T2),
R <V /W, (26a)

With W, = 14 7, and T, = (Y 47,0/ W, asin (24a).
The scattering cross section S of the array follows directly
from (19) in terms of R. The sum 2V, /W, provides an
unrealizable upper bound for & and for |9 (k&) }- For all
cases analyzed numerically, R is less than 2N, and §'is less
than 2Xo; all values are co patible with el y phys-
ical considerations of interference processes, .

Fou each array, we also obtain the average of ¢ (kk)
and of S(k) over all orientations, or equivalently over ali k,
Using (22) with # replaced by k converts the integrais of
€05 8, 10 j(p,,), and the average of ¥, (k) 1s given by

7, =-4—l;fdﬂ(ﬂ)V,(ﬁ) =v (4 F) =v, W,

S=a (260
5.0

where v, is an appropriate integer, The averages of & (kk)
and R (k) satisfy

D WAy N
(i,
v (26¢)
R=SR, =St R, <r, R<N.
283 a+rdy’
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In general (except for m = 1), R = Nis realizable only for
Y~ and y=0, with p increasing, I', ~y and R~N/
(1 - #*), the single scattered value.

For smally = x/p> 2x, the L, and W, are 0(3*"), and
L,/NW,~2n+ 1)Z,withZ, as sets of the sphencal har-
monics Z, associated with P, (£k) as mn (7b)ff. Then the
F, reduce to collective multipoles

F, (1K) = 4,Z,(5k),

d,= = QCn+ /(1 441,),

n

with T, as a simple function of x, p, and x,. Thus, smce
Ay = ¢,/y + O(y), we have

Ly = (74 e /pKp~
=[x =2 = pe) K, PP (27a)
such that ¢, is negative, and all other numerical factors ¢,

and K, (with K, = N) are positive; the corrections are
O(x~ "+, Ataresonance, T, =0, 4 = F,,

xi=x/(1=pe,), Fo(iR) = = @n+1)Z,0K),
S, (k) = Q@n 4 DZ,(kK)(1 = pe,)or, (270)
where o =2 X,/ (1 + pleo])? <x, butall other X, > X, Ex-

cept near special directions where a particular Z, can van-
sk, S, == 0(¢,). The half-power peak width

Wy 3#‘2"’”\’”1’““ -PC,.)
=X§“2/K,,Pu(l '-[70.)"‘ 1

= Ot 27c)
indicates that uyis comparavle to the isolated monopole val«
vew, = x} but that all other w, are much smaller; thediffer-
ent widths do not overlap. The frequencies corresponding to
the Jocations and separations of the fine peaks provide dis-
tinctive signatures for diagnostic and related purposcs‘
From (7b) and (6¢) we have Z = ’Z_
== 1/(2n + 1); the number of such terms in a pamcularZ
of(27) is v, so that é = v,/(2n -4 1), and the average of
S, ( I\) over orientation reduces toS = v,.(l ~ p¢, )0, such
that Zv,c, =0, [’I‘hcsames follows fromR of (26¢) for
T, =0; we obtain S, =v,0,(x./x,)? and then usc
(x./x,)% = 1 = pe,.] Thus the averages over orientation
satisfy

i S, = 3 v, (1= pc,)0, = No,,
=0

2
A (5—) =N,
x‘l
an average oscillator-strength sum rule for magnitudes ob-
served at the interrelated resonance frequencies (x, ); the
resonance  wavelengths (A =2a/k,) satisfy
v, A2 = NA L Theintegers v, are the multipicities of the
eigenvalues (1 — g7, ) of the matrix for the system (16);
the trace satisfies 2y, (1 — a,%, ) = N, so that

nx—Zn—.‘

(28)

$ o = @sa)
A=0
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The sum rule is based on 2v, ¢, = 0 which corresponds to
the limit of Zv,p4", () for y=0.

The ials of the nc t behavior of the F,, are
covered by the following. Corresponding to the
{8b) of benchmark valués of ¥ for'increasing x,

[, = 002k, (21 — )04 ~27), = O(x~1 ),

(28b)
where the exponents and signs are discussed after (8). If
x=+0, then & «0; there are no poles or any other singulari-
ties in any such multiple scattering problems that have been
properly analyzed. For all such cases, the collective mono-
poled, = — (1 +1T,) " dommates, and & sz A,. We have

No=X2/x%, ple/x,, = (14 pleh/x. (28¢)
Hf x~0, then |7 Nx*/x? approximates the single scat-
tered value. If ¥ = 0, then Ty corresponds to a collective free
monopole, and the remaining T, to collective rigid multi-
poles. For the free surface isolated monopole range
(y = = 1/x), all collective multipoles are free.

On the other hand, if one of the m - 1 modes is 1n reso-
nance, [, (x, ) =0, then

[ (x,) = & O(x2'=%), for n'2n, (28d)
where the T', (x,,) correspond to free collective multspoles
for n' < n and to rigid for ' > n. For [y(x,) = 0, all the re-
maining modes are negligible. For I, (x,) =0, because
F,(i,k) and S, (k) may vanish for special directions, we
note that the background monopole is determined by

Folx,) = == pllcol €4 )/Nx e (28¢)

C. The field

From (11) and (15), the total field (¢ + %) external
to all monopoles is specified by

A N -~
2k = ¥ h(k|r=b,)D, (kye, (a)
1=l
with D,¢™ as in (24). At the geometrical center (7 = 0) ofa
regular array,

" N N o
2(OK) = h(kb) 3 D =hkb)B, T &
=1 s=1

= h(kBYBolony (8), (11b)

witl Byand I, y, asdiscussed for (24a) and (24b). For poly-
gonal arrays normal to %, the field along the center lhine
(r=2) is given by

U (ZR) = Rk ED) B, (). (1)

For the doublet with axis along, 2, we use 7 =2° 4p° to
write the field in the midplane (r=p) as

U(p,k) = h(kpTF B 2B, cos 8, 8, = kb2

(11d)
More generally for arbitrary r external to all monopoles we
use (11a) m terms of (24) and expand the propagator
h = h§Y as the series
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h(klr—b.])
= 3 @m0, (kr D (kr, 1P (5,

me=0

withr . =randr, =b forr <b(standingwavesinkr) and
conversely for 7> b (radiating waves m kr). Grouping the
various s factors, we isolate the B, and the subsets of spheri-
cal harmonics appropriate for a particular array. Analogous
results for regulararrays of cylndrical monopoles parallel to
z follow from the forms for regular planararrays [e.g., from
(11c) with B, = B as in (20) ] on replacing spherical func-
tions by corresponding cylindrical functions.

1II. ILLUSTRATIONS

Theseven regulararrays for N = 2to 6considered in the
following are grouped for m = 1,2, and 3 under 4, B, and C.
For eacharray the b are listed in Cartesian coordinates, and
D, is exhibited dlrectly in terms of B, (57, )and I, and
T,,; in general, the other D, follow by cyclical interchange.
We then list the modes F, (k) and proceed as for (26)ff
Several examples of image methods are included to facihtate
interpretation of the mode structure that is key to the devel-
opment. We start with a special case of the eatlier' result for
two different monopoles, and give Bo(%,) and B,(7)) ex-
plicitly to provide prototypes.

A. Two collective modes

There are three regular figures for which each vertex
(b, = bb,) is at the same distance d = b,, from the others:
thedoublet (N = 2), equilateral triangle (¥ = 3),and tetra-
hedron (N = 4); for these, bysb, == = 1, = 172, = 1/3,and
d b = 2,13,y8, 3, respectively, Each corresponding array of
monopoles involves only one propagator
hkd) = hip) = h =y +n, and the muluple scattered ar-
tay amplitude of each consists of unly (o cullevtive withug-
onal modes

Gk = Fy(ik) + Fy(ik). (29)

1. The doublet
We take Z as the doublet axis, and work with d = 26,
by=2= —b, 8, =(/2)ibh,
A, = (3/2)ih,, f(-l;. =c0S @, 1"-5. =¢os 0,

From (16) in terms of
1(8) = e 4 ¢, T5(8) = & — &%,
2D|eﬁs' = Bo(W)(8) + B,( — h)T;(8), 30
By(h) = ay/(1 = agh) = — [Wo(1 +1Te)]77,
Wo=1+4j, Fo=(y+n)/W, (30a)
By(~h) =a/(1 +agh) = — [W (L +iT )17},
W =1—j, Ty=(y—n/W,. (30b)

Substituting D, and the corresponding D, that follows by
cyclical interchange into (17), we obtain (29) with
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Fo(#k) = By(M(S)I(— 8)/2=BolI'/2,
Fi(ik) = B = )Y Tyo(8) o — 8)/2
=B Ty, T}y /2. 31
The mode structure was anticpated in an early image
development.** If we write
2F0(i-,f<) =4B,cos 8, cos A,
2F(£,k) = 4B, sin &, sin A,
then, as discussed ongmnally,*! 2F, and 2F; (twice the com-
ponents of & symmetric and antisymmetric to reflection of
either k or f in the midplane z = 0) are the multiple scatter-
ing amphtudes for ¢ inctdent on a single monopole at height
z=4d /2 above rigid ( + ) and free { — ) image planes, re-
spectively, This followed by superposing doublet solutions
for ¢ = $(a) and itsimage & ¢; = & #(7 — @), the wave
specularly reflected from the plane z = 0. (We display only
the key angles for image pairs.) Figure 11.4 shows the image
method, and the present forms follow from ( 11.26) ondrop-
ping dipole contributions,
In the forward direction, A = &, and (31) reduces to
Fy/By=1+C=V, F/By=1~C=V,
C = cos §,; = cos(pke b,z) = cos(y cos @). (32)
Thus
G(kK) = ByVo + BV,
= = Vo/ Wyl o iTg) = Vi/ W (1 T,
~Re J (kk) =R =Ry+R, (32a)
= 1 4 cos(y cos )
A+)HA+T3)

31)

- 1 - cos(ycos @)
SERTI YT Ir )
(32

The scattering wross section follows direvtly from R and
(19), i.e., S(K) = R(k)a x2/x%

The cross section represents the net radiation for two
wupled vsullatuis, The maximium value asses [t axiabine-
den.e, k= Z (@=0";

R, =3.546, y, =1.1467,
xp =001377, S, =3.530,

withy = — 0.357, (The maximum value of {{#}, i.¢,, 3.562,
isabout 0.5% larger than R , ; the corresponding values of y
and x are 1.1073 and 0.01378.) Since Ry = 0.679 and
R,=2.867, mode-1 dominates; R, corresponds toaslightly
detuned mode-1 resonance, and were I, = 0 we would ob-
tain practically the same R and x at p = L15, for which
n=y= ~0355 (As shown in the following, the maxi-
mumof Ry, i.c., R, = 3, alsoarises for k = Zbut at small y
and at frequency x, . for which R, is negligible; R , isabout
18% larger than R, ,.) The largest value of R for both
modes in resonance (I'y = I, = 0) arises for y = 7/2 and
x=x,3then R = — & =3.363 is within 6% ofRA

For incidence normal to the doublet axis, k=0
(a = 90"), mode-1 vanishes to yield to simplest case of sym-
metrical excitation, Then — & , = R,,, and

Ron =2.555, yon =4.4934,
Xon =0013745, $=2.5530,,

33)

(339
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o

withy= —n= —0.048 35. Fory = #3/2 and x = x,, the
result Ry = 2 54iswithin 1% of Ry, (Themaximum R , is
about 39% larger than R, , for polygonal arrays, the maxi-
mum scattering arises for symmetrical excitation ) Here and
in the following, we include sufficient digits to show a trend.

Simple benchmarks are provided by the infinite set of
values for which both modes are in resonance; [ = I', = 0
correspondsto y=n =0at

x=x, y=72 +1)/ 2=y,
Jo) =~y 1=012,..
For such cases,

G

—I=R=(1+C)/A+)+ 1~ C)/(1~}),
C==cos(y; cos ) (34"

which led to the cited supplementary values. For given k,
this same form with yarbitrary provides an upper bound for
all values of R(k) and | & (k,k)], but the bound is realizable
only forthe conditions in (34). The conditions exclude y =0,
so that R <4 for all values of x, y, and k. _

The average over orientation, based on €=/ and
¥, = v, W, as discussed for (26b), yields

I = (14T) = (1 iy~

—ReT=R=(1+I}) 4 (1+THc2 O
corresponding to v, = 14 = . Ifeither mode is in | resonance,
then | <R<2, and if both are in resonance then R = 2, For
¥ =0,andyincreasing, R = 5 /o, increases from 0()%) to 1
aty = 1,t02aty = 7/2, and then oscillates with maxima of
2aty = y,, thelowest local minimum (the first) 1s R = 1.785
aty=2.6.

For small p = x/p, the F, of (31) reduce to collective
multipoles as in (27)MI. Then & = Fy 4 F, = do 4 4,22
with

. I 1
Fomdgm= -—.l—-_., [’0=.i_(r_,_);

14Ty y
3 6 1
F=d,2%= = Z", r ._( ...),
1=4ly = ]-{ui[‘l ¥ l=_v2 T+y
(36)

Z8 = PP =cos Ocos a.
The dipole factor Z{ has rotational symmetry around the z
axs (the axis of the doublet ), The numerical factors ¢, and
K, usedin T, of (27a)fT follow by inspection of (36).
For the collective monopole resonance (To=0),
X2 2} 2w,
l+p l+p  (14p)
I=Fo==1, Si=olx /%) =0.(1+p). (3T)
For the collective dipole resonance (I, = 0),

xb=

(&)

2 )
2 X Xy

Xy = Wy = = wz‘_
Tiep” VT -p Gi-p
Y =Fy= ~3cosbcosa,
S;=30,(1-p)cos’a, S,=0.(1=p),

=5 (8)
38)

with maximum S, at axfal incidence (a = 0). Since F, van-
ishes for @ or @ = 7/2 (1n the midplane), we note that the
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background monopole 1s determined by To(xy) = - p/xy.
Thie peak width w, 1s much smaller than w,. From Appendix
A, we may take p = a/d at least as large as i (agapofore
sphere diameter) with neghgible monopole-dipole coupling
corrections for x,, and x;.

Thus the collective oscillators uncouple for small ¥, and
only frequencies in the neighborhoods of x, and X, yteld
large magnitudes S = (o, ). These frequencies bracket the
isolated monopole resonance value x, < x, <xy. To first or-
der in p the displacements from x, are symmetrical;
Ko = Xoz X[~ X, zpX./2, with separation X, — Xoxpx,.
More generally, the displacements are asymmetrical: X is
closer to x,, and x, is farther from x,. The smgle scattered
peak (2a, atx, ) sphts into two multiple scattered peaks (.S,
and S, at x, and x,, respectively) such that S, 4 8, =20,
satisfies the average oscillator-strength sum rule (28).

2. Triangular array

For the equilateral triangular array, we work with
d=bi3,

by=% 2= ~%+§V3, y= i
8, = (pVBkb, = 8,(k), A, =6,(f).

From (16),
3D = Bo(20)1(B) + By = W[ T12(8) + Typ(8)),
3
I =Y e, (39)
)

where B, invoives 2/ (two neighbors) and Byisthesame as
for the doublet. From (17), we obtam (29) 1n terms of

Fy(BR) = BII'/3,

Fybk) = BT, Ty o+ TuThy + Ty TH)/3,
with/’ = I( = A), etc. The same B, arises as before, because
a free surface image plane through the center of (say)
sphere-1 and perpendicular to the axis (byy) of the other
two, reproduces essentially the same problem as for the
doublet: superposing array solutions for incident
$~ ¢ =3(B) = $(=~p), the B, terms cancel and the
multiple  scattering  amplitude reduces to
Y =G, = BTyT}. Arigidimage plane leads to the solu-
tion for a sphere off the plane and a hemisphere on it; for
¢-+¢, indicent, the multiple scattering amplitude is
9 4G =2BII'/3 4 BTy, + TulT5 +T3)/3.
(The discussion of an “obstacle/barner” half-plane for Fig.
5:12is misleading; the half-plane gives rise to amore compli
cated four-obstacle problem than indicated.)

In the forward direction,

Fy/By=(34+20)/3=V,,
Fi/B,=2(3~-C)/3=7V,.
3 A A
C= ; €08 8yyq 1y = 2 cos(¥kebyy 41 )3
bo) _20F9 ;.
AIZ] =ﬂﬂ‘ b13=Y'
bys 2
In terms of @, = sin @ cos Band a, = sin a sin B of (1),

(40)

(41)

(41a)

C=2c¢o0s (y-zﬁa,) <08 (% a,) +cos (ya,), (41b)
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where caly 0°<a<90°, 0°<F<30° need be considered. Thus,
we obtain (32a) with

Wo=(1+2), To=(y+2n)/Wy

4
W= (1=j), Dy=(y=n)/Wg o)
342C 2(3~C)
= , Ry= 41d
CTIW (T ' 31T e

The maximum value of R arises for symmetrical excita-
tion k=2 (incidence normal to the plane of the array);
=0, and mode-1 vanishes. Then Ry = — &, , and

Ry = Rop =5.305, y, =44934,

x, =0.013749, S, =5.2980.=5.30,,
withy= —21= —00967. Forx =x, and y = #3/2, the
value R = 5.212is within 2% of R, .

Fora == 90" (incidence in the plane of the array), mode-
1 dominates. The largest maxima arise for k= b, (e.g,
B=30"), C=cosp-+2cos(y/2):

R(b,) =379, p=1384, x=001375, S=

(42)

3.7880,,
(42a)

(with R, =0.8649, Ry=2.929, and yxnz:0.134); for

xs=x, and y=7/2, the result 3,764 is within 1%. The

smallest maxima arise for k=b, (eg, B=0",

C=1+42cos(yvV3/2):

R(l;,) =3,791, y=1379, x=001375, §=23.7850,
(42b)

(with R, =0.8648, R, =2.926, and y=nz= ~ 0.138); for
x = x, and y = 772, the result 3,758 is within 1%. The dif-
ferences between (42a) and (42b) are minor, The maximum
value of R for arbitrary 8 (and a = 90 corresponds to a
slightly detuned mode-1 resonance; practically the same val-
ues of R follow from I'y = 0, ¥ = 1. The maximum S, for
a = 0*isabout 40% larger than the maximaof § fora = 90°.

Both [, and Ty vanish for the conditions in (34); then

342C  2(3=C)
G =R= aonn) 43)
(42 =) (

which Jed to the supplementary values in the above. For
given k, this same form with  arbitrary provides an upper
bound for R and |¥}.

The average over orientation based on C = 3 yields

= F = (1 4iTe)™ +2(1 +10 )™,

R=(14+T5) 7 4201+ TH7'<3,
cortesponding to vo = land ¥, = 2, If [, = 0, then K> 1;4f
[, = 0,then R > 2; and if both modes are in resonance, then
R=3 correspondmg to the average of (43). For y = 0, and
yinereasing, R = 5 /¢, increasesfor O(%) to 1.018aty = 1,
to 3 at p=7/2, and then oscillates with maxima of 3 at
y =y, the lowest local minimum is R 2.52 at y~2.87,

For small y = x/p, corresponding to (27)ff, we obtain
I = Ay(To) + AT Z] interms of Ty of (36) and

To=iy~2/p),

(44)

(45)
Z} = P} P} cos(p — ) =sin O sina cos(g — B).

The present dipole is planar, Z depends on the angle
between the projections of # and k on the plane of the array.
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For the collective monopole resonance (I'p = 0),

2= X o= 3w,
ST’ T (R (46)
Y=F= <1, S=0.(1+2).
The dipole resonance specified by (38), now yelds
Y =Fy= 32}, S5 =30.(l~p)sin’a, @

= 20‘.({ —p).

The amplitude F, = -3 sm sina cos(p — B) vanishes
for @ or @ = 0 {¢ither k or # normal to the plane of the array)
or for ¢« 3= 4 m/2; the background monopole, deter-
mined by Fo(x;) = ~ p/x, 15 the same as for the doublet,
The maximum of Sy arises for incidence i the plane of the
array (@ = #/2), and S, is twice that for the doublet.

To first order 1 p, the displacement of X, below x,. 1s
twice that of x; above x,, and the separation of the corre-
sponding peaks S, and S, is 50% larger than for the doublet,
i.c., Xy ~ Xy 3x,p/2. The single scattered peak (3o, atx, )
splits into two, such that S, + 5, = 3o, satisfies the sum rule
(28).

3. Tetrahedral array
We work with d=b(8/3)"% 8, =p(3/8)"kb,
=§,(k), &, = §(f) in terms of
ViR 4§+t k=§-3
—kdF=d —R—F43
fors =1, 2, 3, 4, respectively. From (16),
4Dy = By(3II + By{( = 1) (Tp ¥ Tia t Tha)s

4
Izzc'b’.
T

where B,involves 3% (three nesghbors) and B, 1s the same as
for the doublet. From {17) we obtain (29) with

Fyik) = (B9,
1-',(;,\‘()-:%‘.22 T, =20 5 Tl

such that 2*Q, = Q)+ O+ Qu + Ot Qo ok Qo
The same B, arises as before because a free surface image
plane through the centers of two of the spheres and perpen-
dicular to the axis of the remaining two reproduces the same
problem considered originally for the doublet. (A ngid im-
age plane leads to the solution for a sphere off the plane and
{wo hemispheres on the plane.)
In the forward direction

Fy/By=2(2+C)/d=V, F/B,=2(6-C)/4=V,

(48)

(49)

(50)
C=J*cosd, =3+ cos{ykeb,);
_Yii bu] _X4d
vl (50a)

Combintng the six terms of C (corresponding tu the six edges
of the tetrahedron), we have
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C/2=c08 5, cos &y + cos 5y cos &3 + cos &3 cos £y,

& =ya V2 (50b)
with @, as in (1’); we need consider only 0°<a<90",
0'<F<45". Thus, we obtain (32a) with

Wo= (143, To=(y+3n)/Ws

50¢

Wy=(1=p), [y=(p—n)/Wy; 00)
24C §~C

Ry= , Ry= . (s0d

CTaw Ty N 2w+ D) 00

The maximum yalue of R arises for maximally symmet-
fic excitation k= b, perpendicular to a face of the corre-
sponding tetrahedron, e.g., k= =B, (at a=tan"WV2
2:54.74',3 = 45") perpendicular to the three edges of the

face by by tby=0. For  such  cases,
C=3 4 3eos(Wf273),
R, =R, (h,)=592, p, =4746,
A A (by) I (s1)

x, =0013738, $, =590,
with Ry=3.76, Ry 2.16, =~0.021, and n= — 0.007. (The
maximum value of §Z] and corresponding x are practically
thesameas R, andx,, and arise fory = 4.747.) The result
R= = J =5918forx =x, andp = 73/2 for both modes
in resonance (Lo == 0) is within 0.04% of R, and
[.‘f loans IF k = b, is along one edge, and therefore perpen-
dicular to the opposite edge (e.g. k=Dby, perpendicular to
b;,), then C= 14 cosy+4cos(y/2), and the largest
maxima are

R(b,) =505, p=1l21, 1)

x220.013 735, S=5.050,

(with Ro=4.29, Ry=0.76, y==0.053, and nz — 0.019).
Mode-0 dominates, and the values are practically the same
as for the mode-0 resonance (y = = 3n =0.057) at the
same value of y. I{ both modes are in resonance for x = x,
and y=77/2, the result ~ & = R = 5,00 is within 1%.
Forkalong a coordinate axis, and therefore pctpcndicularto
two mutually perpendicular opposite edges (e.g., k=2 per=
pendicular te both byeand b,,) we have C= 2 + 4 cos(y/
v2), and the largest maxima are

R(2)=4.84, y=10.54, x=001375, S=4.830,

(51b)

(with R,=373, R, =110, y= —0.106, and n=0.0417).

Mode-0 dominates, and the values are practically the same

as for the mode-0 resonance (y = —3n= — 0,125) at the

same value of ); for x=x, and p=77/2, the value
= 9 = R = 446is within 4%.

Both I, and Ty vanish for the conditions in (34); then

~2HC_ 6-C
2043 20-)) "
which was used for the supplementary values in the above,
This same form for arbitrary y provides an upper bound for
Rand [Z].
The average over orientation based on C = 6] yields
= F = (1 il) " e 3(1 44T,

- (kk) = R= (52)

(53)
«ReZ=R=(14+TH" +3(1+TH"<4
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corresponding to vo=1 and v;=3. If y= —3n, then
R> L if y = n, then R>2; and if ¥ = n = 0, corresponding
to the average of (52), then R = 4. Fory = 0and pincreas-
mg, R mcreases from O(?) to about 106 aty=1, to 4 at
y=7/2, and then oscillates with maxima of 4 at y = y,; the
fowest Jocal minimum is R223.247 at y = 3.13.

For small y = x/p, we obtain & = 4, 4+ 4,Z, in terms
of 'y of (36) and

=Wy =3y), Zy=2%42Z)= P,(l"'f(
The monopole 1s the fourth of the sequence specified by
Pov = (/M)y= (N=1)/yl, N=1234 (54)
that we have considered. The present Z, represents asphen-
cal dipole with rotational symmetry around the direction of
incidence.
For the collective monopole resonance (I = 0),
2
N Xi 4w,
X5 = y W= ,
Ty’ T (e
GaFy= =1, So=0,(1+43p).
The dipo]e resonance specified by (38), now yields

GEK) = Fk) = =3k, S =

(53)

=5, =30 (i =p).

(56)
The present S, cannot vanigh, so Fy(&,k) cannot vanish for
all Fata particular value of k. However, since Fy vamishes for
i perpendicular to k. the background monopole determined
by Do(xy) = = p/xyisstill of interest; (54°) shows that the
same value of I'y arises for y == ~ 1/ for all three cases
N=2,3,and 4,

To first order in p, the displacement of x, below x,, 1s
three times that of x, above x,, and the separation of the
peaks S, and S, is twice that for the doublet, x, - Xo = 2px..
The single scattering peak (4o, at x, ) splits into two, such
that S, ++ S\ = 40, satisfies (28).

B. Three collective modes

The square, pentagon, and octahedron (N =4, 5, and 6
vertices respectively) are the three regular figures specified
by only two different separations of the vertices b, = bb,;
the smaller separation represents an edge d, and the largera
diagonal d'r. The associated regular arrays of ¥ monopoles
involve only two propagators h(y) and Aipr) in three sets
¥ ., and the multiple scattering array amplitudes consist of
three modes

Y@K = Fy(Bk) + F(BK) + F(5,K). N

We consider the square, octahedral, and pentagonal ar-
rays successively. The first two yield a common B, form (as
in Sec. IIT A but in terms of the diagonal propagator), and
also a common form of B,.

1. Square array
We work withd = b2, dr=dv} =52, and
bo=g= =y b=9=~b,
8, = (Db, =8,(k), A, =8,.
From (16),
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4
D% =Bl + BT, + BT+ To), I=3 &%
[
(58)
B, =B,(#,); Ho=2h(y)+h(W2),

Hy= ~h(yWh), = —2h(y)+h(y2),
where By and B, are full analogs of the versions in Sec. IIT A,
From (17) we obtain (57) in terms of

Fo= B/, Fy=(B/2)(TysTis + TasT4),
Fy= (By/4)(Tip+ T (T + T3),

(58"

(59)

withJ’ = I( = A}, etc. The B, areexpressedin terms of 57,
and ¥, and then 1n terms of W, and T, as in (24a).

Equivalently,

Fo/By= (cos 8, + cos 8;)(cos &, + cos Ay),

Fi/B,=2(sin§; sn &, +sin§,sm 4,), (59")

Fy/By = (c0s 8 - c0s §;) (c0s Ay ~cos A,).
Essentially as before, B, can be isolated by a free surface
image plane containing the axis of one diagonal pair and
perpendicular to theaxis of the other; for such cases there are
no contributions from the remaming two modes. Thus su-
perposing array solutions for ¢ =g, = @(8) =~ ¢( = 3)
yields 4B, sin 8, sin 4, as the multiple scattered amphtude
for ¢ incrdent on a single monopole at distance b from a free
image plane y =0 (and — ¢, as the specularly reflected
wave), Similarly 4F, (or 4F,) is the multiple scancrjng am-
plitude for @ incident on a single monopole, say at b, = %,
on the axis of a z-edged 90™corner reflector with rigid (or
{ree) sides along 4 ( & 45°) = (% & §)/v2, corresponding to
two infinite rigid (or free) image planes intersecting at right
angles along the z axis; for either case, there are no contribu-
tions from the remaining modes. Results for the rigid ( + )
and free ( — ) corner reflectors are obtained by superposing
array solutions for @y -+ @, =k ($y + #;) with respective ar-
gumentsequalling,e.8., 8 s+ n/4, 74 B + /4, ~B 47/
4,7 = f + n/4;forcither casc, the plane wave that emerges
from the corner has the same sign as that incident. A mono-
pole on the axis of amixed corner reflector, one side rigid and
the other free, corresponding to superposing array solutions
for ¢y = ¢z = &, + &y, also serves to isolate By; the other
modes do not contribute, the multiple scattering amplitude
reduces 0 4B,(sin §; —sin §;)(sin 4, —sin 4,), and the
plane wave emerging from the corner differs in sign from
that incident.

In the forward direction

F/By=(24+C+C)/2=V,,
E/B=2-C=V, (60)
F/By=(2=C,+C)/2=V;
4 A A
Cy= 2 0S8y p 1y = z cos(ykeby, 4 1y )
=405, 08 &y
\ (60")
C= ; 088,02 = 3 M(Mk:f’x(uz) )
=082 §y -+ ¢os 2,
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with 8, = (/V2)a, = ¢, in terms of the direction cosines
a,. (Here and in the following, C, and C; involve near and
far neighbors respectively.) For numertcal computations of
the resulting R based on (26a) and the present ¥, and 7%,
we need consider only 0°<ar<90°%, 0°</3<45°.

The maximum value of R arises for normal ncidence
(a = 0), the case of symmetrical excitation for which mode-
1 and mode-2 vanish. Then || = — Re 9 = R,, and

Ry =Rop =7.7225, y, =4.006,
x5 =0013757, §, =7.7030,,

withR o about 30% larger than the maximum for the tetra-
hedralarray (the more regular of the two). Fork = b, along
a diagonal of the square (incidence along the axis of one
diagonal pair and perpendicular to the axis of the other pair,
eg, k=31), we have Cy=4cos(y/VZ) and
C, =1+ cos(3v2). Then the largest maxima are

R(b,) =6.189, y=1897,

x=0013739, $=6.190,
(with Ry =0.633, R, = 1 973, R, = 3.583). Mode-2 domi-
nates, and mode-01s the weakest, the result 1s about 20% less
than R, . The maxima are even smaller fork = by, along an
edge of the square (incidence along the axes of two pairs of
near neighbors and perpendicular to the axes of the opposite
pairs, e.8, kVZ =R + §); C, =2 + cos y, C, = 2 cos y, and

R(b,) =5.150, y=4.693,

x=0.013733, S=35.1550,
(with R, = 3.1046, R, = 2.0456, R, =0). Mode-0 domi-
nates, mode-1 is strong, and mode-2 vanishes, the result ts
about 33% less than R , and about 17% less than R(b, ).
_ Theaverage over onentation based on C, =4 (y) and
C, =2/ (¥2) yields the appropnate spectal case of (26¢).
We now have

(61)

(61a)

(61b)

— 2 v,
R= ¥ el dy vy, vy =2, wy=l,
.Z'o (1 T%) ° ' :

(62)

IfTo=0o0r =0, then R> I if Ty = 0, then R, > 2. The
present values of v, times the corresponding 77, of (58)
shows that v, 27, = Oasin (28a).

For small y = p/x, we obtain (27)fT1n terms of

e L(r-al), m 2o

4
3( c.) 1
D=<(y+2t), == (63)
! ¥ ¥ y R, ]
=£0_( .".".) =2—.._1_.-
I, 7 T‘f’y » O v

Z,=1, Z,=Z}=P|P} cos(p—~p),

63’
Z,=23, =} P}P} cos 2 cos 25, (63

with, e.g,, P} =sin @ and P} = 3 sin® 6, The array ampli-
tude ¥ comprises a collective monopole, a planar dipole,
and a planar even quadrupole. The resonance frequencies
are given by x2 = x2/(1 — pc, ), and the half-power widths
w, follow from (27¢) with K, = 1/4,3, 60 obtained by com-
parison of (63) and (27a), We need consider only the reso-
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nance values of F, and S,, and some particular aspects for
thearrdy at hand. (We follow thissame procedure for subse-
quent small-y illustrations.)

Af. the resomances T, =0, wi have
Y =F, = = (2n + 1)Z,. For the collective monopole

Fo= =1, S=0.(1+ple)). (64)
For the collective dipole,

Fi==3Z}, 8=30.(1=pc)sina,

— 6
Sy =20.(1 = pey) €

where F, was discussed after (47), the present background-

monopole is determined by Ty(x;) = ~ (p/2x)(1 + 1/
v2). For the collective quadrupole,

FZ =~ 52%0 SZ =1A’ 0¢(1 —Pcz)sin‘a cos? 2ﬁ»

Syz= 0 (1 = peyd.

(66)
The mode £, = — (15/4)sin? 6 sin® &t cos 2 cos 23 van-
ishes foreitherror 0 =0, 0r foreither Bor g equat toan odd
multiple of #/4; these valucs include the cases k = b, dis-
cussed for (61b). The background monopale is determined
by [glx;) = ~ p/x, (the same form as in Sec. 1 A). The
maxima of §;, ie., (15/4)0,{1=pc,), arise for k= &,
(nlong a diagonal of the square), The peak wudth w, de-
creases marhedly with increasing .

T first order in p, the displacements of the resonanco
frequencies  x,  from x, are gwen by
(Xa = X J2/pX, = oy — 2.707,0.707, 1.293; the dis-
placement uf ag below x, 1s more thar 3.8 times that of 4,
and morc than twice that of x; above x,. Since
ey =6+ 26 ¢y =0, the sum IS, =0, salisfies
(28).

2. Octahedral array

For the regular octahedral array of six monopoles, we
supplement the set b, for the square array by two additionat
clements by = = by = % to abtain

6D,¢% = Byl + B3Tyy & BTy 4 Tk Tis + Doy
[

I=3 e (61
[

By= By(#y), o= 3h(p) + h(V2), (67)

where B, now involves propagators from five neighbors, but
B, and B, are the same as in (58°),
The corresponding version of (59) is

6Fo/By= 11",
R/By =TTy 4 TasTh + TsTh
6F/By = Ty 4 Ty ) (T, + T%)

F AT+ T3e) O ) 4 (Tas -+ Tigd( ),
where, for brevity, { )’ represents the form on its left with
:;gument — & insteed of &, Similarly, we generalize (59')
3F/28, 7= (008 §, + cos 8, +co5 )

X(cos Ay 4 cos A, -+ cos Ay),
F\/2By = sin 8, sin A, + sin &, sin-A, -+ sin Sesin Ag,

{68)
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3F,/2B; = (c0s §; — c05 8,) (cos A, ~ cos A,)

+ (cos §; — cos §)( )’

+ (cos &, =cos §5) ( ) (68)
The discussion of (59°) in terms of frec surface tmage planes
is fully applicable. Thus B, is the same as for the square
because the earlier problem is reproduced by a free surface
image plane through the centers of four spheres (the vertices
of a square) and perpendicular to the axis of the remaining
two. Stmilarly B, is the same as for the square, because two
additional spheres on the z edge of the frec corner reflector
discussed for the square have no effect.

In the forward direction

FofBo=Q@+Ci+C)3= ¥,
F/B=3~Ci= W, (69)
Fy/By=(6=C,+2C)/ 3=V,
where C, consists of 12 terms i cos( ;‘R-G,,) and C, of three
terms ia cos(y1 2k-b,, ), corresponding to the edges and dia-

gonals of the octahedron respectively, Combining terms, we
generalize (60°) by

Ci/4 = cos &, cos &y + 08 £3 cos &y 4 05 &4 cos £, (69"
C;y =008 2§ + €08 2£; + cos 24,
with §; = (y/v2)a,. Comparison of C, with C of (50b) for
the tetrahedzon shows that €, = 2C, the normalsof theocla-
hedron's four pairs of parallel faces equal the four values of
b, for the tetrahedron. As before, for numerical computa-
tions of R of (26a) we reed consider only 0'a<90",
0°<B<45

The maximum vatue of R arises for the cases of highest
symmetry, k = b, along a diagonal (i.c., incidencealong the
axis of a dingonal pair and therefore normal to a diameteral
square array, €g., k- R); then Cps=ad.48cos(y/ve),
Cy=2 cos(pv2), and

Ry =923, p) =4.248, x, =001376, 10
Sa =9%1%%10,, (70)
Here Ry = 6.02, R, = 0.036, R, = 3.17; made-0 dominates,
mode-2 is strong, and mode-1 is minor, Fork = iinormal to
two parallel faces (i.e., incidence normal to two parallel
triangular arrays, eg., kV3=2R4742),
Cy =66 cos(W273) = 6.4-2C,,

R@)=866, y=do, x=00037,
S=8.670, (09

(with Ry=333, R, = 533, R, =0); mode-1 dominates
and mode-2 vanishes. For k = b,, normal to two opposite
edges (0.8, kvZ =%+ §), C, =24 2cosy-+ 8 cos(y/2),
Cy=1+2cosy,and

R(b,) =849, y=114, x=001373, S= 8.500,
(with Ry = 7.2857, R,z 1.178, R;2:0 031); mode-0 domi-
nates, and mode-2 is minor. _

_The average over orientation based on C, = 12 (),
Cy =3 (w2) yields the required special cases of (262).
Now
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R=Sn/(14+TD<6 v=1, v=3, wn=2L

(71)
I Ty =0, then K> ;if [y =0, then R>3; and if [, =0,
then R >2. The present v, times the corresponding 57,
show that (28a) is satisfied.
For small y = p/x, we obtain {(27)f in terms of I'y and
T, of (63), and different forms I, Z, and Z,. Now

1 e !) 1 1
T, =__( 30}, = mfmemme, Ky=—, (72
0= Y I S K 0= (72)
=P,(f~f(). Z,=2Z%+2%, Z3=PiP}, (123)

with, e.g,, P$ = 1 = (3/2)sin? 8, Becausc of higher symme-
try, the dipole is as compiete as for the sphere, but the qua-
drupole still Tacks the odd terms Z } and Z3, of (7). Expli-
citly, from Z 3, of (63'), we now have

Zy= (1= ysin? 0)(1 = §sin* )
+ § sin? 0'sin® & cos 2¢p cos 23
=44 (30820 4 1)(3cos 2a 4 1)

s o (1o 08 20) (1 = cos 2a)cos 29 cos 23,
(72b)

where the form in terms of 20 and 2a delincates quadrupole
characteristics. The form Z, vanishesifeithera or 0 = sin™*
v2/3 and if either § or ¢ i an odd multple of 7/4, these
values include the cases k = fi discussed for (70},

For the monopole resonance,

Foma =1, So=0.(14ple). (73)

The dipole resoonance specified by ¢, = 1/v2 as for (65)
now yields

Fi= =ik, $,=5 =301 =pcp, )
with background monopole determined by Fo(x;) = — (p/

3x,)(2 4 1/v2). The quadrupole resonance specified by
¢ 5= 2~ 1/v2 as for (66) yields

F2= _5210
8§, =31(2=3sin?a)? 4 Isin' & cos’ 23 Jo (1 = pey),
3, =20,(1 - pey). as

with background monopole determined by [o(x,) = —p/
X, as before, The maxima of $,(k), i €., 50, (1 — pey), arise
for k = b, (along a diagonal of the octahedron).

To first order in p, the displ of the
frequencies are given by (x, — X, )2/px, ~ —4.707, 0,707,
1.293; the displacement of x, below x, 1s more than 6.6 times
that of x, and more than 3,6 times that of x, above x... Since
v, 0, = ok 32,4 20, =0, the sum S, = 6o, satisfies
(28).

3. Pentagonal array

In teras of g = 7/5 = 36", we have d = b2sinu and
dr=d2cosp = b2 sin 2u. Wework with 8, = (/2 sinp)
> kb, where b, =p{(s = 1)2u] corresponds to
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= [ l—xcos2‘uiysm2,u,

b,
{l;]= ~%cosp 4 §sing.

Since b, =0 requires
=77 = 7= 1 =0, it follows that

r=2¢cosp= (1 +5)/221618, 7
Pgri=3, rhrt=b

From (16), with I = Z3¢,

5D = BI + Bylr(Tyy + T1o) = (Tya o+ Ths)/7)

T4 2cos2u—2cosp

=1,

+ BT+ Tig) — (T3 + Ty)ir),  (76)
B, =B, o= 2h(y)+2h(yr),
Ty =h(y)Y/ 1= h(yr)n
Hym = h(P)7 4 h(yr)/7 (76")
From (17), we obtain (57) in terms of
SFy=BylI', 5F,=B(Myr—M/7), an

5Py = By(Myr — My/7),

Ml ZTmH)TmM)v Mz*—'sz(uz)Tr(nz)
(77a)

The sets M, and M, wvolve §, and the phases &,,., and
8,z of the near and far neighbors, respectively. The phase
dfferences 8, in the two sets form matched pairs because
cach edge is parallel to an appropriate diagonal:
b
b/ b
b, b . N
.”] = {.“] = o & sin 2 4 § cos 2,
(bys) by
by =by =3,
Thus 8 = ykiby, 8¢y = pricbyy = 78,5, et
In the forward direction

:
] = ‘3’] = 4 & sing =~ § cos i,

by,
(77b)

Fo/Bo= (54 2Cy + 2C3)/5 = Ve,
F/By=2(5 4 C/r=Cir)/5 =V,
Ey/By =25 = Cyrd C/1)/5=Vy,

(78)

CI = 2 COS(SS(‘, n= Cl(y)n

C= 2 €08 8,54 2y = 2 €08 78,4 4 n = G017,
Cy = 2cos(1, sin gg)cos (1), cos )

+ 2c0s(77, sin 244 )c0s(37, cOS 21} + €OS 1,
7, =)a,- (78")

The V, and 57, determine R of (26a) for numerical consid~
erations,

For normal incidence (k =), CI C, = 5 and mode-
1 and mode-2 vanish. The maximum is given by

R, =Rys =843, y, =3439, 39

x5 =001377, S, =840,
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For & = b, (perpendicular to an edge of the pentagon), e.g ,
k=3,

Cy(p) =2 cos(ysinp) + 2 cos(ysin2u) + 1,

C,y = Cy(yr). (79a)
For k = by, along an edge, e.g, k=3,

Cy(p) =2 cos(y cos st} -+ 2 cos(y cos 2u4) + cos(y),

C,=Cylyr). (79b)
_ The average over orientation based on Ty =35/ (),
C, = 5] (yr) yields (26c). Now,

R= S /(4TS vo=1 v=wn=2 (30)

If F=0, then R> 1; if Ty = 0 or ' =0, then R>2. To

C. Four collective modes; hexagonal array

Three different separations of the verticesb, = [zf), arise
for the regular hexagon: d = b (anedge), d V3 (ashort diag-
onal), and d2 (a diameter). The corresponding array of
monopoles involves three propagators £(y), h(p3), and
k(32). The multiple scattered array amplitude consists of
four collective orthogonal modes,

A 3 a
J(tk) =Y F, (k). (3%)
Q
We work with
bymi= ~b, 2b,=f+53= <2,

Wy= ~x+ = —2b,
cor di to the two subsets b, +fn,+f)$

demonstrate that (28a) is satisficd, note that the p Va

times the corresponding 7, of (76°) leads to
v = 200 +hOD =777, (807

which vanishes because 7= 7= == L,
For small p = p/x, we obtam (27) ffin terms of

STy
6 ( c.) 1
| QPR PYINIR-L N IR L (81)
\ e Y Y =3
120 9_) L2
I‘,::-—-y‘fg (}’+y y €2 -

Zo=, Zy=Z}, s
Zy=2i=Zi + 23, = 4PiP} cos 2(p—P).
The Z’s differ from those for the squarein (63'), in that Z,
includes the odd as well as the even terms of Z§, The K,
required for w, of (27¢) are given by K, = 1/5, K, = 6/7\/5,
and Ky = 120/7.
At T, =0, we obtain (27b). For the monopole

Fom =1, Sy=o,(14+plch). (82)
For the dipole

- 321, Sy =30.(1=pe)sin’q, 83)

5i=20.(1=pc,),

where F, was discussed after (47). The background mono-
pole is determined by [o(xy) = = (p/x)(1/7* 4 27). For
the quadrupole,

Fy= = 5Z%, §3=(15/3)a,(1 = pey)sin' a,

Sy =20.(1 - pcy),
where F; vanishes for either @ or @ = 0, orfor ¢ ~ Bequalto
an odd multipole of /4. The background monopole s deter-
mined by To(x;) = = 2p/x/5.

To first order in p, we have (x, —x.)2/px. =c,
2 - 3.236, 0.382, 1.236; the displacement of x, below x, 15
more than 8.47 times that of x, and more than 2.6 times that
of x; above x,. Since Zv, ¢, = o+ 2¢; + 20, = ~ 2742/
7% — 4/ =0 (as follows from the listed relations for 7), the
sum IS, = Sa, satisfies (28).

84
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A TRTL
=b; by +?)6 =0, (such that the odd terms represent the
same set that arose for the triangle). Opposite edges are par-
allel to a diameter, and vpposite short diagonals perpendicu
Jar to a diameter, ¢.g., f)z, = ﬁ“ =h =%, and f),b = f),,
= §, etc. The phase factors exp(id,) = exp{iyk-b,) pair off
as complex conjugates.
From (16),

6Dy = Bolygy + By(2Thq + Tos = Ts)

+ By{Tig 4+ Ty + Tyt T)

4 By(Tyz + Ty ot Tio) (86)
By =B ()i Ho=2k(p) 4 20(W3) +h()2),
Hy=hp) = hWB) = h2),
IEy= = hiy) = h(NE) +h(y2),
Hym= = 20(p) + 2h(N3) = h(32).

From (17), we obtain (85) in terms of

(86"

6Fy/By= 11"
6F/By= (Tis 4 Tos)(T' + T3s)
A (Tos+ Ty O Y 4 (Tye + Ty Ys
6Fy/By= (Typ + Tu)(Thy + Ts) (
+ (T34 Tegd )+ (Taa ok Tie) )
6F/By=(Tis+ Tt Tee) Tz + T4 +T4)-

87)

Equivalently,

3F/2By = (cos 8, - cos &, - cos 8;)
X {cos &y -+ cos B, 4 cos 4y),

3F\ /2B, = (sin 8, +sin 8,)(sin Ay +sin 4,)
4 (sin 8, 4 sin &) ( )
4 (sin 8 =~ sind)( ),

3F,/2B, = (co0s 8) ~ c0s 8,) (cos Ay ~ cos A,)
4 {cos §y ~cos F)( )
4+ (c0s 8, —cos 8,)( )

3F,/2B, = (sin§; —sin §, 4 sin §,)
X (sint &, = sin & +sin A;). (87)
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[Note that the forms for n = 0 and 2 are essentially the same
as1n (68") for the octahedral array.] Analogous to the pro-
cedure for the square, the present forms may be interpreted
by means of three image planes 5( & 30%), p(90%) interms of
z-edged 60"corner reflectors.

In the forward direction, F,/B, = ¥, with

Vy= (6 4+2C, 4 2C; +2C3)/6,

Vy= (1242C, —2C, = 4Cy) /6,

Vo= (12=2C; = 2C; 4 4Cy) /6,

Vy= (6= 2C, + 2C;, = 2Cy) /6.
Here C, consists of six cosines in 8¢, 4. 135 C; 0f SIX in 8,4 4.2y
and C; of threc in &,(,.,.,, corresponding to the edges, short
diagonals, and diameters of the hexagon, respectively. The
&s1n Cyand Cy are o yk+p(p) and y2k-H(u), respectively,
with 2= 60" and 0* for both sets; the &'s in C, are
o f3kep(u) withge = & 30°and 90", Combining terms we
have

CG= z €08 8yp4 1)

(88)

= 4 c0s(17,/2)c0s(73/2) + 2 cos y,,
= E €os 5:(1*!)
= 4 cos(113/2)cos(1f3/2) + 2 cos(f3),

G= E €08 8,443

= 2 cos(77,)cos(1,y3) + cos 297, (38"

where 5, = ya,, The ¥, and 5, determne R of (26a).
For normal incidence (k = %), CI = C2 6 and
Cy=3,sothat ¥, = ¥, = ¥y = 0. The maximum is given by

Ry = Rop =9.519, y, =5551,
xp =001373, S, =9.5330,.

Fork = 13‘ (along a diameter and two edges, and normal to
two short diagonals), e.g., k = &,

Cy=4cos(p/2) +2cos y,
C, =4 cos(y3/2) 4 2, (89a)
Cy =208y + €OS 2y
Fork= S,(, +n along a short diagonal, e.g., k=3,
Cy=4cos(w3/2) +2,
=4 cos(W3/2) + 2 cos(w3), (89b)
Cy =2 cos(3f3) + 1.,

For this case, ¥; vanishes, _
The average over orientation based on C, = 6j(y),

T, = 6/(W3), T, = 3(2p) yields (26c). Now

(89)

R=F v,(1 +TH)~'<6, (90)

where v, = 12,2,1 for n=0,1,2,3, respectively. If Ty or
[y=0,thenk - 1,if T, or ', =0, then X > 2. The present
¥, times the corrcspondmgi?’ of (86’) show that (28a) 1s
satisﬁed.
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2 V3’

1 1 1
=L _l), SO N
) yz(Y"}‘y 1 vk
T —_-..2.9.(7,*.2) c ___l__*__l__ o
2 y,, v r 27 2 \/3 H

42 [2 S 2
P3=T(}’+—y-’-), C;='2——75r-;
20-.- 1, Z,=2}, Z,=23, o1)

=Z3, = PP} cos 3p cos 35,
wnh e.g, P} = 15 sin® 6. The other harmonies are the same
as in (81'). The K, required for w, of (27¢) are given by
K, =1/6, 1, 20, and 420.

AtT, =0, we obtain (27b). For the monopole

Fo= =1, Sy=0,(1 4 ple)). (92
For the dipole,

Fyee =324, $,=30.(1 = pc))sm?q,

Si=20.(1=pop),
where Fy was discussed after (47); the background mono-
pole is determined by I'y = p(2 - v3)/6x,. For the quadru-
pole,

Fy= =5Z3, S;=%0.(1-pc)sinq,

Sp=20,(1=pey),
where F, was discussed after (74); the background mono-
poleisdetermined by 'y = ~ p(3 + v3)/6x,. For the octu-
pole,

Fy= ~1Z}, = — 3 sin* 0sin® a cos 3p cos 35,

Sy =¥ (sin® a cos? 38) 0. (1 = pcy), (95)

Sy =0.(1=pey),
where F; vanishe: if either a or @ = 0, orif erther Sor g1s an
odd multiple of 7/6; the background monopole is deter-
mined by [y = ~ 5p/6x;,

To first order in p, we have (x, —x,)¥/px,
= ¢, 2 = 3.6547, 0,071350, 1.077 35, 1.3453; the displace-
ment of X, below x, is more than 47 times that of x,, more
than 3.39 tims that of x,, and more than 2.7 tmes that of x;
abovc X, Since Zv,¢, = ¢o++ 2¢; + 203 4 ¢, = 0, the sum

= 60, satisfies (28)

(93)

94)
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APPENDIX A: MONOPOLE-DIPOLE COUPLING
CORRECTIONS

The low-frequency results (36)fapply forp = x/y < 1/
2, but asindicated after (15), a development based solely on
(14) for monopoles provides no criterion for the largest per-
missible value of the packing factor p. To obtain a practical
bound for close pavking, we apply the earlier results' for a
doublet of different spheres, each consisting of 2 monopole
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plus dipole. Specializing (1:75) toidentical spheres specified
by a,0f (9) and a, = — ix?, leads directly to more complete
results for the resonance frequencies x, and x,.

Keeping only the k-independent corrections, replaces 4
in the mode coeflicients B, and B, by J¥°, where the sub-
scripts +- and ~ represent different propagators, ie.,

. Bo}= -1 = -1
Bl Ltiygh o Vbire s,
#, =hgt Aan
1 ahy

Here k= hy(p), by = — &', and the prime indicates differ-
entiation with respect to y. To lowest order n &, we have
h=l/ytand b= - 2/ip% consequently

3
‘=p(l;:-l—-£-2’7). (A2)
Thus we obtain the resonance forms (37) and (38) with 4 p
replaced by :kp, .
Explicitly, the resonance frequencies are given by
i = (l -——"-’-—-) (A3)
o—l-i-p » Pe =P T4 27 <P

2 3
o= g =p(1+ l_fzp,) >p (Ad)
For p = 0.25 (a gap of one sphere diameter), p, ~0.246 is
about 1.6% smaller, and p.. ~0.254 is about 1.6% larger.
Both x, and x; are increased, the first by about 0.16% and
the sccond by about 0.27%. Thus the effects of mo 1opole=
dipole coupling on the resonance frequencies is negligible at
P = 1/4. To consider coupling effects for p closer to }, qua-
drupoles and higher-order multipoles shoutd also be inctud-
ed.

If we retain only the first correction to p (i.c., if we
discount dipole-dipole coupling), then

Xo Xz a a
X’} Txp-p 770" W (A%)

as given originally by Strasberg*? for the analogous problems
of a single bubble near a rigid (x,) or free (x,) plane.

APPENDIX B: THE INDIVIDUAL COEFFICIENTS D,

Numerical and graphical results® for an individual aux-
iliary multiple scattering coefficient lead to tncorrect notions
of the behavior of the observable multiple scattering ampli-
tude & for the array. The essentials are indicated by the
forward scattered & based on (32),
G =D 4+D,=F+F,

=By(1+cos ¥) + B (1 ~cos ¥Y), Y=ycosa, .
(

and the values of D, and D, corresponding to (30),
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]_ Zo (1 4 cos Y Tisin 1)

+—2-'-(1 —cos Y isin ¥). (B2)

Thus, except for symmetnical excitation (Y =0,
D, =D, =B, = J/2), the D, contain terms that cancel in
thesum %, and considerations based on an individual coeffi-
cient D, are misleading.

The simple explicit forms for small y delineate the
marked differences in the behavior of D, and &. From the
series expansion of j and n, we have By=d4,/2 and

=24,/y* with 4, and 4, asin (36), expanding cos ¥and
sin ¥, we reduce (B2) to

z:]-:%’--;‘-%'-(cosza;ti%cosa) (B3)
such that the O(y™) cancelin the sum &. In particular, for

a mode-1 resonance (I, =0, y= = 1/y= = p/x,), the
dominant term of D,

D.] — ixy/p 3 ( 2 2p )
D, -—-—-——-——2“ +lx,/p) > cos“ ok Xx cosa
= :;: 2 cos a (B4)

with x, ...x,/(l —p) V2 35 in (38), does not appear in the
sum. Thus an individual |D,} does not indicate the correct
order of magnitude of the observable multiple scattering am-
plitude of the array | &},
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